1
|
Takeda A, Tamano H. Insight into brain metallothioneins from bidirectional Zn2+ signaling in synaptic dynamics. Metallomics 2024; 16:mfae039. [PMID: 39223100 DOI: 10.1093/mtomcs/mfae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/01/2024] [Indexed: 09/04/2024]
Abstract
The basal levels as the labile Zn2+ pools in the extracellular and intracellular compartments are in the range of ∼10 nM and ∼100 pM, respectively. The influx of extracellular Zn2+ is used for memory via cognitive activity and is regulated for synaptic plasticity, a cellular mechanism of memory. When Zn2+ influx into neurons excessively occurs, however, it becomes a critical trigger for cognitive decline and neurodegeneration, resulting in acute and chronic pathogenesis. Aging, a biological process, generally accelerates vulnerability to neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). The basal level of extracellular Zn2+ is age relatedly increased in the rat hippocampus, and the influx of extracellular Zn2+ contributes to accelerating vulnerability to the AD and PD pathogenesis in experimental animals with aging. Metallothioneins (MTs) are Zn2+-binding proteins for cellular Zn2+ homeostasis and involved in not only supplying functional Zn2+ required for cognitive activity, but also capturing excess (toxic) Zn2+ involved in cognitive decline and neurodegeneration. Therefore, it is estimated that regulation of MT synthesis is involved in both neuronal activity and neuroprotection. The present report provides recent knowledge regarding the protective/preventive potential of MT synthesis against not only normal aging but also the AD and PD pathogenesis in experimental animals, focused on MT function in bidirectional Zn2+ signaling in synaptic dynamics.
Collapse
Affiliation(s)
- Atsushi Takeda
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Haruna Tamano
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
- Shizuoka Tohto Medical College, 1949 Minamiema, Izunokuni, Shizuoka 410-2221, Japan
| |
Collapse
|
2
|
Hacioglu C, Kar F, Sahin MC. Neurochemical Research of LOXBlock-1 and ZnSO 4 against Neurodegenerative Damage Induced by Amyloid Beta(1-42). Biol Trace Elem Res 2024; 202:3204-3214. [PMID: 37872362 DOI: 10.1007/s12011-023-03908-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/06/2023] [Indexed: 10/25/2023]
Abstract
Synaptosomes offer an intriguing ex vivo model system for investigating the molecular mechanisms of neurodegenerative processes. Lipoxygenases significantly affect the course of neurodegenerative diseases. Homeostasis of trace elements such as zinc is necessary for the continuity of brain functions. In this study, we purpose to determine whether LOXBlock-1, a 12/15 lipoxygenase inhibitor, and zinc sulfate (ZnSO4) provide any biochemical protection during neurodegenerative damage in synaptosomes induced by amyloid beta 1-42 (Aβ1-42). In this study, animals (30 Wistar Albino male rats 30) were divided into 5 groups (6 animals in each group): Control, 10µM Aβ1-42, 10µM Aβ1-42+25mM LOXBlock-1, 10µM Aβ1-42+10µM ZnSO4, and 10µM Aβ1-42+25mM LOXBlock-1+10µM ZnSO4. Synaptosomes were isolated from the rat cerebral cortex. Following, 8-hydroxy-2-deoxyguanosine (8-OHdG) levels, malondialdehyde (MDA) levels, adenosine deaminase (ADA) levels, reduced-glutathione (GSH) levels, neuronal nitric oxide synthase (nNOS) levels, acetylcholinesterase (AChE) activity, catalase (CAT) activity, and 8-OHdG levels in synaptosomes were detected according to the ELISA method. ADA and AChE expression and protein levels were analyzed. MDA, nNOS, AChE, and 8-OHdG levels in synaptosomes treated with Aβ1-42 resulted in an increase, while there was a decrease in ADA, GSH, and CAT levels (p<0.001 vs. control). Conversely, LOXBlock-1 and ZnSO4 treatments in synaptosomes treated with Aβ1-42 decreased MDA, nNOS, AChE, and 8-OHdG levels, while ADA, GSH, and CAT levels increased. Moreover, the most effective improvement was seen in the co-treatment group of LOXBlock-1 and ZnSO4. Our data showed that LOXBlock-1 and ZnSO4 co-treatment may protect against Aβ1-42 exposure in rat brain synaptosomes.
Collapse
Affiliation(s)
- Ceyhan Hacioglu
- Department of Biochemistry, Faculty of Pharmacy, Duzce University, Duzce, Turkey.
- Department of Medical Biochemistry, Faculty of Medicine, Duzce University, Duzce, Turkey.
| | - Fatih Kar
- Department of Medical Biochemistry, Faculty of Medicine, Kütahya Health Sciences University, Kütahya, Turkey
| | - Meryem Cansu Sahin
- Department of Medical Services and Techniques, Medical Imaging Techniques Program, Uşak University, Uşak, Turkey
| |
Collapse
|
3
|
Liu C, Tang J, Chen Y, Zhang Q, Lin J, Wu S, Han J, Liu Z, Wu C, Zhuo Y, Li Y. Intracellular Zn 2+ promotes extracellular matrix remodeling in dexamethasone-treated trabecular meshwork. Am J Physiol Cell Physiol 2024; 326:C1293-C1307. [PMID: 38525543 DOI: 10.1152/ajpcell.00725.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/26/2024] [Accepted: 03/09/2024] [Indexed: 03/26/2024]
Abstract
Given the widespread application of glucocorticoids in ophthalmology, the associated elevation of intraocular pressure (IOP) has long been a vexing concern for clinicians, yet the underlying mechanisms remain inconclusive. Much of the discussion focuses on the extracellular matrix (ECM) of trabecular meshwork (TM). It is widely agreed that glucocorticoids impact the expression of matrix metalloproteinases (MMPs), leading to ECM deposition. Since Zn2+ is vital for MMPs, we explored its role in ECM alterations induced by dexamethasone (DEX). Our study revealed that in human TM cells treated with DEX, the level of intracellular Zn2+ significantly decreased, accompanied by impaired extracellular Zn2+ uptake. This correlated with changes in several Zrt-, Irt-related proteins (ZIPs) and metallothionein. ZIP8 knockdown impaired extracellular Zn2+ uptake, but Zn2+ chelation did not affect ZIP8 expression. Resembling DEX's effects, chelation of Zn2+ decreased MMP2 expression, increased the deposition of ECM proteins, and induced structural disarray of ECM. Conversely, supplementation of exogenous Zn2+ in DEX-treated cells ameliorated these outcomes. Notably, dietary zinc supplementation in mice significantly reduced DEX-induced IOP elevation and collagen content in TM, thereby rescuing the visual function of the mice. These findings underscore zinc's pivotal role in ECM regulation, providing a novel perspective on the pathogenesis of glaucoma.NEW & NOTEWORTHY Our study explores zinc's pivotal role in mitigating extracellular matrix dysregulation in the trabecular meshwork and glucocorticoid-induced ocular hypertension. We found that in human trabecular meshwork cells treated with dexamethasone, intracellular Zn2+ significantly decreased, accompanied by impaired extracellular Zn2+ uptake. Zinc supplementation rescues visual function by modulating extracellular matrix proteins and lowering intraocular pressure, offering a direction for further exploration in glaucoma management.
Collapse
Affiliation(s)
- Canying Liu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Jiahui Tang
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Yuze Chen
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Qi Zhang
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Jicheng Lin
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Siting Wu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Jiaxu Han
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Zhe Liu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Caiqing Wu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Yehong Zhuo
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Yiqing Li
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| |
Collapse
|
4
|
Wang B, Fang T, Chen H. Zinc and Central Nervous System Disorders. Nutrients 2023; 15:2140. [PMID: 37432243 DOI: 10.3390/nu15092140] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 07/12/2023] Open
Abstract
Zinc (Zn2+) is the second most abundant necessary trace element in the human body, exerting a critical role in many physiological processes such as cellular proliferation, transcription, apoptosis, growth, immunity, and wound healing. It is an essential catalyst ion for many enzymes and transcription factors. The maintenance of Zn2+ homeostasis is essential for the central nervous system, in which Zn2+ is abundantly distributed and accumulates in presynaptic vesicles. Synaptic Zn2+ is necessary for neural transmission, playing a pivotal role in neurogenesis, cognition, memory, and learning. Emerging data suggest that disruption of Zn2+ homeostasis is associated with several central nervous system disorders including Alzheimer's disease, depression, Parkinson's disease, multiple sclerosis, schizophrenia, epilepsy, and traumatic brain injury. Here, we reviewed the correlation between Zn2+ and these central nervous system disorders. The potential mechanisms were also included. We hope that this review can provide new clues for the prevention and treatment of nervous system disorders.
Collapse
Affiliation(s)
- Bangqi Wang
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
- Queen Mary School, Medical College, Nanchang University, Nanchang 330006, China
| | - Tianshu Fang
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
- Queen Mary School, Medical College, Nanchang University, Nanchang 330006, China
| | - Hongping Chen
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
| |
Collapse
|
5
|
Chen WB, Wang YX, Wang HG, An D, Sun D, Li P, Zhang T, Lu WG, Liu YQ. Role of TPEN in Amyloid-β 25-35-Induced Neuronal Damage Correlating with Recovery of Intracellular Zn 2+ and Intracellular Ca 2+ Overloading. Mol Neurobiol 2023:10.1007/s12035-023-03322-x. [PMID: 37059931 DOI: 10.1007/s12035-023-03322-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/17/2023] [Indexed: 04/16/2023]
Abstract
The overproduction of neurotoxic amyloid-β (Aβ) peptides in the brain is a hallmark of Alzheimer's disease (AD). To determine the role of intracellular zinc ion (iZn2+) dysregulation in mediating Aβ-related neurotoxicity, this study aimed to investigate whether N, N, N', N'‑tetrakis (2‑pyridylmethyl) ethylenediamine (TPEN), a Zn2+‑specific chelator, could attenuate Aβ25-35‑induced neurotoxicity and the underlying mechanism. We used the 3-(4, 5-dimethyl-thiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay to measure the viability of primary hippocampal neurons. We also determined intracellular Zn2+ and Ca2+ concentrations, mitochondrial and lysosomal functions, and intracellular reactive oxygen species (ROS) content in hippocampal neurons using live-cell confocal imaging. We detected L-type voltage-gated calcium channel currents (L-ICa) in hippocampal neurons using the whole‑cell patch‑clamp technique. Furthermore, we measured the mRNA expression levels of proteins related to the iZn2+ buffer system (ZnT-3, MT-3) and voltage-gated calcium channels (Cav1.2, Cav1.3) in hippocampal neurons using RT-PCR. The results showed that TPEN attenuated Aβ25-35‑induced neuronal death, relieved the Aβ25-35‑induced increase in intracellular Zn2+ and Ca2+ concentrations; reversed the Aβ25-35‑induced increase in ROS content, the Aβ25-35‑induced increase in the L-ICa peak amplitude at different membrane potentials, the Aβ25-35‑induced the dysfunction of the mitochondria and lysosomes, and the Aβ25-35‑induced decrease in ZnT-3 and MT-3 mRNA expressions; and increased the Cav1.2 mRNA expression in the hippocampal neurons. These results suggest that TPEN, the Zn2+-specific chelator, attenuated Aβ25-35‑induced neuronal damage, correlating with the recovery of intracellular Zn2+ and modulation of abnormal Ca2+-related signaling pathways.
Collapse
Affiliation(s)
- Wen-Bo Chen
- College of Life Sciences, Nankai University, Tianjin, 300071, China
- School of Basic Medical Science, Henan University, Kaifeng, 475004, China
| | - Yu-Xiang Wang
- Department of Immunology and Pathogenic Biology, School of Basic Medical Sciences, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
| | - Hong-Gang Wang
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Di An
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Dan Sun
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Pan Li
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Department of Neurology, Tianjin Huanhu Hospital Affiliated to Nankai University, Tianjin, China
| | - Tao Zhang
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Wan-Ge Lu
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yan-Qiang Liu
- College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
6
|
Mahato M, Sarkar P, Sultana T, Tohora N, Ghanta S, Das A, Dutta P, Kumar Das S. Target Analyte Interaction with a New Julolidine Coupled Benzoxazole‐based Dyad: A combined Photophysical, Theoretical (DFT), and Bioimaging Study. ChemistrySelect 2022. [DOI: 10.1002/slct.202204033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Manas Mahato
- Department of Chemistry University of North Bengal, Raja Rammohunpur, Darjeeling West Bengal 734013 India
| | - Pallobi Sarkar
- Department of Chemistry University of North Bengal, Raja Rammohunpur, Darjeeling West Bengal 734013 India
| | - Tuhina Sultana
- Department of Chemistry University of North Bengal, Raja Rammohunpur, Darjeeling West Bengal 734013 India
| | - Najmin Tohora
- Department of Chemistry University of North Bengal, Raja Rammohunpur, Darjeeling West Bengal 734013 India
| | - Susanta Ghanta
- Department of Chemistry National Institute of Technology, Agartala, Barjala Jirania Tripura 799046 India
| | - Ankita Das
- Centre for Healthcare Science and Technology Indian Institute of Engineering Science and Technology West Bengal 711103 India
| | - Pallab Dutta
- Department of Pharmaceutics National Institute of Pharmaceutical Education and Research, Kolkata West Bengal 700054 India
| | - Sudhir Kumar Das
- Department of Chemistry University of North Bengal, Raja Rammohunpur, Darjeeling West Bengal 734013 India
| |
Collapse
|
7
|
Rafało-Ulińska A, Pochwat B, Misztak P, Bugno R, Kryczyk-Poprawa A, Opoka W, Muszyńska B, Poleszak E, Nowak G, Szewczyk B. Zinc Deficiency Blunts the Effectiveness of Antidepressants in the Olfactory Bulbectomy Model of Depression in Rats. Nutrients 2022; 14:nu14132746. [PMID: 35807926 PMCID: PMC9269062 DOI: 10.3390/nu14132746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
Currently used antidepressants do not always provide the desired results, and many patients suffer from treatment-resistant depression. Clinical studies suggest that zinc deficiency (ZnD) may be an important risk factor for depression and might blunt the effect of antidepressants. This study aimed to examine whether ZnD might blunt the effectiveness of antidepressants in the olfactory bulbectomy model (OB) of depression in rats. For this purpose, rats were subjected to the OB model, fed a zinc-deficient diet (3 mg Zn/kg) for 3 weeks, and finally treated with escitalopram (Esc), venlafaxine (Ven) 10 mg/kg, i.p., or combined Esc/Ven (1 mg/kg, i.p.) with zinc (5 mg/kg) for another 3 weeks. Open field (OFT), forced swim (FST), and sucrose intake (SIT) tests were used to evaluate depressive-like behavioral changes. In addition, serum, intracellular, and synaptic Zn concentrations and the level of zinc transporter (ZnT) proteins were analyzed. The OB + ZnD model induced hyperactivity in rats in the OFT, increased immobility time in the FST, and anhedonia in the SIT. Chronic treatment with Esc reduced immobility time in the FST in the OB + ZnD model. Esc/Ven +Zn increased sucrose intake in rats from the OB + ZnD group. The OB + ZnD decreased serum zinc levels and intracellular and synaptic Zn concentration in the prefrontal cortex (PFC) and cerebellum. These changes were normalized by chronic administration of Esc/Ven +Zn. Moreover, OB + ZnD decreased levels of the ZnT1 protein in the PFC and Hp and ZnT3 in Hp. Chronic administration of antidepressants did not alter the levels of ZnT proteins. The OB + ZnD model induces more depressive-like effects than either model alone. Our results show that ZnD may induce drug resistance in rats. Normalizing serum or brain zinc concentration is insufficient to reverse behavioral abnormalities caused by the OB + ZnD model. However, zinc supplementation might improve the effectiveness of antidepressants in reversing particular depression symptoms.
Collapse
Affiliation(s)
- Anna Rafało-Ulińska
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland; (B.P.); (G.N.); (B.S.)
- Correspondence:
| | - Bartłomiej Pochwat
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland; (B.P.); (G.N.); (B.S.)
| | - Paulina Misztak
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| | - Ryszard Bugno
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland;
| | - Agata Kryczyk-Poprawa
- Department of Inorganic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland; (A.K.-P.); (W.O.)
| | - Włodzimierz Opoka
- Department of Inorganic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland; (A.K.-P.); (W.O.)
| | - Bożena Muszyńska
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland;
| | - Ewa Poleszak
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Gabriel Nowak
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland; (B.P.); (G.N.); (B.S.)
| | - Bernadeta Szewczyk
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland; (B.P.); (G.N.); (B.S.)
| |
Collapse
|
8
|
Gul-Hinc S, Michno A, Zyśk M, Szutowicz A, Jankowska-Kulawy A, Ronowska A. Protection of Cholinergic Neurons against Zinc Toxicity by Glial Cells in Thiamine-Deficient Media. Int J Mol Sci 2021; 22:ijms222413337. [PMID: 34948135 PMCID: PMC8705960 DOI: 10.3390/ijms222413337] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/03/2022] Open
Abstract
Brain pathologies evoked by thiamine deficiency can be aggravated by mild zinc excess. Cholinergic neurons are the most susceptible to such cytotoxic signals. Sub-toxic zinc excess aggravates the injury of neuronal SN56 cholinergic cells under mild thiamine deficiency. The excessive cell loss is caused by Zn interference with acetyl-CoA metabolism. The aim of this work was to investigate whether and how astroglial C6 cells alleviated the neurotoxicity of Zn to cultured SN56 cells in thiamine-deficient media. Low Zn concentrations did not affect astroglial C6 and primary glial cell viability in thiamine-deficient conditions. Additionally, parameters of energy metabolism were not significantly changed. Amprolium (a competitive inhibitor of thiamine uptake) augmented thiamine pyrophosphate deficits in cells, while co-treatment with Zn enhanced the toxic effect on acetyl-CoA metabolism. SN56 cholinergic neuronal cells were more susceptible to these combined insults than C6 and primary glial cells, which affected pyruvate dehydrogenase activity and the acetyl-CoA level. A co-culture of SN56 neurons with astroglial cells in thiamine-deficient medium eliminated Zn-evoked neuronal loss. These data indicate that astroglial cells protect neurons against Zn and thiamine deficiency neurotoxicity by preserving the acetyl-CoA level.
Collapse
Affiliation(s)
- Sylwia Gul-Hinc
- Department of Laboratory Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland; (S.G.-H.); (A.M.); (A.S.); (A.J.-K.)
| | - Anna Michno
- Department of Laboratory Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland; (S.G.-H.); (A.M.); (A.S.); (A.J.-K.)
| | - Marlena Zyśk
- Department of Molecular Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland;
| | - Andrzej Szutowicz
- Department of Laboratory Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland; (S.G.-H.); (A.M.); (A.S.); (A.J.-K.)
| | - Agnieszka Jankowska-Kulawy
- Department of Laboratory Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland; (S.G.-H.); (A.M.); (A.S.); (A.J.-K.)
| | - Anna Ronowska
- Department of Laboratory Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland; (S.G.-H.); (A.M.); (A.S.); (A.J.-K.)
- Correspondence: ; Tel.: +48-58-349-27-70
| |
Collapse
|
9
|
Anandababu A, Anandan S, Syed A, Marraiki N, Ashokkumar M. Upper rim modified calix[4]arene towards selective turn-on fluorescence sensor for spectroscopically silent metal ions. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120133] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Madireddy S, Madireddy S. Most Effective Combination of Nutraceuticals for Improved Memory and Cognitive Performance in the House Cricket, Acheta domesticus. Nutrients 2021; 13:nu13020362. [PMID: 33504066 PMCID: PMC7911739 DOI: 10.3390/nu13020362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 12/22/2022] Open
Abstract
Background: Dietary intake of multivitamins, zinc, polyphenols, omega fatty acids, and probiotics have all shown benefits in learning, spatial memory, and cognitive function. It is important to determine the most effective combination of antioxidants and/or probiotics because regular ingestion of all nutraceuticals may not be practical. This study examined various combinations of nutrients to determine which may best enhance spatial memory and cognitive performance in the house cricket (Acheta domesticus (L.)). Methods: Based on the 31 possible combinations of multivitamins, zinc, polyphenols, omega-3 polyunsaturated fatty acids (PUFAs), and probiotics, 128 house crickets were divided into one control group and 31 experimental groups with four house crickets in each group. Over eight weeks, crickets were fed their respective nutrients, and an Alternation Test and Recognition Memory Test were conducted every week using a Y-maze to test spatial working memory. Results: The highest-scoring diets shared by both tests were the combination of multivitamins, zinc, and omega-3 fatty acids (VitZncPuf; Alternation: slope = 0.07226, Recognition Memory: slope = 0.07001), the combination of probiotics, polyphenols, multivitamins, zinc, and omega-3 PUFAs (ProPolVitZncPuf; Alternation: slope = 0.07182, Recognition Memory: slope = 0.07001), the combination of probiotics, multivitamins, zinc, and omega-3 PUFAs (ProVitZncPuf; Alternation: slope = 0.06999, Recognition Memory: slope = 0.07001), and the combination of polyphenols, multivitamins, zinc, and omega-3 PUFAs (PolVitZncPuf; Alternation: slope = 0.06873, Recognition Memory: slope = 0.06956). Conclusion: All of the nutrient combinations demonstrated a benefit over the control diet, but the most significant improvement compared to the control was found in the VitZncPuf, ProVitZncPuf, PolVitZncPuf, and ProPolVitZncPuf. Since this study found no significant difference between the performance and improvement of subjects within these four groups, the combination of multivitamins, zinc, and omega-3 fatty acids (VitZncPuf) was concluded to be the most effective option for improving memory and cognitive performance.
Collapse
Affiliation(s)
- Samskruthi Madireddy
- Independent Researcher, 1353 Tanaka Drive, San Jose, CA 95131, USA
- Correspondence:
| | | |
Collapse
|
11
|
Camacho-Abrego I, González-Cano SI, Aguilar-Alonso P, Brambila E, la Cruz FD, Flores G. Changes in nitric oxide, zinc and metallothionein levels in limbic regions at pre-pubertal and post-pubertal ages presented in an animal model of schizophrenia. J Chem Neuroanat 2020; 111:101889. [PMID: 33197552 DOI: 10.1016/j.jchemneu.2020.101889] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022]
Abstract
Recent data suggest that rats with neonatal ventral hippocampal lesion (NVHL) show changes related to inflammatory processes and oxidative stress at the prefrontal cortex (PFC) level at post-pubertal age. The NVHL model is considered an animal model in schizophrenia. Here we analyzed the levels of nitrite, zinc, and metallothionein (MT) in cortical and subcortical regions of NVHL rats at pre-pubertal and post-pubertal ages. Nitric oxide (NO) levels were evaluated through measurement of nitrite levels. The locomotor activity was also evaluated in a novel environment. Animals with NVHL showed an increase in locomotor activity only at post-pubertal age. Furthermore, at pre-pubertal age, NVHL rats showed an increase in NO levels in ventral and dorsal hippocampus, thalamus, Caudate-putamen (CPu) and brainstem, in zinc levels in ventral and dorsal hippocampus, and CPu, and the MT level also in the ventral hippocampus and occipital cortex. In addition, at pre-pubertal age, a reduction in MT levels was also found in the PFC, parietal and temporal cortices, the CPu and the cerebellum. However, after puberty, NVHL caused an increase in NO levels in the PFC, and also zinc levels in the PFC and occipital and parietal cortices, with a reduction in MT levels in the thalamus and NAcc. Our results show the changes of these three molecules over time, among lesion (PD7), pre-pubertal and post-pubertal ages. This suggests changes at pre-pubertal age directly related to the site of the lesion, while at post-pubertal age, our data highlight changes in the PFC, a region mainly involved in schizophrenia.
Collapse
Affiliation(s)
- Israel Camacho-Abrego
- Laboratorio de Neuropsiquiatría. Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, 72570, Mexico
| | - Sonia Irais González-Cano
- Laboratorio de Neuropsiquiatría. Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, 72570, Mexico; Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), CDMX, 11340, Mexico
| | - Patricia Aguilar-Alonso
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, CP: 72570, Puebla, Mexico
| | - Eduardo Brambila
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, CP: 72570, Puebla, Mexico
| | - Fidel de la Cruz
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), CDMX, 11340, Mexico
| | - Gonzalo Flores
- Laboratorio de Neuropsiquiatría. Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, 72570, Mexico.
| |
Collapse
|
12
|
Xie Z, Wu H, Zhao J. Multifunctional roles of zinc in Alzheimer’s disease. Neurotoxicology 2020; 80:112-123. [DOI: 10.1016/j.neuro.2020.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
|
13
|
Kawahara M, Sadakane Y, Mizuno K, Kato-Negishi M, Tanaka KI. Carnosine as a Possible Drug for Zinc-Induced Neurotoxicity and Vascular Dementia. Int J Mol Sci 2020; 21:ijms21072570. [PMID: 32272780 PMCID: PMC7177235 DOI: 10.3390/ijms21072570] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022] Open
Abstract
Increasing evidence suggests that the metal homeostasis is involved in the pathogenesis of various neurodegenerative diseases including senile type of dementia such as Alzheimer’s disease, dementia with Lewy bodies, and vascular dementia. In particular, synaptic Zn2+ is known to play critical roles in the pathogenesis of vascular dementia. In this article, we review the molecular pathways of Zn2+-induced neurotoxicity based on our and numerous other findings, and demonstrated the implications of the energy production pathway, the disruption of calcium homeostasis, the production of reactive oxygen species (ROS), the endoplasmic reticulum (ER)-stress pathway, and the stress-activated protein kinases/c-Jun amino-terminal kinases (SAPK/JNK) pathway. Furthermore, we have searched for substances that protect neurons from Zn2+-induced neurotoxicity among various agricultural products and determined carnosine (β-alanyl histidine) as a possible therapeutic agent for vascular dementia.
Collapse
Affiliation(s)
- Masahiro Kawahara
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Musashino University, Tokyo 202-8585, Japan; (M.K.-N.); (K.T.)
- Correspondence: ; Tel.: +81–42–468–8299
| | - Yutaka Sadakane
- Graduate School of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka 513-8670, Japan;
| | - Keiko Mizuno
- Department of Forensic Medicine, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan;
| | - Midori Kato-Negishi
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Musashino University, Tokyo 202-8585, Japan; (M.K.-N.); (K.T.)
| | - Ken-ichiro Tanaka
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Musashino University, Tokyo 202-8585, Japan; (M.K.-N.); (K.T.)
| |
Collapse
|
14
|
Bakthavachalu P, Kannan SM, Qoronfleh MW. Food Color and Autism: A Meta-Analysis. ADVANCES IN NEUROBIOLOGY 2020; 24:481-504. [PMID: 32006369 DOI: 10.1007/978-3-030-30402-7_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Autism has been increasing dramatically since its description by Leo Kanner in 1943. The Centers for Disease Control and Prevention (CDC) in 2018 has identified 1 in 59 children (1 in 37 boys and 1 in 151 girls) has autism spectrum disorder (ASD). Autistic spectrum disorders and ADHD are complex conditions in which nutritional and environmental factors play major roles. It is important to understand how food can have an impact on their current and future health. Appealing food colors stimulate the consumption of different food products. Since 2011, it is evident that dyes are linked to harmful effects in children. Artificial dyes have neurotoxic chemicals that aggravate mental health problems. Many families with autistic children avoid food dyes in their diet in order to avoid behavioral issues. A study reported that there is a correlation between yellow dye and sleep disturbance. Food colors Blue 1 and 2, Green 3, Red 3, Yellow 5 and 6, Citrus Red 2, and Red 40 can trigger many behaviors in most kids. Artificial food color usually contains petroleum and is manufactured in a chemical process that includes formaldehyde, aniline, hydroxides, and sulfuric acids. Most impurities in the food color are in the form of salts or acids. Sometimes lead, arsenic, and mercury may be present as impurities. The U.S. FDA is yet to study the effects of synthetic dyes on behavior in children. A study conducted at Southampton University in England found a link between food dyes and hyperactive behavior in children. The research does not prove that food coloring actually causes autism spectrum disorder, but there seems to be a link. This chapter attempts to provide a broad review of the available literature on food color and the epidemiology, etiology, prevention, and treatment of autistic spectrum disorder.
Collapse
Affiliation(s)
- Prabasheela Bakthavachalu
- Department of Biotechnology, Aarupadai Veedu Institute of Technology, Kancheepuram, Tamil Nadu, India.
| | - S Meenakshi Kannan
- Department of Biotechnology, D.G. Vaishnav College, Chennai, Tamil Nadu, India
| | - M Walid Qoronfleh
- Research & Policy Department, World Innovation Summit for Health (WISH), Qatar Foundation, Doha, Qatar
| |
Collapse
|
15
|
Tamano H, Takeda A. Age-Dependent Modification of Intracellular Zn 2+ Buffering in the Hippocampus and Its Impact. Biol Pharm Bull 2019; 42:1070-1075. [PMID: 31257282 DOI: 10.1248/bpb.b18-00631] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The basal concentrations of extracellular Zn2+ and intracellular Zn2+, which are approximately 10 nM and 100 pM, respectively, in the brain, are markedly lower than those of extracellular Ca2+ (1.3 mM) and intracellular Ca2+ (100 nM), respectively, resulting in much less attention paid to Zn2+ than to Ca2+. However, intracellular Zn2+ dysregulation, which is closely linked with glutamate- and amyloid β-mediated extracellular Zn2+ influx, is more critical for cognitive decline and neurodegeneration than intracellular Ca2+ dysregulation. It is estimated that the age-dependent increase in the basal concentration of extracellular Zn2+ in the hippocampus plays a key role in cognitive decline and neurodegeneration. The characteristics of extracellular Zn2+ influx in the hippocampus may be modified age-dependently, probably followed by modification of intracellular Zn2+ buffering that is closely linked with age-related cognitive decline and neurodegeneration. Reduction of intracellular Zn2+-buffering capacity may be linked with the pathophysiology of progressive neurodegeneration such as Alzheimer's disease. This paper deals with age-dependent modification of intracellular Zn2+ buffering in the hippocampus and its impact. On the basis of the estimated impact, we propose a potential defense strategy against Zn2+-mediated neurodegeneration, i.e., metallothionein induction in the hippocampus.
Collapse
Affiliation(s)
- Haruna Tamano
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Atsushi Takeda
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
16
|
Coverdale JPC, Barnett JP, Adamu AH, Griffiths EJ, Stewart AJ, Blindauer CA. A metalloproteomic analysis of interactions between plasma proteins and zinc: elevated fatty acid levels affect zinc distribution. Metallomics 2019; 11:1805-1819. [PMID: 31612889 DOI: 10.1039/c9mt00177h] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Serum albumin is a highly abundant plasma protein associated with the transport of metal ions, pharmaceuticals, fatty acids and a variety of small molecules in the blood. Once thought of as a molecular 'sponge', mounting evidence suggests that the albumin-facilitated transport of chemically diverse entities is not independent. One such example is the transport of Zn2+ ions and non-esterified 'free' fatty acids (FFAs) by albumin, both of which bind at high affinity sites located in close proximity. Our previous research suggests that their transport in blood plasma is linked via an allosteric mechanism on serum albumin. In direct competition, albumin-bound FFAs significantly decrease the binding capacity of albumin for Zn2+, with one of the predicted consequences being a change in plasma/serum zinc speciation. Using liquid chromatography (LC), ICP-MS and fluorescence assays, our work provides a quantitative assessment of this phenomenon, and finds that in the presence of high FFA concentrations encountered in various physiological conditions, a significant proportion of albumin-bound Zn2+ is re-distributed amongst plasma/serum proteins. Using peptide mass fingerprinting and immunodetection, we identify candidate acceptor proteins for Zn2+ liberated from albumin. These include histidine-rich glycoprotein (HRG), a multifunctional protein associated with the regulation of blood coagulation, and members of the complement system involved in the innate immune response. Our findings highlight how FFA-mediated changes in extracellular metal speciation might contribute to the progression of certain pathological conditions.
Collapse
Affiliation(s)
| | - James P Barnett
- Department of Life Sciences, Birmingham City University, Edgbaston, B15 3TN, UK
| | - Adamu H Adamu
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | - Ellie J Griffiths
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | - Alan J Stewart
- School of Medicine, University of St Andrews, St Andrews, KY16 9TF, UK
| | | |
Collapse
|
17
|
Furuta T, Ohishi A, Nagasawa K. Intracellular labile zinc is a determinant of vulnerability of cultured astrocytes to oxidative stress. Neurosci Lett 2019; 707:134315. [PMID: 31185281 DOI: 10.1016/j.neulet.2019.134315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/30/2019] [Accepted: 06/01/2019] [Indexed: 01/08/2023]
Abstract
Recently, we found that treatment of cultured mouse astrocytes of ddY-strain mice (ddY-astrocytes) with 400 μM H2O2 for 24 h increased the intracellular labile zinc level without cell toxicity. In contrast, 170 μM H2O2 for 12 h is reported to kill mouse astrocytes obtained from C57BL/6-strain mice (C57BL/6-astrocytes) with an increase in intracellular labile zinc. To clarify this discrepancy, we compared the intracellular zinc levels and cell toxicity in H2O2-treated ddY- and C57BL/6-astrocytes. Exposure of C57BL/6-astrocytes to 170 or 400 μM H2O2 for 12 h dose-dependently decreased the cell viability and administration of plasma membrane-permeable zinc chelator TPEN prevented the 170 μM H2O2-induced astrocyte death, while neither concentration of H2O2 killed ddY-astrocytes. The intracellular zinc level in H2O2-treated C57BL/6-astrocytes was higher than that in H2O2-treated ddY-astrocytes, and this increase was suppressed by TPEN. There was no apparent difference in the expression levels of zinc transporters ZIPs and ZnTs between the two types of astrocytes, while expression of zinc releasable channel TRPM7 was found on the plasma membrane in ddY-astrocytes, but not in C57BL/6-astrocytes, although the total cellular expression levels were almost the same. In addition, a TRPM7 blocker, 2-aminoethoxydiphenyl borate, increased the intracellular zinc level in H2O2-treated ddY-, but not C57BL/6-astrocytes. Collectively, it is suggested that vulnerability of astrocytes to oxidative stress depends on an increased level of intracellular labile zinc, and TRPM7 localized on the plasma membrane contributes, at least in part, to ameliorate the cell injury by decreasing the zinc level.
Collapse
Affiliation(s)
- Takahiro Furuta
- Department of Environmental Biochemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-84114, Japan
| | - Akihiro Ohishi
- Department of Environmental Biochemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-84114, Japan
| | - Kazuki Nagasawa
- Department of Environmental Biochemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto, 607-84114, Japan.
| |
Collapse
|
18
|
Naskar B, Dhara A, Maiti DK, Kukułka M, Mitoraj MP, Srebro-Hooper M, Prodhan C, Chaudhuri K, Goswami S. Aggregation-Induced Emission-Based Sensing Platform for Selective Detection of Zn 2+ : Experimental and Theoretical Investigations. Chemphyschem 2019; 20:1630-1639. [PMID: 30983076 DOI: 10.1002/cphc.201900113] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/08/2019] [Indexed: 12/21/2022]
Abstract
Fluorescent chemosensors with aggregation induced emission enhancement (AIEE) emerge as promising tools in the field of sensing materials. Herein, we report the design, synthesis and applicability of a Schiff base chemosensor 1-(benzo[1,3]dioxol-4-ylmethylene-hydrazonomethyl)-naphthalen-2-ol (Hbdhn) of AIE characteristics that exhibits highly effective and selective response towards Zn2+ . The sensing effect of Hbdhn was evaluated by means of absorption/emission spectra and corresponding underlying photophysical mechanisms were proposed based on extensive quantum-chemical (TD)DFT calculations. The aggregated states in different DMSO/H2 O ratios and in a presence of Zn2+ were examined by fluorescence lifetime measurements, dynamic light scattering and scanning electron microscopy studies. The bioimaging abilities of Hbdhn were evaluated for Zn2+ in HepG2 cancer cells. The results demonstrate instant, stable in time and reproducible, colorimetric turn-on response with superb selectivity and sensitivity of Hbdhn towards Zn2+ , based on chelation enhanced fluorescence mechanism. AIEE improves further Hbdhn properties, leading to strong, long-lived fluorescence, with appearance of rod-like particles, in 90 % of water in DMSO and only 10 % of water in DMSO in the presence of Zn2+ . All these features combined with successful biomaging studies make Hbdhn one of the most promising candidate for practical applications among recently proposed related systems.
Collapse
Affiliation(s)
- Barnali Naskar
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata, India
| | - Anamika Dhara
- Department of Chemistry, Jadavpur University, Raja S. C. Mallick Road, Kolkata, 700032, India
| | - Dilip K Maiti
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata, India
| | - Mercedes Kukułka
- Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Mariusz P Mitoraj
- Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Monika Srebro-Hooper
- Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Chandraday Prodhan
- Molecular & Human Genetics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mallick Road, Kolkata, 700032, India
| | - Keya Chaudhuri
- Molecular & Human Genetics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mallick Road, Kolkata, 700032, India
| | - Sanchita Goswami
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata, India
| |
Collapse
|
19
|
Jeon SJ, Gonzales EL, Mabunga DFN, Valencia ST, Kim DG, Kim Y, Adil KJL, Shin D, Park D, Shin CY. Sex-specific Behavioral Features of Rodent Models of Autism Spectrum Disorder. Exp Neurobiol 2018; 27:321-343. [PMID: 30429643 PMCID: PMC6221834 DOI: 10.5607/en.2018.27.5.321] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 12/13/2022] Open
Abstract
Sex is an important factor in understanding the clinical presentation, management, and developmental trajectory of children with neuropsychiatric disorders. While much is known about the clinical and neurobehavioral profiles of males with neuropsychiatric disorders, surprisingly little is known about females in this respect. Animal models may provide detailed mechanistic information about sex differences in autism spectrum disorder (ASD) in terms of manifestation, disease progression, and development of therapeutic options. This review aims to widen our understanding of the role of sex in autism spectrum disorder, by summarizing and comparing behavioral characteristics of animal models. Our current understanding of how differences emerge in boys and girls with neuropsychiatric disorders is limited: Information derived from animal studies will stimulate future research on the role of biological maturation rates, sex hormones, sex-selective protective (or aggravating) factors and psychosocial factors, which are essential to devise sex precision medicine and to improve diagnostic accuracy. Moreover, there is a strong need of novel strategies to elucidate the major mechanisms leading to sex-specific autism features, as well as novel models or methods to examine these sex differences.
Collapse
Affiliation(s)
- Se Jin Jeon
- Center for Neuroscience, Korea Institute of Science & Technology, Seoul 02792, Korea.,Department of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea
| | - Edson Luck Gonzales
- Department of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea.,Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Korea
| | - Darine Froy N Mabunga
- Department of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea.,Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Korea
| | - Schley T Valencia
- Department of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea.,Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Korea
| | - Do Gyeong Kim
- Department of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea.,Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Korea
| | - Yujeong Kim
- Department of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea.,Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Korea
| | - Keremkleroo Jym L Adil
- Department of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea.,Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Korea
| | - Dongpil Shin
- Department of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea.,Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Korea
| | - Donghyun Park
- Department of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea.,Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Korea
| | - Chan Young Shin
- Department of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea.,Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Korea.,KU Open Innovation Center, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
20
|
Shi Z, Tu Y, Pu S. An efficient and sensitive chemosensor based on salicylhydrazide for naked-eye and fluorescent detection of Zn 2. RSC Adv 2018; 8:6727-6732. [PMID: 35540416 PMCID: PMC9078340 DOI: 10.1039/c7ra13592k] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/02/2018] [Indexed: 11/21/2022] Open
Abstract
We reported here the synthesis of a diarylethene with a 2,4-dihydroxybenzoyl hydrazine moiety (1O) for Zn2+ recognition. The compound is easy to prepare with a high yield up to 85%. Compound 1O can act as a highly selective and specific fluorescent sensor for Zn2+ without interference by other common metal ions. The LOD for Zn2+ detection was determined to be 1.28 × 10-6 mol L-1. Meanwhile, 1O can be used as a naked-eye detector for the Zn2+ ion with an obvious color change from colorless to olive. Based on the fluorescent properties of 1O, we constructed a logic circuit with four inputs of the combinational stimuli of UV/vis light and Zn2+/EDTA, and one output of fluorescence intensity.
Collapse
Affiliation(s)
- Zhanglin Shi
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University Nanchang Jiangxi 330013 PR China +86-791-83831996 +86-791-83831996
| | - Yayi Tu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University Nanchang Jiangxi 330013 PR China +86-791-83831996 +86-791-83831996
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University Nanchang Jiangxi 330013 PR China +86-791-83831996 +86-791-83831996
| |
Collapse
|
21
|
Kawahara M, Tanaka KI, Kato-Negishi M. Zinc, Carnosine, and Neurodegenerative Diseases. Nutrients 2018; 10:E147. [PMID: 29382141 PMCID: PMC5852723 DOI: 10.3390/nu10020147] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 01/02/2023] Open
Abstract
Zinc (Zn) is abundantly present in the brain, and accumulates in the synaptic vesicles. Synaptic Zn is released with neuronal excitation, and plays essential roles in learning and memory. Increasing evidence suggests that the disruption of Zn homeostasis is involved in various neurodegenerative diseases including Alzheimer's disease, a vascular type of dementia, and prion diseases. Our and other numerous studies suggest that carnosine (β-alanyl histidine) is protective against these neurodegenerative diseases. Carnosine is an endogenous dipeptide abundantly present in the skeletal muscles and in the brain, and has numerous beneficial effects such as antioxidant, metal chelating, anti-crosslinking, and anti-glycation activities. The complex of carnosine and Zn, termed polaprezinc, is widely used for Zn supplementation therapy and for the treatment of ulcers. Here, we review the link between Zn and these neurodegenerative diseases, and focus on the neuroprotective effects of carnosine. We also discuss the carnosine level in various foodstuffs and beneficial effects of dietary supplementation of carnosine.
Collapse
Affiliation(s)
- Masahiro Kawahara
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan.
| | - Ken-Ichiro Tanaka
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan.
| | - Midori Kato-Negishi
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan.
| |
Collapse
|
22
|
Kambe T, Matsunaga M, Takeda TA. Understanding the Contribution of Zinc Transporters in the Function of the Early Secretory Pathway. Int J Mol Sci 2017; 18:ijms18102179. [PMID: 29048339 PMCID: PMC5666860 DOI: 10.3390/ijms18102179] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/12/2017] [Accepted: 10/15/2017] [Indexed: 01/07/2023] Open
Abstract
More than one-third of newly synthesized proteins are targeted to the early secretory pathway, which is comprised of the endoplasmic reticulum (ER), Golgi apparatus, and other intermediate compartments. The early secretory pathway plays a key role in controlling the folding, assembly, maturation, modification, trafficking, and degradation of such proteins. A considerable proportion of the secretome requires zinc as an essential factor for its structural and catalytic functions, and recent findings reveal that zinc plays a pivotal role in the function of the early secretory pathway. Hence, a disruption of zinc homeostasis and metabolism involving the early secretory pathway will lead to pathway dysregulation, resulting in various defects, including an exacerbation of homeostatic ER stress. The accumulated evidence indicates that specific members of the family of Zn transporters (ZNTs) and Zrt- and Irt-like proteins (ZIPs), which operate in the early secretory pathway, play indispensable roles in maintaining zinc homeostasis by regulating the influx and efflux of zinc. In this review, the biological functions of these transporters are discussed, focusing on recent aspects of their roles. In particular, we discuss in depth how specific ZNT transporters are employed in the activation of zinc-requiring ectoenzymes. The means by which early secretory pathway functions are controlled by zinc, mediated by specific ZNT and ZIP transporters, are also subjects of this review.
Collapse
Affiliation(s)
- Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan.
| | - Mayu Matsunaga
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan.
| | - Taka-Aki Takeda
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
23
|
Sharma P, Singla N, Dhawan DK. Evidence of Zinc in Affording Protection Against X-Ray-Induced Brain Injury in Rats. Biol Trace Elem Res 2017; 179:247-258. [PMID: 28261760 DOI: 10.1007/s12011-017-0976-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/15/2017] [Indexed: 12/13/2022]
Abstract
In the present world, X-rays have been regarded as one of the most efficient tools in medicine, industry and research. On the contrary, extensive human exposure to these rays is responsible for causing detrimental effects on physiological system. The aim of the present study was to investigate the role of zinc (Zn), if any, in mitigating the adverse effects induced by fractionated X-irradiation on rat brain. Female Sprague-Dawley rats weighing 170-200 g were divided into four different groups viz.: (a) normal control, (b) X-irradiated (21Gy), (c) zinc treated (227 mg/L in drinking water) and (d) X-irradiated + zinc treated. The skulls of animals belonging to groups (b) and (d) were exposed to X-rays in 30 fractions. Each fraction delivered a radiation dose of 70 rads, and rats were exposed to two fractions every day for 15 days, consecutively. X-ray treatment resulted in significant alterations in the neurobehavior, neurotransmitter levels and neuro-histoarchitecture of rats, whereas zinc co-treatment with X-rays resulted in significant improvement in these parameters. X-ray exposure also caused a significant increase in the levels of lipid peroxidation as well as activities of catalase and superoxide dismutase, which however were decreased upon simultaneous Zn treatment. On the contrary, X-ray treatment down-regulated the glutathione system, which were found to be up-regulated by zinc co-treatment. Further, protein expressions of p53 and NF-ҚB were found to be significantly elevated after X-irradiation, which were reversed following Zn supplementation. Hence, Zn seems to be an effective agent in mitigating the detrimental effects caused by exposure to X-rays.
Collapse
Affiliation(s)
- Priyanka Sharma
- Department of Biophysics, Panjab University, Sector-25, Chandigarh, 160014, India
| | - Neha Singla
- Department of Biophysics, Panjab University, Sector-25, Chandigarh, 160014, India.
| | - D K Dhawan
- Department of Biophysics, Panjab University, Sector-25, Chandigarh, 160014, India.
| |
Collapse
|
24
|
Qiu M, Shentu YP, Zeng J, Wang XC, Yan X, Zhou XW, Jing XP, Wang Q, Man HY, Wang JZ, Liu R. Zinc mediates the neuronal activity-dependent anti-apoptotic effect. PLoS One 2017; 12:e0182150. [PMID: 28787459 PMCID: PMC5546700 DOI: 10.1371/journal.pone.0182150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/13/2017] [Indexed: 01/21/2023] Open
Abstract
Synaptic activity increases the resistance of neurons to diverse apoptotic insults; however, the underlying mechanisms remain less well understood. Zinc promotes cell survival under varied conditions, but the role of synaptically released zinc in the activity-dependent anti-apoptotic effect is unknown. Using cultured hippocampal slices and primary neurons we show that a typical apoptosis inducer–staurosporine (STP) was able to cause concentration-dependent apoptotic cell death in brain slices; Enhanced synaptic activity by bicuculline (Bic)/4-Aminopyridine (AP) treatment effectively prevented neurons from STP-induced cell apoptosis, as indicated by increased cell survival and suppressed caspase-3 activity. Application of Ca-EDTA, a cell membrane-impermeable zinc chelator which can efficiently capture the synaptically released zinc, completely blocked the neuronal activity-dependent anti-apoptotic effect. Same results were also observed in cultured primary hippocampal neurons. Therefore, our results indicate that synaptic activity improves neuronal resistance to apoptosis via synaptically released zinc.
Collapse
Affiliation(s)
- Mei Qiu
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical College, Hubei University of TCM, Wuhan, China
| | - Yang-ping Shentu
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ji Zeng
- Department of Clinic Laboratory, Pu Ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-chuan Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiong Yan
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin-wen Zhou
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-peng Jing
- Department of Clinic Laboratory, Pu Ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qun Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng-ye Man
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Jian-zhi Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Liu
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail:
| |
Collapse
|
25
|
Wojtkiewicz J, Rytel L, Makowska K, Gonkowski S. Co-localization of zinc transporter 3 (ZnT3) with sensory neuromediators and/or neuromodulators in the enteric nervous system of the porcine esophagus. Biometals 2017; 30:393-403. [PMID: 28417221 PMCID: PMC5425499 DOI: 10.1007/s10534-017-0014-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/29/2017] [Indexed: 01/27/2023]
Abstract
Zinc transporter 3 (ZnT3) is one of the zinc transporters family. It is closely connected to the nervous system, where enables the transport of zinc ions from the cytoplasm to synaptic vesicles. This substance has been described within the central and peripheral nervous system, especially in the enteric nervous system (ENS). The aim of the present study was to describe the co-localization of ZnT3 with selected neuromediators and/or neuromodulators participating in sensory stimuli conduction in neurons of the ENS within the porcine esophagus. Co-localization of ZnT3 with substance P (SP), leucine enkephalin (LENK) and calcitonin gene-related peptide (CGRP) was studied using standard double-immunofluorescence technique. The obtained results show that ZnT3, SP and/or LENK may occur in the same enteric neurons, and the degree of co-localization of these substances clearly depends on the fragment of esophagus studied and the type of enteric ganglia. In contrast, the co-localization of ZnT3 with CGRP was not observed during the present investigation. The obtained results suggest that ZnT3 in the ENS may be involved in the conduction of sensory and/or pain stimuli.
Collapse
Affiliation(s)
- Joanna Wojtkiewicz
- Department of Pathophysiology, Faculty of Medical Sciences, University of Warmia and Mazury, Olsztyn, Poland. .,Laboratory for Regenerative Medicine, Faculty of Medical Sciences, University of Warmia and Mazury, Olsztyn, Poland. .,Foundation for the Nerve Cells Regeneration, Warszawska Str. 30, Mazury, 10-082, Olsztyn, Poland.
| | - Liliana Rytel
- Department of Internal Medicine and Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego Str 15, 10-718, Olsztyn, Poland
| | - Krystyna Makowska
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego Str. 13, 10-718, Olsztyn, Poland
| | - Sławomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego Str. 13, 10-718, Olsztyn, Poland
| |
Collapse
|
26
|
Gonkowski S, Rowniak M, Wojtkiewicz J. Zinc Transporter 3 (ZnT3) in the Enteric Nervous System of the Porcine Ileum in Physiological Conditions and during Experimental Inflammation. Int J Mol Sci 2017; 18:ijms18020338. [PMID: 28178198 PMCID: PMC5343873 DOI: 10.3390/ijms18020338] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/28/2017] [Accepted: 02/03/2017] [Indexed: 01/19/2023] Open
Abstract
Zinc transporter 3 (ZnT3) is a member of the solute-linked carrier 30 (SLC 30) zinc transporter family. It is closely linked to the nervous system, where it takes part in the transport of zinc ions from the cytoplasm to the synaptic vesicles. ZnT3 has also been observed in the enteric nervous system (ENS), but its reactions in response to pathological factors remain unknown. This study, based on the triple immunofluorescence technique, describes changes in ZnT3-like immunoreactive (ZnT3-LI) enteric neurons in the porcine ileum, caused by chemically-induced inflammation. The inflammatory process led to a clear increase in the percentage of neurons immunoreactive to ZnT3 in all "kinds" of intramural enteric plexuses, i.e., myenteric (MP), outer submucous (OSP) and inner submucous (ISP) plexuses. Moreover, a wide range of other active substances was noted in ZnT3-LI neurons under physiological and pathological conditions, and changes in neurochemical characterisation of ZnT3⁺ cells in response to inflammation depended on the "kind" of enteric plexus. The obtained results show that ZnT3 is present in the ENS in a relatively numerous and diversified neuronal population, not only in physiological conditions, but also during inflammation. The reasons for the observed changes are not clear; they may be connected with the functions of zinc ions and their homeostasis disturbances in pathological processes. On the other hand, they may be due to adaptive and/or neuroprotective processes within the pathologically altered gastrointestinal tract.
Collapse
Affiliation(s)
- Sławomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, Oczapowskiego 13, University of Warmia and Mazury, 10-718 Olsztyn, Poland.
| | - Maciej Rowniak
- Department of Comparative Anatomy, Faculty of Biology, Plac Łódzki 3, University of Warmia and Mazury, 10-727 Olsztyn, Poland.
| | - Joanna Wojtkiewicz
- Department of Pathophysiology, Faculty of Medical Sciences, Warszawska 30, University of Warmia and Mazury, 10-082 Olsztyn, Poland.
- Laboratory for Regenerative Medicine, Faculty of Medical Sciences, University of Warmia and Mazury, Olsztyn, 10-082 Olsztyn, Poland.
- Foundation for Nerve Cells Regeneration, Warszawska 30, 10-082 Olsztyn, Poland.
| |
Collapse
|
27
|
Li W, Fang B, Jin M, Tian Y. Two-Photon Ratiometric Fluorescence Probe with Enhanced Absorption Cross Section for Imaging and Biosensing of Zinc Ions in Hippocampal Tissue and Zebrafish. Anal Chem 2017; 89:2553-2560. [DOI: 10.1021/acs.analchem.6b04781] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Wanying Li
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, Department
of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Bingqing Fang
- School
of Material Science and Engineering, Tongji University, Cao’an
Road 4800, Shanghai 201804, China
| | - Ming Jin
- School
of Material Science and Engineering, Tongji University, Cao’an
Road 4800, Shanghai 201804, China
| | - Yang Tian
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, Department
of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| |
Collapse
|
28
|
The level of the zinc homeostasis regulating proteins in the brain of rats subjected to olfactory bulbectomy model of depression. Prog Neuropsychopharmacol Biol Psychiatry 2017; 72:36-48. [PMID: 27565434 DOI: 10.1016/j.pnpbp.2016.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/27/2016] [Accepted: 08/16/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND Zinc transporters (ZnTs) and metallothioneins (MT) are important in maintaining Zn homeostasis in the brain. The present study was designed to find out whether alterations in ZnTs and MTs are associated with the pathophysiology of depression and the mechanism of antidepressant action. METHODS Messenger RNA and proteins of ZnT1, ZnT3, ZnT4, ZnT5, ZnT6 and MT1/2 were measured in the prefrontal cortex (PFC) and hippocampus (Hp) of rats subjected to olfactory bulbectomy (OB) (a model of depression) and chronic amitriptyline (AMI) treatment by Real Time PCR and Western Blot/Immunohistochemistry (IHP). RESULTS Results in the OB rats showed: increases in the protein levels of ZnT1 in the PFC and Hp and MT1/2 in the PFC; a decrease in ZnT3 protein level in the PFC; no changes in ZnT4, ZnT5 and ZnT6 in the PFC and Hp. IHP labeling revealed increases in the optical densities of ZnT1-IR in the PFC and Hp and decreases in ZnT3 and ZnT4-IR in the PFC of OB rats. Although OB had no effects on gene expression of ZnTs, mRNAs for MT1/2 were increased. Chronic AMI treatment did not influence protein levels of ZnTs and MT1/2 in Sham and OB rats; however decreased mRNA levels of ZnT4 and ZnT5 in PFC and ZnT1, ZnT3, ZnT4 and ZnT6 in Hp of Sham rats and normalized OB induced increase in MT1/2 gene expression. CONCLUSIONS Changes in ZnTs and MT1/2 suggest altered cortical distribution of Zn in the OB model which further supports the hypothesis that Zn dyshomeostasis may be involved in the pathophysiology of depression.
Collapse
|
29
|
Lin N, Zhang Q, Xia X, Liang M, Zhang S, Zheng L, Cao Q, Ding Z. A highly zinc-selective ratiometric fluorescent probe based on AIE luminogen functionalized coordination polymer nanoparticles. RSC Adv 2017. [DOI: 10.1039/c6ra28551a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A highly zinc-selective ratiometric fluorescent probe was developed based on the cation exchange process of Tb-HDBB-CPNs with Zn2+.
Collapse
Affiliation(s)
- Na Lin
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan Univeristy)
- Ministry of Education
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| | - Qin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan Univeristy)
- Ministry of Education
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| | - Xin Xia
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan Univeristy)
- Ministry of Education
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| | - Mengyu Liang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan Univeristy)
- Ministry of Education
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| | - Shihong Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan Univeristy)
- Ministry of Education
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| | - Liyan Zheng
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan Univeristy)
- Ministry of Education
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| | - Qiue Cao
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan Univeristy)
- Ministry of Education
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| | - Zhongtao Ding
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan Univeristy)
- Ministry of Education
- School of Chemical Science and Technology
- Yunnan University
- Kunming
| |
Collapse
|
30
|
Furuta T, Mukai A, Ohishi A, Nishida K, Nagasawa K. Oxidative stress-induced increase of intracellular zinc in astrocytes decreases their functional expression of P2X7 receptors and engulfing activity. Metallomics 2017; 9:1839-1851. [DOI: 10.1039/c7mt00257b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Exposure of astrocytes to oxidative stress induces an increase of intracellular labile zinc and a decrease of functional expression of P2X7 receptorviaits translocation from the plasma membrane to the cytosol by altering the expression profile of P2X7 receptor and its splice variants, leading to a decrease of their engulfing activity.
Collapse
Affiliation(s)
- Takahiro Furuta
- Department of Environmental Biochemistry
- Kyoto Pharmaceutical University
- Yamashina-ku
- Japan
| | - Ayumi Mukai
- Department of Environmental Biochemistry
- Kyoto Pharmaceutical University
- Yamashina-ku
- Japan
| | - Akihiro Ohishi
- Department of Environmental Biochemistry
- Kyoto Pharmaceutical University
- Yamashina-ku
- Japan
| | - Kentaro Nishida
- Department of Environmental Biochemistry
- Kyoto Pharmaceutical University
- Yamashina-ku
- Japan
| | - Kazuki Nagasawa
- Department of Environmental Biochemistry
- Kyoto Pharmaceutical University
- Yamashina-ku
- Japan
| |
Collapse
|
31
|
Takeda A, Tamano H. New Insight into Metallomics in Cognition. Metallomics 2017. [DOI: 10.1007/978-4-431-56463-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Takeda A, Tamano H. Innervation from the entorhinal cortex to the dentate gyrus and the vulnerability to Zn 2. J Trace Elem Med Biol 2016; 38:19-23. [PMID: 27267970 DOI: 10.1016/j.jtemb.2016.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/20/2016] [Accepted: 05/23/2016] [Indexed: 11/30/2022]
Abstract
Hippocampal Zn2+ homeostasis is critical for cognitive activity and hippocampus-dependent memory. Extracellular Zn2+ signaling is linked to extracellular glutamate signaling and leads to intracellular Zn2+ signaling, which is involved in cognitive activity. On the other hand, excess intracellular Zn2+ signaling that is induced by excess glutamate signaling is involved in cognitive decline. In the hippocampal formation, the dentate gyrus is the most vulnerable to aging and is thought to contribute to age-related cognitive decline. The layer II of the entorhinal cortex is the most vulnerable to neuronal death in Alzheimer's disease. The perforant pathway provides input from the layer II to the dentate gyrus and is one of the earliest affected pathways in Alzheimer's disease. Medial perforant pathway-dentate granule cell synapses are vulnerable to either excess intracellular Zn2+ or β-amyloid (Aβ)-bound zinc, which induce transient cognitive decline via attenuation of medial perforant pathway LTP. However, it is unknown whether the vulnerability to excess intracellular Zn2+ is involved in region-specific vulnerability to aging and Alzheimer's disease. To discover a strategy to prevent short-term cognitive decline in normal aging process and the pre-dementia stage of Alzheimer's disease, the present paper deals with vulnerability of medial perforant pathway-dentate granule cell synapses to intracellular Zn2+ dyshomeostasis and its possible involvement in differential vulnerability to aging and Alzheimer's disease in the hippocampal formation.
Collapse
Affiliation(s)
- Atsushi Takeda
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Hanuna Tamano
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
33
|
Takeda A, Tamano H. Insight into cognitive decline from Zn 2+ dynamics through extracellular signaling of glutamate and glucocorticoids. Arch Biochem Biophys 2016; 611:93-99. [DOI: 10.1016/j.abb.2016.06.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/23/2016] [Accepted: 06/30/2016] [Indexed: 02/06/2023]
|
34
|
Tamano H, Koike Y, Nakada H, Shakushi Y, Takeda A. Significance of synaptic Zn 2+ signaling in zincergic and non-zincergic synapses in the hippocampus in cognition. J Trace Elem Med Biol 2016; 38:93-98. [PMID: 26995290 DOI: 10.1016/j.jtemb.2016.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/07/2016] [Accepted: 03/07/2016] [Indexed: 11/24/2022]
Abstract
A portion of zinc concentrates in the synaptic vesicles in the brain and is released from glutamatergic (zincergic) neuron terminals. It serves as a signaling factor (in a form of free Zn2+). Both extracellular Zn2+ signaling, which predominantly originates in Zn2+ release from zincergic neuron terminals, and intracellular Zn2+ signaling, which is often linked to extracellular Zn2+ signaling, are involved in hippocampus-dependent memory. At mossy fiber-CA3 pyramidal cell synapses and Schaffer collateral-CA1 pyramidal cell synapses, which are zincergic, extracellular Zn2+ signaling leads to intracellular Zn2+ signaling and is involved in learning and memory. At medial perforant pathway-dentate granule cell synapses, which are non-zincergic, intracellular Zn2+ signaling, which originates in the internal stores containing Zn2+, is involved in learning and memory. The blockade of Zn2+ signaling with Zn2+ chelators induces memory deficit, while the optimal amount range of Zn2+ signaling is unknown. It is possible that the degree and frequency of Zn2+ signaling, which determine the increased Zn2+ levels, modulates learning and memory as well as intracellular Ca2+ signaling. To understand the precise role of synaptic Zn2+ signaling in the hippocampus, the present paper summarizes the current knowledge on Zn2+ signaling at zincergic and non-zincergic synapses in the hippocampus in cognition and involvement of zinc transporters and zinc-binding proteins in synaptic Zn2+ signaling.
Collapse
Affiliation(s)
- Hanuna Tamano
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yuta Koike
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hiroyuki Nakada
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yukina Shakushi
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Atsushi Takeda
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| |
Collapse
|
35
|
Abstract
![]()
Genetically encoded
FRET-based sensor proteins have significantly
contributed to our current understanding of the intracellular functions
of Zn2+. However, the external excitation required for
these fluorescent sensors can give rise to photobleaching and phototoxicity
during long-term imaging, limits applications that suffer from autofluorescence
and light scattering, and is not compatible with light-sensitive cells.
For these applications, sensor proteins based on Bioluminescence Resonance
Energy Transfer (BRET) would provide an attractive alternative. In
this work, we used the bright and stable luciferase NanoLuc to create
the first genetically encoded BRET sensors for measuring intracellular
Zn2+. Using a new sensor approach, the NanoLuc domain was
fused to the Cerulean donor domain of two previously developed FRET
sensors, eCALWY and eZinCh-2. In addition to preserving the excellent
Zn2+ affinity and specificity of their predecessors, these
newly developed sensors enable both BRET- and FRET-based detection.
While the dynamic range of the BRET signal for the eCALWY-based BLCALWY-1
sensor was limited by the presence of two competing BRET pathways,
BRET/FRET sensors based on the eZinCh-2 scaffold (BLZinCh-1 and -2)
yielded robust 25–30% changes in BRET ratio. In addition, introduction
of a chromophore-silencing mutation resulted in a BRET-only sensor
(BLZinCh-3) with increased BRET response (50%) and an unexpected 10-fold
increase in Zn2+ affinity. The combination of robust ratiometric
response, physiologically relevant Zn2+ affinities, and
stable and bright luminescence signal offered by the BLZinCh sensors
allowed monitoring of intracellular Zn2+ in plate-based
assays as well as intracellular BRET-based imaging in single living
cells in real time.
Collapse
Affiliation(s)
- Stijn J. A. Aper
- Laboratory
of Chemical Biology and Institute for Complex Molecular Systems (ICMS),
Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Pieterjan Dierickx
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
- Division
of Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maarten Merkx
- Laboratory
of Chemical Biology and Institute for Complex Molecular Systems (ICMS),
Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
36
|
Zinc and zinc-containing biomolecules in childhood brain tumors. J Mol Med (Berl) 2016; 94:1199-1215. [PMID: 27638340 DOI: 10.1007/s00109-016-1454-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/13/2016] [Accepted: 07/27/2016] [Indexed: 12/21/2022]
Abstract
Zinc ions are essential cofactors of a wide range of enzymes, transcription factors, and other regulatory proteins. Moreover, zinc is also involved in cellular signaling and enzymes inhibition. Zinc dysregulation, deficiency, over-supply, and imbalance in zinc ion transporters regulation are connected with various diseases including cancer. A zinc ion pool is maintained by two types of proteins: (i) zinc-binding proteins, which act as a buffer and intracellular donors of zinc and (ii) zinc transporters responsible for zinc fluxes into/from cells and organelles. The decreased serum zinc ion levels have been identified in patients suffering from various cancer diseases, including head and neck tumors and breast, prostate, liver, and lung cancer. On the contrary, increased zinc ion levels have been found in breast cancer and other malignant tissues. Zinc metalloproteomes of a majority of tumors including brain ones are still not yet fully understood. Current knowledge show that zinc ion levels and detection of certain zinc-containing proteins may be utilized for diagnostic and prognostic purposes. In addition, these proteins can also be promising therapeutic targets. The aim of the present work is an overview of the importance of zinc ions, zinc transporters, and zinc-containing proteins in brain tumors, which are, after leukemia, the second most common type of childhood cancer and the second leading cause of death in children after accidents.
Collapse
|
37
|
Matheou CJ, Younan ND, Viles JH. The Rapid Exchange of Zinc(2+) Enables Trace Levels to Profoundly Influence Amyloid-β Misfolding and Dominates Assembly Outcomes in Cu(2+)/Zn(2+) Mixtures. J Mol Biol 2016; 428:2832-46. [PMID: 27320389 DOI: 10.1016/j.jmb.2016.05.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/19/2016] [Accepted: 05/22/2016] [Indexed: 11/18/2022]
Abstract
The misfolding and self-assembly of amyloid-β (Aβ) into oligomers and fibres is fundamental to Alzheimer's disease pathology. Alzheimer's disease is a multifaceted disease. One factor that is thought to have a significant role in disease aetiology is Zn(2+) homeostasis, which is disrupted in the brains of Alzheimer's disease sufferers and has been shown to modulate Alzheimer's symptoms in animal models. Here, we investigate how the kinetics of Aβ fibre growth are affected at a range of Zn(2+) concentrations and we use transmission electron microscopy to characterise the aggregate assemblies formed. We demonstrate that for Aβ(1-40), and Aβ(1-42), as little as 0.01mol equivalent of Zn(2+) (100nM) is sufficient to greatly perturb the formation of amyloid fibres irreversibly. Instead, Aβ(1-40) assembles into short, rod-like structures that pack tightly together into ordered stacks, whereas Aβ(1-42) forms short, crooked assemblies that knit together to form a mesh of disordered tangles. Our data suggest that a small number of Zn(2+) ions are able to influence a great many Aβ molecules through the rapid exchange of Zn(2+) between Aβ peptides. Surprisingly, although Cu(2+) binds to Aβ 10,000 times tighter than Zn(2+), the effect of Zn(2+) on Aβ assembly dominates in Cu(2+)/Zn(2+) mixtures, suggesting that trace levels of Zn(2+) must have a profound effect on extracellular Aβ accumulation. Trace Zn(2+) levels profoundly influence Aβ assembly even at concentrations weaker than its affinity for Aβ. These observations indicate that inhibitors of fibre assembly do not necessarily have to be at high concentration and affinity to have a profound impact.
Collapse
Affiliation(s)
- Christian J Matheou
- School of Biological and Biochemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Nadine D Younan
- School of Biological and Biochemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - John H Viles
- School of Biological and Biochemical Sciences, Queen Mary University of London, London, E1 4NS, UK.
| |
Collapse
|
38
|
Olesen RH, Hyde TM, Kleinman JE, Smidt K, Rungby J, Larsen A. Obesity and age-related alterations in the gene expression of zinc-transporter proteins in the human brain. Transl Psychiatry 2016; 6:e838. [PMID: 27300264 PMCID: PMC4931611 DOI: 10.1038/tp.2016.83] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 03/22/2016] [Accepted: 03/31/2016] [Indexed: 01/14/2023] Open
Abstract
The incidence of Alzheimer's disease (AD) is increasing. Major risk factors for AD are advancing age and diabetes. Lately, obesity has been associated with an increased risk of dementia. Obese and diabetic individuals are prone to decreased circulating levels of zinc, reducing the amount of zinc available for crucial intracellular processes. In the brain, zinc co-localizes with glutamate in synaptic vesicles, and modulates NMDA receptor activity. Intracellular zinc is involved in apoptosis and fluctuations in cytoplasmic Zn(2+) affect modulation of intracellular signaling. The ZNT and ZIP proteins participate in intracellular zinc homeostasis. Altered expression of zinc-regulatory proteins has been described in AD patients. Using microarray data from human frontal cortex (BrainCloud), this study investigates expression of the SCLA30A (ZNT) and SCLA39A (ZIP) families of genes in a Caucasian and African-American sample of 145 neurologically and psychiatrically normal individuals. Expression of ZNT3 and ZNT4 were significantly reduced with increasing age, whereas expression of ZIP1, ZIP9 and ZIP13 were significantly increased. Increasing body mass index (BMI) correlated with a significant reduction in ZNT1 expression similar to what is seen in the early stages of AD. Increasing BMI also correlated with reduced expression of ZNT6. In conclusion, we found that the expression of genes that regulate intracellular zinc homeostasis in the human frontal cortex is altered with increasing age and affected by increasing BMI. With the increasing rates of obesity throughout the world, these findings warrant continuous scrutiny of the long-term consequences of obesity on brain function and the development of neurodegenerative diseases.
Collapse
Affiliation(s)
- R H Olesen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - T M Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - J E Kleinman
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - K Smidt
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - J Rungby
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Diabetes Research, Gentofte University Hospital, Hellerup, Denmark
| | - A Larsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
39
|
Tamano H, Takeda A. Is interaction of amyloid β-peptides with metals involved in cognitive activity? Metallomics 2016; 7:1205-12. [PMID: 25959547 DOI: 10.1039/c5mt00076a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Metal ions, i.e., Zn(2+) and Cu(2+), are released from neuron terminals in the hippocampus, which plays important roles in spatial and declarative memory, and may serve as a signal factor. Synaptic homeostasis of metal ions is critical for cognitive activity in the hippocampus. Amyloid-β (Aβ) is a causative candidate for the pathogenesis of Alzheimer's disease (AD) and Aβ-induced synapse dysfunction is easy to emerge along with normal aging and leads to the cognitive decline and memory loss in the pre-dementia stage of AD. Because Aβ interacts with Zn(2+) and Cu(2+), it is likely that these metal ions are involved in the Aβ-induced modification of the synaptic function. There is evidence to indicate that the inhibition of the interaction of Aβ with Zn(2+) and Cu(2+) may ameliorate the pathophysiology of AD. Interaction of extracellular Zn(2+) with Aβ in the hippocampus is involved in transiently Aβ-induced cognition deficits, while the interaction of extracellular Cu(2+) reduces bioavailability of intracellular Cu(2+), followed by an increase in oxidative stress, which may lead to cognitive deficits. It is likely that Zn(2+) and Cu(2+) play as a key-mediating factor in pathophysiology of the synaptic dysfunction in which Aβ is involved. Based on the idea that understating Aβ-induced changes in synaptic plasticity is important to prevent AD, the present paper summarizes the interaction of Aβ with metal ions in cognition.
Collapse
Affiliation(s)
- Haruna Tamano
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | | |
Collapse
|
40
|
White RS, Bhattacharya AK, Chen Y, Byrd M, McMullen MF, Siegel SJ, Carlson GC, Kim SF. Lysosomal iron modulates NMDA receptor-mediated excitation via small GTPase, Dexras1. Mol Brain 2016; 9:38. [PMID: 27080392 PMCID: PMC4832449 DOI: 10.1186/s13041-016-0220-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 04/08/2016] [Indexed: 12/23/2022] Open
Abstract
Background Activation of NMDA receptors can induce iron movement into neurons by the small GTPase Dexras1 via the divalent metal transporter 1 (DMT1). This pathway under pathological conditions such as NMDA excitotoxicity contributes to metal-catalyzed reactive oxygen species (ROS) generation and neuronal cell death, and yet its physiological role is not well understood. Results We found that genetic and pharmacological ablation of this neuronal iron pathway in the mice increased glutamatergic transmission. Voltage sensitive dye imaging of hippocampal slices and whole-cell patch clamping of synaptic currents, indicated that the increase in excitability was due to synaptic modification of NMDA receptor activity via modulation of the PKC/Src/NR2A pathway. Moreover, we identified that lysosomal iron serves as a main source for intracellular iron signaling modulating glutamatergic excitability. Conclusions Our data indicates that intracellular iron is dynamically regulated in the neurons and robustly modulate synaptic excitability under physiological condition. Since NMDA receptors play a central role in synaptic neurophysiology, plasticity, neuronal homeostasis, neurodevelopment as well as in the neurobiology of many diseases, endogenous iron is therefore likely to have functional relevance to each of these areas.
Collapse
Affiliation(s)
- Rachel S White
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Anup K Bhattacharya
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yong Chen
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Madeleine Byrd
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mary F McMullen
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Steven J Siegel
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Gregory C Carlson
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sangwon F Kim
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania, 125 S 31st, TRL RM 2207, Philadelphia, PA, 19104, USA.
| |
Collapse
|
41
|
Takeda A, Tamano H. Significance of Low Nanomolar Concentration of Zn2+ in Artificial Cerebrospinal Fluid. Mol Neurobiol 2016; 54:2477-2482. [DOI: 10.1007/s12035-016-9816-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/23/2016] [Indexed: 01/03/2023]
|
42
|
Grabrucker S, Boeckers TM, Grabrucker AM. Gender Dependent Evaluation of Autism like Behavior in Mice Exposed to Prenatal Zinc Deficiency. Front Behav Neurosci 2016; 10:37. [PMID: 26973485 PMCID: PMC4776245 DOI: 10.3389/fnbeh.2016.00037] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/19/2016] [Indexed: 01/09/2023] Open
Abstract
Zinc deficiency has recently been linked to the etiology of autism spectrum disorders (ASD) as environmental risk factor. With an estimated 17% of the world population being at risk of zinc deficiency, especially zinc deficiency during pregnancy might be a common occurrence, also in industrialized nations. On molecular level, zinc deficiency has been shown to affect a signaling pathway at glutamatergic synapses that has previously been identified through genetic mutations in ASD patients, the Neurexin-Neuroligin-Shank pathway, via altering zinc binding Shank family members. In particular, prenatal zinc deficient but not acute zinc deficient animals have been reported to display autism like behavior in some behavioral tests. However, a full behavioral analysis of a possible autism like behavior has been lacking so far. Here, we performed an extensive behavioral phenotyping of mice born from mothers with mild zinc deficiency during all trimesters of pregnancy. Prenatal zinc deficient animals were investigated as adults and gender differences were assessed. Our results show that prenatal zinc deficient mice display increased anxiety, deficits in nest building and various social interaction paradigm, as well as mild alterations in ultrasonic vocalizations. A gender specific analysis revealed only few sex specific differences. Taken together, given that similar behavioral abnormalities as reported here are frequently observed in ASD mouse models, we conclude that prenatal zinc deficient animals even without specific genetic susceptibility for ASD, already show some features of ASD like behavior.
Collapse
Affiliation(s)
| | | | - Andreas M Grabrucker
- Institute for Anatomy and Cell Biology, Ulm UniversityUlm, Germany; WG Molecular Analysis of Synaptopathies, Neurology Department, Neurocenter of Ulm UniversityUlm, Germany
| |
Collapse
|
43
|
Zinc Improves Cognitive and Neuronal Dysfunction During Aluminium-Induced Neurodegeneration. Mol Neurobiol 2016; 54:406-422. [PMID: 26742519 DOI: 10.1007/s12035-015-9653-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/17/2015] [Indexed: 12/16/2022]
Abstract
Metals are considered as important components of a physiologically active cell, and imbalance in their levels can lead to various diseased conditions. Aluminium (Al) is an environmental neurotoxicant, which is etiologically related to several neurodegenerative disorders like Alzheimer's, whereas zinc (Zn) is an essential trace element that regulates a large number of metabolic processes in the brain. The objective of the present study was to understand whether Zn provides any physiological protection during Al-induced neurodegeneration. Male Sprague Dawley rats weighing 140-160 g received either aluminium chloride (AlCl3) orally (100 mg/kg b.wt./day), zinc sulphate (ZnSO4) in drinking water (227 mg/L) or combined treatment of aluminium and zinc for 8 weeks. Al treatment resulted in a significant decline in the cognitive behaviour of rats, whereas zinc supplementation caused an improvement in various neurobehavior parameters. Further, Al exposure decreased (p ≤ 0.001) the levels of neurotransmitters, acetylcholinesterase activity, but increased (p ≤ 0.001) the levels of L-citrulline as well as activities of nitric oxide and monoamine oxidase in the brain. However, zinc administration to Al-treated animals increased the levels of neurotransmitters and regulated the altered activities of brain markers. Western blot of tau, amyloid precursor protein (APP), glial fibrillary acidic protein (GFAP), ubiquitin, α-synuclein and Hsp 70 were also found to be elevated after Al exposure, which however were reversed following Zn treatment. Al treatment also revealed alterations in neurohistoarchitecture in the form of loss of pyramidal and Purkinje cells, which were improved upon zinc co-administration. Therefore, the present study demonstrates that zinc improves cognitive functions by regulating α-synuclein and APP-mediated molecular pathways during aluminium-induced neurodegeneration.
Collapse
|
44
|
Takeda A, Tamano H. Significance of the degree of synaptic Zn2+ signaling in cognition. Biometals 2015; 29:177-85. [DOI: 10.1007/s10534-015-9907-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 12/17/2015] [Indexed: 11/24/2022]
|
45
|
Alvarez‐Salas E, Alcántara‐Alonso V, Matamoros‐Trejo G, Vargas MA, Morales‐Mulia M, Gortari P. Mediobasal hypothalamic and adenohypophyseal TRH‐degrading enzyme (PPII) is down‐regulated by zinc deficiency. Int J Dev Neurosci 2015; 46:115-24. [DOI: 10.1016/j.ijdevneu.2015.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/30/2015] [Accepted: 08/03/2015] [Indexed: 11/29/2022] Open
Affiliation(s)
- Elena Alvarez‐Salas
- Department of Neurosciences ResearchNational Institute of Psychiatry Ramón de la Fuente MuñizMexico
- ISSSTE School of Dietetics and NutritionMexico
| | - Viridiana Alcántara‐Alonso
- Department of Neurosciences ResearchNational Institute of Psychiatry Ramón de la Fuente MuñizMexico
- ISSSTE School of Dietetics and NutritionMexico
| | - Gilberto Matamoros‐Trejo
- Department of Neurosciences ResearchNational Institute of Psychiatry Ramón de la Fuente MuñizMexico
| | - Miguel Angel Vargas
- Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMor 62271Mexico
| | - Marcela Morales‐Mulia
- Department of Neurosciences ResearchNational Institute of Psychiatry Ramón de la Fuente MuñizMexico
| | - Patricia Gortari
- Department of Neurosciences ResearchNational Institute of Psychiatry Ramón de la Fuente MuñizMexico
| |
Collapse
|
46
|
Lee SR, Noh SJ, Pronto JR, Jeong YJ, Kim HK, Song IS, Xu Z, Kwon HY, Kang SC, Sohn EH, Ko KS, Rhee BD, Kim N, Han J. The Critical Roles of Zinc: Beyond Impact on Myocardial Signaling. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2015; 19:389-99. [PMID: 26330751 PMCID: PMC4553398 DOI: 10.4196/kjpp.2015.19.5.389] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/04/2015] [Accepted: 06/08/2015] [Indexed: 12/15/2022]
Abstract
Zinc has been considered as a vital constituent of proteins, including enzymes. Mobile reactive zinc (Zn(2+)) is the key form of zinc involved in signal transductions, which are mainly driven by its binding to proteins or the release of zinc from proteins, possibly via a redox switch. There has been growing evidence of zinc's critical role in cell signaling, due to its flexible coordination geometry and rapid shifts in protein conformation to perform biological reactions. The importance and complexity of Zn(2+) activity has been presumed to parallel the degree of calcium's participation in cellular processes. Whole body and cellular Zn(2+) levels are largely regulated by metallothioneins (MTs), Zn(2+) importers (ZIPs), and Zn(2+) transporters (ZnTs). Numerous proteins involved in signaling pathways, mitochondrial metabolism, and ion channels that play a pivotal role in controlling cardiac contractility are common targets of Zn(2+). However, these regulatory actions of Zn(2+) are not limited to the function of the heart, but also extend to numerous other organ systems, such as the central nervous system, immune system, cardiovascular tissue, and secretory glands, such as the pancreas, prostate, and mammary glands. In this review, the regulation of cellular Zn(2+) levels, Zn(2+)-mediated signal transduction, impacts of Zn(2+) on ion channels and mitochondrial metabolism, and finally, the implications of Zn(2+) in health and disease development were outlined to help widen the current understanding of the versatile and complex roles of Zn(2+).
Collapse
Affiliation(s)
- Sung Ryul Lee
- Department of Integrated Biomedical Science, Cardiovascular and Metabolic disease Center, College of Medicine, Inje University, Busan 614-735, Korea
| | - Su Jin Noh
- Department of Physiology, Graduate School of Inje University, Cardiovascular and Metabolic Disease Center, Inje University, Busan 614-735, Korea
| | - Julius Ryan Pronto
- Department of Physiology, Graduate School of Inje University, Cardiovascular and Metabolic Disease Center, Inje University, Busan 614-735, Korea
| | - Yu Jeong Jeong
- Department of Physiology, Graduate School of Inje University, Cardiovascular and Metabolic Disease Center, Inje University, Busan 614-735, Korea
| | - Hyoung Kyu Kim
- Department of Integrated Biomedical Science, Cardiovascular and Metabolic disease Center, College of Medicine, Inje University, Busan 614-735, Korea
| | - In Sung Song
- College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 614-735, Korea
| | - Zhelong Xu
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tainjin 300070, P.R. China
| | - Hyog Young Kwon
- Soonchunhyang Institute of Medio-bio Science (SIMS), Soonchunhyang University, Cheonan 336-745, Korea
| | - Se Chan Kang
- Department of Life Science, Gachon University, Seongnam 461-701, Korea
| | - Eun-Hwa Sohn
- Department of Herbal Medicine Resource, Kangwon National University, Samcheok 245-711, Korea
| | - Kyung Soo Ko
- College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 614-735, Korea
| | - Byoung Doo Rhee
- College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 614-735, Korea
| | - Nari Kim
- College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 614-735, Korea
| | - Jin Han
- College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 614-735, Korea
| |
Collapse
|
47
|
Takeda A, Shakushi Y, Tamano H. Modification of hippocampal excitability in brain slices pretreated with a low nanomolar concentration of Zn2+. J Neurosci Res 2015; 93:1641-7. [DOI: 10.1002/jnr.23629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/24/2015] [Accepted: 07/24/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Atsushi Takeda
- Department of Neurophysiology; School of Pharmaceutical Sciences, University of Shizuoka; Shizuoka Japan
| | - Yukina Shakushi
- Department of Neurophysiology; School of Pharmaceutical Sciences, University of Shizuoka; Shizuoka Japan
| | - Haruna Tamano
- Department of Neurophysiology; School of Pharmaceutical Sciences, University of Shizuoka; Shizuoka Japan
| |
Collapse
|
48
|
Takeda A, Suzuki M, Tempaku M, Ohashi K, Tamano H. Influx of extracellular Zn(2+) into the hippocampal CA1 neurons is required for cognitive performance via long-term potentiation. Neuroscience 2015. [PMID: 26204819 DOI: 10.1016/j.neuroscience.2015.07.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Physiological significance of synaptic Zn(2+) signaling was examined in the CA1 of young rats. In vivo CA1 long-term potentiation (LTP) was induced using a recording electrode attached to a microdialysis probe and the recording region was locally perfused with artificial cerebrospinal fluid (ACSF) via the microdialysis probe. In vivo CA1 LTP was inhibited under perfusion with CaEDTA and ZnAF-2DA, extracellular and intracellular Zn(2+) chelators, respectively, suggesting that the influx of extracellular Zn(2+) is required for in vivo CA1 LTP induction. The increase in intracellular Zn(2+) was chelated with intracellular ZnAF-2 in the CA1 1h after local injection of ZnAF-2DA into the CA1, suggesting that intracellular Zn(2+) signaling induced during learning is blocked with intracellular ZnAF-2 when the learning was performed 1h after ZnAF-2DA injection. Object recognition was affected when training of object recognition test was performed 1h after ZnAF-2DA injection. These data suggest that intracellular Zn(2+) signaling in the CA1 is required for object recognition memory via LTP. Surprisingly, in vivo CA1 LTP was affected under perfusion with 0.1-1μM ZnCl2, unlike the previous data that in vitro CA1 LTP was enhanced in the presence of 1-5μM ZnCl2. The influx of extracellular Zn(2+) into CA1 pyramidal cells has bidirectional action in CA1 LTP. The present study indicates that the degree of extracellular Zn(2+) influx into CA1 neurons is critical for LTP and cognitive performance.
Collapse
Affiliation(s)
- A Takeda
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - M Suzuki
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - M Tempaku
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - K Ohashi
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - H Tamano
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
49
|
Kambe T, Tsuji T, Hashimoto A, Itsumura N. The Physiological, Biochemical, and Molecular Roles of Zinc Transporters in Zinc Homeostasis and Metabolism. Physiol Rev 2015; 95:749-84. [DOI: 10.1152/physrev.00035.2014] [Citation(s) in RCA: 556] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Zinc is involved in a variety of biological processes, as a structural, catalytic, and intracellular and intercellular signaling component. Thus zinc homeostasis is tightly controlled at the whole body, tissue, cellular, and subcellular levels by a number of proteins, with zinc transporters being particularly important. In metazoan, two zinc transporter families, Zn transporters (ZnT) and Zrt-, Irt-related proteins (ZIP) function in zinc mobilization of influx, efflux, and compartmentalization/sequestration across biological membranes. During the last two decades, significant progress has been made in understanding the molecular properties, expression, regulation, and cellular and physiological roles of ZnT and ZIP transporters, which underpin the multifarious functions of zinc. Moreover, growing evidence indicates that malfunctioning zinc homeostasis due to zinc transporter dysfunction results in the onset and progression of a variety of diseases. This review summarizes current progress in our understanding of each ZnT and ZIP transporter from the perspective of zinc physiology and pathogenesis, discussing challenging issues in their structure and zinc transport mechanisms.
Collapse
Affiliation(s)
- Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Tokuji Tsuji
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Ayako Hashimoto
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Naoya Itsumura
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
50
|
Singla N, Dhawan DK. Modulation of (14) C-labeled glucose metabolism by zinc during aluminium induced neurodegeneration. J Neurosci Res 2015; 93:1434-41. [PMID: 25908409 DOI: 10.1002/jnr.23596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 04/08/2015] [Accepted: 04/08/2015] [Indexed: 12/24/2022]
Abstract
Aluminium (Al) is one of the most prominent metals in the environment and is responsible for causing several neurological disorders, including Alzheimer's disease. On the other hand, zinc (Zn) is an essential micronutrient that is involved in regulating brain development and function. The present study investigates the protective potential of Zn in the uptake of (14) C-labeled amino acids and glucose and their turnover in rat brain slices during Al intoxication. Male Sprague Dawley rats (140-160 g) were divided into four different groups: normal control, Al treated (100 mg/kg body weight/day via oral gavage), Zn treated (227 mg/liter in drinking water), and Al + Zn treated. Radiorespirometric assay revealed an increase in glucose turnover after Al exposure that was attenuated after Zn treatment. Furthermore, the uptake of (14) C-labeled glucose was increased after Al treatment but was appreciably decreased upon Zn supplementation. In addition, the uptakes of (14) C-lysine, (14) C-leucine, and (14) C-aspartic acid were also found to be elevated following Al exposure but were decreased after Zn treatment. Al treatment also caused alterations in the neurohistoarchitecture of the brain, which were improved after Zn coadministration. Therefore, the present study suggests that Zn provides protection against Al-induced neurotoxicity by regulating glucose and amino acid uptake in rats, indicating that Zn could be a potential candidate for the treatment of various neurodegenerative disorders.
Collapse
Affiliation(s)
- Neha Singla
- Department of Biophysics, Panjab University, Chandigarh, India
| | - D K Dhawan
- Department of Biophysics, Panjab University, Chandigarh, India
| |
Collapse
|