1
|
Murphy PV, Dhara A, Fitzgerald LS, Hever E, Konda S, Mandal K. Small lectin ligands as a basis for applications in glycoscience and glycomedicine. Chem Soc Rev 2024; 53:9428-9445. [PMID: 39162695 DOI: 10.1039/d4cs00642a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Glycan recognition by lectins mediates important biological events. This Tutorial Review aims to introduce lectin-ligand interactions and show how these molecular recognition events inspire innovations such as: (i) glycomimetic ligands; (ii) multivalent ligand agonists/antagonists; (iii) ligands for precision delivery of therapies to cells, where therapies include vaccines, siRNA and LYTACs (iv) development of diagnostics. A small number of case studies are selected to demonstrate principles for development of new ligands for applications inspired by knowledge of natural glycan ligand structure and function.
Collapse
Affiliation(s)
- Paul V Murphy
- School of Biological and Chemical Sciences, Galway, H91TK33, Ireland.
- SSPC, SFI Research Centre for Pharmaceuticals, Galway, H91TK33, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, University Road, Galway, H91TK33, Ireland
| | - Ashis Dhara
- School of Biological and Chemical Sciences, Galway, H91TK33, Ireland.
- SSPC, SFI Research Centre for Pharmaceuticals, Galway, H91TK33, Ireland
| | - Liam S Fitzgerald
- School of Biological and Chemical Sciences, Galway, H91TK33, Ireland.
- SSPC, SFI Research Centre for Pharmaceuticals, Galway, H91TK33, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, University Road, Galway, H91TK33, Ireland
| | - Eoin Hever
- School of Biological and Chemical Sciences, Galway, H91TK33, Ireland.
| | - Saidulu Konda
- School of Biological and Chemical Sciences, Galway, H91TK33, Ireland.
| | - Kishan Mandal
- School of Biological and Chemical Sciences, Galway, H91TK33, Ireland.
| |
Collapse
|
2
|
Delaunay C, Pollastri S, Thépaut M, Cavazzoli G, Belvisi L, Bouchikri C, Labiod N, Lasala F, Gimeno A, Franconetti A, Jiménez-Barbero J, Ardá A, Delgado R, Bernardi A, Fieschi F. Unprecedented selectivity for homologous lectin targets: differential targeting of the viral receptors L-SIGN and DC-SIGN. Chem Sci 2024:d4sc02980a. [PMID: 39246372 PMCID: PMC11376147 DOI: 10.1039/d4sc02980a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024] Open
Abstract
DC-SIGN (CD209) and L-SIGN (CD209L) are two C-type lectin receptors (CLRs) that facilitate SARS-CoV-2 infections as viral co-receptors. SARS-CoV-2 manipulates both DC-SIGN and L-SIGN for enhanced infection, leading to interest in developing receptor antagonists. Despite their structural similarity (82% sequence identity), they function differently. DC-SIGN, found in dendritic cells, shapes the immune response by recognizing pathogen-associated carbohydrate patterns. In contrast, L-SIGN, expressed in airway epithelial endothelial cells, is not directly involved in immunity. COVID-19's primary threat is the hyperactivation of the immune system, potentially reinforced if DC-SIGN engages with exogenous ligands. Therefore, L-SIGN, co-localized with ACE2-expressing cells in the respiratory tract, is a more suitable target for anti-adhesion therapy. However, designing a selective ligand for L-SIGN is challenging due to the high sequence identity of the Carbohydrate Recognition Domains (CRDs) of the two lectins. We here present Man84, a mannose ring modified with a methylene guanidine triazole at position 2. It binds L-SIGN with a K D of 12.7μM ± 1 μM (ITC) and is the first known L-SIGN selective ligand, showing 50-fold selectivity over DC-SIGN (SPR). The X-ray structure of the L-SIGN CRD/Man84 complex reveals the guanidinium group's role in achieving steric and electrostatic complementarity with L-SIGN. This allows us to trace the source of selectivity to a single amino acid difference between the two CRDs. NMR analysis confirms the binding mode in solution, highlighting Man84's conformational selection upon complex formation. Dimeric versions of Man84 achieve additional selectivity and avidity in the low nanomolar range. These compounds selectively inhibit L-SIGN dependent trans-infection by SARS-CoV-2 and Ebola virus. Man84 and its dimeric constructs display the best affinity and avidity reported to date for low-valency glycomimetics targeting CLRs. They are promising tools for competing with SARS-CoV-2 anchoring in the respiratory tract and have potential for other medical applications.
Collapse
Affiliation(s)
- Clara Delaunay
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale Grenoble France
| | - Sara Pollastri
- Università degli Studi di Milano, Dipartimento di Chimica via Golgi 19 Milano Italy
| | - Michel Thépaut
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale Grenoble France
| | - Gianluca Cavazzoli
- Università degli Studi di Milano, Dipartimento di Chimica via Golgi 19 Milano Italy
| | - Laura Belvisi
- Università degli Studi di Milano, Dipartimento di Chimica via Golgi 19 Milano Italy
| | - Clémentine Bouchikri
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale Grenoble France
| | - Nuria Labiod
- Instituto de Investigacion Hospital Universitario 12 de Octubre, Universidad Complutense, School of Medicine Madrid Spain
| | - Fatima Lasala
- Instituto de Investigacion Hospital Universitario 12 de Octubre, Universidad Complutense, School of Medicine Madrid Spain
| | - Ana Gimeno
- Chemical Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA) 48160 Derio Bizkaia Spain
| | - Antonio Franconetti
- Chemical Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA) 48160 Derio Bizkaia Spain
| | - Jesús Jiménez-Barbero
- Chemical Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA) 48160 Derio Bizkaia Spain
- Ikerbasque, Basque Foundation for Science Bilbao Spain
- Centro de Investigacion Biomedica En Red de Enfermedades Respiratorias 28029 Madrid Spain
| | - Ana Ardá
- Chemical Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA) 48160 Derio Bizkaia Spain
- Ikerbasque, Basque Foundation for Science Bilbao Spain
| | - Rafael Delgado
- Instituto de Investigacion Hospital Universitario 12 de Octubre, Universidad Complutense, School of Medicine Madrid Spain
- School of Medicine, Universidad Complutense Madrid Spain
| | - Anna Bernardi
- Università degli Studi di Milano, Dipartimento di Chimica via Golgi 19 Milano Italy
| | - Franck Fieschi
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale Grenoble France
- Institut Universitaire de France (IUF) Paris France
| |
Collapse
|
3
|
Nagao M, Hoshino Y, Miura Y. Quantification of thermodynamic effects of carbohydrate multivalency on avidity using synthetic discrete glycooligomers. Chem Commun (Camb) 2024; 60:7021-7024. [PMID: 38895769 DOI: 10.1039/d4cc02409e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
A quantitative understanding of thermodynamic effects of avidity in biomolecular interactions is important. Herein, we synthesized discrete glycooligomers and evaluated their interactions with a model protein using isothermal titration calorimetry. The dimeric glycooligomer exhibited higher binding constants compared to the glycomonomer, attributed to the reduced conformational entropy loss through local presentation of multiple carbohydrate units. Conversely, divalent glycoligands with polyethylene glycol linkers, aiming for multivalent binding, showed enhanced interactions through increased enthalpy. These findings emphasize the importance of distinguishing between the "local avidity" and the "multipoint avidity".
Collapse
Affiliation(s)
- Masanori Nagao
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Yu Hoshino
- Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshiko Miura
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
4
|
Herrera-González I, González-Cuesta M, Thépaut M, Laigre E, Goyard D, Rojo J, García Fernández JM, Fieschi F, Renaudet O, Nieto PM, Ortiz Mellet C. High-Mannose Oligosaccharide Hemimimetics that Recapitulate the Conformation and Binding Mode to Concanavalin A, DC-SIGN and Langerin. Chemistry 2024; 30:e202303041. [PMID: 37828571 DOI: 10.1002/chem.202303041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/14/2023]
Abstract
The "carbohydrate chemical mimicry" exhibited by sp2 -iminosugars has been utilized to develop practical syntheses for analogs of the branched high-mannose-type oligosaccharides (HMOs) Man3 and Man5 . In these compounds, the terminal nonreducing Man residues have been substituted with 5,6-oxomethylidenemannonojirimycin (OMJ) motifs. The resulting oligomannoside hemimimetic accurately reproduce the structure, configuration, and conformational behavior of the original mannooligosaccharides, as confirmed by NMR and computational techniques. Binding studies with mannose binding lectins, including concanavalin A, DC-SIGN, and langerin, by enzyme-linked lectin assay and surface plasmon resonance revealed significant variations in their ability to accommodate the OMJ unit in the mannose binding site. Intriguingly, OMJMan segments demonstrated "in line" heteromultivalent effects during binding to the three lectins. Similar to the mannobiose (Man2 ) branches in HMOs, the binding modes involving the external or internal monosaccharide unit at the carbohydrate binding-domain exist in equilibrium, facilitating sliding and recapture processes. This equilibrium, which influences the multivalent binding of HMOs, can be finely modulated upon incorporation of the OMJ sp2 -iminosugar caps. As a proof of concept, the affinity and selectivity towards DC-SIGN and langerin were adjustable by presenting the OMJMan epitope in platforms with diverse architectures and valencies.
Collapse
Affiliation(s)
- Irene Herrera-González
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/ Profesor García González 1, 41012, Sevilla, Spain
- Present address: DCM, UMR 5250, Université Grenoble Alpes, CNRS, 570 Rue de la Chimie, 38000, Grenoble, France
| | - Manuel González-Cuesta
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/ Profesor García González 1, 41012, Sevilla, Spain
| | - Michel Thépaut
- Institut de Biologie Structurale, Université Grenoble Alpes, CNRS, CEA, 38000, Grenoble, France
| | - Eugénie Laigre
- Institut de Biologie Structurale, Université Grenoble Alpes, CNRS, CEA, 38000, Grenoble, France
- DCM, UMR 5250, Université Grenoble Alpes, CNRS, 570 Rue de la Chimie, 38000, Grenoble, France
| | - David Goyard
- DCM, UMR 5250, Université Grenoble Alpes, CNRS, 570 Rue de la Chimie, 38000, Grenoble, France
| | - Javier Rojo
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Américo Vespucio 49, 41092, Sevilla, Spain
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Américo Vespucio 49, 41092, Sevilla, Spain
| | - Franck Fieschi
- Institut de Biologie Structurale, Université Grenoble Alpes, CNRS, CEA, 38000, Grenoble, France
- Institut Universitaire de France (IUF), Paris, France
| | - Olivier Renaudet
- DCM, UMR 5250, Université Grenoble Alpes, CNRS, 570 Rue de la Chimie, 38000, Grenoble, France
| | - Pedro M Nieto
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Américo Vespucio 49, 41092, Sevilla, Spain
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/ Profesor García González 1, 41012, Sevilla, Spain
| |
Collapse
|
5
|
Viljoen A, Vercellone A, Chimen M, Gaibelet G, Mazères S, Nigou J, Dufrêne YF. Nanoscale clustering of mycobacterial ligands and DC-SIGN host receptors are key determinants for pathogen recognition. SCIENCE ADVANCES 2023; 9:eadf9498. [PMID: 37205764 PMCID: PMC10198640 DOI: 10.1126/sciadv.adf9498] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/14/2023] [Indexed: 05/21/2023]
Abstract
The bacterial pathogen Mycobacterium tuberculosis binds to the C-type lectin DC-SIGN (dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin) on dendritic cells to evade the immune system. While DC-SIGN glycoconjugate ligands are ubiquitous among mycobacterial species, the receptor selectively binds pathogenic species from the M. tuberculosis complex (MTBC). Here, we unravel the molecular mechanism behind this intriguing selective recognition by means of a multidisciplinary approach combining single-molecule atomic force microscopy with Förster resonance energy transfer and bioassays. Molecular recognition imaging of mycobacteria demonstrates that the distribution of DC-SIGN ligands markedly differs between Mycobacterium bovis Bacille Calmette-Guérin (BCG) (model MTBC species) and Mycobacterium smegmatis (non-MTBC species), the ligands being concentrated into dense nanodomains on M. bovis BCG. Upon bacteria-host cell adhesion, ligand nanodomains induce the recruitment and clustering of DC-SIGN. Our study highlights the key role of clustering of both ligands on MTBC species and DC-SIGN host receptors in pathogen recognition, a mechanism that might be widespread in host-pathogen interactions.
Collapse
Affiliation(s)
- Albertus Viljoen
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07., B-1348 Louvain-la-Neuve, Belgium
| | - Alain Vercellone
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Myriam Chimen
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Gérald Gaibelet
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Serge Mazères
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Jérôme Nigou
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Yves F. Dufrêne
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07., B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
6
|
Porkolab V, Lepšík M, Ordanini S, St John A, Le Roy A, Thépaut M, Paci E, Ebel C, Bernardi A, Fieschi F. Powerful Avidity with a Limited Valency for Virus-Attachment Blockers on DC-SIGN: Combining Chelation and Statistical Rebinding with Structural Plasticity of the Receptor. ACS CENTRAL SCIENCE 2023; 9:709-718. [PMID: 37122470 PMCID: PMC10141607 DOI: 10.1021/acscentsci.2c01136] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Indexed: 05/03/2023]
Abstract
The C-type lectin receptor DC-SIGN has been highlighted as the coreceptor for the spike protein of the SARS-CoV-2 virus. A multivalent glycomimetic ligand, Polyman26, has been found to inhibit DC-SIGN-dependent trans-infection of SARS-CoV-2. The molecular details underlying avidity generation in such systems remain poorly characterized. In an effort to dissect the contribution of the known multivalent effects - chelation, clustering, and statistical rebinding - we studied a series of dendrimer constructs related to Polyman26 with a rod core rationally designed to engage simultaneously two binding sites of the tetrameric DC-SIGN. Binding properties of these compounds have been studied with a range of biophysical techniques, including recently developed surface plasmon resonance oriented-surface methodology. Using molecular modeling we addressed, for the first time, the impact of the carbohydrate recognition domains' flexibility of the DC-SIGN tetramer on the compounds' avidity. We were able to gain deeper insight into the role of different binding modes, which in combination produce a construct with a nanomolar affinity despite a limited valency. This multifaceted experimental-theoretical approach provides detailed understanding of multivalent ligand/multimeric protein interactions which can lead to future predictions. This work opens the way to the development of new virus attachment blockers adapted to different C-type lectin receptors of viruses.
Collapse
Affiliation(s)
- Vanessa Porkolab
- Univ.
Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France
| | - Martin Lepšík
- Univ.
Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo nam. 2, Prague 6, 166 10, Czechia
| | - Stefania Ordanini
- Universita’
degli Studi di Milano, Dipartimento di Chimica, via Golgi 19, 20133, Milano, Italy
| | - Alexander St John
- Astbury
Centre & School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Aline Le Roy
- Univ.
Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France
| | - Michel Thépaut
- Univ.
Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France
| | - Emanuele Paci
- Department
of Physics and Astronomy “Augusto Righi”, University of Bologna, Via Zamboni, 33, 40126, Bologna, Italy
| | - Christine Ebel
- Univ.
Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France
| | - Anna Bernardi
- Universita’
degli Studi di Milano, Dipartimento di Chimica, via Golgi 19, 20133, Milano, Italy
| | - Franck Fieschi
- Univ.
Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France
- Institut
Universitaire de France (IUF), 1 rue Descartes, 75231 Paris, France
| |
Collapse
|
7
|
Martínez-Bailén M, Rojo J, Ramos-Soriano J. Multivalent glycosystems for human lectins. Chem Soc Rev 2023; 52:536-572. [PMID: 36545903 DOI: 10.1039/d2cs00736c] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human lectins are involved in a wide variety of biological processes, both physiological and pathological, which have attracted the interest of the scientific community working in the glycoscience field. Multivalent glycosystems have been employed as useful tools to understand carbohydrate-lectin binding processes as well as for biomedical applications. The review shows the different scaffolds designed for a multivalent presentation of sugars and their corresponding binding studies to lectins and in some cases, their biological activities. We summarise this research by organizing based on lectin types to highlight the progression in this active field. The paper provides an overall picture of how these contributions have furnished relevant information on this topic to help in understanding and participate in these carbohydrate-lectin interactions.
Collapse
Affiliation(s)
- Macarena Martínez-Bailén
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| | - Javier Rojo
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| | - Javier Ramos-Soriano
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| |
Collapse
|
8
|
Kuhaudomlarp S, Imberty A. Involvement of sialoglycans in SARS-COV-2 infection: Opportunities and challenges for glyco-based inhibitors. IUBMB Life 2022; 74:1253-1263. [PMID: 36349722 PMCID: PMC9877878 DOI: 10.1002/iub.2692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022]
Abstract
Viral infections have been the causes of global pandemics, including the ongoing coronavirus disease 2019, which prompted the investigation into the infection mechanisms to find treatment and aid the vaccine design. Betacoronaviruses use spike glycoprotein on their surface to bind to host receptors, aiding their host attachment and cell fusion. Protein-glycan interaction has been implicated in the viral entry mechanism of many viruses and has recently been shown in SARS-CoV-2. Here, we reviewed the current knowledge on protein-glycan interactions that facilitate SARS-CoV-2 host entry, with special interest in sialoglycans present on both the virions and host cell surfaces. We also analyze how such information provides opportunities and challenges in glyco-based inhibitors.
Collapse
Affiliation(s)
- Sakonwan Kuhaudomlarp
- Department of Biochemistry, Faculty of ScienceMahidol UniversityBangkokThailand
- Center for Excellence in Protein and Enzyme Technology, Faculty of ScienceMahidol UniversityBangkokThailand
| | | |
Collapse
|
9
|
Rodríguez‐Izquierdo I, Sepúlveda‐Crespo D, Lasso JM, Resino S, Muñoz‐Fernández MÁ. Baseline and time-updated factors in preclinical development of anionic dendrimers as successful anti-HIV-1 vaginal microbicides. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1774. [PMID: 35018739 PMCID: PMC9285063 DOI: 10.1002/wnan.1774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022]
Abstract
Although a wide variety of topical microbicides provide promising in vitro and in vivo efficacy, most of them failed to prevent sexual transmission of human immunodeficiency virus type 1 (HIV-1) in human clinical trials. In vitro, ex vivo, and in vivo models must be optimized, considering the knowledge acquired from unsuccessful and successful clinical trials to improve the current gaps and the preclinical development protocols. To date, dendrimers are the only nanotool that has advanced to human clinical trials as topical microbicides to prevent HIV-1 transmission. This fact demonstrates the importance and the potential of these molecules as microbicides. Polyanionic dendrimers are highly branched nanocompounds with potent activity against HIV-1 that disturb HIV-1 entry. Herein, the most significant advancements in topical microbicide development, trying to mimic the real-life conditions as closely as possible, are discussed. This review also provides the preclinical assays that anionic dendrimers have passed as microbicides because they can improve current antiviral treatments' efficacy. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
| | - Daniel Sepúlveda‐Crespo
- Unidad de Infección Viral e Inmunidad, Centro Nacional de MicrobiologíaInstituto de Salud Carlos IIIMadridSpain
| | | | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de MicrobiologíaInstituto de Salud Carlos IIIMadridSpain
| | - Ma Ángeles Muñoz‐Fernández
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM)MadridSpain
- Spanish HIV HGM BioBankMadridSpain
- Section of Immunology, Laboratorio InmunoBiología MolecularHospital General Universitario Gregorio Marañón (HGUGM)MadridSpain
| |
Collapse
|
10
|
Goti G, Colombo C, Achilli S, Vives C, Thépaut M, Luczkowiak J, Labiod N, Delgado R, Fieschi F, Bernardi A, Vivès C. Precision Glycodendrimers for DC‐SIGN Targeting. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Giulio Goti
- Università degli Studi di Milano: Universita degli Studi di Milano Chemistry ITALY
| | - Cinzia Colombo
- Università degli Studi di Milano: Universita degli Studi di Milano Chemistry ITALY
| | | | | | | | - Joanna Luczkowiak
- Hospital Universitario 12 de Octubre Instituto de Investigación SPAIN
| | - Nuria Labiod
- Hospital Universitario 12 de Octubre Instituto de Investigación SPAIN
| | - Rafael Delgado
- Hospital Universitario 12 de Octubre Instituto de Investigación SPAIN
| | | | - Anna Bernardi
- Universita' di Milano Chimica via Golgi 19 20133 Milano ITALY
| | | |
Collapse
|
11
|
Pollastri S, Delaunay C, Thépaut M, Fieschi F, Bernardi A. Glycomimetic ligands block the interaction of SARS-CoV-2 spike protein with C-type lectin co-receptors. Chem Commun (Camb) 2022; 58:5136-5139. [PMID: 35380569 DOI: 10.1039/d2cc00121g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The C-type lectin receptors DC-SIGN and L-SIGN bind to glycans on the SARS-CoV-2 spike glycoprotein and promote trans-infection of ACE2-expressing cells. We tested C2 triazole-modified mono- and pseudo-di-mannosides as inhibitors of DC/L-SIGN binding to a model mannosylated protein (Man-BSA) and to SARS-CoV2 spike, finding that they inhibit the interaction of both lectins with the spike glycoprotein in a Surface Plasmon Resonance (SPR) assay and are more potent than mannose by up to 36-fold (DC-SIGN) and 10-fold (L-SIGN). The molecules described here are the first known glycomimetic ligands of L-SIGN.
Collapse
Affiliation(s)
- Sara Pollastri
- Università degli Studi di Milano, Dipartimento di Chimica, via Golgi 19, Milano, Italy.
| | - Clara Delaunay
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France.
| | - Michel Thépaut
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France.
| | - Franck Fieschi
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France.
| | - Anna Bernardi
- Università degli Studi di Milano, Dipartimento di Chimica, via Golgi 19, Milano, Italy.
| |
Collapse
|
12
|
Herrera-González I, Thépaut M, Sánchez-Fernández EM, di Maio A, Vivès C, Rojo J, García Fernández JM, Fieschi F, Nieto PM, Ortiz Mellet C. Mannobioside biomimetics that trigger DC-SIGN binding selectivity. Chem Commun (Camb) 2022; 58:12086-12089. [DOI: 10.1039/d2cc04478a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oligosaccharide biomimetics featuring sp2-iminosugar motifs enable selective C-type lectin recognition, as exemplified here for DC-SIGN vs langerin, offering new opportunities for immunomodulation.
Collapse
Affiliation(s)
- Irene Herrera-González
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Profesor García González 1, Seville 41012, Spain
| | - Michel Thépaut
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble 38044, France
| | - Elena M. Sánchez-Fernández
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Profesor García González 1, Seville 41012, Spain
| | - Antonio di Maio
- Instituto de Investigaciones Químicas (IIQ), CSIC – Universidad de Sevilla, Américo Vespucio 49, Sevilla 41092, Spain
| | - Corinne Vivès
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble 38044, France
| | - Javier Rojo
- Instituto de Investigaciones Químicas (IIQ), CSIC – Universidad de Sevilla, Américo Vespucio 49, Sevilla 41092, Spain
| | - José M. García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC – Universidad de Sevilla, Américo Vespucio 49, Sevilla 41092, Spain
| | - Franck Fieschi
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble 38044, France
| | - Pedro M. Nieto
- Instituto de Investigaciones Químicas (IIQ), CSIC – Universidad de Sevilla, Américo Vespucio 49, Sevilla 41092, Spain
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Profesor García González 1, Seville 41012, Spain
| |
Collapse
|
13
|
Richards SJ, Gibson MI. Toward Glycomaterials with Selectivity as Well as Affinity. JACS AU 2021; 1:2089-2099. [PMID: 34984416 PMCID: PMC8717392 DOI: 10.1021/jacsau.1c00352] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Indexed: 05/08/2023]
Abstract
Multivalent glycosylated materials (polymers, surfaces, and particles) often show high affinity toward carbohydrate binding proteins (e.g., lectins) due to the nonlinear enhancement from the cluster glycoside effect. This affinity gain has potential in applications from diagnostics, biosensors, and targeted delivery to anti-infectives and in an understanding of basic glycobiology. This perspective highlights the question of selectivity, which is less often addressed due to the reductionist nature of glycomaterials and the promiscuity of many lectins. The use of macromolecular features, including architecture, heterogeneous ligand display, and the installation of non-natural glycans, to address this challenge is discussed, and examples of selectivity gains are given.
Collapse
Affiliation(s)
| | - Matthew I. Gibson
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- Warwick
Medical School, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
14
|
Cramer J. Medicinal chemistry of the myeloid C-type lectin receptors Mincle, Langerin, and DC-SIGN. RSC Med Chem 2021; 12:1985-2000. [PMID: 35024612 PMCID: PMC8672822 DOI: 10.1039/d1md00238d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/14/2021] [Indexed: 01/07/2023] Open
Abstract
In their role as pattern-recognition receptors on cells of the innate immune system, myeloid C-type lectin receptors (CLRs) assume important biological functions related to immunity, homeostasis, and cancer. As such, this family of receptors represents an appealing target for therapeutic interventions for modulating the outcome of many pathological processes, in particular related to infectious diseases. This review summarizes the current state of research into glycomimetic or drug-like small molecule ligands for the CLRs Mincle, Langerin, and DC-SIGN, which have potential therapeutic applications in vaccine research and anti-infective therapy.
Collapse
Affiliation(s)
- Jonathan Cramer
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University of Düsseldorf Universitätsstr. 1 40225 Düsseldorf Germany
| |
Collapse
|
15
|
Abstract
Carbohydrates are the most abundant and one of the most important biomacromolecules in Nature. Except for energy-related compounds, carbohydrates can be roughly divided into two categories: Carbohydrates as matter and carbohydrates as information. As matter, carbohydrates are abundantly present in the extracellular matrix of animals and cell walls of various plants, bacteria, fungi, etc., serving as scaffolds. Some commonly found polysaccharides are featured as biocompatible materials with controllable rigidity and functionality, forming polymeric biomaterials which are widely used in drug delivery, tissue engineering, etc. As information, carbohydrates are usually referred to the glycans from glycoproteins, glycolipids, and proteoglycans, which bind to proteins or other carbohydrates, thereby meditating the cell-cell and cell-matrix interactions. These glycans could be simplified as synthetic glycopolymers, glycolipids, and glycoproteins, which could be afforded through polymerization, multistep synthesis, or a semisynthetic strategy. The information role of carbohydrates can be demonstrated not only as targeting reagents but also as immune antigens and adjuvants. The latter are also included in this review as they are always in a macromolecular formulation. In this review, we intend to provide a relatively comprehensive summary of carbohydrate-based macromolecular biomaterials since 2010 while emphasizing the fundamental understanding to guide the rational design of biomaterials. Carbohydrate-based macromolecules on the basis of their resources and chemical structures will be discussed, including naturally occurring polysaccharides, naturally derived synthetic polysaccharides, glycopolymers/glycodendrimers, supramolecular glycopolymers, and synthetic glycolipids/glycoproteins. Multiscale structure-function relationships in several major application areas, including delivery systems, tissue engineering, and immunology, will be detailed. We hope this review will provide valuable information for the development of carbohydrate-based macromolecular biomaterials and build a bridge between the carbohydrates as matter and the carbohydrates as information to promote new biomaterial design in the near future.
Collapse
Affiliation(s)
- Lu Su
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven 5600, The Netherlands
| | - Yingle Feng
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Kongchang Wei
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Department of Materials meet Life, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Xuyang Xu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Rongying Liu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200433, China
| |
Collapse
|
16
|
Cramer J, Aliu B, Jiang X, Sharpe T, Pang L, Hadorn A, Rabbani S, Ernst B. Poly-l-lysine Glycoconjugates Inhibit DC-SIGN-mediated Attachment of Pandemic Viruses. ChemMedChem 2021; 16:2345-2353. [PMID: 34061468 DOI: 10.1002/cmdc.202100348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Indexed: 12/27/2022]
Abstract
The C-type lectin receptor DC-SIGN mediates interactions with envelope glycoproteins of many viruses such as SARS-CoV-2, ebola, and HIV and contributes to virus internalization and dissemination. In the context of the recent SARS-CoV-2 pandemic, involvement of DC-SIGN has been linked to severe cases of COVID-19. Inhibition of the interaction between DC-SIGN and viral glycoproteins has the potential to generate broad spectrum antiviral agents. Here, we demonstrate that mannose-functionalized poly-l-lysine glycoconjugates efficiently inhibit the attachment of viral glycoproteins to DC-SIGN-presenting cells with picomolar affinity. Treatment of these cells leads to prolonged receptor internalization and inhibition of virus binding for up to 6 h. Furthermore, the polymers are fully bio-compatible and readily cleared by target cells. The thermodynamic analysis of the multivalent interactions reveals enhanced enthalpy-driven affinities and promising perspectives for the future development of multivalent therapeutics.
Collapse
Affiliation(s)
- Jonathan Cramer
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.,Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University of Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Butrint Aliu
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Xiaohua Jiang
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Timothy Sharpe
- Biophysics Facility, Biocenter of the University of Basel, Klingelbergstrasse 70, 4056, Basel, Switzerland
| | - Lijuan Pang
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Adrian Hadorn
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Said Rabbani
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Beat Ernst
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| |
Collapse
|
17
|
Agrahari AK, Bose P, Jaiswal MK, Rajkhowa S, Singh AS, Hotha S, Mishra N, Tiwari VK. Cu(I)-Catalyzed Click Chemistry in Glycoscience and Their Diverse Applications. Chem Rev 2021; 121:7638-7956. [PMID: 34165284 DOI: 10.1021/acs.chemrev.0c00920] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Copper(I)-catalyzed 1,3-dipolar cycloaddition between organic azides and terminal alkynes, commonly known as CuAAC or click chemistry, has been identified as one of the most successful, versatile, reliable, and modular strategies for the rapid and regioselective construction of 1,4-disubstituted 1,2,3-triazoles as diversely functionalized molecules. Carbohydrates, an integral part of living cells, have several fascinating features, including their structural diversity, biocompatibility, bioavailability, hydrophilicity, and superior ADME properties with minimal toxicity, which support increased demand to explore them as versatile scaffolds for easy access to diverse glycohybrids and well-defined glycoconjugates for complete chemical, biochemical, and pharmacological investigations. This review highlights the successful development of CuAAC or click chemistry in emerging areas of glycoscience, including the synthesis of triazole appended carbohydrate-containing molecular architectures (mainly glycohybrids, glycoconjugates, glycopolymers, glycopeptides, glycoproteins, glycolipids, glycoclusters, and glycodendrimers through regioselective triazole forming modular and bio-orthogonal coupling protocols). It discusses the widespread applications of these glycoproducts as enzyme inhibitors in drug discovery and development, sensing, gelation, chelation, glycosylation, and catalysis. This review also covers the impact of click chemistry and provides future perspectives on its role in various emerging disciplines of science and technology.
Collapse
Affiliation(s)
- Anand K Agrahari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Priyanka Bose
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sanchayita Rajkhowa
- Department of Chemistry, Jorhat Institute of Science and Technology (JIST), Jorhat, Assam 785010, India
| | - Anoop S Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Srinivas Hotha
- Department of Chemistry, Indian Institute of Science and Engineering Research (IISER), Pune, Maharashtra 411021, India
| | - Nidhi Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
18
|
Ramos-Soriano J, Rojo J. Glycodendritic structures as DC-SIGN binders to inhibit viral infections. Chem Commun (Camb) 2021; 57:5111-5126. [PMID: 33977972 DOI: 10.1039/d1cc01281a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
DC-SIGN, a lectin discovered two decades ago, plays a relevant role in innate immunity. Since its discovery, it has turned out to be a target for developing antiviral drugs based on carbohydrates due to its participation in the infection process of several pathogens. A plethora of carbohydrate multivalent systems using different scaffolds have been described to achieve this goal. Our group has made significant contributions to this field, which are revised herein.
Collapse
Affiliation(s)
- Javier Ramos-Soriano
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de La Cartuja, CSIC and Universidad de Sevilla, Américo Vespucio, 49, 41092 Sevilla, Spain.
| | - Javier Rojo
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de La Cartuja, CSIC and Universidad de Sevilla, Américo Vespucio, 49, 41092 Sevilla, Spain.
| |
Collapse
|
19
|
Thépaut M, Luczkowiak J, Vivès C, Labiod N, Bally I, Lasala F, Grimoire Y, Fenel D, Sattin S, Thielens N, Schoehn G, Bernardi A, Delgado R, Fieschi F. DC/L-SIGN recognition of spike glycoprotein promotes SARS-CoV-2 trans-infection and can be inhibited by a glycomimetic antagonist. PLoS Pathog 2021; 17:e1009576. [PMID: 34015061 PMCID: PMC8136665 DOI: 10.1371/journal.ppat.1009576] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/20/2021] [Indexed: 12/26/2022] Open
Abstract
The efficient spread of SARS-CoV-2 resulted in a unique pandemic in modern history. Despite early identification of ACE2 as the receptor for viral spike protein, much remains to be understood about the molecular events behind viral dissemination. We evaluated the contribution of C-type lectin receptors (CLRS) of antigen-presenting cells, widely present in respiratory mucosa and lung tissue. DC-SIGN, L-SIGN, Langerin and MGL bind to diverse glycans of the spike using multiple interaction areas. Using pseudovirus and cells derived from monocytes or T-lymphocytes, we demonstrate that while virus capture by the CLRs examined does not allow direct cell infection, DC/L-SIGN, among these receptors, promote virus transfer to permissive ACE2+ Vero E6 cells. A glycomimetic compound designed against DC-SIGN, enable inhibition of this process. These data have been then confirmed using authentic SARS-CoV-2 virus and human respiratory cell lines. Thus, we described a mechanism potentiating viral spreading of infection.
Collapse
Affiliation(s)
- Michel Thépaut
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Joanna Luczkowiak
- Instituto de Investigación Hospital Universitario 12 de Octubre (imas12), Universidad Complutense School of Medicine, Madrid, Spain
| | - Corinne Vivès
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Nuria Labiod
- Instituto de Investigación Hospital Universitario 12 de Octubre (imas12), Universidad Complutense School of Medicine, Madrid, Spain
| | - Isabelle Bally
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Fátima Lasala
- Instituto de Investigación Hospital Universitario 12 de Octubre (imas12), Universidad Complutense School of Medicine, Madrid, Spain
| | - Yasmina Grimoire
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Daphna Fenel
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Sara Sattin
- Universita`degli Studi di Milano, Dipartimento di Chimica, Milano, Italy
| | - Nicole Thielens
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Guy Schoehn
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Anna Bernardi
- Universita`degli Studi di Milano, Dipartimento di Chimica, Milano, Italy
| | - Rafael Delgado
- Instituto de Investigación Hospital Universitario 12 de Octubre (imas12), Universidad Complutense School of Medicine, Madrid, Spain
| | - Franck Fieschi
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| |
Collapse
|
20
|
Stuart-Walker W, Mahon CS. Glycomacromolecules: Addressing challenges in drug delivery and therapeutic development. Adv Drug Deliv Rev 2021; 171:77-93. [PMID: 33539854 DOI: 10.1016/j.addr.2021.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/15/2021] [Accepted: 01/23/2021] [Indexed: 12/18/2022]
Abstract
Carbohydrate-based materials offer exciting opportunities for drug delivery. They present readily available, biocompatible components for the construction of macromolecular systems which can be loaded with cargo, and can enable targeting of a payload to particular cell types through carbohydrate recognition events established in biological systems. These systems can additionally be engineered to respond to environmental stimuli, enabling triggered release of payload, to encompass multiple modes of therapeutic action, or to simultaneously fulfil a secondary function such as enabling imaging of target tissue. Here, we will explore the use of glycomacromolecules to deliver therapeutic benefits to address key health challenges, and suggest future directions for development of next-generation systems.
Collapse
|
21
|
Palmioli A, Sperandeo P, Bertuzzi S, Polissi A, Airoldi C. On-cell saturation transfer difference NMR for the identification of FimH ligands and inhibitors. Bioorg Chem 2021; 112:104876. [PMID: 33845337 DOI: 10.1016/j.bioorg.2021.104876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/14/2021] [Accepted: 03/25/2021] [Indexed: 12/23/2022]
Abstract
We describe the development of an on-cell NMR method for the rapid screening of FimH ligands and the structural identification of ligand binding epitopes. FimH is a mannose-binding bacterial adhesin expressed at the apical end of type 1 pili of uropathogenic bacterial strains and responsible for their d-mannose sensitive adhesion to host mammalian epithelial cells. Because of these properties, FimH is a key virulence factor and an attractive therapeutic target for urinary tract infection. We prepared synthetic d-mannose decorated dendrimers, we tested their ability to prevent the FimH-mediated yeast agglutination, and thus we used the compounds showing the best inhibitory activity as models of FimH multivalent ligands to set up our NMR methodology. Our experimental protocol, based on on-cell STD NMR techniques, is a suitable tool for the screening and the epitope mapping of FimH ligands aimed at the development of new antiadhesive and diagnostic tools against urinary tract infection pathogens. Notably, the study is carried out in a physiological environment, i.e. at the surface of living pathogen cells expressing FimH.
Collapse
Affiliation(s)
- Alessandro Palmioli
- BioOrg NMR Lab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza, 2, 20126 Milan, Italy.
| | - Paola Sperandeo
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Via Balzaretti, 9/11/13, 20133 Milano, Italy
| | - Sara Bertuzzi
- BioOrg NMR Lab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza, 2, 20126 Milan, Italy; Chemical Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC-bioGUNE), 48160 Derio, Spain
| | - Alessandra Polissi
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Via Balzaretti, 9/11/13, 20133 Milano, Italy
| | - Cristina Airoldi
- BioOrg NMR Lab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza, 2, 20126 Milan, Italy.
| |
Collapse
|
22
|
Shchegravina ES, Sachkova AA, Usova SD, Nyuchev AV, Gracheva YA, Fedorov AY. Carbohydrate Systems in Targeted Drug Delivery: Expectation and Reality. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021010222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Multipodal insulin mimetics built on adamantane or proline scaffolds. Bioorg Chem 2020; 107:104548. [PMID: 33358613 DOI: 10.1016/j.bioorg.2020.104548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/29/2020] [Accepted: 12/07/2020] [Indexed: 12/27/2022]
Abstract
Multi-orthogonal molecular scaffolds can be applied as core structures of bioactive compounds. Here, we prepared four tri-orthogonal scaffolds based on adamantane or proline skeletons. The scaffolds were used for the solid-phase synthesis of model insulin mimetics bearing two different peptides on the scaffolds. We found that adamantane-derived compounds bind to the insulin receptor more effectively (Kd value of 0.5 μM) than proline-derived compounds (Kd values of 15-38 μM) bearing the same peptides. Molecular dynamics simulations suggest that spacers between peptides and central scaffolds can provide greater flexibility that can contribute to increased binding affinity. Molecular modeling showed possible binding modes of mimetics to the insulin receptor. Our data show that the structure of the central scaffold and flexibility of attached peptides in this type of compound are important and that different scaffolds should be considered when designing peptide hormone mimetics.
Collapse
|
24
|
Hevey R. The Role of Fluorine in Glycomimetic Drug Design. Chemistry 2020; 27:2240-2253. [DOI: 10.1002/chem.202003135] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Rachel Hevey
- Department of Pharmaceutical Sciences University of Basel, Pharmazentrum Klingelbergstrasse 50 4056 Basel Switzerland
| |
Collapse
|
25
|
Bachem G, Wamhoff E, Silberreis K, Kim D, Baukmann H, Fuchsberger F, Dernedde J, Rademacher C, Seitz O. Rational Design of a DNA‐Scaffolded High‐Affinity Binder for Langerin. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Gunnar Bachem
- Department of Chemistry Humboldt-Universität zu Berlin 12489 Berlin Germany
| | - Eike‐Christian Wamhoff
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces 14424 Potsdam Germany
| | - Kim Silberreis
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry Charité-Universitätsmedizin Berlin corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health 13353 Berlin Germany
| | - Dongyoon Kim
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces 14424 Potsdam Germany
| | - Hannes Baukmann
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces 14424 Potsdam Germany
| | - Felix Fuchsberger
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces 14424 Potsdam Germany
| | - Jens Dernedde
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry Charité-Universitätsmedizin Berlin corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health 13353 Berlin Germany
| | - Christoph Rademacher
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces 14424 Potsdam Germany
| | - Oliver Seitz
- Department of Chemistry Humboldt-Universität zu Berlin 12489 Berlin Germany
| |
Collapse
|
26
|
Bachem G, Wamhoff E, Silberreis K, Kim D, Baukmann H, Fuchsberger F, Dernedde J, Rademacher C, Seitz O. Rational Design of a DNA-Scaffolded High-Affinity Binder for Langerin. Angew Chem Int Ed Engl 2020; 59:21016-21022. [PMID: 32749019 PMCID: PMC7693190 DOI: 10.1002/anie.202006880] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/24/2020] [Indexed: 11/17/2022]
Abstract
Binders of langerin could target vaccines to Langerhans cells for improved therapeutic effect. Since langerin has low affinity for monovalent glycan ligands, highly multivalent presentation has previously been key for targeting. Aiming to reduce the amount of ligand required, we rationally designed molecularly defined high-affinity binders based on the precise display of glycomimetic ligands (Glc2NTs) on DNA-PNA scaffolds. Rather than mimicking langerin's homotrimeric structure with a C3-symmetric scaffold, we developed readily accessible, easy-to-design bivalent binders. The method considers the requirements for bridging sugar binding sites and statistical rebinding as a means to both strengthen the interactions at single binding sites and amplify the avidity enhancement provided by chelation. This gave a 1150-fold net improvement over the affinity of the free ligand and provided a nanomolar binder (IC50 =300 nM) for specific internalization by langerin-expressing cells.
Collapse
Affiliation(s)
- Gunnar Bachem
- Department of ChemistryHumboldt-Universität zu Berlin12489BerlinGermany
| | - Eike‐Christian Wamhoff
- Department of Biomolecular SystemsMax Planck Institute of Colloids and Interfaces14424PotsdamGermany
| | - Kim Silberreis
- Institute of Laboratory Medicine, Clinical Chemistry and PathobiochemistryCharité-Universitätsmedizin Berlincorporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health13353BerlinGermany
| | - Dongyoon Kim
- Department of Biomolecular SystemsMax Planck Institute of Colloids and Interfaces14424PotsdamGermany
| | - Hannes Baukmann
- Department of Biomolecular SystemsMax Planck Institute of Colloids and Interfaces14424PotsdamGermany
| | - Felix Fuchsberger
- Department of Biomolecular SystemsMax Planck Institute of Colloids and Interfaces14424PotsdamGermany
| | - Jens Dernedde
- Institute of Laboratory Medicine, Clinical Chemistry and PathobiochemistryCharité-Universitätsmedizin Berlincorporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health13353BerlinGermany
| | - Christoph Rademacher
- Department of Biomolecular SystemsMax Planck Institute of Colloids and Interfaces14424PotsdamGermany
| | - Oliver Seitz
- Department of ChemistryHumboldt-Universität zu Berlin12489BerlinGermany
| |
Collapse
|
27
|
Valverde P, Martínez JD, Cañada FJ, Ardá A, Jiménez-Barbero J. Molecular Recognition in C-Type Lectins: The Cases of DC-SIGN, Langerin, MGL, and L-Sectin. Chembiochem 2020; 21:2999-3025. [PMID: 32426893 PMCID: PMC7276794 DOI: 10.1002/cbic.202000238] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/19/2020] [Indexed: 12/16/2022]
Abstract
Carbohydrates play a pivotal role in intercellular communication processes. In particular, glycan antigens are key for sustaining homeostasis, helping leukocytes to distinguish damaged tissues and invading pathogens from healthy tissues. From a structural perspective, this cross-talk is fairly complex, and multiple membrane proteins guide these recognition processes, including lectins and Toll-like receptors. Since the beginning of this century, lectins have become potential targets for therapeutics for controlling and/or avoiding the progression of pathologies derived from an incorrect immune outcome, including infectious processes, cancer, or autoimmune diseases. Therefore, a detailed knowledge of these receptors is mandatory for the development of specific treatments. In this review, we summarize the current knowledge about four key C-type lectins whose importance has been steadily growing in recent years, focusing in particular on how glycan recognition takes place at the molecular level, but also looking at recent progresses in the quest for therapeutics.
Collapse
Affiliation(s)
- Pablo Valverde
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
| | - J Daniel Martínez
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
| | - F Javier Cañada
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Avda Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Ana Ardá
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
- Ikerbasque, Basque Foundation for Science, 48009, Bilbao, Spain
- Department of Organic Chemistry II, Faculty of Science and Technology, UPV-EHU, 48940, Leioa, Spain
| |
Collapse
|
28
|
Multivalency Beats Complexity: A Study on the Cell Uptake of Carbohydrate Functionalized Nanocarriers to Dendritic Cells. Cells 2020; 9:cells9092087. [PMID: 32932639 PMCID: PMC7564404 DOI: 10.3390/cells9092087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/01/2020] [Accepted: 09/09/2020] [Indexed: 11/17/2022] Open
Abstract
Herein, we report the synthesis of carbohydrate and glycodendron structures for dendritic cell targeting, which were subsequently bound to hydroxyethyl starch (HES) nanocapsules prepared by the inverse miniemulsion technique. The uptake of the carbohydrate-functionalized HES nanocapsules into immature human dendritic cells (hDCs) revealed a strong dependence on the used carbohydrate. A multivalent mannose-terminated dendron was found to be far superior in uptake compared to the structurally more complex oligosaccharides used.
Collapse
|
29
|
Affiliation(s)
- Anna Bernardi
- Department of Chemistry; Università degli Studi di Milano; via C. Golgi, 19 20133 Milan Italy
| | - Sara Sattin
- Department of Chemistry; Università degli Studi di Milano; via C. Golgi, 19 20133 Milan Italy
| |
Collapse
|
30
|
Alexandre K, Malatji K, Mulaudzi T. Comparison of the antiviral activity of the microbicide candidate griffithsin and its tandemers derivatives against different modes of HIV-1 transmission. Virology 2020; 544:12-20. [PMID: 32174510 DOI: 10.1016/j.virol.2020.01.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 01/22/2023]
Abstract
Tandemers 2MG, 2MG3, 3MG and 4MG are derivatives of the potent anti-HIV-1 microbicide candidate griffithsin (GRFT). We compared these compounds anti-HIV-1 activity to GRFT using the viruses CAP206.08 and CAAN5342.A2 that have decreased sensitivity to this lectin. The 2MG and 2MG3 tandemers had similar activity to GRFT against cell-free and cell-associated viruses, while 3MG and 4MG were significantly more potent. Furthermore, the restoration of the 234N or 295N glycan in these viruses, known to increase sensitivity to GRFT, also increased sensitivity to 2MG and 2MG3, and not to 3MG and 4MG. In addition, GRFT resistant viruses generated in-vitro were equally resistant to 2MG and 2MG3 while they had considerably low resistance to 3MG and 4MG. Lastly, all five compounds showed increased inhibitory activity in seminal and vaginal simulants although the effect was more pronounced in the former. These data support further studies of tandemers as potential microbicides.
Collapse
Affiliation(s)
- Kabamba Alexandre
- Council for Scientific and Industrial Research, Emerging Research Area Platform, Next Generation Health Cluster, Pretoria, Gauteng, South Africa.
| | - Kanyane Malatji
- Council for Scientific and Industrial Research, Emerging Research Area Platform, Next Generation Health Cluster, Pretoria, Gauteng, South Africa; University of the Witwatersrand, School of Pathology, Johannesburg, South Africa
| | - Takalani Mulaudzi
- Council for Scientific and Industrial Research, Emerging Research Area Platform, Next Generation Health Cluster, Pretoria, Gauteng, South Africa; University of the Witwatersrand, School of Pathology, Johannesburg, South Africa
| |
Collapse
|
31
|
Porkolab V, Pifferi C, Sutkeviciute I, Ordanini S, Taouai M, Thépaut M, Vivès C, Benazza M, Bernardi A, Renaudet O, Fieschi F. Development of C-type lectin-oriented surfaces for high avidity glycoconjugates: towards mimicking multivalent interactions on the cell surface. Org Biomol Chem 2020; 18:4763-4772. [DOI: 10.1039/d0ob00781a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Here we described C-type lectin-oriented surfaces for SPR analysis. They allow the preservation of receptor topology, accessibility of binding sites, better evaluation of high avidity compounds and assessment of multivalent effect at cell surface.
Collapse
|
32
|
Vacchini M, Edwards R, Guizzardi R, Palmioli A, Ciaramelli C, Paiotta A, Airoldi C, La Ferla B, Cipolla L. Glycan Carriers As Glycotools for Medicinal Chemistry Applications. Curr Med Chem 2019; 26:6349-6398. [DOI: 10.2174/0929867326666190104164653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 11/07/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022]
Abstract
Carbohydrates are one of the most powerful and versatile classes of biomolecules that nature
uses to regulate organisms’ biochemistry, modulating plenty of signaling events within cells, triggering
a plethora of physiological and pathological cellular behaviors. In this framework, glycan carrier
systems or carbohydrate-decorated materials constitute interesting and relevant tools for medicinal
chemistry applications. In the last few decades, efforts have been focused, among others, on the development
of multivalent glycoconjugates, biosensors, glycoarrays, carbohydrate-decorated biomaterials
for regenerative medicine, and glyconanoparticles. This review aims to provide the reader with a general
overview of the different carbohydrate carrier systems that have been developed as tools in different
medicinal chemistry approaches relying on carbohydrate-protein interactions. Given the extent of
this topic, the present review will focus on selected examples that highlight the advancements and potentialities
offered by this specific area of research, rather than being an exhaustive literature survey of
any specific glyco-functionalized system.
Collapse
Affiliation(s)
- Mattia Vacchini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Rana Edwards
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Roberto Guizzardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Alessandro Palmioli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Carlotta Ciaramelli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Alice Paiotta
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Cristina Airoldi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Barbara La Ferla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Laura Cipolla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| |
Collapse
|
33
|
Georgiou PG, Baker AN, Richards SJ, Laezza A, Walker M, Gibson MI. "Tuning aggregative versus non-aggregative lectin binding with glycosylated nanoparticles by the nature of the polymer ligand". J Mater Chem B 2019; 8:136-145. [PMID: 31778137 DOI: 10.1039/c9tb02004g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Glycan-lectin interactions drive a diverse range of biological signaling and recognition processes. The display of glycans in multivalent format enables their intrinsically weak binding affinity to lectins to be overcome by the cluster glycoside effect, which results in a non-linear increase in binding affinity. As many lectins have multiple binding sites, upon interaction with glycosylated nanomaterials either aggregation or surface binding without aggregation can occur. Depending on the application area, either one of these responses are desirable (or undesirable) but methods to tune the aggregation state, independently from the overall extent/affinity of binding are currently missing. Herein, we use gold nanoparticles decorated with galactose-terminated polymer ligands, obtained by photo-initiated RAFT polymerization to ensure high end-group fidelity, to show the dramatic impact on agglutination behaviour due to the chemistry of the polymer linker. Poly(N-hydroxyethyl acrylamide) (PHEA)-coated gold nanoparticles, a polymer widely used as a non-ionic stabilizer, showed preference for aggregation with lectins compared to poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA)-coated nanoparticles which retained colloidal stability, across a wide range of polymer lengths and particle core sizes. Using biolayer interferometry, it was observed that both coatings gave rise to similar binding affinity and hence provided conclusive evidence that aggregation rate alone cannot be used to measure affinity between nanoparticle systems with different stabilizing linkers. This is significant, as turbidimetry is widely used to demonstrate glycomaterial activity, although this work shows the most aggregating may not be the most avid, when comparing different polymer backbones/coating. Overall, our findings underline the potential of PHPMA as the coating of choice for applications where aggregation upon lectin binding would be problematic, such as in vivo imaging or drug delivery.
Collapse
Affiliation(s)
- Panagiotis G Georgiou
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK.
| | - Alexander N Baker
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK.
| | - Sarah-Jane Richards
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK.
| | - Antonio Laezza
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK.
| | - Marc Walker
- Department of Physics, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK
| | - Matthew I Gibson
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK. and Warwick Medical School, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK
| |
Collapse
|
34
|
Medve L, Achilli S, Guzman‐Caldentey J, Thépaut M, Senaldi L, Le Roy A, Sattin S, Ebel C, Vivès C, Martin‐Santamaria S, Bernardi A, Fieschi F. Enhancing Potency and Selectivity of a DC-SIGN Glycomimetic Ligand by Fragment-Based Design: Structural Basis. Chemistry 2019; 25:14659-14668. [PMID: 31469191 PMCID: PMC6899773 DOI: 10.1002/chem.201903391] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/28/2019] [Indexed: 12/22/2022]
Abstract
Chemical modification of pseudo-dimannoside ligands guided by fragment-based design allowed for the exploitation of an ammonium-binding region in the vicinity of the mannose-binding site of DC-SIGN, leading to the synthesis of a glycomimetic antagonist (compound 16) of unprecedented affinity and selectivity against the related lectin langerin. Here, the computational design of pseudo-dimannoside derivatives as DC-SIGN ligands, their synthesis, their evaluation as DC-SIGN selective antagonists, the biophysical characterization of the DC-SIGN/16 complex, and the structural basis for the ligand activity are presented. On the way to the characterization of this ligand, an unusual bridging interaction within the crystals shed light on the plasticity and potential secondary binding sites within the DC-SIGN carbohydrate recognition domain.
Collapse
Affiliation(s)
- Laura Medve
- Dipartimento di ChimicaUniversità degli Studi di Milanovia Golgi 1920133MilanoItaly
| | - Silvia Achilli
- Université Grenoble AlpesCNRS, CEAInstitut de Biologie Structurale38044GrenobleFrance
| | - Joan Guzman‐Caldentey
- Department of Structural and Chemical Biology, Centro de Investigaciones BiologicasCIB-CSICC/Ramiro de Maeztu, 928040MadridSpain
| | - Michel Thépaut
- Université Grenoble AlpesCNRS, CEAInstitut de Biologie Structurale38044GrenobleFrance
| | - Luca Senaldi
- Dipartimento di ChimicaUniversità degli Studi di Milanovia Golgi 1920133MilanoItaly
| | - Aline Le Roy
- Université Grenoble AlpesCNRS, CEAInstitut de Biologie Structurale38044GrenobleFrance
| | - Sara Sattin
- Dipartimento di ChimicaUniversità degli Studi di Milanovia Golgi 1920133MilanoItaly
| | - Christine Ebel
- Université Grenoble AlpesCNRS, CEAInstitut de Biologie Structurale38044GrenobleFrance
| | - Corinne Vivès
- Université Grenoble AlpesCNRS, CEAInstitut de Biologie Structurale38044GrenobleFrance
| | - Sonsoles Martin‐Santamaria
- Department of Structural and Chemical Biology, Centro de Investigaciones BiologicasCIB-CSICC/Ramiro de Maeztu, 928040MadridSpain
| | - Anna Bernardi
- Dipartimento di ChimicaUniversità degli Studi di Milanovia Golgi 1920133MilanoItaly
| | - Franck Fieschi
- Université Grenoble AlpesCNRS, CEAInstitut de Biologie Structurale38044GrenobleFrance
| |
Collapse
|
35
|
Ordanini S, Celentano W, Bernardi A, Cellesi F. Mannosylated brush copolymers based on poly(ethylene glycol) and poly(ε-caprolactone) as multivalent lectin-binding nanomaterials. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:2192-2206. [PMID: 31807405 PMCID: PMC6880840 DOI: 10.3762/bjnano.10.212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
A class of linear and four-arm mannosylated brush copolymers based on poly(ethylene glycol) and poly(ε-caprolactone) is presented here. The synthesis through ring-opening and atom transfer radical polymerizations provided high control over molecular weight and functionality. A post-polymerization azide-alkyne cycloaddition allowed for the formation of glycopolymers with different mannose valencies (1, 2, 4, and 8). In aqueous media, these macromolecules formed nanoparticles that were able to bind lectins, as investigated by concanavalin A binding assay. The results indicate that carbohydrate-lectin interactions can be tuned by the macromolecular architecture and functionality, hence the importance of these macromolecular properties in the design of targeted anti-pathogenic nanomaterials.
Collapse
Affiliation(s)
- Stefania Ordanini
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| | - Wanda Celentano
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
- Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milano 20089, Italy
| | - Anna Bernardi
- Department of Chemistry, Università degli Studi di Milano, via Golgi 19, Milano 20133, Italy
| | - Francesco Cellesi
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, via Mancinelli 7, Milano 20131, Italy
| |
Collapse
|
36
|
Li RJE, Hogervorst TP, Achilli S, Bruijns SC, Arnoldus T, Vivès C, Wong CC, Thépaut M, Meeuwenoord NJ, van den Elst H, Overkleeft HS, van der Marel GA, Filippov DV, van Vliet SJ, Fieschi F, Codée JDC, van Kooyk Y. Systematic Dual Targeting of Dendritic Cell C-Type Lectin Receptor DC-SIGN and TLR7 Using a Trifunctional Mannosylated Antigen. Front Chem 2019; 7:650. [PMID: 31637232 PMCID: PMC6787163 DOI: 10.3389/fchem.2019.00650] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/11/2019] [Indexed: 01/22/2023] Open
Abstract
Dendritic cells (DCs) are important initiators of adaptive immunity, and they possess a multitude of Pattern Recognition Receptors (PRR) to generate an adequate T cell mediated immunity against invading pathogens. PRR ligands are frequently conjugated to tumor-associated antigens in a vaccination strategy to enhance the immune response toward such antigens. One of these PPRs, DC-SIGN, a member of the C-type lectin receptor (CLR) family, has been extensively targeted with Lewis structures and mannose glycans, often presented in multivalent fashion. We synthesized a library of well-defined mannosides (mono-, di-, and tri-mannosides), based on known "high mannose" structures, that we presented in a systematically increasing number of copies (n = 1, 2, 3, or 6), allowing us to simultaneously study the effect of mannoside configuration and multivalency on DC-SIGN binding via Surface Plasmon Resonance (SPR) and flow cytometry. Hexavalent presentation of the clusters showed the highest binding affinity, with the hexa-α1,2-di-mannoside being the most potent ligand. The four highest binding hexavalent mannoside structures were conjugated to a model melanoma gp100-peptide antigen and further equipped with a Toll-like receptor 7 (TLR7)-agonist as adjuvant for DC maturation, creating a trifunctional vaccine conjugate. Interestingly, DC-SIGN affinity of the mannoside clusters did not directly correlate with antigen presentation enhancing properties and the α1,2-di-mannoside cluster with the highest binding affinity in our library even hampered T cell activation. Overall, this systematic study has demonstrated that multivalent glycan presentation can improve DC-SIGN binding but enhanced binding cannot be directly translated into enhanced antigen presentation and the sole assessment of binding affinity is thus insufficient to determine further functional biological activity. Furthermore, we show that well-defined antigen conjugates combining two different PRR ligands can be generated in a modular fashion to increase the effectiveness of vaccine constructs.
Collapse
Affiliation(s)
- Rui-Jun Eveline Li
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam Universitair Medische Centra, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Tim P. Hogervorst
- Department of Bio-organic Synthesis, Faculty of Science, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Silvia Achilli
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Sven C. Bruijns
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam Universitair Medische Centra, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Tim Arnoldus
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam Universitair Medische Centra, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Corinne Vivès
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Chung C. Wong
- Department of Bio-organic Synthesis, Faculty of Science, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Michel Thépaut
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Nico J. Meeuwenoord
- Department of Bio-organic Synthesis, Faculty of Science, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Hans van den Elst
- Department of Bio-organic Synthesis, Faculty of Science, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Herman S. Overkleeft
- Department of Bio-organic Synthesis, Faculty of Science, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Gijs A. van der Marel
- Department of Bio-organic Synthesis, Faculty of Science, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Dmitri V. Filippov
- Department of Bio-organic Synthesis, Faculty of Science, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Sandra J. van Vliet
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam Universitair Medische Centra, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Franck Fieschi
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Jeroen D. C. Codée
- Department of Bio-organic Synthesis, Faculty of Science, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam Universitair Medische Centra, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
37
|
Valverde P, Ardá A, Reichardt NC, Jiménez-Barbero J, Gimeno A. Glycans in drug discovery. MEDCHEMCOMM 2019; 10:1678-1691. [PMID: 31814952 PMCID: PMC6839814 DOI: 10.1039/c9md00292h] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/10/2019] [Indexed: 02/06/2023]
Abstract
Glycans are key players in many biological processes. They are essential for protein folding and stability and act as recognition elements in cell-cell and cell-matrix interactions. Thus, being at the heart of medically relevant biological processes, glycans have come onto the scene and are considered hot spots for biomedical intervention. The progress in biophysical techniques allowing access to an increasing molecular and structural understanding of these processes has led to the development of effective therapeutics. Indeed, strategies aimed at designing glycomimetics able to block specific lectin-carbohydrate interactions, carbohydrate-based vaccines mimicking self- and non-self-antigens as well as the exploitation of the therapeutic potential of glycosylated antibodies are being pursued. In this mini-review the most prominent contributions concerning recurrent diseases are highlighted, including bacterial and viral infections, cancer or immune-related pathologies, which certainly show the great promise of carbohydrates in drug discovery.
Collapse
Affiliation(s)
- Pablo Valverde
- CIC bioGUNE , Bizkaia Technology Park, Building 800 , 48162 Derio , Bizkaia , Spain .
| | - Ana Ardá
- CIC bioGUNE , Bizkaia Technology Park, Building 800 , 48162 Derio , Bizkaia , Spain .
| | | | - Jesús Jiménez-Barbero
- CIC bioGUNE , Bizkaia Technology Park, Building 800 , 48162 Derio , Bizkaia , Spain .
- Ikerbasque , Basque Foundation for Science , 48013 Bilbao , Bizkaia , Spain
- Department of Organic Chemistry II , University of the Basque Country , UPV/EHU , 48940 Leioa , Bizkaia , Spain
| | - Ana Gimeno
- CIC bioGUNE , Bizkaia Technology Park, Building 800 , 48162 Derio , Bizkaia , Spain .
| |
Collapse
|
38
|
Palmioli A, Sperandeo P, Polissi A, Airoldi C. Targeting Bacterial Biofilm: A New LecA Multivalent Ligand with Inhibitory Activity. Chembiochem 2019; 20:2911-2915. [DOI: 10.1002/cbic.201900383] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Alessandro Palmioli
- Department of Biotechnology and BiosciencesUniversity of Milano–Bicocca Piazza della Scienza 2 20126 Milano Italy
| | - Paola Sperandeo
- Department of Pharmacological and Biomolecular SciencesUniversity of Milano Via Balzaretti, 9/11/13 20133 Milano Italy
| | - Alessandra Polissi
- Department of Pharmacological and Biomolecular SciencesUniversity of Milano Via Balzaretti, 9/11/13 20133 Milano Italy
| | - Cristina Airoldi
- Department of Biotechnology and BiosciencesUniversity of Milano–Bicocca Piazza della Scienza 2 20126 Milano Italy
| |
Collapse
|
39
|
Abstract
Multivalent protein-protein interactions serve central roles in many essential biological processes, ranging from cell signaling and adhesion to pathogen recognition. Uncovering the rules that govern these intricate interactions is important not only to basic biology and chemistry but also to the applied sciences where researchers are interested in developing molecules to promote or inhibit these interactions. Here we report the synthesis and application of atomically precise inorganic cluster nanomolecules consisting of an inorganic core and a covalently linked densely packed layer of saccharides. These hybrid agents are stable under biologically relevant conditions and exhibit multivalent binding capabilities, which enable us to study the complex interactions between glycosylated structures and a dendritic cell lectin receptor. Importantly, we find that subtle changes in the molecular structure lead to significant differences in the nanomolecule's protein-binding properties. Furthermore, we demonstrate an example of using these hybrid nanomolecules to effectively inhibit protein-protein interactions in a human cell line. Ultimately, this work reveals an intricate interplay between the structural design of multivalent agents and their biological activities toward protein surfaces.
Collapse
|
40
|
Hevey R. Bioisosteres of Carbohydrate Functional Groups in Glycomimetic Design. Biomimetics (Basel) 2019; 4:E53. [PMID: 31357673 PMCID: PMC6784292 DOI: 10.3390/biomimetics4030053] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 02/07/2023] Open
Abstract
The aberrant presentation of carbohydrates has been linked to a number of diseases, such as cancer metastasis and immune dysregulation. These altered glycan structures represent a target for novel therapies by modulating their associated interactions with neighboring cells and molecules. Although these interactions are highly specific, native carbohydrates are characterized by very low affinities and inherently poor pharmacokinetic properties. Glycomimetic compounds, which mimic the structure and function of native glycans, have been successful in producing molecules with improved pharmacokinetic (PK) and pharmacodynamic (PD) features. Several strategies have been developed for glycomimetic design such as ligand pre-organization or reducing polar surface area. A related approach to developing glycomimetics relies on the bioisosteric replacement of carbohydrate functional groups. These changes can offer improvements to both binding affinity (e.g., reduced desolvation costs, enhanced metal chelation) and pharmacokinetic parameters (e.g., improved oral bioavailability). Several examples of bioisosteric modifications to carbohydrates have been reported; this review aims to consolidate them and presents different possibilities for enhancing core interactions in glycomimetics.
Collapse
Affiliation(s)
- Rachel Hevey
- Molecular Pharmacy, Department Pharmaceutical Sciences, University of Basel, Klingelbergstr. 50, 4056 Basel, Switzerland.
| |
Collapse
|
41
|
Strategies for the Development of Glycomimetic Drug Candidates. Pharmaceuticals (Basel) 2019; 12:ph12020055. [PMID: 30978966 PMCID: PMC6631974 DOI: 10.3390/ph12020055] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 02/06/2023] Open
Abstract
Carbohydrates are a structurally-diverse group of natural products which play an important role in numerous biological processes, including immune regulation, infection, and cancer metastasis. Many diseases have been correlated with changes in the composition of cell-surface glycans, highlighting their potential as a therapeutic target. Unfortunately, native carbohydrates suffer from inherently weak binding affinities and poor pharmacokinetic properties. To enhance their usefulness as drug candidates, 'glycomimetics' have been developed: more drug-like compounds which mimic the structure and function of native carbohydrates. Approaches to improve binding affinities (e.g., deoxygenation, pre-organization) and pharmacokinetic properties (e.g., limiting metabolic degradation, improving permeability) have been highlighted in this review, accompanied by relevant examples. By utilizing these strategies, high-affinity ligands with optimized properties can be rationally designed and used to address therapies for novel carbohydrate-binding targets.
Collapse
|
42
|
Taouai M, Porkolab V, Chakroun K, Cheneau C, Luczkowiak J, Abidi R, Lesur D, Cragg PJ, Halary F, Delgado R, Fieschi F, Benazza M. Unprecedented Thiacalixarene Fucoclusters as Strong Inhibitors of Ebola cis-Cell Infection and HCMV-gB Glycoprotein/DC-SIGN C-type Lectin Interaction. Bioconjug Chem 2019; 30:1114-1126. [DOI: 10.1021/acs.bioconjchem.9b00066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Marwa Taouai
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS), Université de Picardie Jules Verne, 10 Rue Baudelocque, 80039, Amiens, France
- Faculté des Sciences de Bizerte, Laboratoire d’Application de la Chimie aux Ressources et Substances Naturelles et à l’Environnement (LACReSNE) Unité “Interactions Moléculaires Spécifiques”, Université de Carthage, Zarzouna-Bizerte, TN 7021, Tunisia
| | - Vanessa Porkolab
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38044 Grenoble, France
| | - Khouloud Chakroun
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS), Université de Picardie Jules Verne, 10 Rue Baudelocque, 80039, Amiens, France
- Faculté des Sciences de Bizerte, Laboratoire d’Application de la Chimie aux Ressources et Substances Naturelles et à l’Environnement (LACReSNE) Unité “Interactions Moléculaires Spécifiques”, Université de Carthage, Zarzouna-Bizerte, TN 7021, Tunisia
| | - Coraline Cheneau
- Centre de Recherche
en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, 44093 Nantes, France
| | - Joanna Luczkowiak
- Laboratorio de Microbiología Molecular, Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid 28041, Spain
| | - Rym Abidi
- Faculté des Sciences de Bizerte, Laboratoire d’Application de la Chimie aux Ressources et Substances Naturelles et à l’Environnement (LACReSNE) Unité “Interactions Moléculaires Spécifiques”, Université de Carthage, Zarzouna-Bizerte, TN 7021, Tunisia
| | - David Lesur
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS), Université de Picardie Jules Verne, 10 Rue Baudelocque, 80039, Amiens, France
| | - Peter J. Cragg
- School of Pharmacy and Biomolecular Science, University of Brighton, Brighton BN2 4GJ, United Kingdom
| | - Franck Halary
- Centre de Recherche
en Transplantation et Immunologie (CRTI), UMR 1064, Inserm, Université de Nantes, 44093 Nantes, France
- Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, 44093 Nantes, France
| | - Rafael Delgado
- Laboratorio de Microbiología Molecular, Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid 28041, Spain
| | - Franck Fieschi
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38044 Grenoble, France
| | - Mohammed Benazza
- Laboratoire de Glycochimie des Antimicrobiens et des Agroressources (LG2A-UMR7378-CNRS), Université de Picardie Jules Verne, 10 Rue Baudelocque, 80039, Amiens, France
| |
Collapse
|
43
|
Brissonnet Y, Assailly C, Saumonneau A, Bouckaert J, Maillasson M, Petitot C, Roubinet B, Didak B, Landemarre L, Bridot C, Blossey R, Deniaud D, Yan X, Bernard J, Tellier C, Grandjean C, Daligault F, Gouin SG. Multivalent Thiosialosides and Their Synergistic Interaction with Pathogenic Sialidases. Chemistry 2019; 25:2358-2365. [DOI: 10.1002/chem.201805790] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/03/2018] [Indexed: 01/18/2023]
Affiliation(s)
- Yoan Brissonnet
- CEISAM, Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation; UMR CNRS 6230; UFR des Sciences et des Techniques; Université de Nantes; 2 rue de la Houssinière, BP 92208 44322 Nantes Cedex 3 France
| | - Coralie Assailly
- CEISAM, Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation; UMR CNRS 6230; UFR des Sciences et des Techniques; Université de Nantes; 2 rue de la Houssinière, BP 92208 44322 Nantes Cedex 3 France
| | - Amélie Saumonneau
- UFR des Sciences et des Techniques; Université de Nantes, UFIP, UMR CNRS 6286; 2 rue de la Houssinière, BP 92208 44322 Nantes Cedex 3 France
| | - Julie Bouckaert
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), UMR8576 CNRS; Université de Lille 1; Lille 59000 France
| | - Mike Maillasson
- Impact biogeneouest; CRCINA; Inserm; CNRS; Université de Nantes; Nantes France
| | - Clémence Petitot
- UFR des Sciences et des Techniques; Université de Nantes, UFIP, UMR CNRS 6286; 2 rue de la Houssinière, BP 92208 44322 Nantes Cedex 3 France
| | - Benoit Roubinet
- Bâtiment Physique-Chimie; Glycodiag; Rue de Chartres, BP6759 45067 Orléans cedex 2 France
| | - Blanka Didak
- Bâtiment Physique-Chimie; Glycodiag; Rue de Chartres, BP6759 45067 Orléans cedex 2 France
| | - Ludovic Landemarre
- Bâtiment Physique-Chimie; Glycodiag; Rue de Chartres, BP6759 45067 Orléans cedex 2 France
| | - Clarisse Bridot
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), UMR8576 CNRS; Université de Lille 1; Lille 59000 France
| | - Ralf Blossey
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), UMR8576 CNRS; Université de Lille 1; Lille 59000 France
| | - David Deniaud
- CEISAM, Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation; UMR CNRS 6230; UFR des Sciences et des Techniques; Université de Nantes; 2 rue de la Houssinière, BP 92208 44322 Nantes Cedex 3 France
| | - Xibo Yan
- Université de Lyon, Lyon; 69003 (France), INSA- Lyon, IMP, Villeurbanne, 69621, France, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Villeurbanne, 69621 France
| | - Julien Bernard
- Université de Lyon, Lyon; 69003 (France), INSA- Lyon, IMP, Villeurbanne, 69621, France, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Villeurbanne, 69621 France
| | - Charles Tellier
- UFR des Sciences et des Techniques; Université de Nantes, UFIP, UMR CNRS 6286; 2 rue de la Houssinière, BP 92208 44322 Nantes Cedex 3 France
| | - Cyrille Grandjean
- UFR des Sciences et des Techniques; Université de Nantes, UFIP, UMR CNRS 6286; 2 rue de la Houssinière, BP 92208 44322 Nantes Cedex 3 France
| | - Franck Daligault
- UFR des Sciences et des Techniques; Université de Nantes, UFIP, UMR CNRS 6286; 2 rue de la Houssinière, BP 92208 44322 Nantes Cedex 3 France
| | - Sébastien G. Gouin
- CEISAM, Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation; UMR CNRS 6230; UFR des Sciences et des Techniques; Université de Nantes; 2 rue de la Houssinière, BP 92208 44322 Nantes Cedex 3 France
| |
Collapse
|
44
|
Wen HC, Lin CH, Huang JS, Tsai CL, Chen TF, Wang SK. Selective targeting of DC-SIGN by controlling the oligomannose pattern on a polyproline tetra-helix macrocycle scaffold. Chem Commun (Camb) 2019; 55:9124-9127. [PMID: 31298664 DOI: 10.1039/c9cc03124c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
DC-SIGN and langerin receptors both bind to oligomannose but lead to opposite effects upon encountering HIV. Because selective targeting of DC-SIGN can lead to anti-viral effects, we developed a glycoconjugate, which provides over 4800-fold selectivity for DC-SIGN over langerin, by controlling the oligomannose pattern on a polyproline tetra-helix macrocycle scaffold.
Collapse
Affiliation(s)
- Hsin-Chuan Wen
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | | | | | | | | | | |
Collapse
|
45
|
Wilkins L, Badi N, Du Prez F, Gibson MI. Double-Modified Glycopolymers from Thiolactones to Modulate Lectin Selectivity and Affinity. ACS Macro Lett 2018; 7:1498-1502. [PMID: 30662815 PMCID: PMC6326524 DOI: 10.1021/acsmacrolett.8b00825] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/03/2018] [Indexed: 12/15/2022]
Abstract
Multivalent glycomaterials show high affinity toward lectins but are often nonselective as they lack the precise 3-D presentation found in native glycans. Here, thiolactone chemistry is exploited to enable the synthesis of glycopolymers with both a primary binding (galactose) and a variable secondary binding unit in close proximity to each other on the linker. These polymers are used to target the Cholera toxin B subunit, CTxB, inspired by its native branched glycan target, GM-1. The secondary, nonbinding unit was shown to dramatically modulate affinity and selectivity toward the Cholera toxin. These increasingly complex glycopolymers, assembled using accessible chemistry, can help breach the synthetic/biological divide to obtain future glycomimetics.
Collapse
Affiliation(s)
- Laura
E. Wilkins
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Nezha Badi
- Polymer
Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC),
Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-bis, Ghent B-9000, Belgium
| | - Filip Du Prez
- Polymer
Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC),
Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-bis, Ghent B-9000, Belgium
| | - Matthew I. Gibson
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- Warwick
Medical School, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
46
|
Lehot V, Brissonnet Y, Dussouy C, Brument S, Cabanettes A, Gillon E, Deniaud D, Varrot A, Le Pape P, Gouin SG. Multivalent Fucosides with Nanomolar Affinity for the
Aspergillus fumigatus
Lectin FleA Prevent Spore Adhesion to Pneumocytes. Chemistry 2018; 24:19243-19249. [DOI: 10.1002/chem.201803602] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Victor Lehot
- LUNAM UniversitéCEISAMUMR CNRS 6230UFR des Sciences et des Techniques 2 rue de la Houssinière, BP 92208 44322 Nantes Cedex 3 France
| | - Yoan Brissonnet
- LUNAM UniversitéCEISAMUMR CNRS 6230UFR des Sciences et des Techniques 2 rue de la Houssinière, BP 92208 44322 Nantes Cedex 3 France
| | - Christophe Dussouy
- LUNAM UniversitéCEISAMUMR CNRS 6230UFR des Sciences et des Techniques 2 rue de la Houssinière, BP 92208 44322 Nantes Cedex 3 France
| | - Sami Brument
- LUNAM UniversitéCEISAMUMR CNRS 6230UFR des Sciences et des Techniques 2 rue de la Houssinière, BP 92208 44322 Nantes Cedex 3 France
| | | | - Emilie Gillon
- Univ. Grenoble ALpesCNRS, CERMAV 38000 Grenoble France
| | - David Deniaud
- LUNAM UniversitéCEISAMUMR CNRS 6230UFR des Sciences et des Techniques 2 rue de la Houssinière, BP 92208 44322 Nantes Cedex 3 France
| | | | - Patrice Le Pape
- Laboratoire de Parasitologie-MycologieInstitut de Biologie, CHU Nantes Nantes France
| | - Sébastien G. Gouin
- LUNAM UniversitéCEISAMUMR CNRS 6230UFR des Sciences et des Techniques 2 rue de la Houssinière, BP 92208 44322 Nantes Cedex 3 France
| |
Collapse
|
47
|
Medve L, Achilli S, Serna S, Zuccotto F, Varga N, Thépaut M, Civera M, Vivès C, Fieschi F, Reichardt N, Bernardi A. On-Chip Screening of a Glycomimetic Library with C-Type Lectins Reveals Structural Features Responsible for Preferential Binding of Dectin-2 over DC-SIGN/R and Langerin. Chemistry 2018; 24:14448-14460. [PMID: 29975429 PMCID: PMC6220942 DOI: 10.1002/chem.201802577] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/03/2018] [Indexed: 12/11/2022]
Abstract
A library of mannose‐ and fucose‐based glycomimetics was synthesized and screened in a microarray format against a set of C‐type lectin receptors (CLRs) that included DC‐SIGN, DC‐SIGNR, langerin, and dectin‐2. Glycomimetic ligands able to interact with dectin‐2 were identified for the first time. Comparative analysis of binding profiles allowed their selectivity against other CLRs to be probed.
Collapse
Affiliation(s)
- Laura Medve
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133, Milano, Italy
| | - Silvia Achilli
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, 38000, Grenoble, France
| | - Sonia Serna
- Glycotechnology laboratory, CIC biomaGUNE, Paseo Miramón 182, 20014, Donostia-San Sebastián, Spain
| | | | - Norbert Varga
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133, Milano, Italy
| | - Michel Thépaut
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, 38000, Grenoble, France
| | - Monica Civera
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133, Milano, Italy
| | - Corinne Vivès
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, 38000, Grenoble, France
| | - Franck Fieschi
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, 38000, Grenoble, France
| | - Niels Reichardt
- Glycotechnology laboratory, CIC biomaGUNE, Paseo Miramón 182, 20014, Donostia-San Sebastián, Spain.,CIBER-BBN, 20014, Donostia-San Sebastián, Spain
| | - Anna Bernardi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133, Milano, Italy
| |
Collapse
|
48
|
Ng S, Bennett NJ, Schulze J, Gao N, Rademacher C, Derda R. Genetically-encoded fragment-based discovery of glycopeptide ligands for DC-SIGN. Bioorg Med Chem 2018; 26:5368-5377. [PMID: 30344001 DOI: 10.1016/j.bmc.2018.08.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/18/2018] [Accepted: 08/27/2018] [Indexed: 11/19/2022]
Abstract
We have employed genetically-encoded fragment-based discovery to identify novel glycopeptides with affinity for the dendritic cell receptor DC-SIGN. Starting from libraries of 108 mannose-conjugated peptides, we identified glycopeptides that exhibited up to a 650-fold increase in multivalent binding affinity for DC-SIGN, which is also preserved in cells. Monovalently, our most potent glycopeptides have a similar potency to a Man3 oligosaccharide, representing a 15-fold increase in activity compared to mannose. These compounds represent the first examples of glycopeptide ligands that target the CRD of DC-SIGN. The natural framework of glycopeptide conjugates and the simplicity of orthogonal conjugation to make these glycopeptides anticipates a promising future for development of DC-SIGN-targeting moieties.
Collapse
Affiliation(s)
- Simon Ng
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | | | - Jessica Schulze
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam 14424, Germany
| | - Nan Gao
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Christoph Rademacher
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam 14424, Germany
| | - Ratmir Derda
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada.
| |
Collapse
|
49
|
López Rivas P, Ranđelović I, Raposo Moreira Dias A, Pina A, Arosio D, Tóvári J, Mező G, Dal Corso A, Pignataro L, Gennari C. Synthesis and Biological Evaluation of Paclitaxel Conjugates Involving Linkers Cleavable by Lysosomal Enzymes and αV
β3
-Integrin Ligands for Tumor Targeting. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800447] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Paula López Rivas
- Dipartimento di Chimica; Università degli Studi di Milano; Via C. Golgi, 19 20133 Milan Italy
| | - Ivan Ranđelović
- Department of Experimental Pharmacology; National Institute of Oncology; Ráth György u. 7-9. 1122 Budapest Hungary
| | | | - Arianna Pina
- Dipartimento di Chimica; Università degli Studi di Milano; Via C. Golgi, 19 20133 Milan Italy
| | - Daniela Arosio
- CNR; Istituto di Scienze e Tecnologie Molecolari (ISTM); Via C. Golgi, 19 20133 Milan Italy
| | - József Tóvári
- Department of Experimental Pharmacology; National Institute of Oncology; Ráth György u. 7-9. 1122 Budapest Hungary
| | - Gábor Mező
- Faculty of Science; Institute of Chemistry; Eötvös Loránd University; Pázmány Péter st. 1/A 1117 Budapest Hungary
| | - Alberto Dal Corso
- Dipartimento di Chimica; Università degli Studi di Milano; Via C. Golgi, 19 20133 Milan Italy
| | - Luca Pignataro
- Dipartimento di Chimica; Università degli Studi di Milano; Via C. Golgi, 19 20133 Milan Italy
| | - Cesare Gennari
- Dipartimento di Chimica; Università degli Studi di Milano; Via C. Golgi, 19 20133 Milan Italy
- CNR; Istituto di Scienze e Tecnologie Molecolari (ISTM); Via C. Golgi, 19 20133 Milan Italy
| |
Collapse
|
50
|
Porkolab V, Chabrol E, Varga N, Ordanini S, Sutkevičiu̅tė I, Thépaut M, García-Jiménez MJ, Girard E, Nieto PM, Bernardi A, Fieschi F. Rational-Differential Design of Highly Specific Glycomimetic Ligands: Targeting DC-SIGN and Excluding Langerin Recognition. ACS Chem Biol 2018; 13:600-608. [PMID: 29272097 DOI: 10.1021/acschembio.7b00958] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
At the surface of dendritic cells, C-type lectin receptors (CLRs) allow the recognition of carbohydrate-based PAMPS or DAMPS (pathogen- or danger-associated molecular patterns, respectively) and promote immune response regulation. However, some CLRs are hijacked by viral and bacterial pathogens. Thus, the design of ligands able to target specifically one CLR, to either modulate an immune response or to inhibit a given infection mechanism, has great potential value in therapeutic design. A case study is the selective blocking of DC-SIGN, involved notably in HIV trans-infection of T lymphocytes, without interfering with langerin-mediated HIV clearance. This is a challenging task due to their overlapping carbohydrate specificity. Toward the rational design of DC-SIGN selective ligands, we performed a comparative affinity study between DC-SIGN and langerin with natural ligands. We found that GlcNAc is recognized by both CLRs; however, selective sulfation are shown to increase the selectivity in favor of langerin. With the combination of site-directed mutagenesis and X-ray structural analysis of the langerin/GlcNS6S complex, we highlighted that 6-sulfation of the carbohydrate ligand induced langerin specificity. Additionally, the K313 residue from langerin was identified as a critical feature of its binding site. Using a rational and a differential approach in the study of CLR binding sites, we designed, synthesized, and characterized a new glycomimetic, which is highly specific for DC-SIGN vs langerin. STD NMR, SPR, and ITC characterizations show that compound 7 conserved the overall binding mode of the natural disaccharide while possessing an improved affinity and a strict specificity for DC-SIGN.
Collapse
Affiliation(s)
- Vanessa Porkolab
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Eric Chabrol
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Norbert Varga
- Università degli Studi di Milano (UniMI), Dip. Chimica, via Golgi 19, 20133, Milano, Italy
| | - Stefania Ordanini
- Università degli Studi di Milano (UniMI), Dip. Chimica, via Golgi 19, 20133, Milano, Italy
| | - Ieva Sutkevičiu̅tė
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Michel Thépaut
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Maria José García-Jiménez
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de La Cartuja, CSIC and Universidad de Sevilla, Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Eric Girard
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Pedro M. Nieto
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de La Cartuja, CSIC and Universidad de Sevilla, Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Anna Bernardi
- Università degli Studi di Milano (UniMI), Dip. Chimica, via Golgi 19, 20133, Milano, Italy
| | - Franck Fieschi
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, F-38044 Grenoble, France
| |
Collapse
|