1
|
Schulz RA, Karaca US, Diefenbach M, Werthmann NJA, Dechert S, Hansmann MM, Holthausen MC, Meyer F. From a P-Bridging Phosphaketene to μ-Phosphinidenide and μ-Diphosphaurea Units at a Dinickel Core. Chemistry 2025; 31:e202404095. [PMID: 39584492 DOI: 10.1002/chem.202404095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 11/26/2024]
Abstract
Salt metathesis of dinickel(II) complex LNi2Br (1; L is a dinucleating pyrazolate ligand with two β-diketiminato chelate arms) with Na(OCP) ⋅ (dioxane)2.5 yielded LNi2(PCO) (2) with a P-bridging phosphaethynolate. Further reaction of 2 with benzyl isocyanide or with an N-heterocyclic carbene (NHC) triggered decarbonylation and gave LNi2(PCN-CH2Ph) (3) and LNi2P(NHC) (4) with P-bridging cyanophosphide and NHC-phosphinidenide, respectively. Electronic structure analysis indicated a μ2-η2 : η1 binding mode of the PCO- anion between the two NiII ions in 2, which is even more pronounced for the [PCN(-CH2Ph)]- anion in 3. DFT assessment of the formation mechanism of 4 showed that attack at the phosphaketene-C atom is kinetically preferred but reversible and unproductive, while kinetically more demanding back-side SN2 attack at the phosphaketene-P atom triggers CO release with 4 as thermodynamic product. Nucleophilic addition at the phosphaketene-C could be demonstrated by the strongly exergonic reaction of 2 with KPPh2, giving unstable K[LNi2(P(O)CPPh2)] (5) with a P-bridging and K+-stabilized diphosphaurea derivative. All new complexes 2-5 have been comprehensively characterized, including by X-ray diffraction.
Collapse
Affiliation(s)
- Roland A Schulz
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, D-37077, Göttingen, Germany
| | - Uhut S Karaca
- Goethe-Universität, Institut für Anorganische und Analytische Chemie, Max-von-Laue-Str. 7, D-60438, Frankfurt am Main, Germany
| | - Martin Diefenbach
- Goethe-Universität, Institut für Anorganische und Analytische Chemie, Max-von-Laue-Str. 7, D-60438, Frankfurt am Main, Germany
- Technische Universität Darmstadt, Theoretische Chemie, Peter-Grünberg-Str. 4, 64287, Darmstadt, Germany
| | - Niclas J A Werthmann
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, D-37077, Göttingen, Germany
| | - Sebastian Dechert
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, D-37077, Göttingen, Germany
| | - Max M Hansmann
- Technische Universität Dortmund, Lehrbereich Organische Chemie, Otto-Hahn-Str. 6, D-44227, Dortmund, Germany
| | - Max C Holthausen
- Goethe-Universität, Institut für Anorganische und Analytische Chemie, Max-von-Laue-Str. 7, D-60438, Frankfurt am Main, Germany
| | - Franc Meyer
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, D-37077, Göttingen, Germany
- Universität Göttingen, International Center for Advanced Studies of Energy Conversion (ICASEC), Tammannstrasse 6, D-37077, Göttingen, Germany
| |
Collapse
|
2
|
Chai Y, Tian YL, Xu WB, Yang B, Wang ZB, Chen DP, Wang XC, Quan ZJ. Synthesis of 1,4,2-Diazaphospholidine-3,5-diones Using Na(OCP) as the "P" Source. J Org Chem 2025; 90:846-852. [PMID: 39668696 DOI: 10.1021/acs.joc.4c02259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
A refined synthesis of 1,4,2-diazaphospholidine-3,5-dione derivatives was achieved through a cyclization reaction involving Na(OCP) and isocyanates. Na(OCP) was demonstrated to be a relatively stable and safe source of phosphorus, enabling the production of diverse 1,4,2-diazaphospholidine-3,5-dione derivatives with high yields. The reaction proceeds efficiently under catalyst-free and mild conditions. Both experimental findings and density functional theory calculations have elucidated that the process involves a crucial step of carbon monoxide elimination, which provides deeper insight into the reaction mechanism.
Collapse
Affiliation(s)
- Yao Chai
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Ya-Ling Tian
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Wen-Bo Xu
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Bo Yang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Zhi-Bin Wang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Dong-Ping Chen
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Xi-Cun Wang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Zheng-Jun Quan
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| |
Collapse
|
3
|
Riesinger C, Blank PM, Scholtes C, Gschwind RM, Scheer M. Enhancing the Reactivity of an Aromatic cyclo-P 5 Ligand via Electrophilic Activation. Chemistry 2024; 30:e202402675. [PMID: 39344789 DOI: 10.1002/chem.202402675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/01/2024]
Abstract
Electrophilic activation of the aromatic cyclo-P5 ligand in [Cp*Fe(η5-P5)] is demonstrated to drastically enhance its reactivity towards weak nucleophiles. Unprecedented functionalized, contracted as well as complexly aggregated polyphosphorus compounds are accessed utilizing [Cp*Fe(η5-P5Me)][OTf] (A), highlighting the great potential of this underexplored mode of reactivity. Addition of carbenes to A affords novel 1,2- or 1,1-difunctionalized cyclo-P5 complexes [Cp*Fe(η4-P5(1-L)(2-Me)][OTf] (L=IDipp (1), EtCAAC (2), IiPr (3 b)) and [Cp*Fe(η4-P5(1-IiPr)(1-Me)][OTf] (3 a). For the first time, the much smaller IMe4 leads to the contraction of the cyclo-P5 ligand and formation of [Cp*Fe(η4-P4(1-IMe)(4-Me)] (4). DFT calculations shed light on the delicate mechanism of this type of reaction, which is reinforced by the experimental identification of key intermediates. Even the comparably weak nucleophile IDippCH2 reacts with A to form [Cp*Fe(η4-P5(1-IDippCH2)(1/2-Me)][OTf] (6 a/b), highlighting its explicitly more reactive nature. Moreover, exposure of A to IDippEH (E=N, P) leads to a unique aggregation reaction affording [{Cp*Fe}2{μ2,η4:3:1-P10Me2(IDippN)}][OTf] (8) and [{Cp*Fe}2{μ2,η4:1:1:1-P11Me2(IDipp)}][OTf] (9), respectively.
Collapse
Affiliation(s)
- Christoph Riesinger
- Institute of Inorganic Chemistry, University of Regensburg, Regensburg, 93040, Germany
| | - Philip M Blank
- Laboratory of Organic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, Zürich, 8093, Switzerland
| | - Christian Scholtes
- Institute of Organic Chemistry, University of Regensburg, Regensburg, 93040, Germany
| | - Ruth M Gschwind
- Institute of Organic Chemistry, University of Regensburg, Regensburg, 93040, Germany
| | - Manfred Scheer
- Institute of Inorganic Chemistry, University of Regensburg, Regensburg, 93040, Germany
| |
Collapse
|
4
|
Lin J, Liu S, Zheng S, Grützmacher H, Su CY, Li Z. Diphosphaenones: beyond the phosphorus analogue of enones. Chem Sci 2024; 15:20030-20038. [PMID: 39568910 PMCID: PMC11575599 DOI: 10.1039/d4sc06462c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/09/2024] [Indexed: 11/22/2024] Open
Abstract
Phosphaenones, like their carbon analogue enones (C[double bond, length as m-dash]C-C[double bond, length as m-dash]O), are promising building blocks for synthetic chemistry and materials science. However, in contrast to the α- and β-phosphaenones, structurally and spectroscopically well-defined diphosphaenones (DPEs) are rare. In this study, we disclose the isolation and spectroscopic characterization of N-heterocyclic vinyl (NHV) substituted acyclic DPEs 3a,b [NHV-P[double bond, length as m-dash]P-C(O)-NHV]. X-ray diffraction methods allowed determination of the structures, which show a central planar trans P[double bond, length as m-dash]P-C[double bond, length as m-dash]O configuration. Compound 3a behaves like classical enones and shows 1,4-addition across the P[double bond, length as m-dash]P-C[double bond, length as m-dash]O unit, which proceeds in a stepwise manner. In contrast, 3a exhibits also 1,2-addition across the P[double bond, length as m-dash]P but not the C[double bond, length as m-dash]O double bond, which differentiates it from enones.
Collapse
Affiliation(s)
- Jieli Lin
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| | - Shihua Liu
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| | - Shunlin Zheng
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| | | | - Cheng-Yong Su
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| | - Zhongshu Li
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| |
Collapse
|
5
|
Doleschal ME, Kostenko A, Liu JY, Inoue S. Isolation of a NHC-stabilized heavier nitrile and its conversion into an isonitrile analogue. Nat Chem 2024; 16:2009-2016. [PMID: 39256544 PMCID: PMC11611736 DOI: 10.1038/s41557-024-01618-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/30/2024] [Indexed: 09/12/2024]
Abstract
Nitriles (R-C≡N) have been investigated since the late eighteenth century and are ubiquitous encounters in organic and inorganic syntheses. In contrast, heavier nitriles, which contain the heavier analogues of carbon and nitrogen, are sparsely investigated species. Here we report the synthesis and isolation of a phosphino-silylene featuring an N-heterocyclic carbene-phosphinidene and a highly sterically demanding silyl group as substituents. Due to its unique structural motif, it can be regarded as a Lewis base-stabilized heavier nitrile. The Si-P bond displays multiple bond character and a bent R-Si-P geometry, the latter indicating fundamental differences between heavier and classical nitriles. In solution, a quantitative unusual rearrangement to a phosphasilenylidene occurs. This rearrangement is consistent with theoretical predictions of rearrangements from heavier nitriles to heavier isonitriles. Our preliminary reactivity studies revealed that both isomers exhibit highly nucleophilic silicon centres capable of oxidative addition and coordination to iron tetracarbonyl.
Collapse
Affiliation(s)
- Martin E Doleschal
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Wacker Institute of Silicon Chemistry, Technische Universität Müchen, Garching, Germany
| | - Arseni Kostenko
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Wacker Institute of Silicon Chemistry, Technische Universität Müchen, Garching, Germany
| | - Jin Yu Liu
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Wacker Institute of Silicon Chemistry, Technische Universität Müchen, Garching, Germany
| | - Shigeyoshi Inoue
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Wacker Institute of Silicon Chemistry, Technische Universität Müchen, Garching, Germany.
| |
Collapse
|
6
|
Nguyen THV, Chelli S, Mallet-Ladeira S, Breugst M, Lakhdar S. Reactivity of the phosphaethynolate anion with stabilized carbocations: mechanistic studies and synthetic applications. Chem Sci 2024:d4sc03518f. [PMID: 39165734 PMCID: PMC11331332 DOI: 10.1039/d4sc03518f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/27/2024] [Indexed: 08/22/2024] Open
Abstract
The reactivity of sodium phosphaethynolate Na(OCP) towards various Mayr's reference electrophiles was investigated using conventional UV-visible and laser-flash photolysis techniques. The kinetic data, along with density functional theory (DFT) calculations, enabled the first experimental quantification of the phosphorus nucleophilicity of [OCP]-. Product studies of these reactions demonstrate the formation of secondary as well as tertiary phosphines. The mechanism of this unprecedented phosphorus-atom transfer reaction is thoroughly discussed, with key intermediates successfully isolated and characterized. Importantly, some bulky secondary phosphine oxides synthesized using this approach, have demonstrated high efficiency as ligands in the Suzuki coupling reaction.
Collapse
Affiliation(s)
- Thi Hong Van Nguyen
- CNRS, Université Paul Sabatier, Laboratoire Hetérochimie Fondamentale et Appliquée (LHFA, UMR5069) 118 Route de Narbonne 31062 Cedex 09 Toulouse France
| | - Saloua Chelli
- CNRS, Université Paul Sabatier, Laboratoire Hetérochimie Fondamentale et Appliquée (LHFA, UMR5069) 118 Route de Narbonne 31062 Cedex 09 Toulouse France
| | - Sonia Mallet-Ladeira
- Institut de Chimie de Toulouse (FR 2599) 118 Route de Narbonne 31062 Cedex 09 Toulouse France
| | - Martin Breugst
- Institut für Chemie, Technische Universität Chemnitz 09111 Chemnitz Germany
| | - Sami Lakhdar
- CNRS, Université Paul Sabatier, Laboratoire Hetérochimie Fondamentale et Appliquée (LHFA, UMR5069) 118 Route de Narbonne 31062 Cedex 09 Toulouse France
| |
Collapse
|
7
|
Uttendorfer MK, Hierlmeier G, Balázs G, Wolf R. Access to 1,2,3-triphospholide ligands by reduction of di- tert-butyldiphosphatetrahedrane. Dalton Trans 2024; 53:10113-10119. [PMID: 38747137 DOI: 10.1039/d4dt01067a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Di-tert-butyldiphosphatetrahedrane (tBuCP)2 (A) is a reactive tetrahedral molecule which may serve as a source of new phosphaorganic molecules and ligands. However, the redox chemistry of this compound has not yet been investigated. Here, we show that the reduction of A with alkali metals (AM = Li, Na, K, Rb and Cs) affords 1,2,3-triphospholides [AM(crown ether)][1,2,3-P3C2tBu2] (1-5, [AM(crown ether)] = [Li([12]crown-4)2]+, [Na([15]crown-5)2]+, [K([18]crown-6)]+, [Rb([18]crown-6)]+, and Cs+) with 1,3-diphospholides [AM(crown ether)][1,3-P2C3tBu3] (6-10) formed as by-products. The potassium salt 3 was isolated on a preparative scale, allowing for reactivity studies. Transmetalation with iron(II) and ruthenium(II) chlorides yielded the sandwich complexes [Cp*M(η5-1,2,3-P3C2tBu2)] (11, M = Fe; 12, M = Ru, Cp* = C5Me5) featuring η5-coordinated triphospholide ligands. Treatment of 3 with [Cp2Fe][BAr4F] or [H(Et2O)2BAr4F] (BAr4F = B{C6H3(CF3)2}4) afforded the polyphosphorus compound tBu4C4P6 (13), which presumably results from the dimerisation of a 1,2,3-triphospholyl radical intermediate (1,2,3-P3C2tBu2)˙ (3˙). Tetracyclic 13 is closely structurally related to an isomer of the hydrocarbon hypostrophene (C10H10).
Collapse
Affiliation(s)
- Maria K Uttendorfer
- Institute of Inorganic Chemistry, University of Regensburg, 93053 Regensburg, Germany.
| | - Gabriele Hierlmeier
- Institute of Inorganic Chemistry, University of Regensburg, 93053 Regensburg, Germany.
| | - Gábor Balázs
- Institute of Inorganic Chemistry, University of Regensburg, 93053 Regensburg, Germany.
| | - Robert Wolf
- Institute of Inorganic Chemistry, University of Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
8
|
LaPierre EA, Patrick BO, Manners I. Synthesis of Carbene-Stabilized PNPN Fragments and Their Carbene-Dependent Redox Properties. J Am Chem Soc 2024; 146:6326-6335. [PMID: 38408316 DOI: 10.1021/jacs.4c00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Herein, we report the synthesis of carbene-stabilized 1,3-diaza-2,4-diphosphabutenes CAACMePNPNCAACMe 4CAAC (CAACMe = 1-[2,6-bis(isopropyl)phenyl]-3,3,5,5-tetramethyl-2-pyrrolidinylidene) and IPrPNPNIPr 4NHC (IPr = 1,3-Bis(2,6-diisopropylphenyl)-imidazol-2-ylidene). The bonding in both systems is defined by a delocalized polar covalent π-system, with 4NHC exhibiting increased conjugation relative to 4CAAC. The nature of the stabilizing carbene also influences the redox properties of the compound, with 4CAAC undergoing potassium-mediated reduction to the closed-shell P-P bonded dimer K252, which upon treatment with Kryptofix-2,2,2 converts to the transient radical anion [Kcrypt][5], the formal one-electron reduction product of 4CAAC. In contrast, 4NHC undergoes reversible one-electron oxidation to the stable radical cation [6NHC][SbF6]. Computational and spectroscopic analyses of both radical species are suggestive of unevenly delocalized spin, with the bulk of the spin density residing on phosphorus in both cases.
Collapse
Affiliation(s)
- Etienne A LaPierre
- Department of Chemistry, University of Victoria, 3800 Finnerty Rd, Victoria, British Columbia V8P 5C2, Canada
| | - Brian O Patrick
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Ian Manners
- Department of Chemistry, University of Victoria, 3800 Finnerty Rd, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
9
|
Yadav R, Das B, Singh A, Anmol, Sharma A, Majumder C, Kundu S. Bicyclic (alkyl)(amino)carbene (BICAAC)-supported phosphinidenes. Dalton Trans 2023; 52:16680-16687. [PMID: 37960973 DOI: 10.1039/d3dt02765a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Herein, the synthesis and characterization of bicyclic (alkyl)(amino)carbene (BICAAC)-stabilized phosphinidenes (1-4) are reported. Compounds 1-3 were obtained by reacting trihalophosphine [PX3, X = Cl (1), Br (2), I (3)] with BICAAC in THF. A BICAAC-stabilized bis-phosphinidene (4) was obtained from the reduction of compound 2. All four compounds were characterized by X-ray crystallography and heteronuclear NMR spectroscopy. Theoretical calculations indicated the predominant C(carbene)P double bond characteristic in compounds 1-4.
Collapse
Affiliation(s)
- Ritu Yadav
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Bindusagar Das
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Ashi Singh
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Anmol
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Ankita Sharma
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Chinmoy Majumder
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Subrata Kundu
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
10
|
Nag E, Francis M, Putta D, Roy S. Isolation of (Aryl)-(Imino) Phosphide and (Aryl)-(Phosphaalkene) Amide Complexes of Alkali Metals from Carbene-Phosphinidenes under Reductive-Thermal Rearrangements. Chemistry 2023; 29:e202302120. [PMID: 37665314 DOI: 10.1002/chem.202302120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/05/2023]
Abstract
Two-electron reduction of cyclic alkyl(amino) carbene (cAAC)-supported chloro-phosphinidene cAAC=P-Cl (1) followed by unprecedented thermal rearrangements afforded the alkali metal complexes of (aryl)-(cyclic alkyl(imino)) phosphides 3 a-3 c, 4 a-4 b through migration of the 2,6-diisopropylphenyl (dipp) group from N to the P centre, and the (aryl)-(cyclic alkyl(phosphaalkene)) amide 5 through cleavage of the CMe2 -N bond followed by energetically favoured 5-exo-tet ring-closure in the presence of the alkali metals Cs (3 a-3 c), K (4 a, 4 b), and Li (5). Compound 3 a was found to be photoluminescent (PL), emitting bright orange light under a laboratory UV lamp of wavelength 365 nm with PL quantum yield (ϕPL ) of 2.6 % (λem =600 nm), and an average lifetime (τ) of 4.8 μs. Reaction of 3 a with CuCl and AgOTf afforded (aryl)-(cyclic alkyl(imino)) phosphide-stabilized tetra-nuclear CuI (6), and octa-nuclear AgI (7) clusters, respectively. Moreover, complexes 3 a-3 c provided a direct route for the stabilization of cyclic alkyl(aminoboryl) phosphaalkenes 8 a-8 c when treated with 1-bromo-N,N,N',N'-tetraisopropylboranediamine.
Collapse
Affiliation(s)
- Ekta Nag
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati, 517507, India
| | - Maria Francis
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati, 517507, India
| | - Divya Putta
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati, 517507, India
| | - Sudipta Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati, 517507, India
| |
Collapse
|
11
|
Sharma MK, Weinert HM, Li B, Wölper C, Henthorn JT, Cutsail GE, Haberhauer G, Schulz S. Syntheses and Structures of 5-Membered Heterocycles Featuring 1,2-Diphospha-1,3-Butadiene and Its Radical Anion. Angew Chem Int Ed Engl 2023; 62:e202309466. [PMID: 37582227 DOI: 10.1002/anie.202309466] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/17/2023]
Abstract
LGa(P2 OC)cAAC 2 features a 1,2-diphospha-1,3-butadiene unit with a delocalized π-type HOMO and a π*-type LUMO according to DFT calculations. [LGa(P2 OC)cAAC][K(DB-18-c-6)] 3[K(DB-18-c-6] containing the 1,2-diphospha-1,3-butadiene radical anion 3⋅- was isolated from the reaction of 2 with KC8 and dibenzo-18-crown-6. 3 reacted with [Fc][B(C6 F5 )4 ] (Fc=ferrocenium) to 2 and with TEMPO to [L-H Ga(P2 OC)cAAC][K(DB-18-c-6)] 4[K(DB-18-c-6] containing the 1,2-diphospha-1,3-butadiene anion 4- . The solid state structures of 2, 3K(DB-18-c-6], and 4[K(DB-18-c-6] were determined by single crystal X-ray diffraction (sc-XRD).
Collapse
Affiliation(s)
- Mahendra K Sharma
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141, Essen, Germany
| | - Hanns M Weinert
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141, Essen, Germany
| | - Bin Li
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141, Essen, Germany
| | - Christoph Wölper
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141, Essen, Germany
| | - Justin T Henthorn
- Max Planck Institute for Chemical Energy Conversion (MPI-CEC), Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - George E Cutsail
- Max Planck Institute for Chemical Energy Conversion (MPI-CEC), Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Gebhard Haberhauer
- Institute of Organic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141, Essen, Germany
| | - Stephan Schulz
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141, Essen, Germany
- Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Carl-Benz-Straße 199, 47057, Duisburg, Germany
| |
Collapse
|
12
|
Wang Y, Robinson GH. Counterintuitive Chemistry: Carbene Stabilization of Zero-Oxidation State Main Group Species. J Am Chem Soc 2023; 145:5592-5612. [PMID: 36876997 DOI: 10.1021/jacs.2c13574] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Carbenes have evolved from transient laboratory curiosities to a robust, diverse, and surprisingly impactful ligand class. A variety of different carbenes have significantly contributed to the development of low-oxidation state main group chemistry. This Perspective focuses upon advances in the chemistry of carbene complexes containing main group element cores in the formal oxidation state of zero, including their diverse synthetic strategies, unusual bonding and structural motifs, and utility in transition metal coordination chemistry and activation of small molecules.
Collapse
Affiliation(s)
- Yuzhong Wang
- Department of Chemistry, The University of Georgia, Athens, Georgia 30602-2556, United States
| | - Gregory H Robinson
- Department of Chemistry, The University of Georgia, Athens, Georgia 30602-2556, United States
| |
Collapse
|
13
|
Frenette BL, Trach J, Ferguson MJ, Rivard E. Frustrated Lewis Pair Adduct of Atomic P(-1) as a Source of Phosphinidenes (PR), Diphosphorus (P 2 ), and Indium Phosphide. Angew Chem Int Ed Engl 2023; 62:e202218587. [PMID: 36625676 DOI: 10.1002/anie.202218587] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/11/2023]
Abstract
We report phosphinidenes (PR) stabilized by an intramolecular frustrated Lewis pair (FLP) chelate. These adducts include the parent phosphinidene, PH, which is accessed via thermolysis of coordinated HPCO. The reported FLP-PH species acts as a springboard to other phosphorus-containing compounds, such as FLP-adducts of diphosphorus (P2 ) and InP3 . Our new adducts participate in thermal- or light-induced phosphinidene elimination (of both PH and PR, R=organic group), transfer P2 units to an organic substrate, and yield the useful semiconductor InP at only 110 °C from solution.
Collapse
Affiliation(s)
- Brandon L Frenette
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| | - Jonathan Trach
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| | - Michael J Ferguson
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| | - Eric Rivard
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
14
|
Sharma MK, Chabbra S, Wölper C, Weinert HM, Reijerse EJ, Schnegg A, Schulz S. Modulating the frontier orbitals of L(X)Ga-substituted diphosphenes [L(X)GaP] 2 (X = Cl, Br) and their facile oxidation to radical cations. Chem Sci 2022; 13:12643-12650. [PMID: 36519043 PMCID: PMC9645402 DOI: 10.1039/d2sc04207j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/11/2022] [Indexed: 09/19/2023] Open
Abstract
Modulating the electronic structures of main group element compounds is crucial to control their chemical reactivity. Herein we report on the synthesis, frontier orbital modulation, and one-electron oxidation of two L(X)Ga-substituted diphosphenes [L(X)GaP]2 (X = Cl 2a, Br 2b; L = HC[C(Me)N(Ar)]2, Ar = 2,6-i-Pr2C6H3). Photolysis of L(Cl)GaPCO 1 gave [L(Cl)GaP]22a, which reacted with Me3SiBr with halide exchange to [L(Br)GaP]22b. Reactions with MeNHC (MeNHC = 1,3,4,5-tetramethylimidazol-2-ylidene) gave the corresponding carbene-coordinated complexes L(X)GaPP(MeNHC)Ga(X)L (X = Cl 3a, Br 3b). DFT calculations revealed that the carbene coordination modulates the frontier orbitals (i.e. HOMO/LUMO) of diphosphenes 2a and 2b, thereby affecting the reactivity of 3a and 3b. In marked contrast to diphosphenes 2a and 2b, the cyclic voltammograms (CVs) of the carbene-coordinated complexes each show one reversible redox event at E 1/2 = -0.65 V (3a) and -0.36 V (3b), indicating their one-electron oxidation to the corresponding radical cations as was confirmed by reactions of 3a and 3b with the [FeCp2][B(C6F5)4], yielding the radical cations [L(X)GaPP(MeNHC)Ga(X)L]B(C6F5)4 (X = Cl 4a, Br 4b). The unpaired spin in 4a (79%) and 4b (80%) is mainly located at the carbene-uncoordinated phosphorus atoms as was revealed by DFT calculations and furthermore experimentally proven in reactions with n Bu3SnH, yielding the diphosphane cations [L(X)GaPHP(MeNHC)Ga(X)L]B(C6F5)4 (X = Cl 5a, Br 5b). Compounds 2-5 were fully characterized by NMR and IR spectroscopy as well as by single crystal X-ray diffraction (sc-XRD), and compounds 4a and 4b were further studied by EPR spectroscopy, while their bonding nature was investigated by DFT calculations.
Collapse
Affiliation(s)
- Mahendra K Sharma
- Institute of Inorganic Chemistry, University of Duisburg-Essen Universitätsstraße 5-7, D-45141 Essen Germany https://www.uni-due.de/ak_schulz/index_en.php
| | - Sonia Chabbra
- EPR Research Group, Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34-36 Mülheim an der Ruhr D-45470 Germany
| | - Christoph Wölper
- Institute of Inorganic Chemistry, University of Duisburg-Essen Universitätsstraße 5-7, D-45141 Essen Germany https://www.uni-due.de/ak_schulz/index_en.php
| | - Hanns M Weinert
- Institute of Inorganic Chemistry, University of Duisburg-Essen Universitätsstraße 5-7, D-45141 Essen Germany https://www.uni-due.de/ak_schulz/index_en.php
| | - Edward J Reijerse
- EPR Research Group, Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34-36 Mülheim an der Ruhr D-45470 Germany
| | - Alexander Schnegg
- EPR Research Group, Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34-36 Mülheim an der Ruhr D-45470 Germany
| | - Stephan Schulz
- Institute of Inorganic Chemistry, University of Duisburg-Essen Universitätsstraße 5-7, D-45141 Essen Germany https://www.uni-due.de/ak_schulz/index_en.php
- Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199 47057 Duisburg Germany
| |
Collapse
|
15
|
Gottschling HM, Balmer M, Richter R, von Hänisch C. Synthesis, characterization and reactivity of (SIDipp)AsK – A NHC‐arsinidenyl compound. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hannah M. Gottschling
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW) Philipps-Universität Marburg Hans-Meerwein-Straße 4 35043 Marburg Germany
| | - Markus Balmer
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW) Philipps-Universität Marburg Hans-Meerwein-Straße 4 35043 Marburg Germany
| | - Roman‐Malte Richter
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW) Philipps-Universität Marburg Hans-Meerwein-Straße 4 35043 Marburg Germany
| | - Carsten von Hänisch
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW) Philipps-Universität Marburg Hans-Meerwein-Straße 4 35043 Marburg Germany
| |
Collapse
|
16
|
Ott A, Nagy PR, Benkő Z. Stability of Carbocyclic Phosphinyl Radicals: Effect of Ring Size, Delocalization, and Sterics. Inorg Chem 2022; 61:16266-16281. [PMID: 36197796 PMCID: PMC9583709 DOI: 10.1021/acs.inorgchem.2c01968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
In this computational study, we report on the stability
of cyclic
phosphinyl radicals with an aim for a systematical assessment of stabilization
effects. The radical stabilization energies (RSEs) were calculated
using isodesmic reactions for a large number of carbocyclic radicals
possessing different ring sizes and grades of unsaturation. In general,
the RSE values range from −1.2 to −14.0 kcal·mol–1, and they show practically no correlation with the
spin populations at the P-centers. The RSE values correlate with the
reaction Gibbs free energies calculated for the dimerization of the
studied simple radicals. Therefore, the more easily accessible RSE
values offer a cost-effective estimation of global stability in a
straightforward manner. To explore the effect of unsaturation on the
RSE values, delocalization energies were determined using appropriate
isodesmic reactions. Introducing unsaturations beside the P-center
into the backbone of the rings leads to an additive increase in the
magnitude of the delocalization energy (∼10, 20, and 30 kcal·mol–1, respectively, for radicals with one, two, and three
C=C bonds in the conjugation). Parallelly, the spin populations
at the P-centers also dwindle gradually by ∼0.1 e in the same
order, indicating that the lone electron delocalizes over the π-system.
Radicals containing exocyclic C=C π-bonds were also investigated,
and all of these radicals have rather similar stabilities independently
of the ring size, outlining the primary importance of the two exocyclic
π-bonds in the conjugation. Among the radicals involved in our
study, those with the best electronic stabilization are the unsaturated
three-, five-, six-, and seven-membered rings containing the maximum
number of conjugated vinyl fragments. The largest delocalization energy
of 31.5 kcal·mol–1 and the lowest obtained
spin population of 0.665 e were found for the fully unsaturated seven-membered
radical (phosphepin derivative). Importantly, the electronic stabilization
effects alone are insufficient for stabilizing the radicals in monomeric
forms epitomized by the exothermic dimerization energies (−40
to −58 kcal·mol–1). Therefore, it is
essential to apply sterically demanding bulky substituents on the
α-C-atoms. Tweaking the steric congestion enabled us to propose
radicals that are expected to be stable against dimerization and,
consequently, may be realistic target species for synthetic investigations.
The effects contributing to the stability of radicals having sterically
encumbered substituents have also been explored. To systematically evaluate the stabilization
effects, the
radical stabilization energies of various carbocyclic phosphinyl radicals
having saturated backbones or unsaturation(s) in either endocyclic
or exocyclic manner have been determined and analyzed. As the electronic
stabilization is alone insufficient to hamper the possible dimerization
of these species, the effect of several sterically demanding substituents
has been explored for the congeners with best electronic stabilizations,
thus enabling us to propose synthetically accessible candidates in
the future.
Collapse
Affiliation(s)
- Anna Ott
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Péter R Nagy
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary.,ELKH-BME Quantum Chemistry Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Zoltán Benkő
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary.,ELKH-BME Computation Driven Chemistry Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| |
Collapse
|
17
|
Nag E, Battuluri S, Sinu BB, Roy S. Carbene-Anchored Boryl- and Stibanyl-Phosphaalkenes as Precursors for Bis-Phosphaalkenyl Dichlorogermane and Mixed-Valence Ag I/Ag II Phosphinidenide. Inorg Chem 2022; 61:13007-13014. [PMID: 35939532 DOI: 10.1021/acs.inorgchem.2c01132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyclic alkyl(amino) carbene (cAAC)-anchored boryl- and stibanyl-phosphaalkenes with general formula cAAC = P-ER2 [E = B, R = (NiPr2)2 (3a-c); E = Sb, R = 2,4,6-triisopropylphenyl (5a-b)] have been synthesized and utilized as precursors for the bis-phosphaalkenyl dichlorogermane [(cAAC = P)2GeCl2] (6) and the first molecular example of a neutral polymeric mixed-valence AgI/AgII phosphinidenide complex [(cAACP)2Ag4IAgIICl4]n (7). All compounds have been characterized by single-crystal X-ray diffraction and further investigated by nuclear magnetic resonance (NMR), mass spectrometric analysis, and UV-vis/fluorescence measurements. The paramagnetic complex 7 has been characterized by ESR spectroscopy. Cyclic voltammetry studies of compounds 3/5 have suggested possible one-electron quasi-reversible reductions, indicating their redox noninnocent behavior in solution. Quantum chemical studies revealed the electron-sharing nature of the P-B and P-Sb σ bonds in compounds 3 and 5, and the polar CcAAC = P bonds in compounds 3, 5, and 6 prevailing their phosphaalkene structures over phosphinidenes.
Collapse
Affiliation(s)
- Ekta Nag
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Sridhar Battuluri
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Bhavya Bini Sinu
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Sudipta Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| |
Collapse
|
18
|
Feng Z, Tang S, Su Y, Wang X. Recent advances in stable main group element radicals: preparation and characterization. Chem Soc Rev 2022; 51:5930-5973. [PMID: 35770612 DOI: 10.1039/d2cs00288d] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Radical species are significant in modern chemistry. Their unique chemical bonding and novel physicochemical properties play significant roles not only in fundamental chemistry, but also in materials science. Main group element radicals are usually transient due to their high reactivity. Highly stable radicals are often stabilized by π-delocalization, sterically demanding ligands, carbenes and weakly coordinating anions in recent years. This review presents the recent advances in the synthesis, characterization, reactivity and physical properties of isolable main group element radicals.
Collapse
Affiliation(s)
- Zhongtao Feng
- State Key Laboratory of Coordination Chemistry, School of Chemistry Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | - Shuxuan Tang
- State Key Laboratory of Coordination Chemistry, School of Chemistry Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | - Yuanting Su
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
19
|
Kumar Sarkar S, Kundu S, Nazish M, Kretsch J, Herbst‐Irmer R, Stalke D, Parvathy P, Parameswaran P, Roesky HW. A Carbene-Stabilized Boryl-Phosphinidene. Chemistry 2022; 28:e202200913. [PMID: 35357049 PMCID: PMC9322276 DOI: 10.1002/chem.202200913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Indexed: 11/23/2022]
Abstract
Herein, the synthesis and characterization of the carbene-stabilized boryl phosphinidenes 1-3 are reported. Compounds 1-3 are obtained by reacting Me-cAAC=PK (Me2 -cAAC=dimethyl cyclic(alkyl)(amino)carbene) and dihaloaryl borane in toluene. All three compounds were characterized by X-ray crystallography. Quantum mechanical studies indicated that these compounds have two lone pairs on the P center viz., an σ-type lone pair and a "hidden" π-type lone pair. Hence, these compounds can act as double Lewis bases, and the basicity of the π-type lone pair is higher than the σ-type lone pair.
Collapse
Affiliation(s)
- Samir Kumar Sarkar
- Institut für Anorganische ChemieUniversität GöttingenTammannstrasse 437077GöttingenGermany
| | - Subrata Kundu
- Department of ChemistryIndian Institute of Technology Delhi Hauz KhasNew Delhi110016India
| | - Mohd Nazish
- Institut für Anorganische ChemieUniversität GöttingenTammannstrasse 437077GöttingenGermany
| | - Johannes Kretsch
- Institut für Anorganische ChemieUniversität GöttingenTammannstrasse 437077GöttingenGermany
| | - Regine Herbst‐Irmer
- Institut für Anorganische ChemieUniversität GöttingenTammannstrasse 437077GöttingenGermany
| | - Dietmar Stalke
- Institut für Anorganische ChemieUniversität GöttingenTammannstrasse 437077GöttingenGermany
| | - Parameswaran Parvathy
- Department of ChemistryNational Institute of Technology CalicutKozhikodeKerala673601India
| | - Pattiyil Parameswaran
- Department of ChemistryNational Institute of Technology CalicutKozhikodeKerala673601India
| | - Herbert W. Roesky
- Institut für Anorganische ChemieUniversität GöttingenTammannstrasse 437077GöttingenGermany
| |
Collapse
|
20
|
|
21
|
Brehm PC, Frontera A, Streubel R. On metal coordination of neutral open-shell P-ligands focusing on phosphanoxyls, their electron residence and reactivity. Chem Commun (Camb) 2022; 58:6270-6279. [PMID: 35579028 DOI: 10.1039/d2cc01302a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This feature article highlights the discovery and development of phosphanoxyl complex chemistry starting from (neutral) low-coordinate phosphorus radicals and the quest of metal ligation effects. We describe synthesis and reactions of precursors, namely 2,2,6,6-tetramethylpiperidinoxyl (TEMPO) substituted phosphane tungsten(0) complexes. Trapping reactions of transient phosphanoxyl complexes, formed via thermal homolytic N-O bond cleavage, as well as their use in radical polymerisations are illustrated, thus revealing an interesting reactivity dichotomy. DFT calculations provide insight into thermal stabilities of precursors and the resulting spin density distributions (SDDs) in these reactive intermediates. Systematic studies on the dependance of the electron delocalisation in phosphanoxyl complexes have been performed examining different substitution pattern at phosphorus and different co-ligand combinations at the tungsten(0) center. Preliminary results on Mn and Fe complexes are reported.
Collapse
Affiliation(s)
- Philipp C Brehm
- Institut für Anorganische Chemie, der Rheinischen Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
| | - Antonio Frontera
- Department of Chemistry, University of the Balearic Islands, Cra. de Valldemossa, 07122 Palma, Baleares, Spain
| | - Rainer Streubel
- Institut für Anorganische Chemie, der Rheinischen Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
| |
Collapse
|
22
|
Horváth Á, Benkő Z. Understanding the Mechanism of Diels-Alder Reactions with Anionic Dienophiles: A Systematic Comparison of [ECX] - (E = P, As; X = O, S, Se) Anions. Inorg Chem 2022; 61:7922-7934. [PMID: 35533395 PMCID: PMC9131451 DOI: 10.1021/acs.inorgchem.2c00549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
While Diels–Alder
(DA) reactions involving neutral or cationic
dienophiles are well-known, the characteristics of the analogous reactions
with anionic dienophiles are practically unexplored. Herein we present
the first comparative computational investigations on the characteristics
of DA cycloadditions with anionic dienophiles on the basis of the
reactions of [ECX]− anions (E = P, As; X = O, S,
Se) with 2H-pyran-2-one. All of these reactions were
found to be both kinetically and thermodynamically feasible, enabling
synthetic access toward 2-phosphaphenolate and arsaphenolate derivatives
in the future. This study also reveals that the [ECO]− anions show clear regioselectivity, while for [ECS]− and [ECSe]− anions, the two possible reaction
channels have very similar energetics. Additionally, the activation
barriers for the [ECO]− anions are lower than those
of the heavier analogues. The observed differences can be traced back
to the starkly differing nucleophilic character of the pnictogen center
in the anions, leading to a barrier-lowering effect in the case of
the [ECO]− anions. Furthermore, analysis of the
geometries and electron distributions of the corresponding transition
states revealed structure–property relationships, and thus
a direct comparison of the cycloaddition reactivity of these anions
was achieved. Along one of the two pathways, a good correlation was
found between the activation barriers and suitable nucleophilicity
descriptors (nucleophilic Parr function and global nucleophilicity).
Additionally, the tendency of the reaction energies can be explained
by the changing aromaticity of the products. In contrast to the phosphaethynolate [PCO]− anion, the cycloaddition reactivity of the heavier congeners ([ECX]−, where E = P, As and X = O, S, Se) is unexplored.
In this computational study, the Diels−Alder reaction between
the known [ECX]− anions and 2-pyrone was employed
to compare the reactivity patterns. The first activation barrier of
these reactions correlates with the nucleophilicity of the anions,
indicating a barrier-lowering effect. The feasibility of the studied
reactions, leading to P and As heterocycles, was also explored.
Collapse
Affiliation(s)
- Ádám Horváth
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Müegyetem rkp. 3, Budapest H-1111, Hungary
| | - Zoltán Benkő
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Müegyetem rkp. 3, Budapest H-1111, Hungary
| |
Collapse
|
23
|
Peters M, Bockfeld D, Tamm M. Cationic Iridium(I) NHC‐Phosphinidene Complexes and Their Application in Hydrogen Isotope Exchange Reactions. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Marius Peters
- Technische Universität Braunschweig: Technische Universitat Braunschweig Institut für Anorganische und Analytische Chemie GERMANY
| | - Dirk Bockfeld
- Technische Universität Braunschweig: Technische Universitat Braunschweig Institut für Anorganische und Analytische Chemie GERMANY
| | - Matthias Tamm
- Technische Universität Braunschweig Institut für Anorganische und Analytische Chemie Hagenring 30 38106 Braunschweig GERMANY
| |
Collapse
|
24
|
He Y, Dai C, Wang D, Zhu J, Tan G. Phosphine-Stabilized Germylidenylpnictinidenes as Synthetic Equivalents of Heavier Nitrile and Isocyanide in Cycloaddition Reactions with Alkynes. J Am Chem Soc 2022; 144:5126-5135. [PMID: 35263091 DOI: 10.1021/jacs.2c00305] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The reactions of chlorogermylene MsFluindtBu-GeCl 1, supported by a sterically encumbered hydrindacene ligand MsFluindtBu, with NaPCO(dioxane)2.5 and NaAsCO(18-c-6) in the presence of trimethylphosphine afforded trimethylphosphine-stabilized germylidenyl-phosphinidene 2 and -arsinidene 3, respectively. Structural and computational investigations reveal that the Ge-E' bond (E' = P and As) features a multiple-bond character. 2 and 3 exhibit diverse reactivity toward trimethylsilylacetylene and 4-tetrabutylphenylacetylene. Specifically, 2 underwent cycloadditions with both alkynes affording the first six-membered aromatic phosphagermabenzen-1-ylidenes 4 and 5, respectively, through the heavier isocyanide intermediate MsFluindtBu-PGe. In contrast, 3 could serve as a synthetic equivalent of heavier isocyanides and nitriles when treated with trimethylsilylacetylene and 4-tetrabutylphenylacetylene yielding arsagermene 6 and arsolylgermylene 7, respectively. The reaction mechanisms for the cycloadditions were investigated through density functional theory calculations. The reactivity studies highlight the potential of 2 and 3 in accessing heavy main-group element-containing heterocycles.
Collapse
Affiliation(s)
- Yuhao He
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Chenshu Dai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Dongmin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Gengwen Tan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
25
|
Basappa S, Bhawar R, Nagaraju DH, Bose SK. Recent advances in the chemistry of the phosphaethynolate and arsaethynolate anions. Dalton Trans 2022; 51:3778-3806. [PMID: 35108724 DOI: 10.1039/d1dt03994f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Over the past decade, the reactivity of 2-phosphaethynolate (OCP-), a heavier analogue of the cyanate anion, has been the subject of momentous interest in the field of modern organometallic chemistry. It is used as a precursor to novel phosphorus-containing heterocycles and as a ligand in decarbonylative processes, serving as a synthetic equivalent of a phosphinidene derivative. This perspective aims to describe advances in the reactivities of phosphaethynolate and arsaethynolate anions (OCE-; E = P, As) with main-group element, transition metal, and f-block metal scaffolds. Further, the unique structures and bonding properties are discussed based on spectroscopic and theoretical studies.
Collapse
Affiliation(s)
- Suma Basappa
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore-562112, India.
| | - Ramesh Bhawar
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore-562112, India.
| | - D H Nagaraju
- Department of Chemistry, School of Applied Sciences, Reva University, Bangalore 560064, India.
| | - Shubhankar Kumar Bose
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore-562112, India.
| |
Collapse
|
26
|
Ho LP, Tamm M. Chalcogen‐Pnictogen Complexes of Anionic N‐Heterocyclic Carbenes with a Weakly Coordinating Borate Moiety. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Luong Phong Ho
- Technische Universität Braunschweig: Technische Universitat Braunschweig Institut für Anorganische und Analytische Chemie GERMANY
| | - Matthias Tamm
- Technische Universität Braunschweig Institut für Anorganische und Analytische Chemie Hagenring 30 38106 Braunschweig GERMANY
| |
Collapse
|
27
|
Yadav R, Sinhababu S, Yadav R, Kundu S. Base-stabilized formally zero-valent mono and diatomic molecular main-group compounds. Dalton Trans 2022; 51:2170-2202. [PMID: 35040452 DOI: 10.1039/d1dt03569j] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Various compounds are known for transition metals in their formal zero-oxidation state, while similar compounds of main-group elements are recently realized and limited to only a few examples. Lewis-base-stabilized mono and diatomic molecular species (B2, C, C2, Si, Si2, Ge, Ge2, Sn, P2, As2, Sb2) represent groundbreaking examples of main-group compounds with formally zero-oxidation state. In recent years, the isolation of low-valent main-group compounds has attracted increasing attention of both experimental and theoretical chemists. This is not only due to their fascinating electronic structures and exceptional reactivities, but also their use as valuable precursors for the synthesis of exotic yet important chemical species. This has led to a better understanding of the intricate balance of the donor-acceptor properties of the ligand(s) used to stabilize elements in a formally zero-oxidation state. Owing to the unusual oxidation state of the central element, many compounds containing formally zero-valent elements can efficiently activate otherwise inert small molecules. This review describes the synthesis, characterization, and reactivity of reported mono and diatomic formal zero-oxidation state main-group compounds. This review also emphasizes the comparative description of systems where different ligands are used to stabilize an element in its formal zero-oxidation state.
Collapse
Affiliation(s)
- Ravi Yadav
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110 016, India. .,Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany
| | - Soumen Sinhababu
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, Illinois 60607, USA.
| | - Ritu Yadav
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110 016, India.
| | - Subrata Kundu
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110 016, India.
| |
Collapse
|
28
|
Bhattacharjee J, Bockfeld D, Tamm M. N-Heterocyclic Carbene-Phosphinidenide Complexes as Hydroboration Catalysts. J Org Chem 2022; 87:1098-1109. [PMID: 35007063 DOI: 10.1021/acs.joc.1c02377] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The reactions of the N-heterocyclic carbene-phosphinidene adducts (NHC)PSiMe3 and (NHC)PH with the dinuclear ruthenium and osmium complexes [(η6-p-cymene)MCl2]2 (M = Ru, Os) afforded the half-sandwich complexes [(η6-p-cymene){(NHC)P}MCl] and [(η6-p-cymene){(NHC)PH}MCl2] with two- and three-legged piano-stool geometries, respectively (NHC = IDipp, IMes; IDipp = 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene; IMes = 1,3-bis(2,4,6-trimethylphenyl)imidazolin-2-ylidene). The complexes were initially tested as precatalysts for the hydroboration of benzonitrile, and the most active species, the ruthenium complex [(η6-p-cymene){(IMes)P}RuCl], was further used for the efficient hydroboration of a wide range (ca. 50 substrates) of nitriles, carboxylic esters, and carboxamides in neat pinacolborane (HBpin) under comparatively mild reaction conditions (60-80 °C, 3-5 mol % catalyst loading). Preliminary mechanistic and kinetic studies are reported, and stoichiometric reactions with HBpin indicate the initial formation of the monohydride complex [(η6-p-cymene){(IMes)P}RuH] as the putative catalytically active species.
Collapse
Affiliation(s)
- Jayeeta Bhattacharjee
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Dirk Bockfeld
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Matthias Tamm
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
29
|
Goerigk F, Birchall N, Feil CM, Nieger M, Gudat D. Reactions of Imidazolio‐Phosphides with Organotin Chlorides: Surprisingly Diverse. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202101026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Florian Goerigk
- Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 70550 Stuttgart Germany
| | - Nicholas Birchall
- Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 70550 Stuttgart Germany
| | - Christoph M. Feil
- Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 70550 Stuttgart Germany
| | - Martin Nieger
- Department of Chemistry University of Helsinki P.O Box 55 00014 University of Helsinki Finland
| | - Dietrich Gudat
- Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 70550 Stuttgart Germany
| |
Collapse
|
30
|
Weller R, Balmer M, Hänisch CV, Gunnar Werncke C. Synthesis of the open-shell 3d-transition metal(II) bis(phosphinidenide) [Mn{P(sIDipp)} 2]. Dalton Trans 2022; 51:1765-1768. [PMID: 35013743 DOI: 10.1039/d1dt03805b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis and characterization of the first homoleptic open-shell transition metal phosphinidenide is presented. By reacting [MnL2] (L = -N(SiMe3)2) with [(sIDipp)PK] (sIDipp = 1,3-bis(2,6-di-iso-propylphenyl)-imidazolidine-2-ylidene), the formation of [Mn{P(sIDipp)}2] instead of the initially expected adduct [KMn{P(sIDipp)}L2] is observed. Interestingly, a solvent change from toluene to n-pentane leads to the formation of [(sIDipp)PK2(Et2O)4][MnL3] after work-up, which can be seen as intermediate in the formation process of [Mn{P(sIDipp)}2]. Contrary to manganese, the highly reducing phosphinidenide [(sIDipp)P]- cannot be stabilized in an analogous fashion by coordination to a low-coordinate high-spin iron(II) center.
Collapse
Affiliation(s)
- Ruth Weller
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, D-35032 Marburg, Germany.
| | - Markus Balmer
- Dockweiler Chemicals GmbH, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, D-35032 Marburg, Germany
| | - Carsten von Hänisch
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, D-35032 Marburg, Germany.
| | - C Gunnar Werncke
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, D-35032 Marburg, Germany.
| |
Collapse
|
31
|
Kundu S, Das B, Makol A. Phosphorus radicals and radical ions. Dalton Trans 2022; 51:12404-12426. [DOI: 10.1039/d2dt01499h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis and characterization of isolable radicals of main-group elements have been a long-pursued quest. Although there has been considerable progress in this area, particularly in isolating carbon- radicals, the isolation...
Collapse
|
32
|
Cicac-Hudi M, Kaaz M, Birchall N, Nieger M, Gudat D. A neutral analogue of a phosphamethine cyanine. Dalton Trans 2022; 51:6533-6536. [DOI: 10.1039/d2dt00837h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reaction of an imidazolio-phosphide with a N-heterocyclic bromo-borane and NaH afforded a neutral analogue of a phosphamethine cyanine cation. DFT studies were used to analyse the dative bonding across P–C/B...
Collapse
|
33
|
Krüger J, Wölper C, Auer AA, Schulz S. Formation and Cleavage of a Sb−Sb Double Bond: From Carbene‐Coordinated Distibenes to Stibinidenes. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Julia Krüger
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE) University of Duisburg-Essen Universitätsstraße 5–7 45141 Essen Germany
| | - Christoph Wölper
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE) University of Duisburg-Essen Universitätsstraße 5–7 45141 Essen Germany
| | - Alexander A. Auer
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Stephan Schulz
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE) University of Duisburg-Essen Universitätsstraße 5–7 45141 Essen Germany
| |
Collapse
|
34
|
Cicač-Hudi M, Feil CM, Birchall N, Nieger M, Gudat D. A PH-functionalized dicationic bis(imidazolio)diphosphine. Dalton Trans 2021; 51:998-1007. [PMID: 34933323 DOI: 10.1039/d1dt03978d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reaction of the iodide salt of a secondary imidazolio-iodophosphine [(L)PHI]I (L+ = 1,3-diarylimidazolium-yl) with an imidazolio-phosphide (L)PH in the presence of GaI3 afforded the isolable salt of a dicationic, bis(imidazolio)-substituted dihydro-diphosphine [(L)2P2H2][GaI4]2. Non-preparative formation of the cationic diphosphines was also observed upon spontaneous "dehalo-coupling" of [(L)PHI]+, or in reactions of [(L)PHI]I and (L)PH in the absence of GaI3. Further reaction of [(L)2P2H2]2+ with (L)PH produced an iodide salt of a known (bis)imidazolio-diphosphide monocation [(L)2P2H]+. The identity of cationic diphosphines and diphosphides was established by single-crystal X-ray diffraction studies. NMR spectroscopy revealed that dications [(L)2P2H2]2+ exist as a mixture of meso- and rac-diastereomers in solution. Computational studies confirmed the stereochemical assignment of the isomers observed, and gave insight into the bonding situation of the diphosphine dications.
Collapse
Affiliation(s)
- Mario Cicač-Hudi
- Institute of Inorganic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70550 Stuttgart, Germany.
| | - Christoph M Feil
- Institute of Inorganic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70550 Stuttgart, Germany.
| | - Nicholas Birchall
- Institute of Inorganic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70550 Stuttgart, Germany.
| | - Martin Nieger
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 University of Helsinki, Finland
| | - Dietrich Gudat
- Institute of Inorganic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70550 Stuttgart, Germany.
| |
Collapse
|
35
|
Jafari MG, Park Y, Pudasaini B, Kurogi T, Carroll PJ, Kaphan DM, Kropf J, Delferro M, Baik M, Mindiola DJ. Phosphorus‐Atom Transfer from Phosphaethynolate to an Alkylidyne. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Yerin Park
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Bimal Pudasaini
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Takashi Kurogi
- Department of Chemistry University of Pennsylvania Philadelphia PA 19104 USA
| | - Patrick J. Carroll
- Department of Chemistry University of Pennsylvania Philadelphia PA 19104 USA
| | - David M. Kaphan
- Chemical Sciences and Engineering Division Argonne National Laboratory Lemont IL 60439 USA
| | - Jeremy Kropf
- Chemical Sciences and Engineering Division Argonne National Laboratory Lemont IL 60439 USA
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division Argonne National Laboratory Lemont IL 60439 USA
| | - Mu‐Hyun Baik
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Daniel J. Mindiola
- Department of Chemistry University of Pennsylvania Philadelphia PA 19104 USA
| |
Collapse
|
36
|
Jafari MG, Park Y, Pudasaini B, Kurogi T, Carroll PJ, Kaphan DM, Kropf J, Delferro M, Baik MH, Mindiola DJ. Phosphorus-Atom Transfer from Phosphaethynolate to an Alkylidyne. Angew Chem Int Ed Engl 2021; 60:24411-24417. [PMID: 34435422 PMCID: PMC8559866 DOI: 10.1002/anie.202107475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Indexed: 11/11/2022]
Abstract
A low-spin and mononuclear vanadium complex, (Me nacnac)V(CO)(η2 -P≡Ct Bu) (2) (Me nacnac- =[ArNC(CH3 )]2 CH, Ar=2,6-i Pr2 C6 H3 ), was prepared upon treatment of the vanadium neopentylidyne complex (Me nacnac)V≡Ct Bu(OTf) (1) with Na(OCP)(diox)2.5 (diox=1,4-dioxane), while the isoelectronic ate-complex [Na(15-crown-5)]{([ArNC(CH2 )]CH[C(CH3 )NAr])V(CO)(η2 -P≡Ct Bu)} (4), was obtained via the reaction of Na(OCP)(diox)2.5 and ([ArNC(CH2 )]CH[C(CH3 )NAr])V≡Ct Bu(OEt2 ) (3) in the presence of crown-ether. Computational studies suggest that the P-atom transfer proceeds by [2+2]-cycloaddition of the P≡C bond across the V≡Ct Bu moiety, followed by a reductive decarbonylation to form the V-C≡O linkage. The nature of the electronic ground state in diamagnetic complexes, 2 and 4, was further investigated both theoretically and experimentally, using a combination of density functional theory (DFT) calculations, UV/Vis and NMR spectroscopies, cyclic voltammetry, X-ray absorption spectroscopy (XAS) measurements, and comparison of salient bond metrics derived from X-ray single-crystal structural characterization. In combination, these data are consistent with a low-valent vanadium ion in complexes 2 and 4. This study represents the first example of a metathesis reaction between the P-atom of [PCO]- and an alkylidyne ligand.
Collapse
Affiliation(s)
- Mehrafshan G Jafari
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yerin Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Bimal Pudasaini
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Takashi Kurogi
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Patrick J Carroll
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David M Kaphan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Jeremy Kropf
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Daniel J Mindiola
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
37
|
Obi AD, Machost HR, Dickie DA, Gilliard RJ. A Thermally Stable Magnesium Phosphaethynolate Grignard Complex. Inorg Chem 2021; 60:12481-12488. [PMID: 34346670 DOI: 10.1021/acs.inorgchem.1c01700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The 2-phosphaethynolate (OCP) anion has found versatile applications across the periodic table but remains underexplored in group 2 chemistry due to challenges in isolating thermally stable complexes. By rationally modifying their coordination environments using 1,3-dialkyl-substituted N-heterocyclic carbenes (NHCs), we have now isolated and characterized thermally stable, structurally diverse, and hydrocarbon soluble magnesium phosphaethynolate complexes (2, 4Me, and 8-10), including the novel phosphaethynolate Grignard reagent (2iPr). The methylmagnesium phosphaethynolate and magnesium diphosphaethynolate complexes readily activate dioxane with subsequent H-atom abstraction to form [(NHC)MgX(μ-OEt)]2 [X = Me (3) or OCP (8 and 9)] complexes. Their reactivities increased with the Lewis acidity of the Mg2+ cation and may be attenuated by Lewis base saturation or a slight increase in carbene sterics. Solvent effects were also investigated and led to the surreptitious isolation of an ether-free sodium phosphaethynolate (NHC)3Na(OCP) (6), which is soluble in aromatic hydrocarbons and can be independently prepared by the reaction of NHC and [Na(dioxane)2][OCP] in toluene. Under forcing conditions (105 °C, 3 days), the magnesium diphosphaethynolate complex (NHC)3Mg(OCP)2 (10) decomposes to a mixture of organophosphorus complexes, among which a thermal decarbonylation product [(NHC)2PI][OCP] (11) was isolated.
Collapse
Affiliation(s)
- Akachukwu D Obi
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22904, United States
| | - Haleigh R Machost
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22904, United States
| | - Diane A Dickie
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22904, United States
| | - Robert J Gilliard
- Department of Chemistry, University of Virginia, 409 McCormick Road, P.O. Box 400319, Charlottesville, Virginia 22904, United States
| |
Collapse
|
38
|
Sreejyothi P, Bhattacharyya K, Kumar S, Kumar Hota P, Datta A, Mandal SK. An NHC-Stabilised Phosphinidene for Catalytic Formylation: A DFT-Guided Approach. Chemistry 2021; 27:11656-11662. [PMID: 34021640 DOI: 10.1002/chem.202101202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Indexed: 11/10/2022]
Abstract
In recent years, the applications of low-valent main group compounds have gained momentum in the field of catalysis. Owing to the accessibility of two lone pairs of electrons, NHC-stabilised phosphinidenes have been found to be excellent Lewis bases; however, they cannot yet be used as catalysts. Herein, an NHC-stabilised phosphinidene, 1,3-dimethyl-2-(phenylphosphanylidene)-2,3-dihydro-1H imidazole (1), for the activation of CO2 is reported.A closer inspection of the CO2 activation process by DFT calculations along with intrinsic bond orbital analysis shows that phosphinidene is associated with phenylsilane through a noncovalent π-π interaction between two phenyl rings which activates the Si-H bond facilitating hydride transfer to the CO2 molecule. Detailed DFT studies along with spectroscopic experiments were combined to understand the mechanism of CO2 activation and its catalytic reductive functionalisation leading to the formylation of a range of chemically inert primary amides under mild reaction conditions.
Collapse
Affiliation(s)
- P Sreejyothi
- Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur, 741246, India
| | - Kalishankar Bhattacharyya
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, West Bengal, 700032, India
| | - Shiv Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur, 741246, India
| | - Pradip Kumar Hota
- Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur, 741246, India
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, West Bengal, 700032, India
| | - Swadhin K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur, 741246, India
| |
Collapse
|
39
|
Heinl V, Schmidt M, Eckhardt M, Eberl M, Seitz AE, Balázs G, Seidl M, Scheer M. E 4 Transfer (E=P, As) to Ni Complexes. Chemistry 2021; 27:11649-11655. [PMID: 33971062 PMCID: PMC8453863 DOI: 10.1002/chem.202101119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Indexed: 12/20/2022]
Abstract
The use of [Cp''2 Zr(η1:1 -E4 )] (E=P (1 a), As (1 b), Cp''=1,3-di-tert-butyl-cyclopentadienyl) as phosphorus or arsenic source, respectively, gives access to novel stable polypnictogen transition metal complexes at ambient temperatures. The reaction of 1 a/1 b with [CpR NiBr]2 (CpR =CpBn (1,2,3,4,5-pentabenzyl-cyclopentadienyl), Cp''' (1,2,4-tri-tert-butyl-cyclopentadienyl)) was studied, to yield novel complexes depending on steric effects and stoichiometric ratios. Besides the transfer of the complete En unit, a degradation as well as aggregation can be observed. Thus, the prismane derivatives [(Cp'''Ni)2 (μ,η3:3 -E4 )] (2 a (E=P); 2 b (E=As)) or the arsenic containing cubane [(Cp'''Ni)3 (μ3 -As)(As4 )] (5) are formed. Furthermore, the bromine bridged cubanes of the type [(CpR Ni)3 {Ni(μ-Br)}(μ3 -E)4 ]2 (CpR =Cp''': 6 a (E=P), 6 b (E=As), CpR =CpBn : 8 a (E=P), 8 b (E=As)) can be isolated. Here, a stepwise transfer of En units is possible, with a cyclo-E4 2- ligand being introduced and unprecedented triple-decker compounds of the type [{(CpR Ni)3 Ni(μ3 -E)4 }2 (μ,η4:4 -E'4 )] (CpR =CpBn , Cp'''; E/E'=P, As) are obtained.
Collapse
Affiliation(s)
- Veronika Heinl
- Institute of Inorganic ChemistryUniversity of Regensburg93053RegensburgGermany
| | - Monika Schmidt
- Institute of Inorganic ChemistryUniversity of Regensburg93053RegensburgGermany
| | - Maria Eckhardt
- Institute of Inorganic ChemistryUniversity of Regensburg93053RegensburgGermany
| | - Miriam Eberl
- Institute of Inorganic ChemistryUniversity of Regensburg93053RegensburgGermany
| | - Andreas E. Seitz
- Institute of Inorganic ChemistryUniversity of Regensburg93053RegensburgGermany
| | - Gábor Balázs
- Institute of Inorganic ChemistryUniversity of Regensburg93053RegensburgGermany
| | - Michael Seidl
- Institute of Inorganic ChemistryUniversity of Regensburg93053RegensburgGermany
| | - Manfred Scheer
- Institute of Inorganic ChemistryUniversity of Regensburg93053RegensburgGermany
| |
Collapse
|
40
|
Alkali metal polyphosphides as intermediates in the synthesis of organophosphorus compounds from elemental phosphorus. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3209-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Reinholdt A, Jafari MG, Sandoval-Pauker C, Ballestero-Martínez E, Gau MR, Driess M, Pinter B, Mindiola DJ. Phosphorus and Arsenic Atom Transfer to Isocyanides to Form π-Backbonding Cyanophosphide and Cyanoarsenide Titanium Complexes. Angew Chem Int Ed Engl 2021; 60:17595-17600. [PMID: 34192399 DOI: 10.1002/anie.202104688] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Indexed: 11/07/2022]
Abstract
Decarbonylation along with E atom transfer from Na(OCE) (E=P, As) to an isocyanide coordinated to the tetrahedral TiII complex [(TptBu,Me )TiCl], yielded the [(TptBu,Me )Ti(η3 -ECNAd)] species (Ad=1-adamantyl, TptBu,Me- =hydrotris(3-tert-butyl-5-methylpyrazol-1-yl)borate). In the case of E=P, the cyanophosphide ligand displays nucleophilic reactivity toward Al(CH3 )3 ; moreover, its bent geometry hints to a reduced Ad-NCP3- resonance contributor. The analogous and rarer mono-substituted cyanoarsenide ligand, Ad-NCAs3- , shows the same unprecedented coordination mode but with shortening of the N=C bond. As opposed to TiII , VII fails to promote P atom transfer to AdNC, yielding instead [(TptBu,Me )V(OCP)(CNAd)]. Theoretical studies revealed the rare ECNAd moieties to be stabilized by π-backbonding interactions with the former TiII ion, and their assembly to most likely involve a concerted E atom transfer between Ti-bound OCE- to AdNC ligands when studying the reaction coordinate for E=P.
Collapse
Affiliation(s)
- Anders Reinholdt
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - Mehrafshan G Jafari
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | | | - Ernesto Ballestero-Martínez
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Michael R Gau
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - Matthias Driess
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Balazs Pinter
- Department of Chemistry, Universidad Técnica Federico Santa María, Valparaíso, 2390123, Chile
| | - Daniel J Mindiola
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| |
Collapse
|
42
|
Reinholdt A, Jafari MG, Sandoval‐Pauker C, Ballestero‐Martínez E, Gau MR, Driess M, Pinter B, Mindiola DJ. Phosphorus and Arsenic Atom Transfer to Isocyanides to Form π‐Backbonding Cyanophosphide and Cyanoarsenide Titanium Complexes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Anders Reinholdt
- Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | - Mehrafshan G. Jafari
- Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | | | - Ernesto Ballestero‐Martínez
- Department of Chemistry: Metalorganics and Inorganic Materials Technische Universität Berlin Strasse des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| | - Michael R. Gau
- Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | - Matthias Driess
- Department of Chemistry: Metalorganics and Inorganic Materials Technische Universität Berlin Strasse des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| | - Balazs Pinter
- Department of Chemistry Universidad Técnica Federico Santa María Valparaíso 2390123 Chile
| | - Daniel J. Mindiola
- Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| |
Collapse
|
43
|
Abstract
Abstract
This review summarises the experimental and structural knowledge on polycyclic phosphanes, with a focus on bicyclic and tricyclic phosphanes, as they have not only been the most studied in the last 25 years, but also show the greatest diversity in terms of constitutional isomerism and structural motifs. Moreover, only polycyclic phosphanes that have p-block substituents at all free valences are discussed.
Collapse
Affiliation(s)
- Jonas Bresien
- Anorganische Chemie , Institut für Chemie, Universität Rostock , A.-Einstein-Str. 3a , 18059 Rostock , Germany
| | - Kirill Faust
- Institut für Katalyse, Johannes Kepler Universität Linz , Altenberger Straße 69 , 4040 Linz , Austria
| | - Axel Schulz
- Anorganische Chemie , Institut für Chemie, Universität Rostock , A.-Einstein-Str. 3a , 18059 Rostock , Germany
- Materialdesign , Leibniz-Institut für Katalyse an der Universität Rostock , A.-Einstein-Str. 29a , 18059 Rostock , Germany
| |
Collapse
|
44
|
Watt FA, Burkhardt L, Schoch R, Mitzinger S, Bauer M, Weigend F, Goicoechea JM, Tambornino F, Hohloch S. η
3
‐Coordination and Functionalization of the 2‐Phosphaethynthiolate Anion at Lanthanum(III)**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Fabian A. Watt
- Department of Chemistry and Center for Sustainable Systems Design (CSSD) Paderborn University Warburger Strasse 100 33098 Paderborn Germany
| | - Lukas Burkhardt
- Department of Chemistry and Center for Sustainable Systems Design (CSSD) Paderborn University Warburger Strasse 100 33098 Paderborn Germany
| | - Roland Schoch
- Department of Chemistry and Center for Sustainable Systems Design (CSSD) Paderborn University Warburger Strasse 100 33098 Paderborn Germany
| | - Stefan Mitzinger
- Department of Chemistry University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Matthias Bauer
- Department of Chemistry and Center for Sustainable Systems Design (CSSD) Paderborn University Warburger Strasse 100 33098 Paderborn Germany
| | - Florian Weigend
- Fachbereich Chemie und Wissenschaftliches Zentrum für Materialwissenschaften (WZMW) Philipps-Universität Marburg Hans-Meerwein-Strasse 4 35032 Marburg Germany
| | - Jose M. Goicoechea
- Department of Chemistry University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Frank Tambornino
- Fachbereich Chemie und Wissenschaftliches Zentrum für Materialwissenschaften (WZMW) Philipps-Universität Marburg Hans-Meerwein-Strasse 4 35032 Marburg Germany
| | - Stephan Hohloch
- Institute for General, Inorganic and Theoretical Chemistry University of Innsbruck Innrain 80–82 6020 Innsbruck Austria
| |
Collapse
|
45
|
Watt FA, Burkhardt L, Schoch R, Mitzinger S, Bauer M, Weigend F, Goicoechea JM, Tambornino F, Hohloch S. η 3 -Coordination and Functionalization of the 2-Phosphaethynthiolate Anion at Lanthanum(III)*. Angew Chem Int Ed Engl 2021; 60:9534-9539. [PMID: 33565689 PMCID: PMC8252525 DOI: 10.1002/anie.202100559] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Indexed: 01/08/2023]
Abstract
We present the η3 -coordination of the 2-phosphaethynthiolate anion in the complex (PN)2 La(SCP) (2) [PN=N-(2-(diisopropylphosphanyl)-4-methylphenyl)-2,4,6-trimethylanilide)]. Structural comparison with dinuclear thiocyanate-bridged (PN)2 La(μ-1,3-SCN)2 La(PN)2 (3) and azide-bridged (PN)2 La(μ-1,3-N3 )2 La(PN)2 (4) complexes indicates that the [SCP]- coordination mode is mainly governed by electronic, rather than steric factors. Quantum mechanical investigations reveal large contributions of the antibonding π*-orbital of the [SCP]- ligand to the LUMO of complex 2, rendering it the ideal precursor for the first functionalization of the [SCP]- anion. Complex 2 was therefore reacted with CAACs which induced a selective rearrangement of the [SCP]- ligand to form the first CAAC stabilized group 15-group 16 fulminate-type complexes (PN)2 La{SPC(R CAAC)} (5 a,b, R=Ad, Me). A detailed reaction mechanism for the SCP-to-SPC isomerization is proposed based on DFT calculations.
Collapse
Affiliation(s)
- Fabian A. Watt
- Department of Chemistry and Center for Sustainable Systems Design (CSSD)Paderborn UniversityWarburger Strasse 10033098PaderbornGermany
| | - Lukas Burkhardt
- Department of Chemistry and Center for Sustainable Systems Design (CSSD)Paderborn UniversityWarburger Strasse 10033098PaderbornGermany
| | - Roland Schoch
- Department of Chemistry and Center for Sustainable Systems Design (CSSD)Paderborn UniversityWarburger Strasse 10033098PaderbornGermany
| | - Stefan Mitzinger
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| | - Matthias Bauer
- Department of Chemistry and Center for Sustainable Systems Design (CSSD)Paderborn UniversityWarburger Strasse 10033098PaderbornGermany
| | - Florian Weigend
- Fachbereich Chemie und Wissenschaftliches Zentrum für Materialwissenschaften (WZMW)Philipps-Universität MarburgHans-Meerwein-Strasse 435032MarburgGermany
| | - Jose M. Goicoechea
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| | - Frank Tambornino
- Fachbereich Chemie und Wissenschaftliches Zentrum für Materialwissenschaften (WZMW)Philipps-Universität MarburgHans-Meerwein-Strasse 435032MarburgGermany
| | - Stephan Hohloch
- Institute for General, Inorganic and Theoretical ChemistryUniversity of InnsbruckInnrain 80–826020InnsbruckAustria
| |
Collapse
|
46
|
Bhattacharjee J, Peters M, Bockfeld D, Tamm M. Isoselective Polymerization of rac-Lactide by Aluminum Complexes of N-Heterocyclic Carbene-Phosphinidene Adducts. Chemistry 2021; 27:5913-5918. [PMID: 33555047 PMCID: PMC8048956 DOI: 10.1002/chem.202100482] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Indexed: 11/18/2022]
Abstract
The N-heterocyclic carbene-phosphinidene adducts (NHC)PH were reacted with AlMe3 in toluene to afford the monoaluminum complexes [{(IDipp)PH}AlMe3 ] and [{(IMes)PH}AlMe3 ] (IDipp=1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene, IMes=1,3-bis(2,4,6-trimethylphenyl)imidazolin-2-ylidene). In contrast, the dialuminum complex [{(Me IMes)PH}(AlMe3 )2 ] was obtained for Me IMes=1,3-bis(2,4,6-trimethylphenyl)-4,5-dimethylimidazolin-2-ylidene. These complexes served as initiators for the efficient ring-opening polymerization of rac-lactide in toluene at 60 °C. High degrees of isoselectivity were found for the poly(rac-lactide) obtained in the presence of the monoaluminum complexes (Pm up to 0.92, Tm up to 191 °C), whereas almost atactic polymers were produced by the dialuminum complex. Detailed mechanistic studies reveal that the polymerization proceeds via a coordination-insertion mechanism with the carbene-phosphinidene ligands acting as stereodirecting groups.
Collapse
Affiliation(s)
- Jayeeta Bhattacharjee
- Institut für Anorganische und Analytische ChemieTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| | - Marius Peters
- Institut für Anorganische und Analytische ChemieTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| | - Dirk Bockfeld
- Institut für Anorganische und Analytische ChemieTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| | - Matthias Tamm
- Institut für Anorganische und Analytische ChemieTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| |
Collapse
|
47
|
Werner L, Horrer G, Philipp M, Lubitz K, Kuntze‐Fechner MW, Radius U. A General Synthetic Route to NHC‐Phosphinidenes: NHC‐mediated Dehydrogenation of Primary Phosphines. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202000405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Luis Werner
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Günther Horrer
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Michael Philipp
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Katharina Lubitz
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | | | - Udo Radius
- Institut für Anorganische Chemie Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
48
|
Kulkarni A, Arumugam S, Francis M, Reddy PG, Nag E, Gorantla SMNVT, Mondal KC, Roy S. Solid-State Isolation of Cyclic Alkyl(Amino) Carbene (cAAC)-Supported Structurally Diverse Alkali Metal-Phosphinidenides. Chemistry 2020; 27:200-206. [PMID: 32810317 DOI: 10.1002/chem.202003505] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/12/2020] [Indexed: 01/09/2023]
Abstract
Cyclic alkyl(amino) carbene (cAAC)-supported, structurally diverse alkali metal-phosphinidenides 2-5 of general formula ((cAAC)P-M)n (THF)x [2: M=K, n=2, x=4; 3: M=K, n=6, x=2; 4: M=K, n=4, x=4; 5: M=Na, n=3, x=1] have been synthesized by the reduction of cAAC-stabilized chloro-phosphinidene cAAC=P-Cl (1) utilizing metallic K or KC8 and Na-naphthalenide as reducing agents. Complexes 2-5 have been structurally characterized in solid state by NMR studies and single crystal X-ray diffraction. The proposed mechanism for the electron transfer process has been well-supported by cyclic voltammetry (CV) studies and Density Functional Theory (DFT) calculations. The solid state oligomerization process has been observed to be largely dependent on the ionic radii of alkali metal ions, steric bulk of cAAC ligands and solvation/de-solvation/recombination of the dimeric unit [(cAAC)P-M(THF)x ]2 .
Collapse
Affiliation(s)
- Aditya Kulkarni
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati, 517507, India
| | - Selvakumar Arumugam
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Maria Francis
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati, 517507, India
| | - Pulikanti Guruprasad Reddy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati, 517507, India
| | - Ekta Nag
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati, 517507, India
| | | | - Kartik Chandra Mondal
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Sudipta Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati, 517507, India
| |
Collapse
|
49
|
Beer H, Bläsing K, Bresien J, Chojetzki L, Schulz A, Stoer P, Villinger A. Trapping of Brønsted acids with a phosphorus-centered biradicaloid - synthesis of hydrogen pseudohalide addition products. Dalton Trans 2020; 49:13655-13662. [PMID: 32985638 DOI: 10.1039/d0dt03251d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The trapping of classical hydrogen pseudohalides (HX, X = pseudohalogen = CN, N3, NCO, NCS, and PCO) utilizing a phosphorus-centered cyclic biradicaloid, [P(μ-NTer)]2, is reported. These formal Brønsted acids were generated in situ as gases and passed over the trapping reagent, the biradicaloid [P(μ-NTer)]2, leading to the formation of the addition product [HP(μ-NTer)2PX] (successful for X = CN, N3, and NCO). In addition to this direct addition reaction, a two-step procedure was also applied because we failed in isolating HPCO and HNCS addition products. This two-step process comprises the generation and isolation of the highly reactive [HP(μ-NTer)2PX]+ cation as a [B(C6F5)4]- salt, followed by salt metathesis with salts such as [cat]X (cat = PPh4, n-Bu3NMe), which also gives the desired [HP(μ-NTer)2PX] product, with the exception of the reaction with the PCO- salt. In this case, proton migration was observed, finally affording the formation of a [3.1.1]-hetero-propellane-type cage compound, an OC(H)P isomer of a HPCO adduct. All discussed species were fully characterized.
Collapse
Affiliation(s)
- Henrik Beer
- Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.
| | - Kevin Bläsing
- Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.
| | - Jonas Bresien
- Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.
| | - Lukas Chojetzki
- Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.
| | - Axel Schulz
- Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany. and Leibniz-Institut für Katalyse an der Universität Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Philip Stoer
- Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.
| | - Alexander Villinger
- Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.
| |
Collapse
|
50
|
Wang Y, Szilvási T, Yao S, Driess M. A bis(silylene)-stabilized diphosphorus compound and its reactivity as a monophosphorus anion transfer reagent. Nat Chem 2020; 12:801-807. [DOI: 10.1038/s41557-020-0518-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/26/2020] [Indexed: 11/09/2022]
|