1
|
Zhao Y, Chen C, Feng W, Zhang Z, Xu D, Shi W, Wang S, Li YF. Professor Zhifang Chai: Scientific Contributions and Achievements. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
2
|
Ren D, Li Y, Xue Y, Tang X, Yong L, Li Y. A study using LC-MS/MS-based metabolomics to investigate the effects of iron oxide nanoparticles on rat liver. NANOIMPACT 2021; 24:100360. [PMID: 35559819 DOI: 10.1016/j.impact.2021.100360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/31/2021] [Accepted: 10/24/2021] [Indexed: 06/15/2023]
Abstract
Iron oxide nanoparticles (IONPs) are widely used in food additives, but their metabolic mechanism in the body is still unclear. In this study, male Sprague-Dawley rats were orally administered with IONPs for 28 days to investigate the adverse effect and metabolic mechanism on liver by the combination of traditional toxicology technology and liquid chromatography tandem-mass spectrometry (LC-MS/MS)-based metabolomics. The results showed that IONPs could increase the concentration of blood glucose and the metabolites in the liver of the control and IONPs-treated group were significantly changed. A total of 32 different metabolites were found, including choline, Phosphatidylcholine (PC), Phosphatidylethanolamine (PE), Phosphatidylserine (PS), etc. Pathway analysis based on KEGG database demonstrated that the glycerophospholipid metabolism pathway would be affected. And the expression of the key enzymes of altered metabolomics pathway was further verified at the transcription level. In short, our study clarified oral exposure to IONPs would induce lipid metabolism disorders in the liver of rats, which provided useful information about their safety and potential risks.
Collapse
Affiliation(s)
- Dongxia Ren
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Yulin Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Ying Xue
- Sichuan Center for Disease Control and Prevention, Chengdu 610041, China
| | - Xiaoyue Tang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Li Yong
- Sichuan Center for Disease Control and Prevention, Chengdu 610041, China
| | - Yun Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; Provincial Key Laboratory of Food Safety Monitoring and Risk Assessment of Sichuan, Chengdu 610041, China.
| |
Collapse
|
3
|
Wang L, Zhao J, Cui L, Li YF, Li B, Chen C. Comparative nanometallomics as a new tool for nanosafety evaluation. Metallomics 2021; 13:6189688. [PMID: 33770173 DOI: 10.1093/mtomcs/mfab013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/27/2021] [Accepted: 03/19/2021] [Indexed: 11/14/2022]
Abstract
Nanosafety evaluation is paramount since it is necessary not only for human health protection and environmental integrity but also as a cornerstone for industrial and regulatory bodies. The current nanometallomics did not cover non-metallic nanomaterials, which is an important part of nanomaterials. In this critical review, the concept of nanometallomics was expanded to incorporate all nanomaterials. The impacts on metal(loid) and metallo-biomolecular homeostasis by nanomaterials will be focused upon in nanometallomics study. Besides, the impacts on elemental and biomolecular homeostasis by metallo-nanomaterials are also considered as the research subjects of nanometallomics. Based on the new concept of nanometallomics, comparative nanometallomics was proposed as a new tool for nanosafety evaluation, which is high throughput and will be precise considering the nature of machine learning techniques. The perspectives of nanometallomics like metallo-wide association study and non-target nanometallomics were put forward.
Collapse
Affiliation(s)
- Liming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; CAS-HKU Joint Laboratory of Metallomics on Health and Environment; Beijing Metallomics Facility; National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiating Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; CAS-HKU Joint Laboratory of Metallomics on Health and Environment; Beijing Metallomics Facility; National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liwei Cui
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Feng Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; CAS-HKU Joint Laboratory of Metallomics on Health and Environment; Beijing Metallomics Facility; National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bai Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; CAS-HKU Joint Laboratory of Metallomics on Health and Environment; Beijing Metallomics Facility; National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Chunying Chen
- University of Chinese Academy of Sciences, Beijing 100049, China.,CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| |
Collapse
|
4
|
Duarte B, Feijão E, Cruz de Carvalho R, Duarte IA, Silva M, Matos AR, Cabrita MT, Novais SC, Lemos MFL, Marques JC, Caçador I, Reis-Santos P, Fonseca VF. Effects of Propranolol on Growth, Lipids and Energy Metabolism and Oxidative Stress Response of Phaeodactylum tricornutum. BIOLOGY 2020; 9:biology9120478. [PMID: 33353054 PMCID: PMC7766914 DOI: 10.3390/biology9120478] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 11/16/2022]
Abstract
Simple Summary In the past two decades, increasing attention has been directed to investigate the incidence and consequences of pharmaceuticals in the aquatic environment. Propranolol is a non-selective β-adrenoceptor blocker used in large quantities worldwide to treat cardiovascular conditions. Diatoms (model organism) exposed to this compound showed evident signs of oxidative stress, a significant reduction of the autotrophic O2 production and an increase in the heterotrophic mitochondrial respiration. Additionally, diatoms exposed to propranolol showed a consumption of its storage lipids. In ecological terms this will have cascading impacts in the marine trophic webs, where these organisms are key elements, through a reduction of the water column oxygenation and essential fatty acid availability to the heterotrophic organisms that depend on these primary producers. In ecotoxicological terms, diatoms photochemical and fatty acid traits showed to be potential good biomarkers for toxicity assessment of diatoms exposed to this widespread pharmaceutical compound. Abstract Present demographic trends suggest a rise in the contributions of human pharmaceuticals into coastal ecosystems, underpinning an increasing demand to evaluate the ecotoxicological effects and implications of drug residues in marine risk assessments. Propranolol, a non-selective β-adrenoceptor blocker, is used worldwide to treat high blood pressure conditions and other related cardiovascular conditions. Although diatoms lack β-adrenoceptors, this microalgal group presents receptor-like kinases and proteins with a functional analogy to the animal receptors and that can be targeted by propranolol. In the present work, the authors evaluated the effect of this non-selective β-adrenoceptor blocker in diatom cells using P. tricornutum as a model organism, to evaluate the potential effect of this compound in cell physiology (growth, lipids and energy metabolism and oxidative stress) and its potential relevance for marine ecosystems. Propranolol exposure leads to a significant reduction in diatom cell growth, more evident in the highest concentrations tested. This is likely due to the observed impairment of the main primary photochemistry processes and the enhancement of the mitochondrial respiratory activity. More specifically, propranolol decreased the energy transduction from photosystem II (PSII) to the electron transport chain, leading to an increase in oxidative stress levels. Cells exposed to propranolol also exhibited high-dissipated energy flux, indicating that this excessive energy is efficiently diverted, to some extent, from the photosystems, acting to prevent irreversible photoinhibition. As energy production is impaired at the PSII donor side, preventing energy production through the electron transport chain, diatoms appear to be consuming storage lipids as an energy backup system, to maintain essential cellular functions. This consumption will be attained by an increase in respiratory activity. Considering the primary oxygen production and consumption pathways, propranolol showed a significant reduction of the autotrophic O2 production and an increase in the heterotrophic mitochondrial respiration. Both mechanisms can have negative effects on marine trophic webs, due to a decrease in the energetic input from marine primary producers and a simultaneous oxygen production decrease for heterotrophic species. In ecotoxicological terms, bio-optical and fatty acid data appear as highly efficient tools for ecotoxicity assessment, with an overall high degree of classification when these traits are used to build a toxicological profile, instead of individually assessed.
Collapse
Affiliation(s)
- Bernardo Duarte
- MARE—Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; (E.F.); (R.C.d.C.); (I.A.D.); (M.S.); (I.C.); (P.R.-S.); (V.F.F.)
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal;
- Correspondence:
| | - Eduardo Feijão
- MARE—Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; (E.F.); (R.C.d.C.); (I.A.D.); (M.S.); (I.C.); (P.R.-S.); (V.F.F.)
| | - Ricardo Cruz de Carvalho
- MARE—Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; (E.F.); (R.C.d.C.); (I.A.D.); (M.S.); (I.C.); (P.R.-S.); (V.F.F.)
- cE3c, Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Edifício C2, Piso 5, 1749-016 Lisbon, Portugal
| | - Irina A. Duarte
- MARE—Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; (E.F.); (R.C.d.C.); (I.A.D.); (M.S.); (I.C.); (P.R.-S.); (V.F.F.)
| | - Marisa Silva
- MARE—Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; (E.F.); (R.C.d.C.); (I.A.D.); (M.S.); (I.C.); (P.R.-S.); (V.F.F.)
| | - Ana Rita Matos
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal;
- BioISI—Biosystems and Integrative Sciences Institute, Plant Functional Genomics Group, Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Maria Teresa Cabrita
- Centro de Estudos Geográficos (CEG), Instituto de Geografia e Ordenamento do Território (IGOT), Universidade de Lisboa, Rua Branca Edmée Marques, 1600-276 Lisbon, Portugal;
| | - Sara C. Novais
- MARE—Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2520-641 Peniche, Portugal; (S.C.N.); (M.F.L.L.)
| | - Marco F. L. Lemos
- MARE—Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2520-641 Peniche, Portugal; (S.C.N.); (M.F.L.L.)
| | - João Carlos Marques
- MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3000 Coimbra, Portugal;
| | - Isabel Caçador
- MARE—Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; (E.F.); (R.C.d.C.); (I.A.D.); (M.S.); (I.C.); (P.R.-S.); (V.F.F.)
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal;
| | - Patrick Reis-Santos
- MARE—Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; (E.F.); (R.C.d.C.); (I.A.D.); (M.S.); (I.C.); (P.R.-S.); (V.F.F.)
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, Aldeide, SA 5005, Australia
| | - Vanessa F. Fonseca
- MARE—Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; (E.F.); (R.C.d.C.); (I.A.D.); (M.S.); (I.C.); (P.R.-S.); (V.F.F.)
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal;
| |
Collapse
|
5
|
Galazzi RM, Chacón-Madrid K, Freitas DC, da Costa LF, Arruda MAZ. Inductively coupled plasma mass spectrometry based platforms for studies involving nanoparticle effects in biological samples. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34 Suppl 3:e8726. [PMID: 32020701 DOI: 10.1002/rcm.8726] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/18/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
The widespread application of nanoparticles (NPs) in recent times has caused concern because of their effects in biological systems. Although NPs can be produced naturally, industrially synthesized NPs affect the metabolism of a given organism because of their high reactivity. The biotransformation of NPs involves different processes, including aggregation/agglomeration, and reactions with biomolecules that will be reflected in their toxicity. Several analytical techniques, including inductively coupled plasma mass spectrometry (ICP-MS), have been used for characterizing and quantifying NPs in biological samples. In fact, in addition to providing information regarding the morphology and concentration of NPs, ICP-MS-based platforms, such as liquid chromatography/ICP-MS, single-particle ICP-MS, field-flow fractionation (asymmetrical flow field-flow fractionation)-ICP-MS, and laser ablation-ICP-MS, yield elemental information about molecules. Furthermore, such information together with speciation analysis enlarges our understanding of the interaction between NPs and biological organisms. This study reports the contribution of ICP-MS-based platforms as a tool for evaluating NPs in distinct biological samples by providing an additional understanding of the behavior of NPs and their toxicity in these organisms.
Collapse
Affiliation(s)
- Rodrigo M Galazzi
- Department of Analytical Chemistry, Spectrometry, Sample Preparation and Mechanization Group, Institute of Chemistry, University of Campinas-Unicamp, Campinas, SP, Brazil
- National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas-Unicamp, Campinas, SP, Brazil
| | - Katherine Chacón-Madrid
- Department of Analytical Chemistry, Spectrometry, Sample Preparation and Mechanization Group, Institute of Chemistry, University of Campinas-Unicamp, Campinas, SP, Brazil
- National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas-Unicamp, Campinas, SP, Brazil
| | - Daniel C Freitas
- Department of Analytical Chemistry, Spectrometry, Sample Preparation and Mechanization Group, Institute of Chemistry, University of Campinas-Unicamp, Campinas, SP, Brazil
- National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas-Unicamp, Campinas, SP, Brazil
| | - Luana F da Costa
- Department of Analytical Chemistry, Spectrometry, Sample Preparation and Mechanization Group, Institute of Chemistry, University of Campinas-Unicamp, Campinas, SP, Brazil
- National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas-Unicamp, Campinas, SP, Brazil
| | - Marco A Z Arruda
- Department of Analytical Chemistry, Spectrometry, Sample Preparation and Mechanization Group, Institute of Chemistry, University of Campinas-Unicamp, Campinas, SP, Brazil
- National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas-Unicamp, Campinas, SP, Brazil
| |
Collapse
|
6
|
Banoei MM, Iupe I, Bazaz RD, Campos M, Vogel HJ, Winston BW, Mirsaeidi M. Metabolomic and metallomic profile differences between Veterans and Civilians with Pulmonary Sarcoidosis. Sci Rep 2019; 9:19584. [PMID: 31863066 PMCID: PMC6925242 DOI: 10.1038/s41598-019-56174-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 12/03/2019] [Indexed: 12/18/2022] Open
Abstract
Sarcoidosis is a disorder characterized by granulomatous inflammation of unclear etiology. In this study we evaluated whether veterans with sarcoidosis exhibited different plasma metabolomic and metallomic profiles compared with civilians with sarcoidosis. A case control study was performed on veteran and civilian patients with confirmed sarcoidosis. Proton nuclear magnetic resonance spectroscopy (1H NMR), hydrophilic interaction liquid chromatography mass spectrometry (HILIC-MS) and inductively coupled plasma mass spectrometry (ICP-MS) were applied to quantify metabolites and metal elements in plasma samples. Our results revealed that the veterans with sarcoidosis significantly differed from civilians, according to metabolic and metallomics profiles. Moreover, the results showed that veterans with sarcoidosis and veterans with COPD were similar to each other in metabolomics and metallomics profiles. This study suggests the important role of environmental risk factors in the development of different molecular phenotypic responses of sarcoidosis. In addition, this study suggests that sarcoidosis in veterans may be an occupational disease.
Collapse
Affiliation(s)
| | - Isabella Iupe
- Department of Medicine, University of Miami, Miami, FL, USA
| | - Reza Dowlatabadi Bazaz
- Department of Biological Science, Bio-NMR-metabolomics Research center, University of Calgary, Calgary, Canada
- Departments of Critical Care Medicine, Medicine and Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Michael Campos
- Section of Pulmonary, Miami VA Healthcare System, Miami, FL, USA
- Division of Pulmonary and Critical Care, University of Miami, Miami, FL, USA
| | - Hans J Vogel
- Department of Biological Science, Bio-NMR-metabolomics Research center, University of Calgary, Calgary, Canada
- Departments of Critical Care Medicine, Medicine and Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Brent W Winston
- Department of Biological Science, Bio-NMR-metabolomics Research center, University of Calgary, Calgary, Canada
- Departments of Critical Care Medicine, Medicine and Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Mehdi Mirsaeidi
- Section of Pulmonary, Miami VA Healthcare System, Miami, FL, USA.
- Division of Pulmonary and Critical Care, University of Miami, Miami, FL, USA.
| |
Collapse
|
7
|
Filippi M, Born G, Felder-Flesch D, Scherberich A. Use of nanoparticles in skeletal tissue regeneration and engineering. Histol Histopathol 2019; 35:331-350. [PMID: 31721139 DOI: 10.14670/hh-18-184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bone and osteochondral defects represent one of the major causes of disabilities in the world. Derived from traumas and degenerative pathologies, these lesions cause severe pain, joint deformity, and loss of joint motion. The standard treatments in clinical practice present several limitations. By producing functional substitutes for damaged tissues, tissue engineering has emerged as an alternative in the treatment of defects in the skeletal system. Despite promising preliminary clinical outcomes, several limitations remain. Nanotechnologies could offer new solutions to overcome those limitations, generating materials more closely mimicking the structures present in naturally occurring systems. Nanostructures comparable in size to those appearing in natural bone and cartilage have thus become relevant in skeletal tissue engineering. In particular, nanoparticles allow for a unique combination of approaches (e.g. cell labelling, scaffold modification or drug and gene delivery) inside single integrated systems for optimized tissue regeneration. In the present review, the main types of nanoparticles and the current strategies for their application to skeletal tissue engineering are described. The collection of studies herein considered confirms that advanced nanomaterials will be determinant in the design of regenerative therapeutic protocols for skeletal lesions in the future.
Collapse
Affiliation(s)
- Miriam Filippi
- Department of Biomedical Engineering, University of Basel, Allschwil, Basel, Switzerland.,Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Gordian Born
- Department of Biomedical Engineering, University of Basel, Allschwil, Basel, Switzerland.,Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Delphine Felder-Flesch
- Institut de Physique et Chimie des Matériaux Strasbourg, UMR CNRS-Université de Strasbourg, Strasbourg, France
| | - Arnaud Scherberich
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Allschwil, Basel, Switzerland.
| |
Collapse
|
8
|
Duarte B, Prata D, Matos AR, Cabrita MT, Caçador I, Marques JC, Cabral HN, Reis-Santos P, Fonseca VF. Ecotoxicity of the lipid-lowering drug bezafibrate on the bioenergetics and lipid metabolism of the diatom Phaeodactylum tricornutum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:2085-2094. [PMID: 30290350 DOI: 10.1016/j.scitotenv.2018.09.354] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/24/2018] [Accepted: 09/28/2018] [Indexed: 06/08/2023]
Abstract
Pharmaceutical residues impose a new and emerging threat to the marine environment and its biota. In most countries, ecotoxicity tests are not required for all pharmaceutical residues classes and, even when mandatory, these tests are not performed using marine primary producers such as diatoms. These microalgae are among the most abundant class of primary producers in the marine realm and key players in the marine trophic web. Blood-lipid-lowering agents such as bezafibrate and its derivatives are among the most prescribed drugs and most frequently found human pharmaceuticals in aquatic environments. The present study aims to investigate the bezafibrate ecotoxicity and its effects on primary productivity and lipid metabolism, at environmentally relevant concentrations, using the model diatom Phaeodactylum tricornutum. Under controlled conditions, diatom cultures were exposed to bezafibrate at 0, 3, 6, 30 and 60 μg L-1, representing concentrations that can be found in the vicinity of discharges of wastewater treatment plants. High bezafibrate concentrations increased cell density and are suggested to promote a shift from autotrophic to mixotrophic metabolism, with diatoms using light energy generated redox potential to breakdown bezafibrate as carbon source. This was supported by an evident increase in cell density coupled with an impairment of the thylakoid electron transport and consequent photosynthetic activity reduction. In agreement, the concentrations of plastidial marker fatty acids showed negative correlations and Canonical Analysis of Principal coordinates of the relative abundances of fatty acid and photochemical data allowed the separation of controls and cells exposed to bezafibrate with high classification efficiency, namely for photochemical traits, suggesting their validity as suitable biomarkers of bezafibrate exposure. Further evaluations of the occurrence of a metabolic shift in diatoms due to exposure to bezafibrate is paramount, as ultimately it may reduce O2 generation and CO2 fixation in aquatic ecosystems with ensuing consequences for neighboring heterotrophic organisms.
Collapse
Affiliation(s)
- Bernardo Duarte
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal.
| | - Diogo Prata
- BioISI - Biosystems and Integrative Sciences Institute, Plant Functional Genomics Group, Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Ana Rita Matos
- BioISI - Biosystems and Integrative Sciences Institute, Plant Functional Genomics Group, Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Maria Teresa Cabrita
- Instituto do Mar e da Atmosfera (IPMA), Rua Alfredo Magalhães Ramalho, 6, 1495-006, Algés, Lisboa, Portugal
| | - Isabel Caçador
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - João Carlos Marques
- MARE - Marine and Environmental Sciences Centre, c/o Department of Zoology, Faculty of Sciences and Technology, University of Coimbra, 3000 Coimbra, Portugal
| | - Henrique N Cabral
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; Irstea, UR EABX (Ecosystèmes Aquatiques et Changements Globaux), 50 avenue de Verdun, 33610 Cestas, France
| | - Patrick Reis-Santos
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, SA 5005, Australia
| | - Vanessa F Fonseca
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| |
Collapse
|
9
|
Louro H, Saruga A, Santos J, Pinhão M, Silva MJ. Biological impact of metal nanomaterials in relation to their physicochemical characteristics. Toxicol In Vitro 2019; 56:172-183. [PMID: 30707927 DOI: 10.1016/j.tiv.2019.01.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 11/18/2022]
Affiliation(s)
- Henriqueta Louro
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal; Toxicogenomics and Human Health (ToxOmics), Nova Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal; PToNANO, Lisbon, Portugal.
| | - Andreia Saruga
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
| | - Joana Santos
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
| | - Mariana Pinhão
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal
| | - Maria João Silva
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisbon, Portugal; Toxicogenomics and Human Health (ToxOmics), Nova Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal; PToNANO, Lisbon, Portugal
| |
Collapse
|
10
|
Matczuk M, Ruzik L, Aleksenko SS, Keppler BK, Jarosz M, Timerbaev AR. Analytical methodology for studying cellular uptake, processing and localization of gold nanoparticles. Anal Chim Acta 2018; 1052:1-9. [PMID: 30685026 DOI: 10.1016/j.aca.2018.10.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 12/30/2022]
Abstract
Interactions of gold nanoparticles (AuNPs) with live cells are known to exert a great impact on their functions, including cell signalling, genomic, proteomic, and metabolomic processes. Modern analytical techniques applied to studying nanoparticle-cell interactions are to improve our understanding of the mode of action of AuNPs, which is essential for their approval in disease therapeutics. Such methods may vary depending on what step of particle internalization is in question, i.e., cellular uptake, intracellular transport (accompanying by changes in the chemical state), translocation to different cell compartments, interaction with relevant subcellular structures and localization. This review focuses on the implementation and critical assessment of advanced analytical methodologies to investigate the cellular processing of AuNPs. Also addressed is a sought-after issue of accounting in in-vitro studies for a chemical form in which the AuNPs enter the cell in vivo.
Collapse
Affiliation(s)
- Magdalena Matczuk
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664, Warsaw, Poland
| | - Lena Ruzik
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664, Warsaw, Poland
| | - Svetlana S Aleksenko
- Saratov State Agrarian University, Teatralnaya Sq. 1, 410012, Saratov, Russian Federation
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, A-1090, Vienna, Austria
| | - Maciej Jarosz
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664, Warsaw, Poland
| | - Andrei R Timerbaev
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664, Warsaw, Poland; Vernadsky Institute of Geochemistry and Analytical Chemistry, Kosygin St. 19, 119991, Moscow, Russian Federation.
| |
Collapse
|
11
|
Tang H, Xu M, Zhou X, Zhang Y, Zhao L, Ye G, Shi F, Lv C, Li Y. Acute toxicity and biodistribution of different sized copper nano-particles in rats after oral administration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:649-663. [PMID: 30274098 DOI: 10.1016/j.msec.2018.08.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 07/02/2018] [Accepted: 08/11/2018] [Indexed: 01/04/2023]
Abstract
In order to compare the detailed toxicity of nano‑copper and CuCl2·2H2O (Cu ions) in vivo, the oral toxicity of four differently sized Cu particles (30 nm, 50 nm, 80 nm and 1 μm) on rats was investigated compared with CuCl2·2H2O in acute exposure scenarios. We compared the acute LD50 values and evaluated the kinetics of Cu following a single equivalent dose (200 mg/kg) of five Cu materials. Continuous gavage of nano‑copper for 7 days, the mortality rates, relative organ weights, and hematological, biochemical, and histopathologic characteristics of rats were examined. The results showed that the LD50 values of Cu ions, 30 nm, 50 nm, 80 nm, and 1 μm copper particles were 359.6, 1022, 1750, 2075, and >5000 mg/kg, respectively. Physiological and biochemical indexes indicated that 80 nm nano‑copper (Cu NPs) produced the highest degrees of toxicity in short term. The liver and kidneys were the major organs most affected by Cu NPs, and also the target organs for Cu accumulation. The toxic effects of Cu ions are similar to those of nano‑copper, but they were not the same. Therefore, the toxic effect of nano‑copper is likely to be the result of the dual action of nano‑copper particles and copper ions. Collectively, the acute toxic effects produced by Cu NPs were highly correlated with particle size. Moreover, the toxic effects produced by repeated dosing differed from those produced by a single dose, and this may be due to organ targeting effects that are dependent on the size of the nano-particles.
Collapse
Affiliation(s)
- Huaqiao Tang
- Sichuan Agricultural University, Department of Pharmacy, Sichuan, Chengdu 611130, China
| | - Min Xu
- Sichuan Agricultural University, Department of Pharmacy, Sichuan, Chengdu 611130, China
| | - XueRong Zhou
- Sichuan Agricultural University, Department of Pharmacy, Sichuan, Chengdu 611130, China
| | - Yuanli Zhang
- Sichuan Agricultural University, Department of Pharmacy, Sichuan, Chengdu 611130, China
| | - Ling Zhao
- Sichuan Agricultural University, Department of Pharmacy, Sichuan, Chengdu 611130, China
| | - Gang Ye
- Sichuan Agricultural University, Department of Pharmacy, Sichuan, Chengdu 611130, China
| | - Fei Shi
- Sichuan Agricultural University, Department of Pharmacy, Sichuan, Chengdu 611130, China
| | - Cheng Lv
- Sichuan Agricultural University, Department of Pharmacy, Sichuan, Chengdu 611130, China
| | - Yinglun Li
- Sichuan Agricultural University, Department of Pharmacy, Sichuan, Chengdu 611130, China.
| |
Collapse
|
12
|
Yang Y, Xu L, Dekkers S, Zhang LG, Cassee FR, Zuo YY. Aggregation State of Metal-Based Nanomaterials at the Pulmonary Surfactant Film Determines Biophysical Inhibition. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8920-8929. [PMID: 30011188 DOI: 10.1021/acs.est.8b02976] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Metal-based nanomaterials (MNMs) represent a large category of the engineered nanomaterials, and have been extensively used to enhance the electrical, optical, and magnetic properties of nanoenabled consumer products. Inhaled MNMs can penetrate deeply into the peripheral lung at which they first interact with the pulmonary surfactant (PS) lining of alveoli. Here we studied the biophysical inhibitory potential of representative MNMs on a modified natural PS, Infasurf, using a novel in vitro experimental methodology called the constrained drop surfactometry (CDS). It was found that the biophysical inhibitory potential of six MNMs on Infasurf ranks in the order CeO2 > ZnO > TiO2 > Ag > Fe3O4 > ZrO2-CeO2. This rank of in vitro biophysical inhibition is in general agreement with the in vitro and in vivo toxicity of these MNMs. Directly imaging the lateral structure and molecular conformation of the PS film using atomic force microscopy revealed that there exists a correlation between biophysical inhibition of the PS film by the MNMs and their aggregation state at the PS film. Taken together, our study suggests that the nano-bio interactions at the PS film are determined by multiple physicochemical properties of the MNMs, including not only well-studied properties such as their chemical composition and particle size, but also properties such as hydrophobicity, dissolution rate, and aggregation state at the PS film found here. Our study provides novel insight into the understanding of nanotoxicology and metallomics of MNMs.
Collapse
Affiliation(s)
- Yi Yang
- Department of Mechanical Engineering , University of Hawaii at Manoa , Honolulu , Hawaii 96822 , United States
| | - Lu Xu
- Department of Mechanical Engineering , University of Hawaii at Manoa , Honolulu , Hawaii 96822 , United States
| | - Susan Dekkers
- National Institute for Public Health and the Environment , 3720 BA , Bilthoven , The Netherlands
| | - Lijie Grace Zhang
- Departments of Mechanical and Aerospace Engineering, Biomedical Engineering, and Medicine , The George Washington University , Washington , D.C. 20052 , United States
| | - Flemming R Cassee
- National Institute for Public Health and the Environment , 3720 BA , Bilthoven , The Netherlands
- Institute of Risk Assessment Sciences , Utrecht University , 3508 TD , Utrecht , The Netherlands
| | - Yi Y Zuo
- Department of Mechanical Engineering , University of Hawaii at Manoa , Honolulu , Hawaii 96822 , United States
- Department of Pediatrics, John A. Burns School of Medicine , University of Hawaii , Honolulu , Hawaii 96826 , United States
| |
Collapse
|
13
|
Montes-Bayón M, Sharar M, Corte-Rodriguez M. Trends on (elemental and molecular) mass spectrometry based strategies for speciation and metallomics. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.09.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Li YF, Zhao J, Gao Y, Chen C, Chai Z. Advanced Nuclear and Related Techniques for Metallomics and Nanometallomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1055:213-243. [PMID: 29884967 DOI: 10.1007/978-3-319-90143-5_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Metallomics, focusing on the global and systematic understanding of the metal uptake, trafficking, role, and excretion in biological systems, has attracted more and more attention. Metal-related nanomaterials, including metallic and metal-containing nanomaterials, have unique properties compared to their macroscale counterparts and therefore require special attention. The absorption, distribution, metabolism, excretion (ADME) behavior of metal-related nanomaterials in the biological systems is influenced by their physicochemical properties, the exposure route, and the microenvironment of the deposition site. Nanomaterials not only may interact directly or indirectly with genes, proteins, and other molecules to bring genotoxicity, immunotoxicity, DNA damage, and cytotoxicity but may also stimulate the immune responses, circumvent tumor resistance, and inhibit tumor metastasis. Because of their advantages of absolute quantification, high sensitivity, excellent accuracy and precision, low matrix effects, and nondestructiveness, nuclear and related analytical techniques have been playing important roles in the study of metallomics and nanometallomics. In this chapter, we present a comprehensive overview of nuclear and related analytical techniques applied to the quantification of metallome and nanometallome, the biodistribution, bioaccumulation, and transformation of metallome and nanometallome in vivo, and the structural analysis. Besides, metallomics and nanometallomics need to cooperate with other -omics, like genomics, proteomics, and metabolomics, to obtain the knowledge of underlying mechanisms and therefore to improve the application performance and to reduce the potential risk of metallome and nanometallome.
Collapse
Affiliation(s)
- Yu-Feng Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and Laboratory for Metallomic and Nanometallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Jiating Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and Laboratory for Metallomic and Nanometallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Yuxi Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and Laboratory for Metallomic and Nanometallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, China
| | - Zhifang Chai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and Laboratory for Metallomic and Nanometallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
15
|
Abstract
Chemical speciation approaches is an inherent part of metallomics, once metals/metalloids and organic structures need to be currently evaluated for attaining metallomics studies. Then, this chapter focuses on the applications of the chemical speciation applied to the human health risk, food and human diet, drugs, forensic, nanoscience, and geological metallomics, also pointing out the advances in such area. Some aspects regarding sample preparation is commented along this chapter, and some strategies for maintaining the integrity of the metallomics information are also emphasized.
Collapse
|
16
|
Yao H, Zhao X, Fan R, Sattar H, Zhao J, Zhao W, Zhang Z, Li Y, Xu S. Selenium deficiency-induced alterations in ion profiles in chicken muscle. PLoS One 2017; 12:e0184186. [PMID: 28877212 PMCID: PMC5587317 DOI: 10.1371/journal.pone.0184186] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 08/19/2017] [Indexed: 11/30/2022] Open
Abstract
Ion homeostasis plays important roles in development of metabolic diseases. In the present study, we examined the contents and distributions of 25 ions in chicken muscles following treatment with selenium (Se) deficiency for 25 days. The results revealed that in chicken muscles, the top ranked microelements were silicon (Si), iron (Fe), zinc (Zn), aluminum (Al), copper (Cu) and boron (B), showing low contents that varied from 292.89 ppb to 100.27 ppm. After Se deficiency treatment, essential microelements [Cu, chromium (Cr), vanadium (V) and manganese (Mn)], and toxic microelements [cadmium (Cd) and mercury (Hg)] became more concentrated (P < 0.05). Elements distribution images showed generalized accumulation of barium (Ba), cobalt (Co), Cu, Fe and V, while Cr, Mn, and Zn showed pin point accumulations in muscle sections. Thus, the ion profiles were generally influenced by Se deficiency, which suggested a possible role of Se deficiency in muscle dysfunctions caused by these altered ion profiles.
Collapse
Affiliation(s)
- Haidong Yao
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Xia Zhao
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Ruifeng Fan
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Hamid Sattar
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Jinxin Zhao
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Wenchao Zhao
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Ziwei Zhang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Yufeng Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and Center for Environmental Safety and Health, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- * E-mail: (SX); (YL)
| | - Shiwen Xu
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
- * E-mail: (SX); (YL)
| |
Collapse
|
17
|
Chevallet M, Veronesi G, Fuchs A, Mintz E, Michaud-Soret I, Deniaud A. Impact of labile metal nanoparticles on cellular homeostasis. Current developments in imaging, synthesis and applications. Biochim Biophys Acta Gen Subj 2017; 1861:1566-1577. [DOI: 10.1016/j.bbagen.2016.12.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 12/11/2016] [Accepted: 12/15/2016] [Indexed: 12/26/2022]
|
18
|
Chen R, Hu B, Liu Y, Xu J, Yang G, Xu D, Chen C. Beyond PM2.5: The role of ultrafine particles on adverse health effects of air pollution. Biochim Biophys Acta Gen Subj 2016; 1860:2844-55. [DOI: 10.1016/j.bbagen.2016.03.019] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/04/2016] [Accepted: 03/11/2016] [Indexed: 12/29/2022]
|
19
|
Yao H, Fan R, Zhao X, Zhao W, Liu W, Yang J, Sattar H, Zhao J, Zhang Z, Xu S. Selenoprotein W redox-regulated Ca2+ channels correlate with selenium deficiency-induced muscles Ca2+ leak. Oncotarget 2016; 7:57618-57632. [PMID: 27557522 PMCID: PMC5295377 DOI: 10.18632/oncotarget.11459] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 08/17/2016] [Indexed: 11/25/2022] Open
Abstract
Selenium (Se) deficiency induces Ca2+ leak and calcification in mammal skeletal muscles; however, the exact mechanism is still unclear. In the present study, both Se-deficient chicken muscle models and selenoprotein W (SelW) gene knockdown myoblast and embryo models were used to study the mechanism. The results showed that Se deficiency-induced typical muscular injuries accompanied with Ca2+ leak and oxidative stress (P < 0.05) injured the ultrastructure of the sarcoplasmic reticulum (SR) and mitochondria; decreased the levels of the Ca2+ channels, SERCA, SLC8A, CACNA1S, ORAI1, STIM1, TRPC1, and TRPC3 (P < 0.05); and increased the levels of Ca2+ channel PMCA (P < 0.05). Similarly, SelW knockdown also induced Ca2+ leak from the SR and cytoplasm; increased mitochondrial Ca2+ levels and oxidative stress; injured SR and mitochondrial ultrastructure; decreased levels of SLC8A, CACNA1S, ORA1, TRPC1, and TRPC3; and caused abnormal activities of Ca2+ channels in response to inhibitors in myoblasts and chicken embryos. Thus, both Se deficiency and SelW knockdown induced Ca2+ leak, oxidative stress, and Ca2+ channel reduction. In addition, Ca2+ levels and the expression of the Ca2+ channels, RyR1, SERCA, CACNA1S, TRPC1, and TRPC3 were recovered to normal levels by N-acetyl-L-cysteine (NAC) treatment compared with SelW knockdown cells. Thus, with regard to the decreased Ca2+ channels, SelW knockdown closely correlated Se deficiency with Ca2+ leak in muscles. The redox regulation role of SelW is crucial in Se deficiency-induced Ca2+ leak in muscles.
Collapse
Affiliation(s)
- Haidong Yao
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Ruifeng Fan
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Xia Zhao
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Wenchao Zhao
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Wei Liu
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Heilongjiang, P. R. China
| | - Jie Yang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Hamid Sattar
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Jinxin Zhao
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Ziwei Zhang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Shiwen Xu
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| |
Collapse
|
20
|
Hu X, Li D, Gao Y, Mu L, Zhou Q. Knowledge gaps between nanotoxicological research and nanomaterial safety. ENVIRONMENT INTERNATIONAL 2016; 94:8-23. [PMID: 27203780 DOI: 10.1016/j.envint.2016.05.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 05/01/2016] [Accepted: 05/02/2016] [Indexed: 06/05/2023]
Abstract
With the wide research and application of nanomaterials in various fields, the safety of nanomaterials attracts much attention. An increasing number of reports in the literature have shown the adverse effects of nanomaterials, representing the quick development of nanotoxicology. However, many studies in nanotoxicology have not reflected the real nanomaterial safety, and the knowledge gaps between nanotoxicological research and nanomaterial safety remain large. Considering the remarkable influence of biological or environmental matrices (e.g., biological corona) on nanotoxicity, the situation of performing nanotoxicological experiments should be relevant to the environment and humans. Given the possibility of long-term and low-concentration exposure of nanomaterials, the reversibility of and adaptation to nanotoxicity, and the transgenerational effects should not be ignored. Different from common pollutants, the specific analysis methodology for nanotoxicology need development and exploration furthermore. High-throughput assay integrating with omics was highlighted in the present review to globally investigate nanotoxicity. In addition, the biological responses beyond individual levels, special mechanisms and control of nanotoxicity deserve more attention. The progress of nanotoxicology has been reviewed by previous articles. This review focuses on the blind spots in nanotoxicological research and provides insight into what we should do in future work to support the healthy development of nanotechnology and the evaluation of real nanomaterial safety.
Collapse
Affiliation(s)
- Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Dandan Li
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yue Gao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Li Mu
- Institute of Agro-Environmental Protection, Ministry of Agriculture, Tianjin 300191, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| |
Collapse
|
21
|
Mitochondria-Mediated Protein Regulation Mechanism of Polymorphs-Dependent Inhibition of Nanoselenium on Cancer Cells. Sci Rep 2016; 6:31427. [PMID: 27514819 PMCID: PMC4981849 DOI: 10.1038/srep31427] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/21/2016] [Indexed: 02/06/2023] Open
Abstract
The present study was (i) to prepare two types of selenium nanoparticles, namely an amorphous form of selenium quantum dots (A-SeQDs) and a crystalline form of selenium quantum dots (C-SeQDs); and (ii) to investigate the nano-bio interactions of A-SeQDs and C-SeQDs in MCF-7, HepG2, HeLa, NIH/3T3, L929 cells and BRL-3A cells. It was found that A-SeQDs could induce the mitochondria-mediated apoptosis, necrosis and death of cells, while C-SeQDs had much weaker effects. This polymorphs-dependent anti-proliferative activity of nano-selenium was scarcely reported. Further investigation demonstrated that A-SeQDs could differentially regulate 61 proteins and several pathways related to stress response, protein synthesis, cell migration and cell cycle, including “p38 MAPK Signaling”, “p53 Signaling”, “14-3-3-mediated Signaling”, “p70S6K Signaling” and “Protein Ubiquitination Pathway”. This was the first report to demonstrate the involvement of protein synthesis and post-translational modification pathways in the anti-proliferative activity associated with NMs. Compared with previously fragmentary studies, this study use a nanomics approach combining bioinformatics and proteomics to systematically investigate the nano-bio interactions of selenium nanoparticles in cancer cells.
Collapse
|
22
|
|
23
|
Fifth International Symposium on Metallomics 2015. Metallomics 2016; 8:641-643. [DOI: 10.1039/c6mt90027e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Peng L, He M, Chen B, Qiao Y, Hu B. Metallomics Study of CdSe/ZnS Quantum Dots in HepG2 Cells. ACS NANO 2015; 9:10324-10334. [PMID: 26389814 DOI: 10.1021/acsnano.5b04365] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Toxicity of quantum dots (QDs) has been a hot research concern in the past decade, and there is a lot of challenge in this field. The physicochemical characteristics of QDs can affect their toxicity, while little is known about the specific chemical form of QDs in living cells after incubation so far. In this work, speciation of four CdSe/ZnS QDs in HepG2 cells was carried out from the metallomics' point of view for the first time by using size exclusion chromatography (SEC) coupled with inductively coupled plasma-mass spectrometry (ICP-MS). On the basis of the signal of Cd, two kinds of chemical forms, named as QD-1 and QD-2, were observed in HepG2 cells incubated with CdSe/ZnS QDs. QD-1 was demonstrated to be a kind of QD-like nanoparticles, confirmed by chromatographic retention time, transmission electron microscopy (TEM) characterization, and fluorescence detection. QD-2 was demonstrated to be cadmium-metallothioneins complex (Cd-MTs) by reversed phase liquid chromatography (RPLC) synchronously coupled with ICP-MS and electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-Q-TOF-MS) analysis. Meanwhile, speciation of QDs in HepG2 cells incubated with different conditions was analyzed. With the variation of QDs incubation concentration/time, and elimination time, the species of QD-1 and QD-2 were also observed without other obvious species, and both the amount of QD-1 and QD-2 increased with incubation concentration and time. The obtained results provide valuable information and a strategy for the study of existing chemical form of QDs, greatly benefiting the understanding of QDs toxicity in living cells.
Collapse
Affiliation(s)
- Lu Peng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University , Wuhan 430072, PR China
| | - Man He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University , Wuhan 430072, PR China
| | - Beibei Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University , Wuhan 430072, PR China
| | - Yu Qiao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University , Wuhan 430072, PR China
| | - Bin Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University , Wuhan 430072, PR China
| |
Collapse
|
25
|
Synchrotron radiation techniques for nanotoxicology. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1531-49. [DOI: 10.1016/j.nano.2015.04.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 03/30/2015] [Accepted: 04/04/2015] [Indexed: 12/12/2022]
|
26
|
Jiménez-Lamana J, Laborda F, Bolea E, Abad-Álvaro I, Castillo JR, Bianga J, He M, Bierla K, Mounicou S, Ouerdane L, Gaillet S, Rouanet JM, Szpunar J. An insight into silver nanoparticles bioavailability in rats. Metallomics 2014; 6:2242-9. [PMID: 25363792 DOI: 10.1039/c4mt00200h] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A comprehensive study of the bioavailability of orally administered silver nanoparticles (AgNPs) was carried out using a rat model. The silver uptake was monitored in liver and kidney tissues, as well as in urine and in feces. Significant accumulation of silver was found in both organs, the liver being the principal target of AgNPs. A significant (∼50%) fraction of silver was found in feces whereas the fraction excreted via urine was negligible (< 0.01%). Intact silver nanoparticles were found in feces by asymmetric flow field-flow fractionation (AsFlFFF) coupled with UV-Vis analysis. Laser ablation-ICP MS imaging showed that AgNPs were able to penetrate into the liver, in contrast to kidneys where they were retained in the cortex. Silver speciation analysis in cytosols from kidneys showed the metallothionein complex as the major species whereas in the liver the majority of silver was bound to high-molecular (70-25 kDa) proteins. These findings demonstrate the presence of Ag(i), released by the oxidation of AgNPs in the biological environment.
Collapse
Affiliation(s)
- Javier Jiménez-Lamana
- Group of Analytical Spectroscopy and Sensors (GEAS), Institute of Environmental Sciences (IUCA), University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Mawson R, Rout M, Ripoll G, Swiergon P, Singh T, Knoerzer K, Juliano P. Production of particulates from transducer erosion: implications on food safety. ULTRASONICS SONOCHEMISTRY 2014; 21:2122-2130. [PMID: 24815104 DOI: 10.1016/j.ultsonch.2014.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 04/03/2014] [Accepted: 04/03/2014] [Indexed: 06/03/2023]
Abstract
The formation of metallic particulates from erosion was investigated by running a series of transducers at various frequencies in water. Two low frequency transducer sonotrodes were run for 7.5h at 18kHz and 20kHz. Three high frequency plates operating at megasonic frequencies of 0.4MHz, 1MHz, and 2MHz were run over a 7days period. Electrical conductivity and pH of the solution were measured before and after each run. A portion of the non-sonicated and treated water was partially evaporated to achieve an 80-fold concentration of particles and then sieved through nano-filters of 0.1μm, 0.05μm, and 0.01μm. An aliquot of the evaporated liquid was also completely dried on strips of carbon tape to determine the presence of finer particles post sieving. An aliquot was analyzed for detection of 11 trace elements by Inductively Coupled Plasma Mass Spectroscopy (ICPMS). The filters and carbon tapes were analyzed by FE-SEM imaging to track the presence of metals by EDS (Energy Dispersive Spectroscopy) and measure the particle size and approximate composition of individual particles detected. Light microscopy visualization was used to calculate the area occupied by the particles present in each filter and high resolution photography was used for visualization of sonotrode surfaces. The roughness of all transducers before and after sonication was tested through profilometry. No evidence of formation of nano-particles was found at any tested frequency. High amounts of metallic micron-sized particles at 18kHz and 20kHz formed within a day, while after 7day runs only a few metallic micro particles were detected above 0.4MHz. Erosion was corroborated by an increase in roughness in the 20kHz tip after ultrasound. The elemental analysis showed that metal leach occurred but values remained below accepted drinking water limits, even after excessively long exposure to ultrasound. With the proviso that the particles measured here were only characterized in two dimensions and could be nanoparticulate in terms of the third dimension, this research suggests that there are no serious health implications resulting from the formation of nanoparticles under the evaluation conditions. Therefore, high frequency transducer plates can be safely operated in direct contact with foods. However, due to significant production of metallic micro-particulates, redesign of lower frequency sonotrodes and reaction chambers is advised to enable operation in various food processing direct-contact applications.
Collapse
Affiliation(s)
- Raymond Mawson
- CSIRO Division of Animal, Food and Health Sciences, 671 Sneydes Road, Werribee, Vic 3030, Australia
| | - Manoj Rout
- CSIRO Division of Animal, Food and Health Sciences, 671 Sneydes Road, Werribee, Vic 3030, Australia
| | - Gabriela Ripoll
- CSIRO Division of Animal, Food and Health Sciences, 671 Sneydes Road, Werribee, Vic 3030, Australia
| | - Piotr Swiergon
- CSIRO Division of Animal, Food and Health Sciences, 671 Sneydes Road, Werribee, Vic 3030, Australia
| | - Tanoj Singh
- CSIRO Division of Animal, Food and Health Sciences, 671 Sneydes Road, Werribee, Vic 3030, Australia
| | - Kai Knoerzer
- CSIRO Division of Animal, Food and Health Sciences, 671 Sneydes Road, Werribee, Vic 3030, Australia
| | - Pablo Juliano
- CSIRO Division of Animal, Food and Health Sciences, 671 Sneydes Road, Werribee, Vic 3030, Australia.
| |
Collapse
|