1
|
Rajandram R, Suren Raj TL, Gobe GC, Kuppusamy S. Liquid biopsy for renal cell carcinoma. Clin Chim Acta 2025; 565:119964. [PMID: 39265757 DOI: 10.1016/j.cca.2024.119964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Liquid biopsies offer a less invasive alternative to tissue biopsies for diagnosis, prognosis, and determining therapeutic potential in renal cell carcinoma (RCC). Unfortunately, clinical studies using liquid biopsy biomarkers in RCC are limited. Accordingly, we examine RCC biomarkers, derived from urine, plasma, serum and feces of potential impact and clinical outcome in these patients. A PRISMA checklist was used to identify valuable liquid biopsy biomarkers for diagnosis (plasma cfDNA, serum- or urine-derived circulating RNAs, exosomes and proteins), prognosis (plasma cfDNA, plasma- or serum-derived RNAs, and proteins), and therapeutic response (plasma- and serum-derived proteins). Although other analytes have been identified, their application for routine clinical use remains unclear. In general, panels appear more effective than single biomarkers. Important considerations included proof of reproducibility. Unfortunately, many of the examined studies were insufficiently large and lacked multi-center rigor. Cost-effectiveness was also not available. Accordingly, it is clear that more standardized protocols need to be developed before liquid biopsies can be successfully integrated into clinical practice in RCC.
Collapse
Affiliation(s)
- Retnagowri Rajandram
- Division of Urology, Department of Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.
| | - Tulsi Laxmi Suren Raj
- Division of Urology, Department of Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Glenda Carolyn Gobe
- Kidney Disease Research Collaborative, Translational Research Institute, and School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - Shanggar Kuppusamy
- Division of Urology, Department of Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Jin K, Lan H, Han Y, Qian J. Exosomes in cancer diagnosis based on the Latest Evidence: Where are We? Int Immunopharmacol 2024; 142:113133. [PMID: 39278058 DOI: 10.1016/j.intimp.2024.113133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/09/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
Exosomes are small extracellular vesicles (EVs) derived from various cellular sources and have emerged as favorable biomarkers for cancer diagnosis and prognosis. These vesicles contain a variety of molecular components, including nucleic acids, proteins, and lipids, which can provide valuable information for cancer detection, classification, and monitoring. However, the clinical application of exosomes faces significant challenges, primarily related to the standardization and scalability of their use. In order to overcome these challenges, sophisticated methods such as liquid biopsy and imaging are being combined to augment the diagnostic capabilities of exosomes. Additionally, a deeper understanding of the interaction between exosomes and immune system components within the tumor microenvironment (TME) is essential. This review discusses the biogenesis and composition of exosomes, addresses the current challenges in their clinical translation, and highlights recent technological advancements and integrative approaches that support the role of exosomes in cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Ketao Jin
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310003, China.
| | - Huanrong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310002, China; Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310006, China.
| | - Yuejun Han
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310003, China
| | - Jun Qian
- Department of Colorectal Surgery, Xinchang People's Hospital, Affiliated Xinchang Hospital, Wenzhou Medical University, Xinchang, Zhejiang 312500, China.
| |
Collapse
|
3
|
Ma Y, Zhang X, Liu C, Zhao Y. Extracellular vesicles in cancers: mechanisms, biomarkers, and therapeutic strategies. MedComm (Beijing) 2024; 5:e70009. [PMID: 39611045 PMCID: PMC11604295 DOI: 10.1002/mco2.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 11/30/2024] Open
Abstract
Extracellular vesicles (EVs) composed of various biologically active constituents, such as proteins, nucleic acids, lipids, and metabolites, have emerged as a noteworthy mode of intercellular communication. There are several categories of EVs, including exosomes, microvesicles, and apoptotic bodies, which largely differ in their mechanisms of formation and secretion. The amount of evidence indicated that changes in the EV quantity and composition play a role in multiple aspects of cancer development, such as the transfer of oncogenic signals, angiogenesis, metabolism remodeling, and immunosuppressive effects. As EV isolation technology and characteristics recognition improve, EVs are becoming more commonly used in the early diagnosis and evaluation of treatment effectiveness for cancers. Actually, EVs have sparked clinical interest in their potential use as delivery vehicles or vaccines for innovative antitumor techniques. This review will focus on the function of biological molecules contained in EVs linked to cancer progression and their participation in the intricate interrelationship within the tumor microenvironment. Furthermore, the potential efficacy of an EV-based liquid biopsy and delivery cargo for treatment will be explored. Finally, we explicitly delineate the limitations of EV-based anticancer therapies and provide an overview of the clinical trials aimed at improving EV development.
Collapse
Affiliation(s)
- Yuxi Ma
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
- Cancer CenterInstitute of Radiation OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaohui Zhang
- Cancer CenterHubei Key Laboratory of Cell HomeostasisCollege of Life SciencesTaiKang Center for Life and Medical SciencesWuhan UniversityWuhanChina
| | - Cuiwei Liu
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
- Cancer CenterInstitute of Radiation OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yanxia Zhao
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
- Cancer CenterInstitute of Radiation OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
4
|
Zhu T, Fu H, Wang Z, Guo S, Zhang S. Identification of exosomal ceRNA networks as prognostic markers in clear cell renal cell carcinoma. Medicine (Baltimore) 2024; 103:e40167. [PMID: 39470474 PMCID: PMC11521039 DOI: 10.1097/md.0000000000040167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/30/2024] Open
Abstract
Aggressive clear cell renal cell carcinoma (ccRCC) has a bad prognosis. We seek new ccRCC biomarkers for diagnosis and treatment. We used exoRBase and The Cancer Genome Atlas Database to compare DEmRNAs, DEmiRNAs, DElncRNAs, and DEcircRNAs in ccRCC and normal renal tissues. CircRNAs and circRNAs targeting microRNAs (miRNAs) were anticipated and taken intersections, and several databases assessed the targeted link between common miRNAs and messenger RNAs (mRNAs). The Cancer Genome Atlas database was used to create a predictive mRNA signature that was validated in E-MTAB-1980. Finally, we examined competing endogenous RNA network miRNAs and long noncoding RNAs for ccRCC predictive biomarkers using overall survival analysis. We built the first competing endogenous RNA regulation network of circRNA-lncRNA-miRNA-mRNA and found that it substantially correlates with ccRCC prognosis. We unveiled ccRCC's posttranscriptional regulation mechanism in greater detail. Our findings identified novel biomarkers for ccRCC diagnosis, therapy, and prognosis.
Collapse
Affiliation(s)
- Tao Zhu
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong Province, China
| | - Haizhu Fu
- Department of Urology, Shouguang Hospital of Traditional Chinese Medicine, Shouguang, Shandong Province, China
| | - Zhiqiang Wang
- Department of Urology, Shouguang Hospital of Traditional Chinese Medicine, Shouguang, Shandong Province, China
| | - Shanchun Guo
- RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA
| | - Shidong Zhang
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong Province, China
| |
Collapse
|
5
|
Xu F, Luo S, Lu P, Cai C, Li W, Li C. Composition, functions, and applications of exosomal membrane proteins. Front Immunol 2024; 15:1408415. [PMID: 39148736 PMCID: PMC11324478 DOI: 10.3389/fimmu.2024.1408415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
Exosomes play a crucial role in various biological processes, such as human development, immune responses, and disease occurrence. The membrane proteins on exosomes are pivotal factors for their biological functionality. Currently, numerous membrane proteins have been identified on exosome membranes, participating in intercellular communication, mediating target cell recognition, and regulating immune processes. Furthermore, membrane proteins from exosomes derived from cancer cells can serve as relevant biomarkers for early cancer diagnosis. This article provides a comprehensive review of the composition of exosome membrane proteins and their diverse functions in the organism's biological processes. Through in-depth exploration of exosome membrane proteins, it is expected to offer essential foundations for the future development of novel biomedical diagnostics and therapies.
Collapse
Affiliation(s)
- Fang Xu
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Shumin Luo
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Pengpeng Lu
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Chao Cai
- Integrated Chinese and Western Medicine Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Weihua Li
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Integrated Chinese and Western Medicine Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Chuanyun Li
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Dabral P, Bhasin N, Ranjan M, Makhlouf MM, Abd Elmageed ZY. Tumor-Derived Extracellular Vesicles as Liquid Biopsy for Diagnosis and Prognosis of Solid Tumors: Their Clinical Utility and Reliability as Tumor Biomarkers. Cancers (Basel) 2024; 16:2462. [PMID: 39001524 PMCID: PMC11240796 DOI: 10.3390/cancers16132462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Early cancer detection and accurate monitoring are crucial to ensure increased patient survival. Recent research has focused on developing non-invasive biomarkers to diagnose cancer early and monitor disease progression at low cost and risk. Extracellular vesicles (EVs), nanosized particles secreted into extracellular spaces by most cell types, are gaining immense popularity as novel biomarker candidates for liquid cancer biopsy, as they can transport bioactive cargo to distant sites and facilitate intercellular communications. A literature search was conducted to discuss the current approaches for EV isolation and the advances in using EV-associated proteins, miRNA, mRNA, DNA, and lipids as liquid biopsies. We discussed the advantages and challenges of using these vesicles in clinical applications. Moreover, recent advancements in machine learning as a novel tool for tumor marker discovery are also highlighted.
Collapse
Affiliation(s)
- Prerna Dabral
- Vitalant Research Institute, University of California San Francisco, San Francisco, CA 94105, USA;
| | - Nobel Bhasin
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Manish Ranjan
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Maysoon M. Makhlouf
- Department of Biomedical Sciences, Discipline of Pharmacology, Edward Via College of Osteopathic Medicine (VCOM), 4408 Bon Aire Drive, Monroe, LA 71203, USA;
| | - Zakaria Y. Abd Elmageed
- Department of Biomedical Sciences, Discipline of Pharmacology, Edward Via College of Osteopathic Medicine (VCOM), 4408 Bon Aire Drive, Monroe, LA 71203, USA;
| |
Collapse
|
7
|
Grooms AJ, Burris BJ, Badu-Tawiah AK. Mass spectrometry for metabolomics analysis: Applications in neonatal and cancer screening. MASS SPECTROMETRY REVIEWS 2024; 43:683-712. [PMID: 36524560 PMCID: PMC10272294 DOI: 10.1002/mas.21826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Chemical analysis by analytical instrumentation has played a major role in disease diagnosis, which is a necessary step for disease treatment. While the treatment process often targets specific organs or compounds, the diagnostic step can occur through various means, including physical or chemical examination. Chemically, the genome may be evaluated to give information about potential genetic outcomes, the transcriptome to provide information about expression actively occurring, the proteome to offer insight on functions causing metabolite expression, or the metabolome to provide a picture of both past and ongoing physiological function in the body. Mass spectrometry (MS) has been elevated among other analytical instrumentation because it can be used to evaluate all four biological machineries of the body. In addition, MS provides enhanced sensitivity, selectivity, versatility, and speed for rapid turnaround time, qualities that are important for instance in clinical procedures involving the diagnosis of a pediatric patient in intensive care or a cancer patient undergoing surgery. In this review, we provide a summary of the use of MS to evaluate biomarkers for newborn screening and cancer diagnosis. As many reviews have recently appeared focusing on MS methods and instrumentation for metabolite analysis, we sought to describe the biological basis for many metabolomic and additional omics biomarkers used in newborn screening and how tandem MS methods have recently been applied, in comparison to traditional methods. Similar comparison is done for cancer screening, with emphasis on emerging MS approaches that allow biological fluids, tissues, and breath to be analyzed for the presence of diagnostic metabolites yielding insight for treatment options based on the understanding of prior and current physiological functions of the body.
Collapse
Affiliation(s)
- Alexander J Grooms
- Department of Chemistry and Biochemistry, The Ohio State University, Ohio, Columbus, USA
| | - Benjamin J Burris
- Department of Chemistry and Biochemistry, The Ohio State University, Ohio, Columbus, USA
| | - Abraham K Badu-Tawiah
- Department of Chemistry and Biochemistry, The Ohio State University, Ohio, Columbus, USA
| |
Collapse
|
8
|
Razavinia A, Razavinia A, Jamshidi Khalife Lou R, Ghavami M, Shahri F, Tafazoli A, Khalesi B, Hashemi ZS, Khalili S. Exosomes as novel tools for renal cell carcinoma therapy, diagnosis, and prognosis. Heliyon 2024; 10:e32875. [PMID: 38948044 PMCID: PMC11211897 DOI: 10.1016/j.heliyon.2024.e32875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/06/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024] Open
Abstract
Background Renal Cell Carcinoma (RCC) stands as a formidable challenge within the field of oncology, despite considerable research endeavors. The advanced stages of this malignancy present formidable barriers to effective treatment and management. Objective This review aims to explore the potential of exosomes in addressing the diagnostic and therapeutic challenges associated with RCC. Specifically, it investigates the role of exosomes as biomarkers and therapeutic vehicles in the context of RCC management. Methods For this review article, a comprehensive literature search was conducted using databases such as PubMed, employing relevant keywords to identify research articles pertinent to the objectives of the review. Initially, 200 articles were identified, which underwent screening to remove duplicates and assess relevance based on titles and abstracts, followed by a detailed examination of full texts. From the selected articles, relevant data were extracted and synthesized to address the review's objectives. The conclusions were drawn based on a thorough analysis of the findings. The quality was ensured through independent review and resolution of discrepancies among multiple reviewers. Results Exosomes demonstrate potential as diagnostic tools for early detection, prognosis, and treatment monitoring in RCC. Their ability to deliver various therapeutic agents, such as small interfering RNAs, lncRNAs, chemotherapeutic drugs, and immune-stimulating agents, allows for a personalized approach to RCC management. By leveraging exosome-based technologies, precision and efficacy in treatment strategies can be significantly enhanced. Conclusion Despite the promising advancements enabled by exosomes in the management of RCC, further research is necessary to refine exosome-based technologies and validate their efficacy, safety, and long-term benefits through rigorous clinical trials. Embracing exosomes as integral components of RCC diagnosis and treatment represents a significant step towards improving patient outcomes and addressing the persistent challenges posed by this malignancy in the field of oncology.
Collapse
Affiliation(s)
- Amir Razavinia
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abazar Razavinia
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Roya Jamshidi Khalife Lou
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahlegha Ghavami
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Forouzan Shahri
- Department of Chemistry, Faculty of Sciences, University of Guilan, Iran
| | - Aida Tafazoli
- Department of Bacterial and Virology, Shiraz medical school, Shiraz, Iran
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj 3197619751, Iran
| | - Zahra Sadat Hashemi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| |
Collapse
|
9
|
Liu M, Wen Z, Zhang T, Zhang L, Liu X, Wang M. The role of exosomal molecular cargo in exosome biogenesis and disease diagnosis. Front Immunol 2024; 15:1417758. [PMID: 38983854 PMCID: PMC11231912 DOI: 10.3389/fimmu.2024.1417758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024] Open
Abstract
Exosomes represent a type of extracellular vesicles derived from the endosomal pathway that transport diverse molecular cargoes such as proteins, lipids, and nucleic acids. These cargoes have emerged as crucial elements impacting disease diagnosis, treatment, and prognosis, and are integral to the process of exosome formation. This review delves into the essential molecular cargoes implicated in the phases of exosome production and release. Emphasis is placed on their significance as cancer biomarkers and potential therapeutic targets, accompanied by an exploration of the obstacles and feasible applications linked to these developments.
Collapse
Affiliation(s)
- Meijin Liu
- Laboratory Medicine, People's Hospital of Ganzhou Economic Development Zone, Ganzhou, China
| | - Zhenzhen Wen
- Laboratory Medicine, People's Hospital of Ganzhou Economic Development Zone, Ganzhou, China
| | - Tingting Zhang
- Laboratory Medicine, People's Hospital of Ganzhou Economic Development Zone, Ganzhou, China
| | - Linghan Zhang
- Laboratory Medicine, People's Hospital of Ganzhou Economic Development Zone, Ganzhou, China
| | - Xiaoyan Liu
- Laboratory Medicine, People's Hospital of Ganzhou Economic Development Zone, Ganzhou, China
| | - Maoyuan Wang
- Laboratory Medicine, People's Hospital of Ganzhou Economic Development Zone, Ganzhou, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Gannan Medical University, GanZhou, China
| |
Collapse
|
10
|
Le LNH, Munir J, Kim EB, Ryu S. Kidney Cancer and Potential Use of Urinary Extracellular Vesicles. Oncol Rev 2024; 18:1410450. [PMID: 38846051 PMCID: PMC11153667 DOI: 10.3389/or.2024.1410450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/08/2024] [Indexed: 06/09/2024] Open
Abstract
Kidney cancer is the 14th most common cancer globally. The 5-year relative survival rate of kidney cancer at a localized stage is 92.9% and it declines to 17.4% in metastatic stage. Currently, the most accurate method of its diagnosis is tissue biopsy. However, the invasive and costly nature of biopsies makes it undesirable in many patients. Therefore, novel biomarkers for diagnosis and prognosis should be explored. Urinary extracellular vesicles (uEVs) are small vesicles (50-200 nm) in urine carrying nucleic acids, proteins and lipids as their cargos. These uEVs' cargos can provide non-invasive alternative to monitor kidney health. In this review, we have summarized recent studies investigating potential use of uEVs' cargos as biomarkers in kidney cancer for diagnosis, prognosis and therapeutic intervention.
Collapse
Affiliation(s)
- Linh Nguy-Hoang Le
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Republic of Korea
- Soonchunhyang Institute of Med-Bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Javaria Munir
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Eun-Bit Kim
- Soonchunhyang Institute of Med-Bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Seongho Ryu
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Republic of Korea
- Soonchunhyang Institute of Med-Bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| |
Collapse
|
11
|
Grützmann K, Salomo K, Krüger A, Lohse-Fischer A, Erdmann K, Seifert M, Baretton G, Aust D, William D, Schröck E, Thomas C, Füssel S. Identification of novel snoRNA-based biomarkers for clear cell renal cell carcinoma from urine-derived extracellular vesicles. Biol Direct 2024; 19:38. [PMID: 38741178 DOI: 10.1186/s13062-024-00467-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/18/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is the most common subtype of RCC with high rates of metastasis. Targeted therapies such as tyrosine kinase and checkpoint inhibitors have improved treatment success, but therapy-related side effects and tumor recurrence remain a challenge. As a result, ccRCC still have a high mortality rate. Early detection before metastasis has great potential to improve outcomes, but no suitable biomarker specific for ccRCC is available so far. Therefore, molecular biomarkers derived from body fluids have been investigated over the past decade. Among them, RNAs from urine-derived extracellular vesicles (EVs) are very promising. METHODS RNA was extracted from urine-derived EVs from a cohort of 78 subjects (54 ccRCC patients, 24 urolithiasis controls). RNA-seq was performed on the discovery cohort, a subset of the whole cohort (47 ccRCC, 16 urolithiasis). Reads were then mapped to the genome, and expression was quantified based on 100 nt long contiguous genomic regions. Cluster analysis and differential region expression analysis were performed with adjustment for age and gender. The candidate biomarkers were validated by qPCR in the entire cohort. Receiver operating characteristic, area under the curve and odds ratios were used to evaluate the diagnostic potential of the models. RESULTS An initial cluster analysis of RNA-seq expression data showed separation by the subjects' gender, but not by tumor status. Therefore, the following analyses were done, adjusting for gender and age. The regions differentially expressed between ccRCC and urolithiasis patients mainly overlapped with small nucleolar RNAs (snoRNAs). The differential expression of four snoRNAs (SNORD99, SNORD22, SNORD26, SNORA50C) was validated by quantitative PCR. Confounder-adjusted regression models were then used to classify the validation cohort into ccRCC and tumor-free subjects. Corresponding accuracies ranged from 0.654 to 0.744. Models combining multiple genes and the risk factors obesity and hypertension showed improved diagnostic performance with an accuracy of up to 0.811 for SNORD99 and SNORA50C (p = 0.0091). CONCLUSIONS Our study uncovered four previously unrecognized snoRNA biomarkers from urine-derived EVs, advancing the search for a robust, easy-to-use ccRCC screening method.
Collapse
Affiliation(s)
- Konrad Grützmann
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases Dresden (NCT/UCC), 01307, Dresden, Germany
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Karsten Salomo
- Department of Urology, Faculty of Medicine Carl Gustav Carus, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Alexander Krüger
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases Dresden (NCT/UCC), 01307, Dresden, Germany
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
| | - Andrea Lohse-Fischer
- Department of Urology, Faculty of Medicine Carl Gustav Carus, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Kati Erdmann
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Department of Urology, Faculty of Medicine Carl Gustav Carus, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Michael Seifert
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Gustavo Baretton
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases Dresden (NCT/UCC), 01307, Dresden, Germany
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Institute for Pathology, Faculty of Medicine Carl Gustav Carus, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Daniela Aust
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases Dresden (NCT/UCC), 01307, Dresden, Germany
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Institute for Pathology, Faculty of Medicine Carl Gustav Carus, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Doreen William
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases Dresden (NCT/UCC), 01307, Dresden, Germany
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
- Institute of Molecular Cell Biology and Genetics, ERN GENTURIS, Hereditary Cancer Syndrome Center Dresden, Max Planck, 01307, Dresden, Germany
| | - Evelin Schröck
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases Dresden (NCT/UCC), 01307, Dresden, Germany
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
- Institute of Molecular Cell Biology and Genetics, ERN GENTURIS, Hereditary Cancer Syndrome Center Dresden, Max Planck, 01307, Dresden, Germany
| | - Christian Thomas
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Department of Urology, Faculty of Medicine Carl Gustav Carus, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Susanne Füssel
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany.
- Department of Urology, Faculty of Medicine Carl Gustav Carus, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany.
| |
Collapse
|
12
|
Zieren RC, Zondervan PJ, Pienta KJ, Bex A, de Reijke TM, Bins AD. Diagnostic liquid biopsy biomarkers in renal cell cancer. Nat Rev Urol 2024; 21:133-157. [PMID: 37758847 DOI: 10.1038/s41585-023-00818-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
The clinical presentation of renal cell cancer (RCC) is shifting towards incidental and early detection, creating new challenges in RCC diagnosis. Overtreatment might be reduced with the development of new diagnostic biomarkers to distinguish benign from malignant small renal masses (SRMs). Differently from tissue biopsies, liquid biopsies are obtained from a patient's blood or urine and, therefore, are minimally invasive and suitable for longitudinal monitoring. The most promising types of liquid biopsy biomarkers for RCC diagnosis are circulating tumour cells, extracellular vesicles (EVs) and cell-free DNA. Circulating tumour cell assays have the highest specificity, with low processing time and costs. However, the biological characteristics and low sensitivity limit the use of these markers in SRM diagnostics. Cell-free DNA might complement the diagnosis of high-volume RCC, but the potential for clinical application in SRMs is limited. EVs have the highest biological abundance and the highest sensitivity in identifying low-volume disease; moreover, the molecular characteristics of these markers make EVs suitable for multiple analytical applications. Thus, currently, EV assays have the greatest potential for diagnostic application in RCC (including identification of SRMs). All these liquid biomarkers have potential in clinical practice, pending validation studies. Biomarker implementation will be needed to also improve characterization of RCC subtypes. Last, diagnostic biomarkers might be extended to prognostic or predictive applications.
Collapse
Affiliation(s)
- Richard C Zieren
- Department of Urology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.
- The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Patricia J Zondervan
- Department of Urology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Kenneth J Pienta
- The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Axel Bex
- Specialist Centre for Kidney Cancer, Royal Free Hospital, London, United Kingdom
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
- The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Theo M de Reijke
- Department of Urology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Adriaan D Bins
- Department of Medical Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Amin S, Massoumi H, Tewari D, Roy A, Chaudhuri M, Jazayerli C, Krishan A, Singh M, Soleimani M, Karaca EE, Mirzaei A, Guaiquil VH, Rosenblatt MI, Djalilian AR, Jalilian E. Cell Type-Specific Extracellular Vesicles and Their Impact on Health and Disease. Int J Mol Sci 2024; 25:2730. [PMID: 38473976 PMCID: PMC10931654 DOI: 10.3390/ijms25052730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Extracellular vesicles (EVs), a diverse group of cell-derived exocytosed particles, are pivotal in mediating intercellular communication due to their ability to selectively transfer biomolecules to specific cell types. EVs, composed of proteins, nucleic acids, and lipids, are taken up by cells to affect a variety of signaling cascades. Research in the field has primarily focused on stem cell-derived EVs, with a particular focus on mesenchymal stem cells, for their potential therapeutic benefits. Recently, tissue-specific EVs or cell type-specific extracellular vesicles (CTS-EVs), have garnered attention for their unique biogenesis and molecular composition because they enable highly targeted cell-specific communication. Various studies have outlined the roles that CTS-EVs play in the signaling for physiological function and the maintenance of homeostasis, including immune modulation, tissue regeneration, and organ development. These properties are also exploited for disease propagation, such as in cancer, neurological disorders, infectious diseases, autoimmune conditions, and more. The insights gained from analyzing CTS-EVs in different biological roles not only enhance our understanding of intercellular signaling and disease pathogenesis but also open new avenues for innovative diagnostic biomarkers and therapeutic targets for a wide spectrum of medical conditions. This review comprehensively outlines the current understanding of CTS-EV origins, function within normal physiology, and implications in diseased states.
Collapse
Affiliation(s)
- Sohil Amin
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Hamed Massoumi
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Deepshikha Tewari
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Arnab Roy
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Madhurima Chaudhuri
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Cedra Jazayerli
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Abhi Krishan
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Mannat Singh
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Mohammad Soleimani
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Emine E. Karaca
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
- Department of Ophthalmology, University of Health Sciences, Ankara Bilkent City Hospital, Ankara 06800, Turkey
| | - Arash Mirzaei
- Department of Ophthalmology, University of Medical Sciences, Farabi Eye Hospital, Tehran 13366 16351, Iran;
| | - Victor H. Guaiquil
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Mark I. Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Ali R. Djalilian
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Elmira Jalilian
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
14
|
Farzamikia N, Hejazian SM, Mostafavi S, Baradaran B, Zununi Vahed S, Ardalan M. Podocyte-specific proteins in urinary extracellular vesicles of patients with IgA nephropathy: Vasorin and ceruloplasmin. BIOIMPACTS : BI 2023; 14:29981. [PMID: 38938751 PMCID: PMC11199928 DOI: 10.34172/bi.2023.29981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 06/29/2024]
Abstract
Introduction Urinary extracellular vesicles (uEVs) can be considered biomarkers of kidney diseases. EVs derived from podocytes may reflect podocyte damage in different glomerular diseases. IgA nephropathy (IgAN) is one of the most common forms of glomerulonephritis (GN) characterized by proteinuria and hematuria. This study aimed to analyze the uEVs of IgAN patients to understand the pathophysiological processes of the disease at the protein level. Methods Patients with GN [biopsy-proven IgAN (n = 16) and membranous glomerulonephritis (MGN, n = 16)], and healthy controls (n = 16) were included in this study. The uEVs were extracted, characterized, and analyzed to evaluate the protein levels of candidate markers of IgAN, including vasorin precursor, aminopeptidase N, and ceruloplasmin by western-blot analysis. Results Higher levels of both podocytes and EVs-related proteins were observed in the pooled urine samples of GN patients compared to the healthy controls. In IgAN patients, uEV-protein levels of vasorin were statistically lower while levels of ceruloplasmin were significantly higher compared to MGN (P = 0.002, P = 0.06) and healthy controls, respectively (P = 0.020, P= 0.001). Conclusion Different levels of the studied proteins in uEVs may indicate podocyte injury and represent a direct association with the pathology of IgAN and MGN.
Collapse
Affiliation(s)
- Negin Farzamikia
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Soroush Mostafavi
- Department of Cardiology, Hazrat-e-Rasool General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | |
Collapse
|
15
|
Zhu X, Sun Q, Guo X, Liang C, Zhang Y, Huang W, Pei W, Huang Z, Chen L, Chen J. Cyclometalated ruthenium (II) complexes induced HeLa cell apoptosis through intracellular reductive injury. J Inorg Biochem 2023; 247:112333. [PMID: 37480763 DOI: 10.1016/j.jinorgbio.2023.112333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/29/2023] [Accepted: 07/14/2023] [Indexed: 07/24/2023]
Abstract
The main challenge of cancer chemotherapy is the resistance of tumor cells to oxidative damage. Herein, we proposed a novel antitumor strategy: cyclic metal‑ruthenium (Ru) complexes mediate reductive damage to kill tumor cells. We designed and synthesized Ru(II) complexes with β-carboline as ligands: [Ru (phen)2(NO2-Ph-βC)](PF6) (RuβC-7) and [Ru(phen)2(1-Ph-βC)](PF6) (RuβC-8). In vitro experimental results showed that RuβC-7 and RuβC-8 can inhibit cell proliferation, promote mitochondrial abnormalities, and induce DNA damage. Interestingly, RuβC-7 with SOD activity could reduce intracellular reactive oxygen species (ROS) levels, while RuβC-8 has the opposite effect. Accordingly, this study identified the reductive damage mechanism of tumor apoptosis, and may provide a new ideas for the design of novel metal complexes.
Collapse
Affiliation(s)
- Xufeng Zhu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, Guangdong 524023, China; The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, China
| | - Qiang Sun
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, Guangdong 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, China
| | - Xinhua Guo
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, Guangdong 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, China
| | - Chunmei Liang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Yao Zhang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Wenyong Huang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Wenliang Pei
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Zunnan Huang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, Guangdong 524023, China; Key Laboratory of Computer-Aided Drug Design of Dongguan City, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Lanmei Chen
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Jincan Chen
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, China; Key Laboratory of Computer-Aided Drug Design of Dongguan City, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China.
| |
Collapse
|
16
|
Chen TY, Mihalopoulos M, Zuluaga L, Rich J, Ganta T, Mehrazin R, Tsao CK, Tewari A, Gonzalez-Kozlova E, Badani K, Dogra N, Kyprianou N. Clinical Significance of Extracellular Vesicles in Prostate and Renal Cancer. Int J Mol Sci 2023; 24:14713. [PMID: 37834162 PMCID: PMC10573190 DOI: 10.3390/ijms241914713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/02/2023] [Accepted: 09/03/2023] [Indexed: 10/15/2023] Open
Abstract
Extracellular vesicles (EVs)-including apoptotic bodies, microvesicles, and exosomes-are released by almost all cell types and contain molecular footprints from their cell of origin, including lipids, proteins, metabolites, RNA, and DNA. They have been successfully isolated from blood, urine, semen, and other body fluids. In this review, we discuss the current understanding of the predictive value of EVs in prostate and renal cancer. We also describe the findings supporting the use of EVs from liquid biopsies in stratifying high-risk prostate/kidney cancer and advanced disease, such as castration-resistant (CRPC) and neuroendocrine prostate cancer (NEPC) as well as metastatic renal cell carcinoma (RCC). Assays based on EVs isolated from urine and blood have the potential to serve as highly sensitive diagnostic studies as well as predictive measures of tumor recurrence in patients with prostate and renal cancers. Overall, we discuss the biogenesis, isolation, liquid-biopsy, and therapeutic applications of EVs in CRPC, NEPC, and RCC.
Collapse
Affiliation(s)
- Tzu-Yi Chen
- Department of Pathology & Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (T.-Y.C.); (A.T.)
| | - Meredith Mihalopoulos
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.M.); (L.Z.); (J.R.); (R.M.); (K.B.)
| | - Laura Zuluaga
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.M.); (L.Z.); (J.R.); (R.M.); (K.B.)
| | - Jordan Rich
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.M.); (L.Z.); (J.R.); (R.M.); (K.B.)
| | - Teja Ganta
- Department of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (T.G.); (C.-K.T.)
| | - Reza Mehrazin
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.M.); (L.Z.); (J.R.); (R.M.); (K.B.)
| | - Che-Kai Tsao
- Department of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (T.G.); (C.-K.T.)
| | - Ash Tewari
- Department of Pathology & Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (T.-Y.C.); (A.T.)
| | - Edgar Gonzalez-Kozlova
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Ketan Badani
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.M.); (L.Z.); (J.R.); (R.M.); (K.B.)
| | - Navneet Dogra
- Department of Pathology & Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (T.-Y.C.); (A.T.)
| | - Natasha Kyprianou
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.M.); (L.Z.); (J.R.); (R.M.); (K.B.)
- The Tisch Cancer Institute, Mount Sinai Health, New York, NY 10029, USA
| |
Collapse
|
17
|
Boussios S, Devo P, Goodall ICA, Sirlantzis K, Ghose A, Shinde SD, Papadopoulos V, Sanchez E, Rassy E, Ovsepian SV. Exosomes in the Diagnosis and Treatment of Renal Cell Cancer. Int J Mol Sci 2023; 24:14356. [PMID: 37762660 PMCID: PMC10531522 DOI: 10.3390/ijms241814356] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Renal cell carcinoma (RCC) is the most prevalent type of kidney cancer originating from renal tubular epithelial cells, with clear cell RCC comprising approximately 80% of cases. The primary treatment modalities for RCC are surgery and targeted therapy, albeit with suboptimal efficacies. Despite progress in RCC research, significant challenges persist, including advanced distant metastasis, delayed diagnosis, and drug resistance. Growing evidence suggests that extracellular vesicles (EVs) play a pivotal role in multiple aspects of RCC, including tumorigenesis, metastasis, immune evasion, and drug response. These membrane-bound vesicles are released into the extracellular environment by nearly all cell types and are capable of transferring various bioactive molecules, including RNA, DNA, proteins, and lipids, aiding intercellular communication. The molecular cargo carried by EVs renders them an attractive resource for biomarker identification, while their multifarious role in the RCC offers opportunities for diagnosis and targeted interventions, including EV-based therapies. As the most versatile type of EVs, exosomes have attracted much attention as nanocarriers of biologicals, with multi-range signaling effects. Despite the growing interest in exosomes, there is currently no widely accepted consensus on their subtypes and properties. The emerging heterogeneity of exosomes presents both methodological challenges and exciting opportunities for diagnostic and clinical interventions. This article reviews the characteristics and functions of exosomes, with a particular reference to the recent advances in their application to the diagnosis and treatment of RCC.
Collapse
Affiliation(s)
- Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK; (A.G.); (E.S.)
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, Strand, London WC2R 2LS, UK
- Kent Medway Medical School, University of Kent, Canterbury CT2 7LX, UK
- AELIA Organization, 9th Km Thessaloniki–Thermi, 57001 Thessaloniki, Greece
| | - Perry Devo
- School of Sciences, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime ME4 4TB, UK; (P.D.); (I.C.A.G.); (S.V.O.)
| | - Iain C. A. Goodall
- School of Sciences, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime ME4 4TB, UK; (P.D.); (I.C.A.G.); (S.V.O.)
| | - Konstantinos Sirlantzis
- School of Engineering, Technology and Design, Canterbury Christ Church University, Canterbury CT1 1QU, UK;
| | - Aruni Ghose
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK; (A.G.); (E.S.)
- Barts Cancer Centre, Barts Health NHS Trust, London EC1A 7BE, UK
- Mount Vernon Cancer Centre, East and North Hertfordshire NHS Trust, Northwood HA6 2RN, UK
- Immuno-Oncology Clinical Network, London, UK
| | - Sayali D. Shinde
- Centre for Tumour Biology, Barts Cancer Institute, Cancer Research UK Barts Centre, Queen Mary University of London, London EC1M 6BQ, UK;
| | | | - Elisabet Sanchez
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK; (A.G.); (E.S.)
| | - Elie Rassy
- Department of Medical Oncology, Gustave Roussy Institut, 94805 Villejuif, France;
| | - Saak V. Ovsepian
- School of Sciences, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime ME4 4TB, UK; (P.D.); (I.C.A.G.); (S.V.O.)
| |
Collapse
|
18
|
Lee J, Kim E, Park J, Choi S, Lee MS, Park J. Pre-analytical handling conditions and protein marker recovery from urine extracellular vesicles for bladder cancer diagnosis. PLoS One 2023; 18:e0291198. [PMID: 37676879 PMCID: PMC10484439 DOI: 10.1371/journal.pone.0291198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
Extracellular vesicles (EVs) contain a variety of biomolecules and provide information about the cells that produce them. EVs from cancer cells found in urine can be used as biomarkers to detect cancer, enabling early diagnosis and treatment. The potential of alpha-2-macroglobulin (A2M) and clusterin (CLU) as novel diagnostic urinary EV (uEV) biomarkers for bladder cancer (BC) was demonstrated previously. To validate the diagnostic value of these proteins in uEVs in a large BC cohort, urine handling conditions before uEV isolation should be optimized during sample transportation from medical centers. In this study, we analyzed the uEV protein quantity, EV particle number, and uEV-A2M/CLU after urine storage at 20°C and 4°C for 0-6 days, each. A2M and CLU levels in uEVs were relatively stable when stored at 4°C for a maximum of three days and at 20°C for up to 24 h, with minimal impact on analysis results. Interestingly, pre-processing to remove debris and cells by centrifugation and filtration of urine did not show any beneficial effects on the preservation of protein biomarkers of uEVs during storage. Here, the importance of optimizing shipping conditions to minimize the impact of pre-analytical handling on the uEVs protein biomarkers was emphasized. These findings provide insights for the development of clinical protocols that use uEVs for diagnostic purposes.
Collapse
Affiliation(s)
- Jisu Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Eunha Kim
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Joohee Park
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Seokjoo Choi
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Myung-Shin Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, Republic of Korea
- Eulji Biomedical Science Research Institute, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Jinsung Park
- Department of Urology, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu-si, Republic of Korea
| |
Collapse
|
19
|
Liu X, Zhang M, Shao C, Sun H, Zhang B, Guo Z, Sun J, Qi F, Zhang Y, Niu H, Sun W. Blood- and Urine-Based Liquid Biopsy for Early-Stage Cancer Investigation: Taken Clear Renal Cell Carcinoma as a Model. Mol Cell Proteomics 2023; 22:100603. [PMID: 37348606 PMCID: PMC10416070 DOI: 10.1016/j.mcpro.2023.100603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/12/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023] Open
Abstract
Liquid biopsy is a noninvasive technique that can provide valuable information for disease characterization by using biofluids as a source of biomarkers. Proteins found in biofluids can offer a wealth of information for understanding pathological processes. In this study, we used early-stage clear cell renal cell carcinoma (ccRCC) as a model to explore the proteomic relationships among tissue, plasma, and urine. We analyzed samples of tumor tissue, plasma, and urine from a cohort of 27 ccRCC patients with T1-2 stage and 27 matched healthy controls, using liquid chromatography-mass spectrometry (LC-MS) for proteomic analysis. We integrated the differential proteins found in the three types of samples to explore ccRCC-associated molecular changes. Our results showed that both plasma and urine proteomes could reflect functional changes in tumor tissue. In plasma, cytoskeletal proteins and metabolic enzymes were differentially expressed, while in urine, adhesion molecules and defense proteins showed differential levels. The differential proteins found in plasma and urine both reflect the binding and catalytic activity of tumor tissue. Additionally, proteins only changed in biofluids could reflect body immune response changes, with plasma proteins involved in actin cytoskeleton and oxidative stress, and urine proteins involved in granulocyte adhesion and leukocyte extravasation signaling. Plasma and urine proteins could effectively distinguish RCC from control, with good performances (plasma/urine: 92.6%/92.6% specificity, 96.3%/92.6% sensitivity, and an area under the curve of 0.981/0.97). In conclusion, biofluids could not only reflect functional changes in tumor tissue but also reflect changes in the body's immune response. These findings will benefit the understanding of body biomarkers in tumors and the discovery of potential disease biomarkers.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Mingxin Zhang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chen Shao
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China; Bioinformatics Department, DeepKinase Biotechnologies, Ltd, Beijing, China
| | - Haidan Sun
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Binbin Zhang
- Department of Pharmacy, No.79 Army Group Hospital of People's Liberation Army Ground Force, Liaoyang, China
| | - Zhengguang Guo
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Jiameng Sun
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Feng Qi
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yushi Zhang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| | - Haitao Niu
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Wei Sun
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.
| |
Collapse
|
20
|
Agborbesong E, Bissler J, Li X. Liquid Biopsy at the Frontier of Kidney Diseases: Application of Exosomes in Diagnostics and Therapeutics. Genes (Basel) 2023; 14:1367. [PMID: 37510273 PMCID: PMC10379367 DOI: 10.3390/genes14071367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/08/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
In the era of precision medicine, liquid biopsy techniques, especially the use of urine analysis, represent a paradigm shift in the identification of biomarkers, with considerable implications for clinical practice in the field of nephrology. In kidney diseases, the use of this non-invasive tool to identify specific and sensitive biomarkers other than plasma creatinine and the glomerular filtration rate is becoming crucial for the diagnosis and assessment of a patient's condition. In recent years, studies have drawn attention to the importance of exosomes for diagnostic and therapeutic purposes in kidney diseases. Exosomes are nano-sized extracellular vesicles with a lipid bilayer structure, composed of a variety of biologically active substances. In the context of kidney diseases, studies have demonstrated that exosomes are valuable carriers of information and are delivery vectors, rendering them appealing candidates as biomarkers and drug delivery vehicles with beneficial therapeutic outcomes for kidney diseases. This review summarizes the applications of exosomes in kidney diseases, emphasizing the current biomarkers of renal diseases identified from urinary exosomes and the therapeutic applications of exosomes with reference to drug delivery and immunomodulation. Finally, we discuss the challenges encountered when using exosomes for therapeutic purposes and how these may affect its clinical applications.
Collapse
Affiliation(s)
- Ewud Agborbesong
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - John Bissler
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, TN 38105, USA
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN 38105, USA
- Pediatric Medicine Department, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
21
|
Fan S, Poetsch A. Proteomic Research of Extracellular Vesicles in Clinical Biofluid. Proteomes 2023; 11:proteomes11020018. [PMID: 37218923 DOI: 10.3390/proteomes11020018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/14/2023] [Accepted: 04/28/2023] [Indexed: 05/24/2023] Open
Abstract
Extracellular vesicles (EVs), the lipid bilayer membranous structures of particles, are produced and released from almost all cells, including eukaryotes and prokaryotes. The versatility of EVs has been investigated in various pathologies, including development, coagulation, inflammation, immune response modulation, and cell-cell communication. Proteomics technologies have revolutionized EV studies by enabling high-throughput analysis of their biomolecules to deliver comprehensive identification and quantification with rich structural information (PTMs, proteoforms). Extensive research has highlighted variations in EV cargo depending on vesicle size, origin, disease, and other features. This fact has sparked activities to use EVs for diagnosis and treatment to ultimately achieve clinical translation with recent endeavors summarized and critically reviewed in this publication. Notably, successful application and translation require a constant improvement of methods for sample preparation and analysis and their standardization, both of which are areas of active research. This review summarizes the characteristics, isolation, and identification approaches for EVs and the recent advances in EVs for clinical biofluid analysis to gain novel knowledge by employing proteomics. In addition, the current and predicted future challenges and technical barriers are also reviewed and discussed.
Collapse
Affiliation(s)
- Shipan Fan
- School of Basic Medical Sciences, Nanchang University, Nanchang 330021, China
| | - Ansgar Poetsch
- Queen Mary School, Medical College, Nanchang University, Nanchang 330021, China
| |
Collapse
|
22
|
Nolazco JI, Soerensen SJC, Chung BI. Biomarkers for the Detection and Surveillance of Renal Cancer. Urol Clin North Am 2023; 50:191-204. [PMID: 36948666 DOI: 10.1016/j.ucl.2023.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Renal cell carcinoma (RCC) is a heterogeneous disease characterized by a broad spectrum of disorders in terms of genetics, molecular and clinical characteristics. There is an urgent need for noninvasive tools to stratify and select patients for treatment accurately. In this review, we analyze serum, urinary, and imaging biomarkers that have the potential to detect malignant tumors in patients with RCC. We discuss the characteristics of these numerous biomarkers and their ability to be used routinely in clinical practice. The development of biomarkers continues to evolve with promising prospects.
Collapse
Affiliation(s)
- José Ignacio Nolazco
- Division of Urological Surgery, Brigham and Women's Hospital, Harvard Medical School, 45 Francis Street, Boston, MA 02115, USA; Servicio de Urología, Hospital Universitario Austral, Universidad Austral, Av Juan Domingo Perón 1500, B1629AHJ Pilar, Argentina.
| | - Simon John Christoph Soerensen
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA; Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, USA
| | - Benjamin I Chung
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
23
|
Abstract
Exosomes are nanoscale vesicles derived from endocytosis, formed by fusion of multivesicular bodies with membranes and secreted into the extracellular matrix or body fluids. Many studies have shown that exosomes can be present in a variety of biological fluids, such as plasma, urine, saliva, amniotic fluid, ascites, and sweat, and most types of cells can secrete exosomes. Exosomes play an important role in many aspects of human development, including immunity, cardiovascular diseases, neurodegenerative diseases, and neoplasia. Urine can be an alternative to blood or tissue samples as a potential source of disease biomarkers because of its simple, noninvasive, sufficient, and stable characteristics. Therefore, urinary exosomes have valuable potential for early screening, monitoring disease progression, prognosis, and treatment. The method for isolating urinary exosomes has been perfected, and exosome proteomics is widely used. Therefore, we review the potential use of urinary exosomes for disease diagnosis and summarize the related literature.
Collapse
Affiliation(s)
- Yizhao Wang
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Man Zhang
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
- Clinical Laboratory Medicine, Peking University Ninth School of Clinical Medicine, Beijing, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| |
Collapse
|
24
|
Lee J, Park HS, Han SR, Kang YH, Mun JY, Shin DW, Oh HW, Cho YK, Lee MS, Park J. Alpha-2-macroglobulin as a novel diagnostic biomarker for human bladder cancer in urinary extracellular vesicles. Front Oncol 2022; 12:976407. [PMID: 36176383 PMCID: PMC9513419 DOI: 10.3389/fonc.2022.976407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Extracellular vesicles (EVs) derived from urine are promising tools for the diagnosis of urogenital cancers. Urinary EVs (uEVs) are considered potential biomarkers for bladder cancer (BC) because urine is in direct contact with the BC tumor microenvironment and thus reflects the current state of the disease. However, challenges associated with the effective isolation and analysis of uEVs complicate the clinical detection of uEV-associated protein biomarkers. Herein, we identified uEV-derived alpha-2-macroglobulin (a2M) as a novel diagnostic biomarker for BC through comparative analysis of uEVs obtained from patients with BC pre- and post-operation using an antibody array. Furthermore, enzyme-linked immunosorbent assay of uEVs isolated from patients with BC (n=60) and non-cancer control subjects (n=23) validated the significant upregulation of a2M expression in patient uEVs (p<0.0001). There was no significant difference in whole urine a2M levels between patients with BC and controls (p=0.317). We observed that compared to classical differential centrifugation, ExoDisc, a centrifugal microfluidic tangential flow filtration device, was a significantly more effective separation method for uEV protein analysis. We expect that our approach for EV analysis will provide an efficient route for the identification of clinically meaningful uEV-based biomarkers for cancer diagnosis.
Collapse
Affiliation(s)
- Jisu Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, South Korea
| | - Hyun Sik Park
- Department of Urology, Eulji University Hospital, Eulji University School of Medicine, Daejeon, South Korea
| | - Seung Ro Han
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, South Korea
- Eulji Biomedical Science Research Institute, Eulji University School of Medicine, Daejeon, South Korea
| | - Yun Hee Kang
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, South Korea
- Eulji Biomedical Science Research Institute, Eulji University School of Medicine, Daejeon, South Korea
| | - Ji Young Mun
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Dong Wook Shin
- Department of Family Medicine/Supportive Care Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hyun-Woo Oh
- Core Facility Management Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Yoon-Kyoung Cho
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, South Korea
| | - Myung-Shin Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, South Korea
- Eulji Biomedical Science Research Institute, Eulji University School of Medicine, Daejeon, South Korea
- *Correspondence: Myung-Shin Lee, ; Jinsung Park,
| | - Jinsung Park
- Department of Urology, Eulji University Hospital, Eulji University School of Medicine, Daejeon, South Korea
- Department of Urology, Uijeongbu Eulji Medical Center, Eulji University, Uijeongbu-si, South Korea
- *Correspondence: Myung-Shin Lee, ; Jinsung Park,
| |
Collapse
|
25
|
Huang W, Zhu XY, Lerman A, Lerman LO. Extracellular Vesicles as Theranostic Tools in Kidney Disease. Clin J Am Soc Nephrol 2022; 17:1418-1429. [PMID: 35260417 PMCID: PMC9625088 DOI: 10.2215/cjn.16751221] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Extracellular vesicles are important vectors for cell-cell communication and show potential value for diagnosis and treatment of kidney diseases. The pathologic diagnosis of kidney diseases relies on kidney biopsy, whereas collection of extracellular vesicles from urine or circulating blood may constitute a less invasive diagnostic tool. In particular, urinary extracellular vesicles released mainly from resident kidney cells might provide an alternative tool for detection of kidney injury. Because extracellular vesicles mirror many features of their parent cells, cargoes of several populations of urinary extracellular vesicles are promising biomarkers for disease processes, like diabetic kidney disease, kidney transplant, and lupus nephritis. Contrarily, extracellular vesicles derived from reparative cells, such as mesenchymal stem cells, tubular epithelial progenitor cells, and human umbilical cord blood represent promising regenerative tools for treatment of kidney diseases. Furthermore, induced pluripotent stem cells-derived and engineered extracellular vesicles are being developed for specific applications for the kidney. Nevertheless, some assumptions regarding the specificity and immunogenicity of extracellular vesicles remain to be established. This review focuses on the utility of extracellular vesicles as therapeutic and diagnostic (theranostic) tools in kidney diseases and future directions for studies.
Collapse
Affiliation(s)
- Weijun Huang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xiang-Yang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Lilach O. Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
26
|
Yi X, Chen J, Huang D, Feng S, Yang T, Li Z, Wang X, Zhao M, Wu J, Zhong T. Current perspectives on clinical use of exosomes as novel biomarkers for cancer diagnosis. Front Oncol 2022; 12:966981. [PMID: 36119470 PMCID: PMC9472136 DOI: 10.3389/fonc.2022.966981] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/01/2022] [Indexed: 12/11/2022] Open
Abstract
Exosomes are a heterogeneous subset of extracellular vesicles (EVs) that biogenesis from endosomes. Besides, exosomes contain a variety of molecular cargoes including proteins, lipids and nucleic acids, which play a key role in the mechanism of exosome formation. Meanwhile, exosomes are involved with physiological and pathological conditions. The molecular profile of exosomes reflects the type and pathophysiological status of the originating cells so could potentially be exploited for diagnostic of cancer. This review aims to describe important molecular cargoes involved in exosome biogenesis. In addition, we highlight exogenous factors, especially autophagy, hypoxia and pharmacology, that regulate the release of exosomes and their corresponding cargoes. Particularly, we also emphasize exosome molecular cargoes as potential biomarkers in liquid biopsy for diagnosis of cancer.
Collapse
Affiliation(s)
- Xiaomei Yi
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jie Chen
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Defa Huang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Shuo Feng
- English Teaching and Research Section, Gannan Healthcare Vocational College, Ganzhou, China
| | - Tong Yang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhengzhe Li
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaoxing Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Minghong Zhao
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jiyang Wu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tianyu Zhong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Tianyu Zhong,
| |
Collapse
|
27
|
Thongboonkerd V, Kanlaya R. The divergent roles of exosomes in kidney diseases: Pathogenesis, diagnostics, prognostics and therapeutics. Int J Biochem Cell Biol 2022; 149:106262. [PMID: 35787447 DOI: 10.1016/j.biocel.2022.106262] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/30/2022] [Indexed: 11/16/2022]
Abstract
Exosomes are the self-packed nanoscale vesicles (nanovesicles) derived from late endosomes and released from the cells to the extracellular milieu. Exosomal biogenesis is based on endosomal pathway to form the nanovesicles surrounded by membrane originated from plasma membranes of the parental cells. During biogenesis, exosomes selectively encapsulate an array of biomolecules (proteins, nucleic acids, lipids, metabolites, etc.), thereby conveying diverse messages for cell-cell communications. Once released, these exosomal contents trigger signaling and trafficking that play roles in cell growth, development, immune responses, homeostasis, remodeling, etc. Recent advances in exosomal research have provided a wealth of useful information that enhances our knowledge on the roles for exosomes in pathogenic mechanisms of human diseases involving a wide variety of organ systems. In the kidney, exosomes play divergent roles, ranging from pathogenesis to therapeutics, based on their original sources and type of interventions. Herein, we summarize and update the current knowledge on the divergent roles of exosomes involving the pathogenesis, diagnostics, prognostics, and therapeutics in various groups of kidney diseases, including acute kidney injury, immune-mediated kidney diseases (e.g., IgA nephropathy, lupus nephritis, membranous nephropathy, focal segmental glomerulosclerosis), chronic kidney disease (caused by diabetic nephropathy and others), renal cell carcinoma, nephrolithiasis, kidney transplantation and related complications, and polycystic kidney disease. Finally, the future perspectives on research in this area are discussed.
Collapse
Affiliation(s)
- Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Rattiyaporn Kanlaya
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
28
|
Li X, Yang L. Urinary exosomes: Emerging therapy delivery tools and biomarkers for urinary system diseases. Biomed Pharmacother 2022; 150:113055. [PMID: 35658226 DOI: 10.1016/j.biopha.2022.113055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/29/2022] Open
Abstract
Urinary exosomes (UE) are small circular membranous vesicles with a lipid bilayer with a diameter of 40-160 nm secreted by epithelial cells of the kidney and genitourinary system, which can reflect the physiological and functional status of secretory cells. Protein and RNA in exosomes can be used as markers for diseases diagnosis. Urine specimens are available and non-invasive. The protein and RNA in UE are more stable than the soluble protein and RNA in urine, which have broad application prospects in the diagnosis of urinary system diseases. This article reviews the recent advances in the application of protein or RNA in UE as markers to the diagnosis of urinary system diseases.
Collapse
Affiliation(s)
- Xin Li
- Departments of Infectious Disease, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Lina Yang
- Departments of Geriatrics, First Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
29
|
Extracellular Vesicles—A New Potential Player in the Immunology of Renal Cell Carcinoma. J Pers Med 2022; 12:jpm12050772. [PMID: 35629194 PMCID: PMC9144962 DOI: 10.3390/jpm12050772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/20/2022] [Accepted: 04/28/2022] [Indexed: 02/08/2023] Open
Abstract
The incidence of renal cell carcinoma (RCC) has doubled in the developed world within the last fifty years, and now it is responsible for 2–3% of diagnosed cancers. The delay in diagnosis and the not fully understood pathogenesis are the main challenges that have to be overcome. It seems that extracellular vesicles (EVs) are one of the key players in tumor development since they ensure a proper microenvironment for the tumor cells. The stimulation of angiogenesis and immunosuppression is mediated by molecules contained in EVs. It was shown that EVs derived from cancer cells can inhibit T cell proliferation, natural killer lymphocyte activation, and dendritic cell maturation by this mechanism. Moreover, EVs may be a biomarker for the response to anti-cancer treatment. In this review, we sum up the knowledge about the role of EVs in RCC pathogenesis and show their future perspectives in this field.
Collapse
|
30
|
Cheng H, Yang Q, Wang R, Luo R, Zhu S, Li M, Li W, Chen C, Zou Y, Huang Z, Xie T, Wang S, Zhang H, Tian Q. Emerging Advances of Detection Strategies for Tumor-Derived Exosomes. Int J Mol Sci 2022; 23:ijms23020868. [PMID: 35055057 PMCID: PMC8775838 DOI: 10.3390/ijms23020868] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Exosomes derived from tumor cells contain various molecular components, such as proteins, RNA, DNA, lipids, and carbohydrates. These components play a crucial role in all stages of tumorigenesis and development. Moreover, they reflect the physiological and pathological status of parental tumor cells. Recently, tumor-derived exosomes have become popular biomarkers for non-invasive liquid biopsy and the diagnosis of numerous cancers. The interdisciplinary significance of exosomes research has also attracted growing enthusiasm. However, the intrinsic nature of tumor-derived exosomes requires advanced methods to detect and evaluate the complex biofluid. This review analyzes the relationship between exosomes and tumors. It also summarizes the exosomal biological origin, composition, and application of molecular markers in clinical cancer diagnosis. Remarkably, this paper constitutes a comprehensive summary of the innovative research on numerous detection strategies for tumor-derived exosomes with the intent of providing a theoretical basis and reference for early diagnosis and clinical treatment of cancer.
Collapse
Affiliation(s)
- Huijuan Cheng
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (H.C.); (Q.Y.); (R.W.); (R.L.); (M.L.); (W.L.); (C.C.); (Y.Z.); (Z.H.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Qian Yang
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (H.C.); (Q.Y.); (R.W.); (R.L.); (M.L.); (W.L.); (C.C.); (Y.Z.); (Z.H.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Rongrong Wang
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (H.C.); (Q.Y.); (R.W.); (R.L.); (M.L.); (W.L.); (C.C.); (Y.Z.); (Z.H.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Ruhua Luo
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (H.C.); (Q.Y.); (R.W.); (R.L.); (M.L.); (W.L.); (C.C.); (Y.Z.); (Z.H.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Shanshan Zhu
- Public Health Institutes, Hangzhou Normal University, Hangzhou 311121, China;
| | - Minhui Li
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (H.C.); (Q.Y.); (R.W.); (R.L.); (M.L.); (W.L.); (C.C.); (Y.Z.); (Z.H.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Wenqi Li
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (H.C.); (Q.Y.); (R.W.); (R.L.); (M.L.); (W.L.); (C.C.); (Y.Z.); (Z.H.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Cheng Chen
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (H.C.); (Q.Y.); (R.W.); (R.L.); (M.L.); (W.L.); (C.C.); (Y.Z.); (Z.H.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Yuqing Zou
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (H.C.); (Q.Y.); (R.W.); (R.L.); (M.L.); (W.L.); (C.C.); (Y.Z.); (Z.H.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhihua Huang
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (H.C.); (Q.Y.); (R.W.); (R.L.); (M.L.); (W.L.); (C.C.); (Y.Z.); (Z.H.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Tian Xie
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (H.C.); (Q.Y.); (R.W.); (R.L.); (M.L.); (W.L.); (C.C.); (Y.Z.); (Z.H.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Shuling Wang
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (H.C.); (Q.Y.); (R.W.); (R.L.); (M.L.); (W.L.); (C.C.); (Y.Z.); (Z.H.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
- Correspondence: (S.W.); (H.Z.); (Q.T.)
| | - Honghua Zhang
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (H.C.); (Q.Y.); (R.W.); (R.L.); (M.L.); (W.L.); (C.C.); (Y.Z.); (Z.H.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
- Correspondence: (S.W.); (H.Z.); (Q.T.)
| | - Qingchang Tian
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (H.C.); (Q.Y.); (R.W.); (R.L.); (M.L.); (W.L.); (C.C.); (Y.Z.); (Z.H.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
- Correspondence: (S.W.); (H.Z.); (Q.T.)
| |
Collapse
|
31
|
Gupta S, Mazumder P. Exosomes as diagnostic tools. Adv Clin Chem 2022; 110:117-144. [DOI: 10.1016/bs.acc.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Perpetuo L, Ferreira R, Thongboonkerd V, Guedes S, Amado F, Vitorino R. Urinary exosomes: Diagnostic impact with a bioinformatic approach. Adv Clin Chem 2022; 111:69-99. [DOI: 10.1016/bs.acc.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
33
|
Kumar S, Kumar P, Kodidela S, Duhart B, Cernasev A, Nookala A, Kumar A, Singh UP, Bissler J. Racial Health Disparity and COVID-19. J Neuroimmune Pharmacol 2021; 16:729-742. [PMID: 34499313 PMCID: PMC8426163 DOI: 10.1007/s11481-021-10014-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023]
Abstract
The infection by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and resultant coronavirus diseases-19 (COVID-19) disproportionally affects minorities, especially African Americans (AA) compared to the Caucasian population. The AA population is disproportionally affected by COVID-19, in part, because they have high prevalence of underlying conditions such as obesity, diabetes, and hypertension, which are known to exacerbate not only kidney diseases, but also COVID-19. Further, a decreased adherence to COVID-19 guidelines among tobacco smokers could result in increased infection, inflammation, reduced immune response, and lungs damage, leading to more severe form of COVID-19. As a result of high prevalence of underlying conditions that cause kidney diseases in the AA population coupled with tobacco smoking make the AA population vulnerable to severe form of both COVID-19 and kidney diseases. In this review, we describe how tobacco smoking interact with SARS-CoV-2 and exacerbates SARS-CoV-2-induced kidney diseases including renal failure, especially in the AA population. We also explore the role of extracellular vesicles (EVs) in COVID-19 patients who smoke tobacco. EVs, which play important role in tobacco-mediated pathogenesis in infectious diseases, have also shown to be important in COVID-19 pathogenesis and organ injuries including kidney. Further, we explore the potential role of EVs in biomarker discovery and therapeutics, which may help to develop early diagnosis and treatment of tobacco-induced renal injury in COVID-19 patients, respectively.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - Prashant Kumar
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, TN, USA
| | - Sunitha Kodidela
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Benjamin Duhart
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Alina Cernasev
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Sciences Center, Nashville, TN, USA
| | | | - Asit Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Udai P Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - John Bissler
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, TN, USA.
| |
Collapse
|
34
|
Rana R, Sharma S, Ganguly NK. Comprehensive overview of extracellular vesicle proteomics in meningioma: future strategy. Mol Biol Rep 2021; 48:8061-8074. [PMID: 34687392 PMCID: PMC8536918 DOI: 10.1007/s11033-021-06740-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/15/2021] [Indexed: 11/09/2022]
Abstract
Background Meningioma arising from meninges is one among the various types of brain tumors. Others are, astrocytomas originating from astrocyte, oligodendrogliomas originating from oligodendrocyte, Ependymomas originating from ependymal cells and medulloblastomas originating from neurons. Current knowledge of molecular biology, genetics and epigenetics of meningioma is not sufficient. Therefore, In depth understanding of the mechanism of meningioma formation and progression is needed for its treatment and management. Grade I Grade I meningiomas are majorly classified as grade I, grade II and grade III. Meningioma can be indolent, slow growing or can be invasive and metastatic which can recurre. Grade I meningioma can be removed by surgery in comparison to invasive meningioma which may recurre with high propensity. This property of recurrence is responsible for high morbidity and mortality. Meningioma are majorly classified into three classes namely grade I, grade II, grade III. Protein biomarkers are considered as promising candidates for the diagnosis of meningioma. Study Various studies done on differential expression of proteins have shown increased expression of EGFR, NEK9, EPS812, CKAP4, SET and STAT2, in all the three grades of meningioma. Additionally, some proteins like HK2 are overexpressed in grade II and grade III meningioma than in grade I meningioma. Protein Markers, found on extracellular vesicles of different grades of meningioma can serve the same purpose. A test done on a sample of any kind of body fluid like blood, tear, saliva, urine etc. for recognizing the circulating cancer cells or DNA and extracellular vesicles released from them to help detecting the early stage of cancer is known as liquid biopsy. Solid biopsy has several limitations as compared to liquid biopsy. This is because the samples can be easily collected and studied in case of liquid biopsy. Exosomes are related with liquid biopsy and hence provide platform for better diagnosis, prognosis and treatment of any type of cancer including meningioma. Exosomal tetraspanin are important example of exosomal biomarkers. The tetraspanin network is a molecular scaffold which connects various proteins for signal transduction. Conclusion This study tells about the utility of proper knowledge of extracellular vesicle proteins and their profiles in different grades, which can help in better understanding of pathogenesis, diagnosis, prognosis and treatment of meningioma. In Addition to use of these proteins as biomarkers, role of exosomes in currently available therapeutic approaches has been discussed.
Collapse
Affiliation(s)
- Rashmi Rana
- Department of Research, Sir Ganga Ram Hospital, New Delhi, 110060, India.
| | - Swati Sharma
- Department of Research, Sir Ganga Ram Hospital, New Delhi, 110060, India
| | | |
Collapse
|
35
|
Unveiling the World of Circulating and Exosomal microRNAs in Renal Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13215252. [PMID: 34771419 PMCID: PMC8582552 DOI: 10.3390/cancers13215252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/18/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Liquid biopsies have emerged as a new tool for early diagnosis. In renal cell carcinoma, this need is also evident and may represent an improvement in disease management. Hence, in this review we discuss the most updated advances in the assessment of miRNAs in liquid biopsies. Moreover, we explore the potential of circulating or exosome miRNAs in renal cell carcinoma to overcome the tissue biopsies limitations. Abstract Renal cell carcinoma is the third most common urological cancer. Despite recent advances, late diagnosis and poor prognosis of advanced-stage disease remain a major problem, entailing the need for novel early diagnosis tools. Liquid biopsies represent a promising minimally invasive clinical tool, providing real-time feedback of tumor behavior and biological potential, addressing its clonal evolution and representing its heterogeneity. In particular, the study of circulating microRNAs and exosomal microRNAs in liquid biopsies experienced an exponential increase in recent years, considering the potential clinical utility and available technology that facilitates implementation. Herein, we provide a systematic review on the applicability of these biomarkers in the context of renal cell carcinoma. Issues such as additional benefit from extracting microRNAs transported in extracellular vesicles, use for subtyping and representation of different histological types, correlation with tumor burden, and prediction of patient outcome are also addressed. Despite the need for more conclusive research, available data indicate that exosomal microRNAs represent a robust minimally invasive biomarker for renal cell carcinoma. Thus, innovative research on microRNAs and novel detection techniques are likely to provide clinically relevant biomarkers, overcome current clinical challenges, and improve patient management.
Collapse
|
36
|
Mao W, Wang K, Wu Z, Xu B, Chen M. Current status of research on exosomes in general, and for the diagnosis and treatment of kidney cancer in particular. J Exp Clin Cancer Res 2021; 40:305. [PMID: 34583759 PMCID: PMC8477471 DOI: 10.1186/s13046-021-02114-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/23/2021] [Indexed: 02/08/2023] Open
Abstract
Kidney cancer is a common urological tumour. Owing to its high prevalence and mortality rate, it is the third most malignant tumour of the urinary system, followed by prostate and bladder cancers. It exerts a high degree of malignancy, and most of the distant metastasis occurs at an early stage; it is insensitive to chemoradiotherapy and easily develops drug resistance. The current treatment for kidney cancer mainly includes surgery, interventional embolization and targeted therapy; however, the treatment efficacy is poor. In recent years, the role of exosomes as mediators of intercellular communication and information exchange in the tumour microenvironment in tumour pathogenesis has attracted much attention. Exosomes are rich in bioactive substances such as nucleic acids, proteins and lipids and are involved in angiogenesis, immune regulation, drug resistance, formation of pre-metastatic niche, invasion and metastasis. This article reviews the ongoing research and applications of exosomes for the diagnosis and treatment of kidney cancer.
Collapse
Affiliation(s)
- Weipu Mao
- Department of Urology, Shidong Hospital of Yangpu District, No. 999 Shiguang Road, Yangpu District, Shanghai, 200438 China
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, No. 87 Dingjiaqiao, Hunan Road, Gulou District, Nanjing, 210009 China
| | - Keyi Wang
- Department of Urology, Shidong Hospital of Yangpu District, No. 999 Shiguang Road, Yangpu District, Shanghai, 200438 China
| | - Zonglin Wu
- Department of Urology, Shidong Hospital of Yangpu District, No. 999 Shiguang Road, Yangpu District, Shanghai, 200438 China
| | - Bin Xu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, No. 87 Dingjiaqiao, Hunan Road, Gulou District, Nanjing, 210009 China
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, No. 87 Dingjiaqiao, Hunan Road, Gulou District, Nanjing, 210009 China
| |
Collapse
|
37
|
Flitcroft JG, Verheyen J, Vemulkar T, Welbourne EN, Rossi SH, Welsh SJ, Cowburn RP, Stewart GD. Early detection of kidney cancer using urinary proteins: a truly non-invasive strategy. BJU Int 2021; 129:290-303. [PMID: 34570419 DOI: 10.1111/bju.15601] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVES To review urinary protein biomarkers as potential non-invasive, easily obtainable, early diagnostic tools in renal cell carcinoma (RCC). METHODS A PubMed database search was performed up to the year 2020 to identify primary studies reporting potential urinary protein biomarkers for RCC. Separate searches were conducted to identify studies describing appropriate methods of developing cancer screening programmes and detection of cancer biomarkers. RESULTS Several urinary protein biomarkers are under validation for RCC diagnostics, e.g. aquaporin-1, perilipin-2, carbonic anhydrase-9, Raf-kinase inhibitory protein, nuclear matrix protein-22, 14-3-3 Protein β/α and neutrophil gelatinase-associated lipocalin. However, none has yet been validated or approved for clinical use due to low sensitivity or specificity, inconsistencies in appropriate study design, or lack of external validation. CONCLUSIONS Evaluation of biomarkers' feasibility, sample preparation and storage, biomarker validation, and the application of novel technologies may provide a solution that maximises the potential for a truly non-invasive biomarker in early RCC diagnostics.
Collapse
Affiliation(s)
- Jordan G Flitcroft
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Jeroen Verheyen
- Department of Surgery, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
| | - Tarun Vemulkar
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Emma N Welbourne
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Sabrina H Rossi
- Department of Surgery, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
| | - Sarah J Welsh
- Department of Surgery, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
| | - Russell P Cowburn
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Grant D Stewart
- Department of Surgery, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
38
|
Extracellular Vesicles: New Tools for Early Diagnosis of Breast and Genitourinary Cancers. Int J Mol Sci 2021; 22:ijms22168430. [PMID: 34445131 PMCID: PMC8395117 DOI: 10.3390/ijms22168430] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancers and cancers of the genitourinary tract are the most common malignancies among men and women and are still characterized by high mortality rates. In order to improve the outcomes, early diagnosis is crucial, ideally by applying non-invasive and specific biomarkers. A key role in this field is played by extracellular vesicles (EVs), lipid bilayer-delimited structures shed from the surface of almost all cell types, including cancer cells. Subcellular structures contained in EVs such as nucleic acids, proteins, and lipids can be isolated and exploited as biomarkers, since they directly stem from parental cells. Furthermore, it is becoming even more evident that different body fluids can also serve as sources of EVs for diagnostic purposes. In this review, EV isolation and characterization methods are described. Moreover, the potential contribution of EV cargo for diagnostic discovery purposes is described for each tumor.
Collapse
|
39
|
Rimmer MP, Gregory CD, Mitchell RT. Extracellular vesicles in urological malignancies. Biochim Biophys Acta Rev Cancer 2021; 1876:188570. [PMID: 34019971 PMCID: PMC8351753 DOI: 10.1016/j.bbcan.2021.188570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) are small lipid bound structures released from cells containing bioactive cargoes. Both the type of cargo and amount loaded varies compared to that of the parent cell. The characterisation of EVs in cancers of the male urogenital tract has identified several cargoes with promising diagnostic and disease monitoring potential. EVs released by cancers of the male urogenital tract promote cell-to-cell communication, migration, cancer progression and manipulate the immune system promoting metastasis by evading the immune response. Their use as diagnostic biomarkers represents a new area of screening and disease detection, potentially reducing the need for invasive biopsies. Many validated EV cargoes have been found to have superior sensitivity and specificity than current diagnostic tools currently in use. The use of EVs to improve disease monitoring and develop novel therapeutics will enable clinicians to individualise patient management in the exciting era of personalised medicine.
Collapse
Affiliation(s)
- Michael P Rimmer
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, UK.
| | - Christopher D Gregory
- Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, UK
| | - Rod T Mitchell
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, UK.
| |
Collapse
|
40
|
Defining candidate mRNA and protein EV biomarkers to discriminate ccRCC and pRCC from non-malignant renal cells in vitro. Med Oncol 2021; 38:105. [PMID: 34331598 PMCID: PMC8325656 DOI: 10.1007/s12032-021-01554-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/18/2021] [Indexed: 02/06/2023]
Abstract
Renal cell carcinoma (RCC) accounts for over 400,000 new cases and 175,000 deaths annually. Diagnostic RCC biomarkers may prevent overtreatment in patients with early disease. Extracellular vesicles (EVs) are a promising source of RCC biomarkers because EVs carry proteins and messenger RNA (mRNA) among other biomolecules. We aimed to identify biomarkers and assess biological functions of EV cargo from clear cell RCC (ccRCC), papillary RCC (pRCC), and benign kidney cell lines. EVs were enriched from conditioned cell media by size exclusion chromatography. The EV proteome was assessed using Tandem Mass Tag mass spectrometry (TMT-MS) and NanoString nCounter technology was used to profile 770 cancer-related mRNA present in EVs. The heterogeneity of protein and mRNA abundance and identification highlighted the heterogeneity of EV cargo, even between cell lines of a similar pathological group (e.g., ccRCC or pRCC). Overall, 1726 proteins were quantified across all EV samples, including 181 proteins that were detected in all samples. In the targeted profiling of mRNA by NanoString, 461 mRNAs were detected in EVs from at least one cell line, including 159 that were present in EVs from all cell lines. In addition to a shared EV cargo signature, pRCC, ccRCC, and/or benign renal cell lines also showed unique signatures. Using this multi-omics approach, we identified 34 protein candidate pRCC EV biomarkers and 20 protein and 8 mRNA candidate ccRCC EV biomarkers for clinical validation.
Collapse
|
41
|
Tamura T, Yoshioka Y, Sakamoto S, Ichikawa T, Ochiya T. Extracellular vesicles as a promising biomarker resource in liquid biopsy for cancer. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2021; 2:148-174. [PMID: 39703905 PMCID: PMC11656527 DOI: 10.20517/evcna.2021.06] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 12/21/2024]
Abstract
Liquid biopsy is a minimally invasive biopsy method that uses molecules in body fluids as biomarkers, and it has attracted attention as a new cancer therapy tool. Liquid biopsy has considerable clinical application potential, such as in early diagnosis, pathological condition monitoring, and tailored treatment development based on cancer biology and the predicted treatment response of individual patients. Extracellular vesicles (EVs) are lipid membranous vesicles released from almost all cell types, and they represent a novel liquid biopsy resource. EVs carry complex molecular cargoes, such as proteins, RNAs [e.g., mRNA and noncoding RNAs (microRNA, transfer RNA, circular RNA and long noncoding RNA)], and DNA fragments; these cargoes are delivered to recipient cells and serve as a cell-to-cell communication system. The molecular contents of EVs largely reflect the cell of origin and thus show cell-type specificity. In particular, cancer-derived EVs contain cancer-specific molecules expressed in parental cancer cells. Therefore, analysis of cancer-derived EVs might indicate the presence and nature of cancer. High-speed analytical technologies, such as mass spectrometry and high-throughput sequencing, have generated large data sets for EV cargoes that can be used to identify many candidate EV-associated biomarkers. Here, we will discuss the challenges and prospects of EV-based liquid biopsy compared to other biological resources (e.g., circulating tumor cells and cell-free DNA) and summarize the novel studies that have identified the remarkable potential of EVs as a cancer biomarker.
Collapse
Affiliation(s)
- Takaaki Tamura
- Department of Molecular and Cellular Medicine, Tokyo Medical University, Tokyo
160-0023, Japan
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba
260-8670, Japan
| | - Yusuke Yoshioka
- Department of Molecular and Cellular Medicine, Tokyo Medical University, Tokyo
160-0023, Japan
| | - Shinichi Sakamoto
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba
260-8670, Japan
| | - Tomohiko Ichikawa
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba
260-8670, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Tokyo Medical University, Tokyo
160-0023, Japan
| |
Collapse
|
42
|
Erdbrügger U, Blijdorp CJ, Bijnsdorp IV, Borràs FE, Burger D, Bussolati B, Byrd JB, Clayton A, Dear JW, Falcón‐Pérez JM, Grange C, Hill AF, Holthöfer H, Hoorn EJ, Jenster G, Jimenez CR, Junker K, Klein J, Knepper MA, Koritzinsky EH, Luther JM, Lenassi M, Leivo J, Mertens I, Musante L, Oeyen E, Puhka M, van Royen ME, Sánchez C, Soekmadji C, Thongboonkerd V, van Steijn V, Verhaegh G, Webber JP, Witwer K, Yuen PS, Zheng L, Llorente A, Martens‐Uzunova ES. Urinary extracellular vesicles: A position paper by the Urine Task Force of the International Society for Extracellular Vesicles. J Extracell Vesicles 2021; 10:e12093. [PMID: 34035881 PMCID: PMC8138533 DOI: 10.1002/jev2.12093] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/26/2021] [Accepted: 04/22/2021] [Indexed: 12/17/2022] Open
Abstract
Urine is commonly used for clinical diagnosis and biomedical research. The discovery of extracellular vesicles (EV) in urine opened a new fast-growing scientific field. In the last decade urinary extracellular vesicles (uEVs) were shown to mirror molecular processes as well as physiological and pathological conditions in kidney, urothelial and prostate tissue. Therefore, several methods to isolate and characterize uEVs have been developed. However, methodological aspects of EV separation and analysis, including normalization of results, need further optimization and standardization to foster scientific advances in uEV research and a subsequent successful translation into clinical practice. This position paper is written by the Urine Task Force of the Rigor and Standardization Subcommittee of ISEV consisting of nephrologists, urologists, cardiologists and biologists with active experience in uEV research. Our aim is to present the state of the art and identify challenges and gaps in current uEV-based analyses for clinical applications. Finally, recommendations for improved rigor, reproducibility and interoperability in uEV research are provided in order to facilitate advances in the field.
Collapse
|
43
|
Lourenço C, Constâncio V, Henrique R, Carvalho Â, Jerónimo C. Urinary Extracellular Vesicles as Potential Biomarkers for Urologic Cancers: An Overview of Current Methods and Advances. Cancers (Basel) 2021; 13:1529. [PMID: 33810357 PMCID: PMC8036842 DOI: 10.3390/cancers13071529] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/08/2021] [Accepted: 03/17/2021] [Indexed: 12/16/2022] Open
Abstract
Urologic cancers are a heterogeneous group of tumors, some of which have poor prognosis. This is partly due to the unavailability of specific and sensitive diagnostic techniques and monitoring tests, ideally non- or minimally invasive. Hence, liquid biopsies are promising tools that have been gaining significant attention over the last decade. Among the different classes of biomarkers that can be isolated from biofluids, urinary extracellular vesicles (uEVs) are a promising low-invasive source of biomarkers, with the potential to improve cancer diagnosis and disease management. Different techniques have been developed to isolate and characterize the cargo of these vesicles; however, no consensus has been reached, challenging the comparison among studies. This results in a vast number of studies portraying an extensive list of uEV-derived candidate biomarkers for urologic cancers, with the potential to improve clinical outcome; however, without significant validation. Herein, we review the current published research on miRNA and protein-derived uEV for prostate, bladder and kidney cancers, focusing on different uEV isolation methods, and its implications for biomarker studies.
Collapse
Affiliation(s)
- Catarina Lourenço
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (C.L.); (Â.C.)
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IPO Porto Research Center (CBEG CI-IPOP), Cancer Biology and Epigenetics Group, Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (V.C.); (R.H.)
- Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Vera Constâncio
- IPO Porto Research Center (CBEG CI-IPOP), Cancer Biology and Epigenetics Group, Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (V.C.); (R.H.)
- Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Rui Henrique
- IPO Porto Research Center (CBEG CI-IPOP), Cancer Biology and Epigenetics Group, Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (V.C.); (R.H.)
- Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Ângela Carvalho
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (C.L.); (Â.C.)
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Carmen Jerónimo
- IPO Porto Research Center (CBEG CI-IPOP), Cancer Biology and Epigenetics Group, Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (V.C.); (R.H.)
- Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| |
Collapse
|
44
|
Urinary Extracellular Vesicle Protein Profiles Discriminate Different Clinical Subgroups of Children with Idiopathic Nephrotic Syndrome. Diagnostics (Basel) 2021; 11:diagnostics11030456. [PMID: 33800879 PMCID: PMC7998527 DOI: 10.3390/diagnostics11030456] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
Idiopathic nephrotic syndrome (INS) is the most frequent primary glomerular disease in children, displaying high grade proteinuria and oedema. The mainstay of therapy are steroids, and patients are usually classified according to the treatment response (sensitive vs. resistant). The mechanisms involved in INS pathogenesis and treatment responsiveness have not yet been identified. In this context, the analysis of urinary extracellular vesicles (UEv) is interesting, since they represent a molecular snapshot of the parental cells, offering a “fingerprint” for monitoring their status. Therefore, the aim of this study is to verify the feasibility of using UEv of INS patients as indicators of therapy response and its prediction. UEv were isolated from the urine of pediatric patients in remission after therapy; they showed characteristic electrophoresis profiles that matched specific patient subgroups. We then built a statistical model to interpret objectively each patient UEv protein profile: in particular, steroid-resistant patients cluster together with a very distinct pattern from other INS patients and controls. In conclusion, the evaluation of the UEv protein profile looks promising in the investigation of INS, showing a disease signature that might predict clinical evolution.
Collapse
|
45
|
Srivastava A, Rathore S, Munshi A, Ramesh R. Extracellular Vesicles in Oncology: from Immune Suppression to Immunotherapy. AAPS J 2021; 23:30. [PMID: 33586060 PMCID: PMC7882565 DOI: 10.1208/s12248-021-00554-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Exosomes are involved in cell-to-cell communication and play a crucial role in cellular physiology. The role of exosomes in cancer has been widely explored. Tumor cells have evolved and adapted to evade the immune response. The study of the immune system's modulations in favor of rogue tumor cells led to the development of a novel immunotherapeutic strategy targeting the immune checkpoint proteins (ICPs). In clinical settings, the response to ICP therapy has been inconsistent and is difficult to predict. Quantitating the targeted ICPs through immunohistochemistry is one approach, but is not pragmatic in a clinical setting and is often not sensitive. Examining the molecules present in bodily fluids to determine ICP treatment response, "liquid biopsy" is a convenient alternative. The term "liquid biopsy" refers to circulating tumor cells (CTCs), extracellular vesicles (EVs), non-coding (nc) RNA, circulating tumor DNA (ctDNA), circulating free DNA (cfDNA), etc. EVs includes exosomes, microvesicles, and oncosomes. Herein, we focus on exosomes isolated from bodily fluids and their use in liquid biopsy. Due to their unique ability to transfer bioactive molecules and perturb the physiology of recipient cells, exosomes have garnered attention for their immune modulation role and as a resource to identify molecules associated with liquid biopsy-based diagnostic methods. In this review, we examine the putative role of exosomes and their cargo in influencing the immune system. We discuss the immune and tumor cells present in the tumor microenvironment (TME), and the exosomes derived from these cells to understand how they participate in creating the immune-suppressive TME. Additionally, use of exosomes in liquid biopsy-based methods to measure the treatment response elicited by immunotherapy is discussed. Finally, we describe how exosomes have been used to develop immune therapies, especially cell-free vaccines, for cancer treatment.
Collapse
Affiliation(s)
- Akhil Srivastava
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 N.E., 10th Street, Oklahoma City, Oklahoma, 73104, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, 73104, Oklahoma, USA
| | - Shipra Rathore
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 N.E., 10th Street, Oklahoma City, Oklahoma, 73104, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, 73104, Oklahoma, USA
| | - Anupama Munshi
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, 73104, Oklahoma, USA
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, 975 N.E., 10th Street, Oklahoma City, 73104, Oklahoma, USA
| | - Rajagopal Ramesh
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 N.E., 10th Street, Oklahoma City, Oklahoma, 73104, USA.
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, 73104, Oklahoma, USA.
- Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, 73104, Oklahoma, USA.
| |
Collapse
|
46
|
Liu J, Chen Y, Pei F, Zeng C, Yao Y, Liao W, Zhao Z. Extracellular Vesicles in Liquid Biopsies: Potential for Disease Diagnosis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6611244. [PMID: 33506022 PMCID: PMC7814955 DOI: 10.1155/2021/6611244] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/19/2020] [Accepted: 12/23/2020] [Indexed: 02/05/2023]
Abstract
Liquid biopsy is conducted through minimally invasive or noninvasive procedures, and the resulting material can be subjected to genomic, proteomic, and lipidomic analyses for early diagnosis of cancers and other diseases. Extracellular vesicles (EVs), one kind of promising tool for liquid biopsy, are nanosized bilayer particles that are secreted by all kinds of cells and that carry cargoes such as lipids, proteins, and nucleic acids, protecting them from enzymatic degradation in the extracellular environment. In this review, we provide a comprehensive introduction to the properties and applications of EVs, including their biogenesis, contents, sample collection, isolation, and applications in diagnostics based on liquid biopsy.
Collapse
Affiliation(s)
- Jialing Liu
- Department of Orthodontics, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Ye Chen
- Department of Orthodontics, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Fang Pei
- Department of Orthodontics, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Chongmai Zeng
- Department of Orthodontics, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Yang Yao
- Department of Implantology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Wen Liao
- Department of Orthodontics, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- Department of Orthodontics, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| |
Collapse
|
47
|
Cancer Extracellular Vesicles: Next-Generation Diagnostic and Drug Delivery Nanotools. Cancers (Basel) 2020; 12:cancers12113165. [PMID: 33126572 PMCID: PMC7692229 DOI: 10.3390/cancers12113165] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Extracellular vesicles (EVs) are secreted continuously from different cell types. The composition of EVs, like proteins, nucleic acids and lipids is linked with the cells of origin and they are involved in cell-cell communication. The presence of EVs in the majority of the body fluids makes them attractive to investigate and define their role in physiological and in pathological processes. This review is focused on EVs with dimensions between 30 and 150 nm like exosomes (EEVs). We described the biogenesis of EEVs, methods for isolation and their role in cancer as innovative diagnostic tools and new drug delivery systems. Abstract Nanosized extracellular vesicles (EVs) with dimensions ranging from 100 to 1000 nm are continuously secreted from different cells in their extracellular environment. They are able to encapsulate and transfer various biomolecules, such as nucleic acids, proteins, and lipids, that play an essential role in cell‒cell communication, reflecting a novel method of extracellular cross-talk. Since EVs are present in large amounts in most bodily fluids, challengeable hypotheses are analyzed to unlock their potential roles. Here, we review EVs by discussing their specific characteristics (structure, formation, composition, and isolation methods), focusing on their key role in cell biology. Furthermore, this review will summarize the biomedical applications of EVs, in particular those between 30 and 150 nm (like exosomes), as next-generation diagnostic tools in liquid biopsy for cancer and as novel drug delivery vehicles.
Collapse
|
48
|
Lakshminarayanan H, Rutishauser D, Schraml P, Moch H, Bolck HA. Liquid Biopsies in Renal Cell Carcinoma-Recent Advances and Promising New Technologies for the Early Detection of Metastatic Disease. Front Oncol 2020; 10:582843. [PMID: 33194717 PMCID: PMC7656014 DOI: 10.3389/fonc.2020.582843] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/29/2020] [Indexed: 12/21/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) displays a highly varying clinical progression, from slow growing localized tumors to very aggressive metastatic disease (mRCC). Almost a third of all patients with ccRCC show metastatic dissemination at presentation while another third develop metastasis during the course of the disease. Survival rates of mRCC patients remain low despite the development of novel targeted treatment regimens. Biomarkers indicating disease progression could help to define its aggressive potential and thus guide patient management. However, molecular markers that can reliably assess metastatic dissemination and disease recurrence in ccRCC have not been recommended for clinical practice to date. Liquid biopsies could provide an attractive and non-invasive method to determine the risk of recurrence or metastatic dissemination during follow-up and thus assist the search for surveillance biomarkers in ccRCC tumors. A wide spectrum of circulating molecules have already shown considerable potential for ccRCC diagnosis and prognostication. In this review, we outline state of the art of the key circulating analytes such as cfDNA, cfRNA, proteins, and exosomes that may serve as biomarkers for the longitudinal monitoring of ccRCC progression to metastasis. Moreover, we address some of the prevailing limitations in the past approaches and present promising adoptable technologies that could help to pursue the implementation of liquid biopsies as a prognostic tool for mRCC.
Collapse
Affiliation(s)
| | | | | | - Holger Moch
- Department of Pathology and Molecular Pathology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Hella A. Bolck
- Department of Pathology and Molecular Pathology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
49
|
Liu HC, Xie Y, Deng CH, Liu GH. Stem cell-based therapies for fertility preservation in males: Current status and future prospects. World J Stem Cells 2020; 12:1097-1112. [PMID: 33178394 PMCID: PMC7596443 DOI: 10.4252/wjsc.v12.i10.1097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/13/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
With the decline in male fertility in recent years, strategies for male fertility preservation have received increasing attention. In this study, by reviewing current treatments and recent publications, we describe research progress in and the future directions of stem cell-based therapies for male fertility preservation, focusing on the use of spermatogonial stem cells (SSCs), SSC niches, SSC-based testicular organoids, other stem cell types such as mesenchymal stem cells, and stem cell-derived extracellular vesicles. In conclusion, a more comprehensive understanding of the germ cell microenvironment, stem cell-derived extracellular vesicles, and testicular organoids will play an important role in achieving male fertility preservation.
Collapse
Affiliation(s)
- Han-Chao Liu
- Department of Andrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Yun Xie
- Department of Andrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Chun-Hua Deng
- Department of Andrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Gui-Hua Liu
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, Guangdong Province, China
| |
Collapse
|
50
|
Extracellular Vesicles as Biomarkers in Cancer Immunotherapy. Cancers (Basel) 2020; 12:cancers12102825. [PMID: 33007968 PMCID: PMC7600903 DOI: 10.3390/cancers12102825] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Extracellular vesicles (EVs) are small particles found throughout the body. EVs are released by living cells and contain cargo representing the cell of origin. In recent years, EVs have gained attention in cancer research. Since the cargo found inside EVs can be traced back to the cell of origin, EVs shed from cancer cells, in particular, may be used to better describe and characterize a patient’s tumor. EVs have been found and isolated from a variety of bodily fluids, including blood, saliva, and amniotic fluid, and therefore offer a non-invasive way of also diagnosing and monitoring patients before, during, and after cancer immunotherapy. The aim of this review article was to summarize some of the recent work conducted in this field and the challenges we face moving forward in utilizing EVs for cancer diagnostic and therapeutic purposes in cancer immunotherapy in the clinical setting. Abstract Extracellular vesicles (EVs), including exosomes and microvesicles, are membrane-bound vesicles secreted by most cell types during both physiologic conditions as well in response to cellular stress. EVs play an important role in intercellular communication and are emerging as key players in tumor immunology. Tumor-derived EVs (TDEs) harbor a diverse array of tumor neoantigens and contain unique molecular signature that is reflective of tumor’s underlying genetic complexity. As such they offer a glimpse into the immune tumor microenvironment (TME) and have the potential to be a novel, minimally invasive biomarker for cancer immunotherapy. Immune checkpoint inhibitors (ICI), such as anti- programmed death-1(PD-1) and its ligand (PD-L1) antibodies, have revolutionized the treatment of a wide variety of solid tumors including head and neck squamous cell carcinoma, urothelial carcinoma, melanoma, non-small cell lung cancer, and others. Typically, an invasive tissue biopsy is required both for histologic diagnosis and next-generation sequencing efforts; the latter have become more widespread in daily clinical practice. There is an unmet need for noninvasive or minimally invasive (e.g., plasma-based) biomarkers both for diagnosis and treatment monitoring. Targeted analysis of EVs in biospecimens, such as plasma and saliva could serve this purpose by potentially obviating the need for tissue sample. In this review, we describe the current challenges of biomarkers in cancer immunotherapy as well as the mechanistic role of TDEs in modulating antitumor immune response.
Collapse
|