1
|
Xu W, Jian D, Yang H, Wang W, Ding Y. Aggregation-induced emission: Application in diagnosis and therapy of hepatocellular carcinoma. Biosens Bioelectron 2024; 266:116722. [PMID: 39232431 DOI: 10.1016/j.bios.2024.116722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Hepatocellular carcinoma (HCC) is a serious health issue due to its low early diagnosis rate, resistance to chemotherapy, and poor five-year survival rate. Therefore, it is crucial to explore novel diagnostic and therapeutic approaches tailored to the characteristics of HCC. Aggregation-induced emission (AIE) is a phenomenon where the luminescence of certain molecules, typically non-luminescent or weakly luminescent in solution, is significantly enhanced upon aggregation. AIE has been extensively applied in bioimaging, biosensors, and therapy. Fluorophore materials based on AIE (AIEgens) have a wide range of application scenarios and potential for clinical translation. This review focuses on recent advances in AIE-based strategies for diagnosing and treating HCC. First, the specific functional mechanism of AIE is described. Next, we summarize recent progress in the application of AIE for multimodal imaging, biosensor detection, and phototherapy. Finally, prospects and challenges for the AIE-based application in the diagnosis and therapy of HCC are discussed.
Collapse
Affiliation(s)
- Wenjing Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; The Second Affiliated Hospital of Zhejiang University, Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China; The Second Affiliated Hospital of Zhejiang University, Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, China; Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou, Zhejiang, 310009, China; The Second Affiliated Hospital of Zhejiang University Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310009, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Danfeng Jian
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Huang Yang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; The Second Affiliated Hospital of Zhejiang University, Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China; The Second Affiliated Hospital of Zhejiang University, Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, China; Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou, Zhejiang, 310009, China; The Second Affiliated Hospital of Zhejiang University Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310009, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310009, China; MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Weili Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; The Second Affiliated Hospital of Zhejiang University, Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China; The Second Affiliated Hospital of Zhejiang University, Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, China; Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou, Zhejiang, 310009, China; The Second Affiliated Hospital of Zhejiang University Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310009, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; The Second Affiliated Hospital of Zhejiang University, Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China; The Second Affiliated Hospital of Zhejiang University, Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, China; Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou, Zhejiang, 310009, China; The Second Affiliated Hospital of Zhejiang University Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310009, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
2
|
Huber CM, Pavan TZ, Ullmann I, Heim C, Rupitsch SJ, Vossiek M, Alexiou C, Ermert H, Lyer S. A Review on Ultrasound-based Methods to Image the Distribution of Magnetic Nanoparticles in Biomedical Applications. ULTRASOUND IN MEDICINE & BIOLOGY 2024:S0301-5629(24)00389-2. [PMID: 39537544 DOI: 10.1016/j.ultrasmedbio.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/13/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024]
Abstract
Magnetic nanoparticles (MNPs) have gained significant attention in biomedical engineering and imaging applications due to their unique magnetic and mechanical properties. With their high magnetization and small size, MNPs serve as excitation sources for magnetically heating to destroy tumors (magnetic hyperthermia) and magnetically controlled drug carriers in magnetic drug targeting. However, effectively visualizing the distribution of MNPs during research or potential clinical use with low-cost modalities remains a critical challenge. Although magnetic resonance imaging provides pre- and post-procedural imaging, it is considered to be high cost, and real-time imaging during clinical procedures is limited. In contrast, ultrasound-based imaging methods offer the advantage of providing the potential for immediate feedback during clinical use and are considered to be a low-cost modality. Ultrasound-based imaging techniques, including magnetomotive ultrasound, magnetoacoustic tomography, and thermoacoustic imaging, emerged as promising approaches for imaging the distribution of MNPs. These techniques offer the potential for real-time imaging, facilitating precise therapy monitoring. By exploring the strengths and limitations of various ultrasound-based imaging techniques for MNPs, this review seeks to provide comprehensive insights that can guide researchers in selecting suitable ultrasound-based modalities and inspire further advancements in this exciting field.
Collapse
Affiliation(s)
- Christian Marinus Huber
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Professorship for Al-Controlled Nanomaterials (KINAM), Universitätsklinikum Erlangen, Erlangen, Germany; Institute of Microwaves and Photonics (LHFT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Theo Z Pavan
- Department of Physics, Faculty of Philosophy, Sciences and Letters of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - Ingrid Ullmann
- Institute of Microwaves and Photonics (LHFT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Heim
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany
| | - Stefan J Rupitsch
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany
| | - Martin Vossiek
- Institute of Microwaves and Photonics (LHFT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner Fresenius Foundation Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Helmut Ermert
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner Fresenius Foundation Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Stefan Lyer
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Professorship for Al-Controlled Nanomaterials (KINAM), Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
3
|
Liu Z, Nian L, Cai X, Hu Y, Lei J, Xiao J. A robust collagen-targeting MRI peptide contrast agent for in vivo imaging of hepatic fibrosis. Chem Commun (Camb) 2024; 60:12453-12456. [PMID: 39380539 DOI: 10.1039/d4cc00702f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
We herein report the construction of a robust MRI peptide contrast agent Gd-ICTP with superior selectivity for type I collagen, enabling the accurate and non-invasive detection of hepatic fibrosis in vivo.
Collapse
Affiliation(s)
- Zhao Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
- The First Hospital of Lanzhou University, Lanzhou 730000, P. R. China.
| | - Linge Nian
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Xiangdong Cai
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Yue Hu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Junqiang Lei
- The First Hospital of Lanzhou University, Lanzhou 730000, P. R. China.
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| |
Collapse
|
4
|
Pena RV, Silva Brito R, Araújo OA, Damacena-Silva L, Harayashiki CAY, Rocha TL. Hazardous effects of nickel ferrite nanoparticles and nickel chloride in early life stages of the freshwater snail Biomphalaria glabrata (Say, 1818). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:58324-58334. [PMID: 39307862 DOI: 10.1007/s11356-024-35011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/13/2024] [Indexed: 10/11/2024]
Abstract
Nickel ferrite nanoparticles (NiF NPs) have growing applications in biomedical and nanomedicine fields. However, knowledge concerning their ecotoxicity during the early developmental stages of invertebrates, such as gastropods, remains scarce. Thus, the current study aimed to evaluate whether NiF NPs and nickel chloride (NiCl2) induce toxic effects on embryos and newly hatched snails of freshwater species Biomphalaria glabrata (Say, 1818). NiF NPs were synthesized and characterized by multiple techniques, and their ecotoxicity was assessed by Biomphalaria embryotoxicity test (BET) during 144 h of exposure and an acute toxicity test (96 h) using newly hatched snails. NiF NPs induced mortality, developmental delay, reduced hatching rate, and promoted morphological changes in B. glabrata. Also, NiF NPs induced higher toxicity in embryos than in newly hatched B. glabrata. Overall, results showed that the early developmental stages of gastropods are a target group for nanoparticle toxicity in freshwater ecosystems.
Collapse
Affiliation(s)
- Rafael Veloso Pena
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Rua 235, Setor Universitário, Goiânia, Goiás, CEP: 74605050, Brazil
| | - Rafaella Silva Brito
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Rua 235, Setor Universitário, Goiânia, Goiás, CEP: 74605050, Brazil
| | - Olacir Alves Araújo
- Laboratory of Chemistry and Molecular Modeling, Campus of Exact Sciences and Technology, State University of Goiás, Anápolis, Goiás, Brazil
| | - Luciana Damacena-Silva
- Laboratory of Host-Parasite Interactions, State University of Goiás, Anápolis, Goiás, Brazil
| | - Cyntia Ayumi Yokota Harayashiki
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Rua 235, Setor Universitário, Goiânia, Goiás, CEP: 74605050, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Rua 235, Setor Universitário, Goiânia, Goiás, CEP: 74605050, Brazil.
| |
Collapse
|
5
|
Torlakcik H, Sevim S, Alves P, Mattmann M, Llacer‐Wintle J, Pinto M, Moreira R, Flouris AD, Landers FC, Chen X, Puigmartí‐Luis J, Boehler Q, Mayor TS, Kim M, Nelson BJ, Pané S. Magnetically Guided Microcatheter for Targeted Injection of Magnetic Particle Swarms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404061. [PMID: 39119930 PMCID: PMC11481240 DOI: 10.1002/advs.202404061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/26/2024] [Indexed: 08/10/2024]
Abstract
The initial delivery of small-scale magnetic devices such as microrobots is a key, but often overlooked, aspect for their use in clinical applications. The deployment of these devices within the dynamic environment of the human body presents significant challenges due to their dispersion caused by circulatory flows. Here, a method is introduced to effectively deliver a swarm of magnetic nanoparticles in fluidic flows. This approach integrates a magnetically navigated robotic microcatheter equipped with a reservoir for storing the magnetic nanoparticles. The microfluidic flow within the reservoir facilitates the injection of magnetic nanoparticles into the fluid stream, and a magnetic field gradient guides the swarm through the oscillatory flow to a target site. The microcatheter and reservoir are engineered to enable magnetic steering and injection of the magnetic nanoparticles. To demonstrate this approach, experiments are conducted utilizing a spinal cord phantom simulating intrathecal catheter delivery for applications in the central nervous system. These results demonstrate that the proposed microcatheter successfully concentrates nanoparticles near the desired location through the precise manipulation of magnetic field gradients, offering a promising solution for the controlled deployment of untethered magnetic micro-/nanodevices within the complex physiological circulatory systems of the human body.
Collapse
Affiliation(s)
- Harun Torlakcik
- Multi‐Scale Robotics LabInstitute of Robotics and Intelligent SystemsETH ZurichTannenstrasse 3Zurich8092Switzerland
| | - Semih Sevim
- Multi‐Scale Robotics LabInstitute of Robotics and Intelligent SystemsETH ZurichTannenstrasse 3Zurich8092Switzerland
| | - Pedro Alves
- Transport Phenomena Research Centre (CEFT)Engineering FacultyPorto UniversityPorto4200Portugal
- Associate Laboratory in Chemical Engineering (ALICE)Engineering FacultyPorto UniversityPorto4200Portugal
| | - Michael Mattmann
- Multi‐Scale Robotics LabInstitute of Robotics and Intelligent SystemsETH ZurichTannenstrasse 3Zurich8092Switzerland
| | - Joaquim Llacer‐Wintle
- Multi‐Scale Robotics LabInstitute of Robotics and Intelligent SystemsETH ZurichTannenstrasse 3Zurich8092Switzerland
| | | | | | - Andreas D. Flouris
- FAME LaboratoryDepartment of Exercise ScienceUniversity of ThessalyTrikala, Karies42100Greece
| | - Fabian C. Landers
- Multi‐Scale Robotics LabInstitute of Robotics and Intelligent SystemsETH ZurichTannenstrasse 3Zurich8092Switzerland
| | - Xiang‐Zhong Chen
- Institute of OptoelectronicsState Key Laboratory of Photovoltaic Science and TechnologyShanghai Frontiers Science Research Base of Intelligent Optoelectronics and PerceptionFudan UniversityShanghai200433P. R. China
- Yiwu Research Institute of Fudan UniversityYiwu322000P. R. China
| | - Josep Puigmartí‐Luis
- Departament de Ciència dels Materials i Química FísicaInstitut de Química Teòrica i ComputacionalUniversity of BarcelonaMartí i Franquès, 1Barcelona08028Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)Pg. Lluís Companys 23Barcelona08010Spain
| | - Quentin Boehler
- Multi‐Scale Robotics LabInstitute of Robotics and Intelligent SystemsETH ZurichTannenstrasse 3Zurich8092Switzerland
| | - Tiago Sotto Mayor
- Transport Phenomena Research Centre (CEFT)Engineering FacultyPorto UniversityPorto4200Portugal
- Associate Laboratory in Chemical Engineering (ALICE)Engineering FacultyPorto UniversityPorto4200Portugal
| | - Minsoo Kim
- Multi‐Scale Robotics LabInstitute of Robotics and Intelligent SystemsETH ZurichTannenstrasse 3Zurich8092Switzerland
| | - Bradley J. Nelson
- Multi‐Scale Robotics LabInstitute of Robotics and Intelligent SystemsETH ZurichTannenstrasse 3Zurich8092Switzerland
| | - Salvador Pané
- Multi‐Scale Robotics LabInstitute of Robotics and Intelligent SystemsETH ZurichTannenstrasse 3Zurich8092Switzerland
| |
Collapse
|
6
|
Willmann R, Almeida M, Stoppa E, Barbisan LF, Miranda JRA, Soares G. Evaluation and imaging of biodistribution of magnetic nanoparticles in a model of hepatic cirrhosis via alternating current biosusceptometry. Biomed Phys Eng Express 2024; 10:065024. [PMID: 39260388 DOI: 10.1088/2057-1976/ad795b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/11/2024] [Indexed: 09/13/2024]
Abstract
In recent years, magnetic nanoparticles (MNPs) have exhibited theragnostic characteristics which confer a wide range of applications in the biomedical field. Consequently, through Alternating Current Biosusceptometry (ACB), magnetic nanoparticles can be used as tracers, allowing the study of healthy and cirrhotic livers and providing the ability to differentiate them through the reconstruction of quantitative images. The ACB system consists of a developing biomagnetic technique that has the ability to magnetize and measure the magnetic susceptibility of a material such as MNPs, thereby offering quantitative information about biological systems with magnetic tracers.
Collapse
Affiliation(s)
- Raffael Willmann
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University-UNESP, Botucatu, 18618-689, SP, Brazil
| | - Michael Almeida
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University-UNESP, Botucatu, 18618-689, SP, Brazil
| | - Erick Stoppa
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University-UNESP, Botucatu, 18618-689, SP, Brazil
| | - Luis F Barbisan
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University-UNESP, Botucatu, 18618-689, SP, Brazil
| | - Jose R A Miranda
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University-UNESP, Botucatu, 18618-689, SP, Brazil
| | - Guilherme Soares
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University-UNESP, Botucatu, 18618-689, SP, Brazil
| |
Collapse
|
7
|
Chen M, Xia L, Wu C, Wang Z, Ding L, Xie Y, Feng W, Chen Y. Microbe-material hybrids for therapeutic applications. Chem Soc Rev 2024; 53:8306-8378. [PMID: 39005165 DOI: 10.1039/d3cs00655g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
As natural living substances, microorganisms have emerged as useful resources in medicine for creating microbe-material hybrids ranging from nano to macro dimensions. The engineering of microbe-involved nanomedicine capitalizes on the distinctive physiological attributes of microbes, particularly their intrinsic "living" properties such as hypoxia tendency and oxygen production capabilities. Exploiting these remarkable characteristics in combination with other functional materials or molecules enables synergistic enhancements that hold tremendous promise for improved drug delivery, site-specific therapy, and enhanced monitoring of treatment outcomes, presenting substantial opportunities for amplifying the efficacy of disease treatments. This comprehensive review outlines the microorganisms and microbial derivatives used in biomedicine and their specific advantages for therapeutic application. In addition, we delineate the fundamental strategies and mechanisms employed for constructing microbe-material hybrids. The diverse biomedical applications of the constructed microbe-material hybrids, encompassing bioimaging, anti-tumor, anti-bacteria, anti-inflammation and other diseases therapy are exhaustively illustrated. We also discuss the current challenges and prospects associated with the clinical translation of microbe-material hybrid platforms. Therefore, the unique versatility and potential exhibited by microbe-material hybrids position them as promising candidates for the development of next-generation nanomedicine and biomaterials with unique theranostic properties and functionalities.
Collapse
Affiliation(s)
- Meng Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai 200444, P. R. China.
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Chenyao Wu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Zeyu Wang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Li Ding
- Department of Medical Ultrasound, National Clinical Research Center of Interventional Medicine, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Tongji University, Shanghai, 200072, P. R. China.
| | - Yujie Xie
- School of Medicine, Shanghai University, Shanghai 200444, P. R. China.
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
- Shanghai Institute of Materdicine, Shanghai 200051, P. R. China
| |
Collapse
|
8
|
Chen S, Zhuang D, Jia Q, Guo B, Hu G. Advances in Noninvasive Molecular Imaging Probes for Liver Fibrosis Diagnosis. Biomater Res 2024; 28:0042. [PMID: 38952717 PMCID: PMC11214848 DOI: 10.34133/bmr.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/08/2024] [Indexed: 07/03/2024] Open
Abstract
Liver fibrosis is a wound-healing response to chronic liver injury, which may lead to cirrhosis and cancer. Early-stage fibrosis is reversible, and it is difficult to precisely diagnose with conventional imaging modalities such as magnetic resonance imaging, positron emission tomography, single-photon emission computed tomography, and ultrasound imaging. In contrast, probe-assisted molecular imaging offers a promising noninvasive approach to visualize early fibrosis changes in vivo, thus facilitating early diagnosis and staging liver fibrosis, and even monitoring of the treatment response. Here, the most recent progress in molecular imaging technologies for liver fibrosis is updated. We start by illustrating pathogenesis for liver fibrosis, which includes capillarization of liver sinusoidal endothelial cells, cellular and molecular processes involved in inflammation and fibrogenesis, as well as processes of collagen synthesis, oxidation, and cross-linking. Furthermore, the biological targets used in molecular imaging of liver fibrosis are summarized, which are composed of receptors on hepatic stellate cells, macrophages, and even liver collagen. Notably, the focus is on insights into the advances in imaging modalities developed for liver fibrosis diagnosis and the update in the corresponding contrast agents. In addition, challenges and opportunities for future research and clinical translation of the molecular imaging modalities and the contrast agents are pointed out. We hope that this review would serve as a guide for scientists and students who are interested in liver fibrosis imaging and treatment, and as well expedite the translation of molecular imaging technologies from bench to bedside.
Collapse
Affiliation(s)
- Shaofang Chen
- Department of Radiology, Shenzhen People’s Hospital (The Second Clinical Medical College,
Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Danping Zhuang
- Department of Radiology, Shenzhen People’s Hospital (The Second Clinical Medical College,
Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Qingyun Jia
- Department of Radiology, Shenzhen People’s Hospital (The Second Clinical Medical College,
Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application,
Harbin Institute of Technology, Shenzhen 518055, China
| | - Genwen Hu
- Department of Radiology, Shenzhen People’s Hospital (The Second Clinical Medical College,
Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| |
Collapse
|
9
|
Liang Z, Xie S, Wang Q, Zhang B, Xiao L, Wang C, Liu X, Chen Y, Yang S, Du H, Qian Y, Ling D, Wu L, Li F. Ligand-Induced Atomically Segregation-Tunable Alloy Nanoprobes for Enhanced Magnetic Resonance Imaging. ACS NANO 2024; 18:15249-15260. [PMID: 38818704 DOI: 10.1021/acsnano.4c03999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Bimetallic iron-noble metal alloy nanoparticles have emerged as promising contrast agents for magnetic resonance imaging (MRI) due to their biocompatibility and facile control over the element distribution. However, the inherent surface energy discrepancy between iron and noble metal often leads to Fe atom segregation within the nanoparticle, resulting in limited iron-water molecule interactions and, consequently, diminished relaxometric performance. In this study, we present the development of a class of ligand-induced atomically segregation-tunable alloy nanoprobes (STAN) composed of bimetallic iron-gold nanoparticles. By manipulating the oxidation state of Fe on the particle surface through varying molar ratios of oleic acid and oleylamine ligands, we successfully achieve surface Fe enrichment. Under the application of a 9 T MRI system, the optimized STAN formulation, characterized by a surface Fe content of 60.1 at %, exhibits an impressive r1 value of 2.28 mM-1·s-1, along with a low r2/r1 ratio of 6.2. This exceptional performance allows for the clear visualization of hepatic tumors as small as 0.7 mm in diameter in vivo, highlighting the immense potential of STAN as a next-generation contrast agent for highly sensitive MR imaging.
Collapse
Affiliation(s)
- Zeyu Liang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shangzhi Xie
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiyue Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bo Zhang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China
- World Laureates Association (WLA) Laboratories, Shanghai 201203, China
| | - Lin Xiao
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chenhan Wang
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xun Liu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying Chen
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shengfei Yang
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hui Du
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yufan Qian
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Daishun Ling
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China
- World Laureates Association (WLA) Laboratories, Shanghai 201203, China
| | - Lianming Wu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fangyuan Li
- Songjiang Institute and Songjiang Hospital, Shanghai Key Laboratory of Emotions and Affective Disorders (LEAD), Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- World Laureates Association (WLA) Laboratories, Shanghai 201203, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou 310009, China
| |
Collapse
|
10
|
Wang M, Wang Y, Fu Q. Magneto-optical nanosystems for tumor multimodal imaging and therapy in-vivo. Mater Today Bio 2024; 26:101027. [PMID: 38525310 PMCID: PMC10959709 DOI: 10.1016/j.mtbio.2024.101027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/26/2024] Open
Abstract
Multimodal imaging, which combines the strengths of two or more imaging modalities to provide complementary anatomical and molecular information, has emerged as a robust technology for enhancing diagnostic sensitivity and accuracy, as well as improving treatment monitoring. Moreover, the application of multimodal imaging in guiding precision tumor treatment can prevent under- or over-treatment, thereby maximizing the benefits for tumor patients. In recent years, several intriguing magneto-optical nanosystems with both magnetic and optical properties have been developed, leading to significant breakthroughs in the field of multimodal imaging and image-guided tumor therapy. These advancements pave the way for precise tumor medicine. This review summarizes various types of magneto-optical nanosystems developed recently and describes their applications as probes for multimodal imaging and agents for image-guided therapeutic interventions. Finally, future research and development prospects of magneto-optical nanosystems are discussed along with an outlook on their further applications in the biomedical field.
Collapse
Affiliation(s)
- Mengzhen Wang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yin Wang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, Qingdao University, Jinan, 250014, China
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Qinrui Fu
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, Qingdao University, Jinan, 250014, China
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| |
Collapse
|
11
|
Song W, Li L, Liu X, Zhu Y, Yu S, Wang H, Wang L. Hydrogel microrobots for biomedical applications. Front Chem 2024; 12:1416314. [PMID: 38841335 PMCID: PMC11150770 DOI: 10.3389/fchem.2024.1416314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/30/2024] [Indexed: 06/07/2024] Open
Abstract
Recent years have witnessed a surge in the application of microrobots within the medical sector, with hydrogel microrobots standing out due to their distinctive advantages. These microrobots, characterized by their exceptional biocompatibility, adjustable physico-mechanical attributes, and acute sensitivity to biological environments, have emerged as pivotal tools in advancing medical applications such as targeted drug delivery, wound healing enhancement, bio-imaging, and precise surgical interventions. The capability of hydrogel microrobots to navigate and perform tasks within complex biological systems significantly enhances the precision, efficiency, and safety of therapeutic procedures. Firstly, this paper delves into the material classification and properties of hydrogel microrobots and compares the advantages of different hydrogel materials. Furthermore, it offers a comprehensive review of the principal categories and recent innovations in the synthesis, actuation mechanisms, and biomedical application of hydrogel-based microrobots. Finally, the manuscript identifies prevailing obstacles and future directions in hydrogel microrobot research, aiming to furnish insights that could propel advancements in this field.
Collapse
Affiliation(s)
- Wenping Song
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
- Chongqing Research Institute of HIT, Chongqing, China
| | - Leike Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Xuejia Liu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
- Department of Medical Imaging, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanhe Zhu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Shimin Yu
- College of Engineering, Ocean University of China, Qingdao, China
| | - Haocheng Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Lin Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
12
|
Zhou T, Dong Y, Wang X, Liu R, Cheng R, Pan J, Zhang X, Sun SK. Highly Sensitive Early Diagnosis of Kidney Damage Using Renal Clearable Zwitterion-Coated Ferrite Nanoprobe via Magnetic Resonance Imaging In Vivo. Adv Healthc Mater 2024; 13:e2304577. [PMID: 38278515 DOI: 10.1002/adhm.202304577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Indexed: 01/28/2024]
Abstract
Iron oxide nanoprobes exhibit substantial potential in magnetic resonance imaging (MRI) of kidney diseases and can eliminate the nephrotoxicity of gadolinium-based contrast agents (GBCAs). Nevertheless, there is an extreme shortage of highly sensitive and renal clearable iron oxide nanoprobes suitable for early kidney damage detection through MRI. Herein, a renal clearable ultra-small ferrite nanoprobe (UMFNPs@ZDS) is proposed for highly sensitive early diagnosis of kidney damage via structural and functional MRI in vivo for the first time. The nanoprobe comprises a ferrite core coated with a zwitterionic layer, and possesses a high T1 relaxivity (12.52 mm-1s-1), a small hydrodynamic size (6.43 nm), remarkable water solubility, excellent biocompatibility, and impressive renal clearable ability. In a rat model of unilateral ureteral obstruction (UUO), the nanoprobe-based MRI can not only accurately visualize the locations of renal injury, but also provide comprehensive functional data including peak value, peak time, relative renal function (RRF), and clearance percentage via MRI. The findings prove the immense potential of ferrite nanoprobes as a superior alternative to GBCAs for the early diagnosis of kidney damage.
Collapse
Affiliation(s)
- Ting Zhou
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300203, China
| | - Yanzhi Dong
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300203, China
| | - Xiaoyi Wang
- Department of Radiology and Ultrasound, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Ruxia Liu
- Department of Rehabilitation, School of Medical Technology, Tianjin Medical University, Tianjin, 300203, China
| | - Ran Cheng
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300203, China
| | - Jinbin Pan
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical, University General Hospital, Tianjin, 300052, China
| | - Xuejun Zhang
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300203, China
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300203, China
| |
Collapse
|
13
|
Zhang D, Chen Y, Hao M, Xia Y. Putting Hybrid Nanomaterials to Work for Biomedical Applications. Angew Chem Int Ed Engl 2024; 63:e202319567. [PMID: 38429227 PMCID: PMC11478030 DOI: 10.1002/anie.202319567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/03/2024]
Abstract
Hybrid nanomaterials have found use in many biomedical applications. This article provides a comprehensive review of the principles, techniques, and recent advancements in the design and fabrication of hybrid nanomaterials for biomedicine. We begin with an introduction to the general concept of material hybridization, followed by a discussion of how this approach leads to materials with additional functionality and enhanced performance. We then highlight hybrid nanomaterials in the forms of nanostructures, nanocomposites, metal-organic frameworks, and biohybrids, including their fabrication methods. We also showcase the use of hybrid nanomaterials to advance biomedical engineering in the context of nanomedicine, regenerative medicine, diagnostics, theranostics, and biomanufacturing. Finally, we offer perspectives on challenges and opportunities.
Collapse
Affiliation(s)
- Dong Zhang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332 (USA)
| | - Yidan Chen
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (USA)
| | - Min Hao
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332 (USA)
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332 (USA); School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 (USA)
| |
Collapse
|
14
|
Xie X, Zhai J, Zhou X, Guo Z, Lo PC, Zhu G, Chan KWY, Yang M. Magnetic Particle Imaging: From Tracer Design to Biomedical Applications in Vasculature Abnormality. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306450. [PMID: 37812831 DOI: 10.1002/adma.202306450] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/14/2023] [Indexed: 10/11/2023]
Abstract
Magnetic particle imaging (MPI) is an emerging non-invasive tomographic technique based on the response of magnetic nanoparticles (MNPs) to oscillating drive fields at the center of a static magnetic gradient. In contrast to magnetic resonance imaging (MRI), which is driven by uniform magnetic fields and projects the anatomic information of the subjects, MPI directly tracks and quantifies MNPs in vivo without background signals. Moreover, it does not require radioactive tracers and has no limitations on imaging depth. This article first introduces the basic principles of MPI and important features of MNPs for imaging sensitivity, spatial resolution, and targeted biodistribution. The latest research aiming to optimize the performance of MPI tracers is reviewed based on their material composition, physical properties, and surface modifications. While the unique advantages of MPI have led to a series of promising biomedical applications, recent development of MPI in investigating vascular abnormalities in cardiovascular and cerebrovascular systems, and cancer are also discussed. Finally, recent progress and challenges in the clinical translation of MPI are discussed to provide possible directions for future research and development.
Collapse
Affiliation(s)
- Xulin Xie
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Jiao Zhai
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Xiaoyu Zhou
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Zhengjun Guo
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
- Department of Oncology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Pui-Chi Lo
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Guangyu Zhu
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Kannie W Y Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Mengsu Yang
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| |
Collapse
|
15
|
Wang Y, Zhang Y, Li M, Gao X, Su D. An Efficient Strategy for Constructing Fluorescent Nanoprobes for Prolonged and Accurate Tumor Imaging. Anal Chem 2024; 96:2481-2490. [PMID: 38293931 DOI: 10.1021/acs.analchem.3c04495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Activatable near-infrared (NIR) fluorescent probes possess advantages of high selectivity, sensitivity, and deep imaging depth, holding great potential in the early diagnosis and prognosis assessment of tumors. However, small-molecule fluorescent probes are largely limited due to the rapid diffusion and metabolic clearance of activated fluorophores in vivo. Herein, we propose an efficient and reproducible novel strategy to construct activatable fluorescent nanoprobes through bioorthogonal reactions and the strong gold-sulfur (Au-S) interactions to achieve an enhanced permeability and retention (EPR) effect, thereby achieving prolonged and high-contrast tumor imaging in vivo. To demonstrate the merits of this strategy, we prepared an activatable nanoprobe, hCy-ALP@AuNP, for imaging alkaline phosphatase (ALP) activity in vivo, whose nanoscale properties facilitate accumulation and long-term retention in tumor lesions. Tumor-overexpressed ALP significantly increased the fluorescence signal of hCy-ALP@AuNP in the NIR region. More importantly, compared with the small-molecule probe hCy-ALP-N3, the nanoprobe hCy-ALP@AuNP significantly improved the distribution and retention time in the tumor, thus improving the imaging window and accuracy. Therefore, this nanoprobe platform has great potential in the efficient construction of biomarker-responsive fluorescent nanoprobes to realize precise tumor diagnosis in vivo.
Collapse
Affiliation(s)
- Yaling Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124 Beijing, P. R. China
| | - Yong Zhang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124 Beijing, P. R. China
| | - Mingrui Li
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124 Beijing, P. R. China
| | - Xueyun Gao
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124 Beijing, P. R. China
| | - Dongdong Su
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, 100124 Beijing, P. R. China
| |
Collapse
|
16
|
Taghizadeh S, Tayebi L, Akbarzadeh M, Lohrasbi P, Savardashtaki A. Magnetic hydrogel applications in articular cartilage tissue engineering. J Biomed Mater Res A 2024; 112:260-275. [PMID: 37750666 DOI: 10.1002/jbm.a.37620] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/02/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023]
Abstract
Articular cartilage defects afflict millions of individuals worldwide, presenting a significant challenge due to the tissue's limited self-repair capability and anisotropic nature. Hydrogel-based biomaterials have emerged as promising candidates for scaffold production in artificial cartilage construction, owing to their water-rich composition, biocompatibility, and tunable properties. Nevertheless, conventional hydrogels typically lack the anisotropic structure inherent to natural cartilage, impeding their clinical and preclinical applications. Recent advancements in tissue engineering (TE) have introduced magnetically responsive hydrogels, a type of intelligent hydrogel that can be remotely controlled using an external magnetic field. These innovative materials offer a means to create the desired anisotropic architecture required for successful cartilage TE. In this review, we first explore conventional techniques employed for cartilage repair and subsequently delve into recent breakthroughs in the application and utilization of magnetic hydrogels across various aspects of articular cartilage TE.
Collapse
Affiliation(s)
- Saeed Taghizadeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Science Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, Wisconsin, USA
| | - Majid Akbarzadeh
- Department of Internal Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parvin Lohrasbi
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
17
|
Cooke DJ, Maier EY, King TL, Lin H, Hendrichs S, Lee S, Mafy NN, Scott KM, Lu Y, Que EL. Dual Nanoparticle Conjugates for Highly Sensitive and Versatile Sensing Using 19 F Magnetic Resonance Imaging. Angew Chem Int Ed Engl 2024; 63:e202312322. [PMID: 38016929 DOI: 10.1002/anie.202312322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/11/2023] [Accepted: 11/28/2023] [Indexed: 11/30/2023]
Abstract
Fluorine magnetic resonance imaging (19 F MRI) has emerged as an attractive alternative to conventional 1 H MRI due to enhanced specificity deriving from negligible background signal in this modality. We report a dual nanoparticle conjugate (DNC) platform as an aptamer-based sensor for use in 19 F MRI. DNC consists of core-shell nanoparticles with a liquid perfluorocarbon core and a mesoporous silica shell (19 F-MSNs), which give a robust 19 F MR signal, and superparamagnetic iron oxide nanoparticles (SPIONs) as magnetic quenchers. Due to the strong magnetic quenching effects of SPIONs, this platform is uniquely sensitive and functions with a low concentration of SPIONs (4 equivalents) relative to 19 F-MSNs. The probe functions as a "turn-on" sensor using target-induced dissociation of DNA aptamers. The thrombin binding aptamer was incorporated as a proof-of-concept (DNCThr ), and we demonstrate a significant increase in 19 F MR signal intensity when DNCThr is incubated with human α-thrombin. This proof-of-concept probe is highly versatile and can be adapted to sense ATP and kanamycin as well. Importantly, DNCThr generates a robust 19 F MRI "hot-spot" signal in response to thrombin in live mice, establishing this platform as a practical, versatile, and biologically relevant molecular imaging probe.
Collapse
Affiliation(s)
- Daniel J Cooke
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Esther Y Maier
- College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA
| | - Tyler L King
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Haoding Lin
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Santiago Hendrichs
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Slade Lee
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Noushaba N Mafy
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Kathleen M Scott
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
- Departments of chemical engineering, biomedical engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Emily L Que
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
18
|
Karageorgou MA, Apostolopoulou A, Tomazinaki ME, Stanković D, Stiliaris E, Bouziotis P, Stamopoulos D. Gamma-Camera Direct Imaging of the Plasma and On/Intra Cellular Distribution of the 99mTc-DPD-Fe 3O 4 Dual-Modality Contrast Agent in Peripheral Human Blood. MATERIALS (BASEL, SWITZERLAND) 2024; 17:335. [PMID: 38255503 PMCID: PMC10820996 DOI: 10.3390/ma17020335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/23/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024]
Abstract
The radiolabeled iron oxide nanoparticles constitute an attractive choice to be used as dual-modality contrast agents (DMCAs) in nuclear medical diagnosis, due to their ability to combine the benefits of two imaging modalities, for instance single photon emission computed tomography (SPECT) with magnetic resonance imaging (MRI). Before the use of any DMCA, the investigation of its plasma extra- and on/intra cellular distribution in peripheral human blood is of paramount importance. Here, we focus on the in vitro investigation of the distribution of 99mTc-DPD-Fe3O4 DMCA in donated peripheral human blood (the ligand 2-3-dicarboxypropane-1-1-diphosphonic-acid is denoted as DPD). Initially, we described the experimental methods we performed for the radiosynthesis of the 99mTc-DPD-Fe3O4, the preparation of whole blood and blood plasma samples, and their incubation conditions with 99mTc-DPD-Fe3O4. More importantly, we employed a gamma-camera apparatus for the direct imaging of the 99mTc-DPD-Fe3O4-loaded whole blood and blood plasma samples when subjected to specialized centrifugation protocols. The direct comparison of the gamma-camera data obtained at the exact same samples before and after their centrifugation enabled us to clearly identify the distribution of the 99mTc-DPD-Fe3O4 in the two components, plasma and cells, of peripheral human blood.
Collapse
Affiliation(s)
- Maria-Argyro Karageorgou
- Department of Physics, School of Science, National and Kapodistrian University of Athens, 15784 Athens, Greece; (M.-E.T.); (E.S.)
| | - Adamantia Apostolopoulou
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research “Demokritos”, 15341 Athens, Greece; (A.A.); (P.B.)
- Laboratory of Biology, School of Medicine, Department of Basic Medical Sciences, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Mina-Ermioni Tomazinaki
- Department of Physics, School of Science, National and Kapodistrian University of Athens, 15784 Athens, Greece; (M.-E.T.); (E.S.)
| | - Dragana Stanković
- Laboratory for Radioisotopes, “Vinča” Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia;
| | - Efstathios Stiliaris
- Department of Physics, School of Science, National and Kapodistrian University of Athens, 15784 Athens, Greece; (M.-E.T.); (E.S.)
| | - Penelope Bouziotis
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research “Demokritos”, 15341 Athens, Greece; (A.A.); (P.B.)
| | - Dimosthenis Stamopoulos
- Department of Physics, School of Science, National and Kapodistrian University of Athens, 15784 Athens, Greece; (M.-E.T.); (E.S.)
| |
Collapse
|
19
|
Dong Y, Liu Y, Tu Y, Yuan Y, Wang J. AIEgens Cross-linked Iron Oxide Nanoparticles Synchronously Amplify Bimodal Imaging Signals in Situ by Tumor Acidity-Mediated Click Reaction. Angew Chem Int Ed Engl 2023; 62:e202310975. [PMID: 37950819 DOI: 10.1002/anie.202310975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/18/2023] [Accepted: 11/09/2023] [Indexed: 11/13/2023]
Abstract
Activatable dual-modal molecular imaging probes present a promising tool for the diagnosis of malignant tumors. However, synchronously enhancing dual-modal imaging signals under a single stimulus is challenging. Herein, we propose an activatable bimodal probe that integrates aggregation-induced emission luminogens (AIEgens) and iron oxide nanoparticles (IOs) to synergistically enhance near-infrared fluorescence (NIRF) intensity and magnetic resonance (MR) contrast through a tumor acidity-mediated click reaction. Tumor acidity-responsive IOs containing dibenzocyclooctyne groups (termed cDIOs) and AIEgens containing azide groups (termed AATs) can be covalently cross-linked in response to tumor acidity, which leads to a simultaneous enhancement in NIRF intensity (≈12.4-fold) and r2 relaxivity (≈2.8-fold). cDIOs and AATs were effectively activated in mice orthotropic breast tumor, and the cross-linking prolonged their retention in tumor, further augmenting the bimodal signals and expanding imaging time frame. This facile strategy leverages the inherent properties of probes themselves and demonstrates promise in future translational studies.
Collapse
Affiliation(s)
- Yansong Dong
- School of Medicine, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Ye Liu
- School of Medicine, South China University of Technology, Guangzhou, 510006, P. R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Yalan Tu
- School of Medicine, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Youyong Yuan
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Jun Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
20
|
Zhang P, Li W, Liu C, Qin F, Lu Y, Qin M, Hou Y. Molecular imaging of tumour-associated pathological biomarkers with smart nanoprobe: From "Seeing" to "Measuring". EXPLORATION (BEIJING, CHINA) 2023; 3:20230070. [PMID: 38264683 PMCID: PMC10742208 DOI: 10.1002/exp.20230070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/18/2023] [Indexed: 01/25/2024]
Abstract
Although the extraordinary progress has been made in molecular biology, the prevention of cancer remains arduous. Most solid tumours exhibit both spatial and temporal heterogeneity, which is difficult to be mimicked in vitro. Additionally, the complex biochemical and immune features of tumour microenvironment significantly affect the tumour development. Molecular imaging aims at the exploitation of tumour-associated molecules as specific targets of customized molecular probe, thereby generating image contrast of tumour markers, and offering opportunities to non-invasively evaluate the pathological characteristics of tumours in vivo. Particularly, there are no "standard markers" as control in clinical imaging diagnosis of individuals, so the tumour pathological characteristics-responsive nanoprobe-based quantitative molecular imaging, which is able to visualize and determine the accurate content values of heterogeneous distribution of pathological molecules in solid tumours, can provide criteria for cancer diagnosis. In this context, a variety of "smart" quantitative molecular imaging nanoprobes have been designed, in order to provide feasible approaches to quantitatively visualize the tumour-associated pathological molecules in vivo. This review summarizes the recent achievements in the designs of these nanoprobes, and highlights the state-of-the-art technologies in quantitative imaging of tumour-associated pathological molecules.
Collapse
Affiliation(s)
- Peisen Zhang
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
- Department of ChemistryUniversity of TorontoTorontoOntarioCanada
| | - Wenyue Li
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Chuang Liu
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Feng Qin
- Department of Neurosurgery and National Chengdu Center for Safety Evaluation of DrugsState Key Laboratory of Biotherapy/Collaborative Innovation Center for BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Lu
- Department of ChemistryUniversity of TorontoTorontoOntarioCanada
| | - Meng Qin
- Department of Neurosurgery and National Chengdu Center for Safety Evaluation of DrugsState Key Laboratory of Biotherapy/Collaborative Innovation Center for BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yi Hou
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| |
Collapse
|
21
|
Yang J, Feng J, Yang S, Xu Y, Shen Z. Exceedingly Small Magnetic Iron Oxide Nanoparticles for T 1 -Weighted Magnetic Resonance Imaging and Imaging-Guided Therapy of Tumors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302856. [PMID: 37596716 DOI: 10.1002/smll.202302856] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/01/2023] [Indexed: 08/20/2023]
Abstract
Magnetic iron oxide nanoparticles (MIONs) based T2 -weighted magnetic resonance imaging (MRI) contrast agents (CAs) are liver-specific with good biocompatibility, but have been withdrawn from the market and replaced with Eovist (Gd-EOB-DTPA) due to their inherent limitations (e.g., susceptibility to artifacts, high magnetic moment, dark signals, long processing time of T2 imaging, and long waiting time for patients after administration). Without the disadvantages of Gd-chelates and MIONs, the recently emerging exceedingly small MIONs (ES-MIONs) (<5 nm) are promising T1 CAs for MRI. However, there are rare review articles focusing on ES-MIONs for T1 -weighted MRI. Herein, the recent progress of ES-MIONs, including synthesis methods (the current basic synthesis methods and improved methods), surface modifications (artificial polymers, natural polymers, zwitterions, and functional protein), T1 -MRI visual strategies (structural remodeling, reversible self-assemblies, metal ions doped, T1 /T2 dual imaging modes, and PET/MRI strategy), and imaging-guided cancer therapy (chemotherapy, gene therapy, ferroptosis therapy, photothermal therapy, photodymatic therapy, radiotherapy, immuotherapy, sonodynamic therapy, and multimode therapy), is summarized. The detailed description of synthesis methods and applications of ES-MIONs in this review is anticipated to attract extensive interest from researchers in different fields and promote their participation in the establishment of ES-MIONs based nanoplatforms for tumor theranostics.
Collapse
Affiliation(s)
- Jing Yang
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Jie Feng
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Sugeun Yang
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon, 22212, South Korea
| | - Yikai Xu
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Zheyu Shen
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
22
|
Xu M, Qi Y, Liu G, Song Y, Jiang X, Du B. Size-Dependent In Vivo Transport of Nanoparticles: Implications for Delivery, Targeting, and Clearance. ACS NANO 2023; 17:20825-20849. [PMID: 37921488 DOI: 10.1021/acsnano.3c05853] [Citation(s) in RCA: 63] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Understanding the in vivo transport of nanoparticles provides guidelines for designing nanomedicines with higher efficacy and fewer side effects. Among many factors, the size of nanoparticles plays a key role in controlling their in vivo transport behaviors due to the existence of various physiological size thresholds within the body and size-dependent nano-bio interactions. Encouraged by the evolving discoveries of nanoparticle-size-dependent biological effects, we believe that it is necessary to systematically summarize the size-scaling laws of nanoparticle transport in vivo. In this review, we summarized the size effect of nanoparticles on their in vivo transport along their journey in the body: begin with the administration of nanoparticles via different delivery routes, followed by the targeting of nanoparticles to intended tissues including tumors and other organs, and eventually clearance of nanoparticles through the liver or kidneys. We outlined the tools for investigating the in vivo transport of nanoparticles as well. Finally, we discussed how we may leverage the size-dependent transport to tackle some of the key challenges in nanomedicine translation and also raised important size-related questions that remain to be answered in the future.
Collapse
Affiliation(s)
- Mingze Xu
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P.R. China
| | - Yuming Qi
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P.R. China
| | - Gaoshuo Liu
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P.R. China
| | - Yuanqing Song
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P.R. China
| | - Xingya Jiang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, P.R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P.R. China
| | - Bujie Du
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P.R. China
| |
Collapse
|
23
|
Casteleiro B, Rocha M, Sousa AR, Pereira AM, Martinho JMG, Pereira C, Farinha JPS. Multifunctional Nanoparticles with Superparamagnetic Mn(II) Ferrite and Luminescent Gold Nanoclusters for Multimodal Imaging. Polymers (Basel) 2023; 15:4392. [PMID: 38006116 PMCID: PMC10674285 DOI: 10.3390/polym15224392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Gold nanoclusters (AuNCs) with fluorescence in the Near Infrared (NIR) by both one- and two-photon electronic excitation were incorporated in mesoporous silica nanoparticles (MSNs) using a novel one-pot synthesis procedure where the condensation polymerization of alkoxysilane monomers in the presence of the AuNCs and a surfactant produced hybrid MSNs of 49 nm diameter. This method was further developed to prepare 30 nm diameter nanocomposite particles with simultaneous NIR fluorescence and superparamagnetic properties, with a core composed of superparamagnetic manganese (II) ferrite nanoparticles (MnFe2O4) coated with a thin silica layer, and a shell of mesoporous silica decorated with AuNCs. The nanocomposite particles feature NIR-photoluminescence with 0.6% quantum yield and large Stokes shift (290 nm), and superparamagnetic response at 300 K, with a saturation magnetization of 13.4 emu g-1. The conjugation of NIR photoluminescence and superparamagnetic properties in the biocompatible nanocomposite has high potential for application in multimodal bioimaging.
Collapse
Affiliation(s)
- Bárbara Casteleiro
- Centro de Química Estrutural, Institute of Molecular Sciences (IMS) and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal;
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (M.R.); (A.R.S.)
| | - Mariana Rocha
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (M.R.); (A.R.S.)
| | - Ana R. Sousa
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (M.R.); (A.R.S.)
- IFIMUP—Instituto de Física de Materiais Avançados, Nanotecnologia e Fotónica, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal;
| | - André M. Pereira
- IFIMUP—Instituto de Física de Materiais Avançados, Nanotecnologia e Fotónica, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal;
| | - José M. G. Martinho
- Centro de Química Estrutural, Institute of Molecular Sciences (IMS) and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal;
| | - Clara Pereira
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (M.R.); (A.R.S.)
| | - José P. S. Farinha
- Centro de Química Estrutural, Institute of Molecular Sciences (IMS) and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal;
| |
Collapse
|
24
|
Ju J, Xu D, Mo X, Miao J, Xu L, Ge G, Zhu X, Deng H. Multifunctional polysaccharide nanoprobes for biological imaging. Carbohydr Polym 2023; 317:121048. [PMID: 37364948 DOI: 10.1016/j.carbpol.2023.121048] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 06/28/2023]
Abstract
Imaging and tracking biological targets or processes play an important role in revealing molecular mechanisms and disease states. Bioimaging via optical, nuclear, or magnetic resonance techniques enables high resolution, high sensitivity, and high depth imaging from the whole animal down to single cells via advanced functional nanoprobes. To overcome the limitations of single-modality imaging, multimodality nanoprobes have been engineered with a variety of imaging modalities and functionalities. Polysaccharides are sugar-containing bioactive polymers with superior biocompatibility, biodegradability, and solubility. The combination of polysaccharides with single or multiple contrast agents facilitates the development of novel nanoprobes with enhanced functions for biological imaging. Nanoprobes constructed with clinically applicable polysaccharides and contrast agents hold great potential for clinical translations. This review briefly introduces the basics of different imaging modalities and polysaccharides, then summarizes the recent progress of polysaccharide-based nanoprobes for biological imaging in various diseases, emphasizing bioimaging with optical, nuclear, and magnetic resonance techniques. The current issues and future directions regarding the development and applications of polysaccharide nanoprobes are further discussed.
Collapse
Affiliation(s)
- Jingxuan Ju
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Danni Xu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xuan Mo
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiaqian Miao
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Xu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Guangbo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Hongping Deng
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
25
|
Zhang C, Wang M, Zhang J, Zou B, Wang Y. Self-template synthesis of mesoporous and biodegradable Fe 3O 4 nanospheres as multifunctional nanoplatform for cancer therapy. Colloids Surf B Biointerfaces 2023; 229:113467. [PMID: 37515962 DOI: 10.1016/j.colsurfb.2023.113467] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/10/2023] [Accepted: 07/16/2023] [Indexed: 07/31/2023]
Abstract
Superparamagnetic Fe3O4 nanospheres have demonstrated great potential as important components in nanomedicine for cancer imaging and therapy. One of the major obstacles that impedes their application is the slow degradation of ingested Fe3O4 nanospheres, which potentially causes long-term health risks. To tackle this issue, we proposed to fabricate Fe3O4 nanospheres with mesoporous structure via a simple self-template etching method. The mesoporous Fe3O4 nanospheres not only offered large specific surface area and weak-acidic responsive degradability, but also exhibited T2-weighted magnetic resonance contrast enhancement and magnetic targeting, which made them possible to serve as excellent cancer therapeutic nanoplatform. Both inorganic photothermal therapeutic Au nanoparticles and organic chemotherapeutic doxorubicin hydrochloride were demonstrated to be successfully loaded onto such kind of nanoplatform, and the hybrid nanomedicine demonstrated synergistic photothermal and chemotherapeutic activity for tumor elimination under near infrared irradiation and improved biodegradability in weak acidic tumor microenvironment. We believe that this study paved a simple way for designing multifunctional Fe3O4-based biodegradable nanomedicine.
Collapse
Affiliation(s)
- Chuanbin Zhang
- Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng 475004, PR China
| | - Meijian Wang
- Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng 475004, PR China
| | - Jianan Zhang
- Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng 475004, PR China
| | - Bingfang Zou
- School of Physics and Electronics, Henan University, Kaifeng 475004, PR China.
| | - Yongqiang Wang
- Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng 475004, PR China.
| |
Collapse
|
26
|
Tkachenko NV, Tkachenko AA, Nebgen B, Tretiak S, Boldyrev AI. Neural network atomistic potentials for global energy minima search in carbon clusters. Phys Chem Chem Phys 2023; 25:21173-21182. [PMID: 37490276 DOI: 10.1039/d3cp02317f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The global energy optimization problem is an acute and important problem in chemistry. It is crucial to know the geometry of the lowest energy isomer (global minimum, GM) of a given compound for the evaluation of its chemical and physical properties. This problem is especially relevant for atomic clusters. Due to the exponential growth of the number of local minima geometries with the increase of the number of atoms in the cluster, it is important to find a computationally efficient and reliable method to navigate the energy landscape and locate a true global minima structure. Newly developed neural network (NN) atomistic potentials offer a numerically efficient and relatively accurate approach for molecular structure optimization. An important question that needs to be answered is "Can NN potentials, trained on a given set, represent the potential energy surface (PES) of a neighboring domain?". In this work, we tested the applicability of ANI-1ccx and ANI-nr NN atomistic potentials for the global minima optimization of carbon clusters Cn (n = 3-10). We showed that with the introduction of the cluster connectivity restriction and consequent DFT or ab initio calculations, ANI-1ccx and ANI-nr can be considered as robust PES pre-samplers that can capture the GM structure even for large clusters such as C20.
Collapse
Affiliation(s)
- Nikolay V Tkachenko
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, USA.
| | | | - Benjamin Nebgen
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Sergei Tretiak
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Alexander I Boldyrev
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, USA.
| |
Collapse
|
27
|
Zhang M, Lu M, Qiu T, Wang Q, Chen Z, Deng M, Yang Y, Yang Y, Li W, Ling Y, Zhou Y. Gelothermal Synthesis of Monodisperse MIL-88A Nanoparticles with Tunable Sizes and Metal Centers for Potential Bioapplications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301894. [PMID: 37093185 DOI: 10.1002/smll.202301894] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/30/2023] [Indexed: 05/03/2023]
Abstract
Developing novel synthetic strategies to downsize metal-organic frameworks (MOFs) from polydisperse crystals to monodisperse nanoparticles is of great importance for their potential bioapplications. In this work, a novel synthetic strategy termed gelothermal synthesis is proposed, in which coordination polymer gel is first prepared and followed by a thermal reaction to give the monodisperse MOF nanoparticles. This novel synthetic strategy successfully leads to the isolation of Materials of Institute Lavoisier (MIL-88), Cu(II)-fumarate MOFs (CufumDMF), and Zeolitic Imidazolate Frameworks (ZIF-8) nanoparticles. Focused on MIL-88A, the studies reveal that the size can be well-tuned from nanoscale to microscale without significant changes in polydispersity index (PDI) even in the case of in situ metal substitution. A possible mechanism is consequently proposed based on extensive studies on the gelothermal condition including sol-gel chemistry, thermal condition, kinds of solvents, and so on. The unique advantages of monodisperse MIL-88A nanoparticles over polydisperse ones are further demonstrated in terms of in vitro magnetic resonance imaging (MRI), cellular uptake, and drug-carrying properties.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Mingzhu Lu
- Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Tianze Qiu
- Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Qiao Wang
- Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Zhenxia Chen
- Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Mingli Deng
- Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Yongtai Yang
- Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Yannan Yang
- Institute of Optoelectronics, Fudan University, Shanghai, 200433, P. R. China
| | - Wei Li
- Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Yun Ling
- Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Yaming Zhou
- Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
28
|
Li Z, Bai R, Yi J, Zhou H, Xian J, Chen C. Designing Smart Iron Oxide Nanoparticles for MR Imaging of Tumors. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:315-339. [PMID: 37501794 PMCID: PMC10369497 DOI: 10.1021/cbmi.3c00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 07/29/2023]
Abstract
Iron oxide nanoparticles (IONPs) possess unique magnetism and good biocompatibility, and they have been widely applied as contrast agents (CAs) for magnetic resonance imaging (MRI). Traditional CAs typically show a fixed enhanced signal, thus exhibiting the limitations of low sensitivity and a lack of specificity. Nowadays, the progress of stimulus-responsive IONPs allows alteration of the relaxation signal in response to internal stimuli of the tumor, or external stimuli, thus providing an opportunity to overcome those limitations. This review summarizes the current status of smart IONPs as tumor imaging MRI CAs that exhibit responsiveness to endogenous stimuli, such as pH, hypoxia, glutathione, and enzymes, or exogenous stimuli, such as magnets, light, and so on. We discuss the challenges and future opportunities for IONPs as MRI CAs and comprehensively illustrate the applications of these stimuli-responsive IONPs. This review will help provide guidance for designing IONPs as MRI CAs and further promote the reasonable design of magnetic nanoparticles and achieve early and accurate tumor detection.
Collapse
Affiliation(s)
- Zhenzhen Li
- CAS
Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety
& CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Department
of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Ru Bai
- CAS
Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety
& CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- Research
Unit of Nanoscience and Technology, Chinese
Academy of Medical Sciences, Beijing 100021, China
| | - Jia Yi
- Guangdong
Provincial Development and Reform Commission, Guangzhou 510031, China
| | - Huige Zhou
- CAS
Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety
& CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- Research
Unit of Nanoscience and Technology, Chinese
Academy of Medical Sciences, Beijing 100021, China
| | - Junfang Xian
- Department
of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Chunying Chen
- CAS
Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety
& CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- Research
Unit of Nanoscience and Technology, Chinese
Academy of Medical Sciences, Beijing 100021, China
- The
GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, China
| |
Collapse
|
29
|
Li X, Yue R, Guan G, Zhang C, Zhou Y, Song G. Recent development of pH-responsive theranostic nanoplatforms for magnetic resonance imaging-guided cancer therapy. EXPLORATION (BEIJING, CHINA) 2023; 3:20220002. [PMID: 37933379 PMCID: PMC10624388 DOI: 10.1002/exp.20220002] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/16/2022] [Indexed: 11/08/2023]
Abstract
The acidic characteristic of the tumor site is one of the most well-known features and provides a series of opportunities for cancer-specific theranostic strategies. In this regard, pH-responsive theranostic nanoplatforms that integrate diagnostic and therapeutic capabilities are highly developed. The fluidity of the tumor microenvironment (TME), with its temporal and spatial heterogeneities, makes noninvasive molecular magnetic resonance imaging (MRI) technology very desirable for imaging TME constituents and developing MRI-guided theranostic nanoplatforms for tumor-specific treatments. Therefore, various MRI-based theranostic strategies which employ assorted therapeutic modes have been drawn up for more efficient cancer therapy through the raised local concentration of therapeutic agents in pathological tissues. In this review, we summarize the pH-responsive mechanisms of organic components (including polymers, biological molecules, and organosilicas) as well as inorganic components (including metal coordination compounds, metal oxides, and metal salts) of theranostic nanoplatforms. Furthermore, we review the designs and applications of pH-responsive theranostic nanoplatforms for the diagnosis and treatment of cancer. In addition, the challenges and prospects in developing theranostic nanoplatforms with pH-responsiveness for cancer diagnosis and therapy are discussed.
Collapse
Affiliation(s)
- Xu Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan UniversityChangshaP. R. China
| | - Renye Yue
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan UniversityChangshaP. R. China
| | - Guoqiang Guan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan UniversityChangshaP. R. China
| | - Cheng Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan UniversityChangshaP. R. China
| | - Ying Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan UniversityChangshaP. R. China
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan UniversityChangshaP. R. China
| |
Collapse
|
30
|
Zhao D, Peng S, Xiao H, Li Q, Chai Y, Sun H, Liu R, Yao L, Ma L. High-Performance T1- T2 Dual-Modal MRI Contrast Agents through Interface Engineering. ACS APPLIED BIO MATERIALS 2023. [PMID: 37229527 DOI: 10.1021/acsabm.3c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Iron oxide nanoparticles (IONPs) have been developed as contrast agents for T1- or T2-weighted magnetic resonance imaging (MRI) on account of their excellent physicochemical and biological properties. However, general strategies to improve longitudinal relaxivity (r1) often decrease transverse relaxivity (r2), thus synchronously strengthening the T1 and T2 enhancement effect of IONPs remains a challenge. Here, we report interface regulation and size tailoring of a group of FePt@Fe3O4 core-shell nanoparticles (NPs), which possess high r1 and r2 relaxivities. The increase of r1 and r2 is due to the enhancement of the saturation magnetization (Ms), which is a result of the strengthened exchange coupling across the core-shell interface. In vivo subcutaneous tumor study and brain glioma imaging revealed that FePt@Fe3O4 NPs can serve as a favorable T1-T2 dual-modal contrast agent. We envision that the core-shell NPs, through interface engineering, have great potential in preclinical and clinical MRI applications.
Collapse
Affiliation(s)
- Dan Zhao
- Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Shibo Peng
- Department of Radiology, First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, PLA Medical School, Beijing 100853, China
| | - Hanzhang Xiao
- Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qilong Li
- Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yahong Chai
- Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongxia Sun
- Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruping Liu
- Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Li Yao
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Science, Beijing 100190, China
| | - Lin Ma
- Department of Radiology, First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, PLA Medical School, Beijing 100853, China
| |
Collapse
|
31
|
Liu Z, Nian L, Cai X, Hu Y, Lei J, Xiao J. A robust collagen-targeting MRI peptide contrast agent for in vivo imaging of hepatic fibrosis. Chem Commun (Camb) 2023; 59:6068-6071. [PMID: 37114522 DOI: 10.1039/d3cc01096a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
We herein report the construction of a robust MRI peptide contrast agent Gd-ICTP with superior selectivity for type I collagen, enabling the accurate and non-invasive detection of hepatic fibrosis in vivo.
Collapse
Affiliation(s)
- Zhao Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
- The First Hospital of Lanzhou University, Lanzhou 730000, P. R. China.
| | - Linge Nian
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Xiangdong Cai
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Yue Hu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Junqiang Lei
- The First Hospital of Lanzhou University, Lanzhou 730000, P. R. China.
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| |
Collapse
|
32
|
Ran J, Wang X, Liu Y, Yin S, Li S, Zhang L. Microreactor-based micro/nanomaterials: fabrication, advances, and outlook. MATERIALS HORIZONS 2023. [PMID: 37139613 DOI: 10.1039/d3mh00329a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Micro/nanomaterials are widely used in optoelectronics, environmental materials, bioimaging, agricultural industries, and drug delivery owing to their marvelous features, such as quantum tunneling, size, surface and boundary, and Coulomb blockade effects. Recently, microreactor technology has opened up broad prospects for green and sustainable chemical synthesis as a powerful tool for process intensification and microscale manipulation. This review focuses on recent progress in the microreactor synthesis of micro/nanomaterials. First, the fabrication and design principles of existing microreactors for producing micro/nanomaterials are summarized and classified. Afterwards, typical examples are shown to demonstrate the fabrication of micro/nanomaterials, including metal nanoparticles, inorganic nonmetallic nanoparticles, organic nanoparticles, Janus particles, and MOFs. Finally, the future research prospects and key issues of microreactor-based micro/nanomaterials are discussed. In short, microreactors provide new ideas and methods for the synthesis of micro/nanomaterials, which have huge potential and inestimable possibilities in large-scale production and scientific research.
Collapse
Affiliation(s)
- Jianfeng Ran
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Xuxu Wang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Yuanhong Liu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Shaohua Yin
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Shiwei Li
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Libo Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| |
Collapse
|
33
|
Liu W, Li X, Wang T, Xiong F, Sun C, Yao X, Huang W. Platinum Drug-Incorporating Polymeric Nanosystems for Precise Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208241. [PMID: 36843317 DOI: 10.1002/smll.202208241] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Indexed: 05/25/2023]
Abstract
Platinum (Pt) drugs are widely used in clinic for cancer therapy, but their therapeutic outcomes are significantly compromised by severe side effects and acquired drug resistance. With the emerging immunotherapy and imaging-guided cancer therapy, precise delivery and release of Pt drugs have drawn great attention these days. The targeting delivery of Pt drugs can greatly increase the accumulation at tumor sites, which ultimately enhances antitumor efficacy. Further, with the combination of Pt drugs and other theranostic agents into one nanosystem, it not only possesses excellent synergistic efficacy but also achieves real-time monitoring. In this review, after the introduction of Pt drugs and their characteristics, the recent progress of polymeric nanosystems for efficient delivery of Pt drugs is summarized with an emphasis on multi-modal synergistic therapy and imaging-guided Pt-based cancer treatment. In the end, the conclusions and future perspectives of Pt-encapsulated nanosystems are given.
Collapse
Affiliation(s)
- Wei Liu
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Xin Li
- School of Pharmaceutical Science, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Ting Wang
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Fei Xiong
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Changrui Sun
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Xikuang Yao
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Wei Huang
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| |
Collapse
|
34
|
Hsu JC, Tang Z, Eremina OE, Sofias AM, Lammers T, Lovell JF, Zavaleta C, Cai W, Cormode DP. Nanomaterial-based contrast agents. NATURE REVIEWS. METHODS PRIMERS 2023; 3:30. [PMID: 38130699 PMCID: PMC10732545 DOI: 10.1038/s43586-023-00211-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/20/2023] [Indexed: 12/23/2023]
Abstract
Medical imaging, which empowers the detection of physiological and pathological processes within living subjects, has a vital role in both preclinical and clinical diagnostics. Contrast agents are often needed to accompany anatomical data with functional information or to provide phenotyping of the disease in question. Many newly emerging contrast agents are based on nanomaterials as their high payloads, unique physicochemical properties, improved sensitivity and multimodality capacity are highly desired for many advanced forms of bioimaging techniques and applications. Here, we review the developments in the field of nanomaterial-based contrast agents. We outline important nanomaterial design considerations and discuss the effect on their physicochemical attributes, contrast properties and biological behaviour. We also describe commonly used approaches for formulating, functionalizing and characterizing these nanomaterials. Key applications are highlighted by categorizing nanomaterials on the basis of their X-ray, magnetic, nuclear, optical and/or photoacoustic contrast properties. Finally, we offer our perspectives on current challenges and emerging research topics as well as expectations for future advancements in the field.
Collapse
Affiliation(s)
- Jessica C. Hsu
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Zhongmin Tang
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Olga E. Eremina
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Alexandros Marios Sofias
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Cristina Zavaleta
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - David P. Cormode
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
35
|
Liu M, Zhao Y, Shi Z, Zink JI, Yu Q. Virus-like Magnetic Mesoporous Silica Particles as a Universal Vaccination Platform against Pathogenic Infections. ACS NANO 2023; 17:6899-6911. [PMID: 36961475 DOI: 10.1021/acsnano.3c00644] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Vaccination is the most important way of population protection from life-threatening pathogenic infections. However, its efficiency is frequently compromised by a failure of strong antigen presentation and immune activation. Herein, we developed virus-like magnetic mesoporous silica nanoparticles as a universal vaccination platform (termed MagParV) for preventing pathogenic infections. This platform was constructed by integrating synthetic biology-based endoplasmic reticulum-targeting vesicles with magnetic mesoporous silica particles. This platform exhibited high antigen-loading capacity, strongly targeting the endoplasmic reticulum and promoting antigen presentation in dendritic cells. After prime-boost vaccination, the antigen-loading MagParV with AMF drastically elicited specific antibody production against corresponding antigens of fungal, bacterial, and viral pathogens. A systemic infection model further revealed that the platform effectively protected the mice from severe fungal systemic infections. This study realized synthetic biology-facilitated green manufacturing of vaccines, which is promising for magnetism-activated vaccination against different kinds of pathogenic infections.
Collapse
Affiliation(s)
- Mingyang Liu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, People's Republic of China
| | - Yan Zhao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Zhishang Shi
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Jeffrey I Zink
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- California Nano Systems Institute (CNSI), University of California, Los Angeles, California 90095, United States
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
36
|
An Y, Chen W, Li Y, Zhao H, Ye D, Liu H, Wu K, Ju H. Crosslinked albumin-manganese nanoaggregates with sensitized T1 relaxivity and indocyanine green loading for multimodal imaging and cancer phototherapy. J Mater Chem B 2023; 11:2157-2165. [PMID: 36779282 DOI: 10.1039/d2tb02529a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Albumin-manganese-based nanocomposites (AMNs) characterized by simple preparation and good biocompatibility have been widely used for in vivo T1-weighted magnetic resonance imaging (MRI) and cancer theranostics. Herein, an aggregation and crosslinking assembly strategy was proposed to achieve the sensitization to T1 relaxivity of the albumin-manganese nanocomposite. At a relatively low Mn content (0.35%), the aggregation and crosslinking of bovine serum albumin-MnO2 (BM) resulted in a dramatic increase of T1 relaxivity from 5.49 to 67.2 mM-1 s-1. Upon the loading of indocyanine green (ICG) into the crosslinked BM nanoaggregates (C-BM), the T1 relaxivity of the C-BM/ICG nanocomposite (C-BM/I) was further increased to 97.3 mM-1 s-1, which was much higher than those reported previously even at high Mn contents. Moreover, the presence of C-BM greatly enhanced the photoacoustic (PA) and photothermal effects of ICG at 830 and 808 nm, respectively, and the second near infrared fluorescence (NIR-II FL) of ICG also showed better stability. Therefore, the synthesized C-BM/ICG nanocomposite exhibited remarkable performance in in vivo multimodal imaging of tumors, such as T1-weighted MRI, NIR-II FL imaging and PA imaging, and cancer phototherapy with little side effects. This work provided a highly efficient and promising multifunctional nanoprobe for breaking through the limits of cancer theranostics, and opened a new avenue for the development of high-relaxivity AMNs and multimodal imaging methodology.
Collapse
Affiliation(s)
- Ying An
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Weiwei Chen
- School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yiran Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Hongxia Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Huipu Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Kun Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
37
|
Wu Q, Pan W, Wu G, Wu F, Guo Y, Zhang X. CD40-targeting magnetic nanoparticles for MRI/optical dual-modality molecular imaging of vulnerable atherosclerotic plaques. Atherosclerosis 2023; 369:17-26. [PMID: 36863196 DOI: 10.1016/j.atherosclerosis.2023.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/28/2022] [Accepted: 02/21/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND AND AIMS Acute coronary syndrome caused by vulnerable plaque rupture or erosion is a leading cause of death worldwide. CD40 has been reported to be highly expressed in atherosclerotic plaques and closely related to plaque stability. Therefore, CD40 is expected to be a potential target for the molecular imaging of vulnerable plaques in atherosclerosis. We aimed to design a CD40-targeted magnetic resonance imaging (MRI)/optical multimodal molecular imaging probe and explore its ability to detect and target vulnerable atherosclerotic plaques. METHODS CD40-Cy5.5 superparamagnetic iron oxide nanoparticles (CD40-Cy5.5-SPIONs), which comprise a CD40-targeting multimodal imaging contrast agent, were constructed by conjugating CD40 antibody and Cy5.5-N-hydroxysuccinimide ester with SPIONs. During this in vitro study, we observed the binding ability of CD40-Cy5.5-SPIONs with RAW 264.7 cells and mouse aortic vascular smooth muscle cells (MOVAS) after different treatments, using confocal fluorescence microscopy and Prussian blue staining. An in vivo study involving ApoE-/- mice fed a high-fat diet for 24-28 weeks was performed. 24 h after intravenous injection of CD40-Cy5.5-SPIONs, fluorescence imaging and MRI were performed. RESULTS CD40-Cy5.5-SPIONs bind specifically to tumor necrosis factor (TNF)-α-treated macrophages and smooth muscle cells. Fluorescence imaging results showed that, compared with the control group and the atherosclerosis group injected with non-specific bovine serum albumin (BSA)-Cy5.5-SPIONs, the atherosclerotic group injected with CD40-Cy5.5-SPIONs had a stronger fluorescence signal. T2-weighted images showed that the carotid arteries of atherosclerotic mice injected with CD40-Cy5.5-SPIONs had a significant substantial T2 contrast enhancement effect. CONCLUSIONS CD40-Cy5.5-SPIONs could potentially serve as an effective MRI/optical probe for vulnerable atherosclerotic plaques during non-invasive detection.
Collapse
Affiliation(s)
- Qimin Wu
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518033, Guangdong, China
| | - Wei Pan
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518033, Guangdong, China
| | - Guifu Wu
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518033, Guangdong, China; Guangdong Innovative Engineering and Technology Research Center for Assisted Circulation, Shenzhen, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Fensheng Wu
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518033, Guangdong, China
| | - Yousheng Guo
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518033, Guangdong, China
| | - Xinxia Zhang
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518033, Guangdong, China; Guangdong Innovative Engineering and Technology Research Center for Assisted Circulation, Shenzhen, China.
| |
Collapse
|
38
|
Luo Q, Shao N, Zhang AC, Chen CF, Wang D, Luo LP, Xiao ZY. Smart Biomimetic Nanozymes for Precise Molecular Imaging: Application and Challenges. Pharmaceuticals (Basel) 2023; 16:249. [PMID: 37259396 PMCID: PMC9965384 DOI: 10.3390/ph16020249] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 04/06/2024] Open
Abstract
New nanotechnologies for imaging molecules are widely being applied to visualize the expression of specific molecules (e.g., ions, biomarkers) for disease diagnosis. Among various nanoplatforms, nanozymes, which exhibit enzyme-like catalytic activities in vivo, have gained tremendously increasing attention in molecular imaging due to their unique properties such as diverse enzyme-mimicking activities, excellent biocompatibility, ease of surface tenability, and low cost. In addition, by integrating different nanoparticles with superparamagnetic, photoacoustic, fluorescence, and photothermal properties, the nanoenzymes are able to increase the imaging sensitivity and accuracy for better understanding the complexity and the biological process of disease. Moreover, these functions encourage the utilization of nanozymes as therapeutic agents to assist in treatment. In this review, we focus on the applications of nanozymes in molecular imaging and discuss the use of peroxidase (POD), oxidase (OXD), catalase (CAT), and superoxide dismutase (SOD) with different imaging modalities. Further, the applications of nanozymes for cancer treatment, bacterial infection, and inflammation image-guided therapy are discussed. Overall, this review aims to provide a complete reference for research in the interdisciplinary fields of nanotechnology and molecular imaging to promote the advancement and clinical translation of novel biomimetic nanozymes.
Collapse
Affiliation(s)
| | | | | | | | | | - Liang-Ping Luo
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Ze-Yu Xiao
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| |
Collapse
|
39
|
Escamilla P, Guerra WD, Leyva-Pérez A, Armentano D, Ferrando-Soria J, Pardo E. Metal-organic frameworks as chemical nanoreactors for the preparation of catalytically active metal compounds. Chem Commun (Camb) 2023; 59:836-851. [PMID: 36598064 DOI: 10.1039/d2cc05686k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Since the emergence of metal-organic frameworks (MOFs), a myriad of thrilling properties and applications, in a wide range of fields, have been reported for these materials, which mainly arise from their porous nature and rich host-guest chemistry. However, other important features of MOFs that offer great potential rewards have been only barely explored. For instance, despite the fact that MOFs are suitable candidates to be used as chemical nanoreactors for the preparation, stabilization and characterization of unique functional species, that would be hardly accessible outside the functional constrained space offered by MOF channels, only very few examples have been reported so far. In particular, we outline in this feature recent advances in the use of highly robust and crystalline oxamato- and oxamidato-based MOFs as reactors for the in situ preparation of well-defined catalytically active single atom catalysts (SACS), subnanometer metal nanoclusters (SNMCs) and supramolecular coordination complexes (SCCs). The robustness of selected MOFs permits the post-synthetic (PS) in situ preparation of the desired catalytically active metal species, which can be characterised by single-crystal X-ray diffraction (SC-XRD) taking advantage of its high crystallinity. The strategy highlighted here permits the always challenging large-scale preparation of stable and well-defined SACs, SNMCs and SCCs, exhibiting outstanding catalytic activities.
Collapse
Affiliation(s)
- Paula Escamilla
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, 46980, Paterna, Valencia, Spain.
| | - Walter D Guerra
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, 46980, Paterna, Valencia, Spain.
| | - Antonio Leyva-Pérez
- Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), 46022, Valencia, Spain
| | - Donatella Armentano
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036, Rende, Cosenza, Italy
| | - Jesús Ferrando-Soria
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, 46980, Paterna, Valencia, Spain.
| | - Emilio Pardo
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, 46980, Paterna, Valencia, Spain.
| |
Collapse
|
40
|
Gd(OH)3 as Modifier of Iron Oxide Nanoparticles—Insights on the Synthesis, Characterization and Stability. COLLOIDS AND INTERFACES 2023. [DOI: 10.3390/colloids7010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Magnetic resonance imaging is one of the most widely used diagnostic techniques, since it is non-invasive and provides high spatial resolution. Contrast agents (CAs) are usually required to improve the contrast capability. CAs can be classified as T1 (or positive) or T2 (or negative) contrast agents. Nowadays, gadolinium chelates (which generate T1 contrast) are the most used in clinical settings. However, the use of these chelates presents some drawbacks associated with their toxicity. Iron oxide magnetic nanoparticles (MNPs) have been extensively investigated as CA for MRI, especially for their capacity to generate negative contrast. The need for more efficient and safer contrast agents has focused investigations on the development of dual CAs, i.e., CAs that can generate both positive and negative contrast with a single administration. In this sense, nanotechnology appears as an attractive tool to achieve this goal. Nanoparticles can be modified not only to improve the contrast ability of the current CAs but also to enhance their biocompatibility, resolving toxicity issues. With the aim of contributing to the field of development of dual T1/T2 contrast agents for MRI, here, we present the obtained results of the synthesis of hybrid nanoparticles composed of magnetite/maghemite and gadolinium hydroxide. Exhaustive characterization work was conducted in order to understand how the hybrid nanoparticles were formed. The nanoparticles were extensively characterized through FTIR and UV–Vis spectroscopy, TEM and SEM microscopy, X-ray diffraction (XRD) analysis, dynamic light scattering, zeta potential, thermogravimetric analysis, energy-dispersive X-ray and vibrating-sample magnetometry. Stabilization studies were carried out to get an idea of the behavior of nanohybrids in physiological media. Special interest was given to the evaluation of Gd3+ leaching. It was found that carbohydrate coating as well as the adsorption of proteins on the surface may improve the stabilization of hybrid nanoparticles.
Collapse
|
41
|
Zhang Y, Liu L, Li W, Zhang C, Song T, Wang P, Sun D, Huang X, Qin X, Ran L, Tian G, Qian J, Zhang G. PDGFB-targeted functional MRI nanoswitch for activatable T 1-T 2 dual-modal ultra-sensitive diagnosis of cancer. J Nanobiotechnology 2023; 21:9. [PMID: 36609374 PMCID: PMC9824934 DOI: 10.1186/s12951-023-01769-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
As one of the most significant imaging modalities currently available, magnetic resonance imaging (MRI) has been extensively utilized for clinically accurate cancer diagnosis. However, low signal-to-noise ratio (SNR) and low specificity for tumors continue to pose significant challenges. Inspired by the distance-dependent magnetic resonance tuning (MRET) phenomenon, the tumor microenvironment (TME)-activated off-on T1-T2 dual-mode MRI nanoswitch is presented in the current study to realize the sensitive early diagnosis of tumors. The tumor-specific nanoswitch is designed and manufactured on the basis of PDGFB-conjugating ferroferric oxide coated by Mn-doped silica (PDGFB-FMS), which can be degraded under the high-concentration GSH and low pH in TME to activate the T1-T2 dual-mode MRI signals. The tumor-specific off-on dual-mode MRI nanoswitch can significantly improve the SNR and is used successfully for the accurate diagnosis of early-stage tumors, particularly for orthotopic prostate cancer. In addition, the systemic delivery of the nanoswitch did not cause blood or tissue damage, and it can be excreted out of the body in a timely manner, demonstrating excellent biosafety. Overall, the strategy is a significant step in the direction of designing off-on dual-mode MRI nanoprobes to improve imaging accuracy, which opens up new avenues for the development of new MRI probes.
Collapse
Affiliation(s)
- Ya’nan Zhang
- grid.440653.00000 0000 9588 091XSchool of Medical Imaging, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003 People’s Republic of China ,grid.9227.e0000000119573309Hefei Cancer Hospital, Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 People’s Republic of China
| | - Lu Liu
- grid.440653.00000 0000 9588 091XSchool of Medical Imaging, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003 People’s Republic of China ,grid.440653.00000 0000 9588 091XSchool of Pharmacy, Institute of Aging Medicine, Binzhou Medical University, Yantai, 264003 People’s Republic of China
| | - Wenling Li
- grid.440653.00000 0000 9588 091XSchool of Medical Imaging, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003 People’s Republic of China ,grid.440653.00000 0000 9588 091XSchool of Pharmacy, Institute of Aging Medicine, Binzhou Medical University, Yantai, 264003 People’s Republic of China
| | - Caiyun Zhang
- grid.440653.00000 0000 9588 091XSchool of Medical Imaging, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003 People’s Republic of China ,grid.440653.00000 0000 9588 091XSchool of Pharmacy, Institute of Aging Medicine, Binzhou Medical University, Yantai, 264003 People’s Republic of China
| | - Tianwei Song
- grid.440653.00000 0000 9588 091XSchool of Medical Imaging, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003 People’s Republic of China ,grid.440653.00000 0000 9588 091XSchool of Pharmacy, Institute of Aging Medicine, Binzhou Medical University, Yantai, 264003 People’s Republic of China
| | - Peng Wang
- grid.440653.00000 0000 9588 091XSchool of Medical Imaging, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003 People’s Republic of China ,grid.440653.00000 0000 9588 091XSchool of Pharmacy, Institute of Aging Medicine, Binzhou Medical University, Yantai, 264003 People’s Republic of China
| | - Daxi Sun
- grid.440653.00000 0000 9588 091XSchool of Medical Imaging, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003 People’s Republic of China ,grid.440653.00000 0000 9588 091XSchool of Pharmacy, Institute of Aging Medicine, Binzhou Medical University, Yantai, 264003 People’s Republic of China
| | - Xiaodan Huang
- grid.440653.00000 0000 9588 091XSchool of Medical Imaging, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003 People’s Republic of China ,grid.440653.00000 0000 9588 091XSchool of Pharmacy, Institute of Aging Medicine, Binzhou Medical University, Yantai, 264003 People’s Republic of China
| | - Xia Qin
- grid.440653.00000 0000 9588 091XSchool of Medical Imaging, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003 People’s Republic of China ,grid.440653.00000 0000 9588 091XSchool of Pharmacy, Institute of Aging Medicine, Binzhou Medical University, Yantai, 264003 People’s Republic of China
| | - Lang Ran
- grid.440653.00000 0000 9588 091XSchool of Medical Imaging, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003 People’s Republic of China ,grid.440653.00000 0000 9588 091XSchool of Pharmacy, Institute of Aging Medicine, Binzhou Medical University, Yantai, 264003 People’s Republic of China
| | - Geng Tian
- grid.440653.00000 0000 9588 091XSchool of Medical Imaging, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003 People’s Republic of China
| | - Junchao Qian
- grid.9227.e0000000119573309Hefei Cancer Hospital, Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 People’s Republic of China ,grid.410587.fDepartment of Radiation Oncology, School of Medicine, Shandong University, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 Shandong China
| | - Guilong Zhang
- grid.440653.00000 0000 9588 091XSchool of Medical Imaging, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003 People’s Republic of China ,grid.440653.00000 0000 9588 091XSchool of Pharmacy, Institute of Aging Medicine, Binzhou Medical University, Yantai, 264003 People’s Republic of China
| |
Collapse
|
42
|
Zhang X, Wang X, Li Z, Du J, Xiao X, Pan D, Zhang H, Tian X, Gong Q, Gu Z, Luo K. Lactose-modified enzyme-sensitive branched polymers as a nanoscale liver cancer-targeting MRI contrast agent. NANOSCALE 2023; 15:809-819. [PMID: 36533522 DOI: 10.1039/d2nr04020d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Signal enhancement of magnetic resonance imaging (MRI) in the diseased region is dependent on the molecular structure of the MRI contrast agent. In this study, a macromolecular contrast agent, Branched-LAMA-DOTA-Cy5.5-Gd (BLDCGd), was prepared to target liver cancer. Due to the affinity of lactose to the Asialoglycoprotein receptor (ASGPR) over-expressed on the surface of liver cancer cells, lactose was selected as the targeting moiety in the contrast agent. A cathepsin B-sensitive tetrapeptide, GFLG, was used as a linkage moiety to construct a cross-linked macromolecular structure of the contrast agent, and the contrast agent could be degraded into fragments for clearance. A small-molecular-weight molecule, DOTA-Gd, and a fluorescent dye, Cy5.5, were conjugated to the macromolecular structure via a thiol-ene click reaction. The contrast agent, BLDCGd, had a high molecular weight (81 kDa) and a small particle size (59 ± 12 nm). Its longitudinal relaxivity (12.62 mM-1 s-1) was 4-fold that of the clinical agent DTPA-Gd (3.42 mM-1 s-1). Signal enhancement of up to 184% was observed at the tumor site in an H22 cell-based mouse model. A high accumulation level of BLDCGd in the liver tumor observed from MRI was confirmed from the fluorescence images obtained from the same contrast agent. BLDCGd showed no toxicity to HUVECs and H22 cells in vitro, and low blood chemistry indexes and no distinct histopathological abnormalities were also observed in vivo after injection of BLDCGd since it could be metabolized through the kidneys according to the in vivo MRI results of major organs. Therefore, the branched macromolecule BLDCGd could have great potential as an efficacious and bio-safe nanoscale MRI contrast agent for clinical diagnosis of liver cancer.
Collapse
Affiliation(s)
- Xiaoqin Zhang
- School of Basic Medical Science, Southwest Medical University, Luzhou,646000, China
| | - Xiaoming Wang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Department of Biotherapy, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
- Department of Radiology, Chongqing General Hospital, No. 118, Xingguang Avenue, Liangjiang New Area, Chongqing, 401147, China
| | - Zhiqian Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Department of Biotherapy, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Jun Du
- School of Basic Medical Science, Southwest Medical University, Luzhou,646000, China
| | - Xueyang Xiao
- Department of Radiology, Huaxi MR Research Center (HMRRC), Department of Biotherapy, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Dayi Pan
- Department of Radiology, Huaxi MR Research Center (HMRRC), Department of Biotherapy, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute Claremont, CA 91711, USA
| | - Xiaohe Tian
- Department of Radiology, Huaxi MR Research Center (HMRRC), Department of Biotherapy, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), Department of Biotherapy, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
| | - Zhongwei Gu
- Department of Radiology, Huaxi MR Research Center (HMRRC), Department of Biotherapy, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Kui Luo
- Department of Radiology, Huaxi MR Research Center (HMRRC), Department of Biotherapy, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
43
|
Liu R, Xu Y, Zhang N, Qu S, Zeng W, Li R, Dai Z. Nanotechnology for Enhancing Medical Imaging. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
44
|
Li D, Yang J, Xu Z, Li Y, Sun Y, Wang Y, Zou H, Wang K, Yang L, Wu L, Sun X. c-Met-Targeting 19F MRI Nanoparticles with Ultralong Tumor Retention for Precisely Detecting Small or Ill-Defined Colorectal Liver Metastases. Int J Nanomedicine 2023; 18:2181-2196. [PMID: 37131548 PMCID: PMC10149079 DOI: 10.2147/ijn.s403190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/20/2023] [Indexed: 05/04/2023] Open
Abstract
Purpose Precisely detecting colorectal liver metastases (CLMs), the leading cause of colorectal cancer-associated mortality, is extremely important. 1H MRI with high soft tissue resolution plays a key role in the diagnosing liver lesions; however, precise detecting CLMs by 1H MRI is a great challenge due to the limited sensitivity. Even though contrast agents may improve the sensitivity, due to their short half-life, repeated injections are required to monitor the changes of CLMs. Herein, we synthesized c-Met-targeting peptide-functionalized perfluoro-15-crown-5-ether nanoparticles (AH111972-PFCE NPs), for highly sensitive and early diagnosis of small CLMs. Methods The size, morphology and optimal properties of the AH111972-PFCE NPs were characterized. c-Met specificity of the AH111972-PFCE NPs was validated by in vitro experiment and in vivo 19F MRI study in the subcutaneous tumor murine model. The molecular imaging practicability and long tumor retention of the AH111972-PFCE NPs were evaluated in the liver metastases mouse model. The biocompatibility of the AH111972-PFCE NPs was assessed by toxicity study. Results AH111972-PFCE NPs with regular shape have particle size of 89.3 ± 17.8 nm. The AH111972-PFCE NPs exhibit high specificity, strong c-Met-targeting ability, and precise detection capability of CLMs, especially small or ill-defined fused metastases in 1H MRI. Moreover, AH111972-PFCE NPs could be ultralong retained in metastatic liver tumors for at least 7 days, which is conductive to the implementation of continuous therapeutic efficacy monitoring. The NPs with minimal side effects and good biocompatibility are cleared mainly via the spleen and liver. Conclusion The c-Met targeting and ultralong tumor retention of AH111972-PFCE NPs will contribute to increasing therapeutic agent accumulation in metastatic sites, laying a foundation for CLMs diagnosis and further c-Met targeted treatment integration. This work provides a promising nanoplatform for the future clinical application to patients with CLMs.
Collapse
Affiliation(s)
- Daoshuang Li
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Jie Yang
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Zuoyu Xu
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Yingbo Li
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Yige Sun
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Yuchen Wang
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Hongyan Zou
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Kai Wang
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Lili Yang
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Lina Wu
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Xilin Sun
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
- Correspondence: Xilin Sun; Lina Wu, Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, 766 Xiangan N Street, Songbei District, Harbin, Heilongjiang, 150028, People’s Republic of China, Tel +86-451-88118600, Fax +86-451-82576509, Email ;
| |
Collapse
|
45
|
Pallares RM, Abergel RJ. Development of radiopharmaceuticals for targeted alpha therapy: Where do we stand? Front Med (Lausanne) 2022; 9:1020188. [PMID: 36619636 PMCID: PMC9812962 DOI: 10.3389/fmed.2022.1020188] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Targeted alpha therapy is an oncological treatment, where cytotoxic doses of alpha radiation are locally delivered to tumor cells, while the surrounding healthy tissue is minimally affected. This therapeutic strategy relies on radiopharmaceuticals made of medically relevant radionuclides chelated by ligands, and conjugated to targeting vectors, which promote the drug accumulation in tumor sites. This review discusses the state-of-the-art in the development of radiopharmaceuticals for targeted alpha therapy, breaking down their key structural components, such as radioisotope, targeting vector, and delivery formulation, and analyzing their pros and cons. Moreover, we discuss current drawbacks that are holding back targeted alpha therapy in the clinic, and identify ongoing strategies in field to overcome those issues, including radioisotope encapsulation in nanoformulations to prevent the release of the daughters. Lastly, we critically discuss potential opportunities the field holds, which may contribute to targeted alpha therapy becoming a gold standard treatment in oncology in the future.
Collapse
Affiliation(s)
- Roger M. Pallares
- Lawrence Berkeley National Laboratory, Chemical Sciences Division, Berkeley, CA, United States
| | - Rebecca J. Abergel
- Lawrence Berkeley National Laboratory, Chemical Sciences Division, Berkeley, CA, United States,Department of Nuclear Engineering, University of California, Berkeley, Berkeley, CA, United States,*Correspondence: Rebecca J. Abergel,
| |
Collapse
|
46
|
Li S, Yang Y, Wang S, Gao Y, Song Z, Chen L, Chen Z. Advances in metal graphitic nanocapsules for biomedicine. EXPLORATION (BEIJING, CHINA) 2022; 2:20210223. [PMID: 37324797 PMCID: PMC10191027 DOI: 10.1002/exp.20210223] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/21/2022] [Indexed: 06/16/2023]
Abstract
Metal graphitic nanocapsules have the advantages of both graphitic and metal nanomaterials, showing great promise in biomedicine. On one hand, the chemically inert graphitic shells are able to protect the metal core from external environments, quench the fluorescence signal from the biological system, offer robust platform for targeted molecules or drugs loading, and act as stable Raman labels or internal standard molecule. On the other hand, the metal cores with different compositions, sizes, and morphologies show unique physicochemical properties, and further broaden their biomedical functions. In this review, we firstly introduce the preparation, classification, and properties of metal graphitic nanocapsules, then summarize the recent progress of their applications in biodetection, bioimaging, and therapy. Challenges and their development prospects in biomedicine are eventually discussed in detail. We expect the versatile metal graphitic nanocapsules will advance the development of future clinical biomedicine.
Collapse
Affiliation(s)
- Shengkai Li
- Molecular Science and Biomedicine Laboratory (MBL)State Key Laboratory of Chemo/Bio‐Sensing and ChemometricsCollege of Chemistry and Chemical EngineeringAptamer Engineering Center of Hunan ProvinceHunan Provincial Key Laboratory of Biomacromolecular Chemical BiologyHunan UniversityChangshaChina
| | - Yanxia Yang
- Molecular Science and Biomedicine Laboratory (MBL)State Key Laboratory of Chemo/Bio‐Sensing and ChemometricsCollege of Chemistry and Chemical EngineeringAptamer Engineering Center of Hunan ProvinceHunan Provincial Key Laboratory of Biomacromolecular Chemical BiologyHunan UniversityChangshaChina
| | - Shen Wang
- Molecular Science and Biomedicine Laboratory (MBL)State Key Laboratory of Chemo/Bio‐Sensing and ChemometricsCollege of Chemistry and Chemical EngineeringAptamer Engineering Center of Hunan ProvinceHunan Provincial Key Laboratory of Biomacromolecular Chemical BiologyHunan UniversityChangshaChina
| | - Yang Gao
- College of Materials Science and EngineeringHunan Province Key Laboratory for Advanced Carbon Materials and Applied TechnologyHunan UniversityChangshaChina
| | - Zhiling Song
- Key Laboratory of Optic‐Electric Sensing and Analytical Chemistry for Life ScienceMOEShandong Key Laboratory of Biochemical AnalysisCollege of Chemistry and Molecular EngineeringQingdao University of Science and TechnologyQingdaoChina
| | - Long Chen
- Faculty of Science and TechnologyUniversity of MacauMacau SARChina
| | - Zhuo Chen
- Molecular Science and Biomedicine Laboratory (MBL)State Key Laboratory of Chemo/Bio‐Sensing and ChemometricsCollege of Chemistry and Chemical EngineeringAptamer Engineering Center of Hunan ProvinceHunan Provincial Key Laboratory of Biomacromolecular Chemical BiologyHunan UniversityChangshaChina
| |
Collapse
|
47
|
Jung W, Lee DY, Moon E, Jon S. Nanoparticles derived from naturally occurring metal chelators for theranostic applications. Adv Drug Deliv Rev 2022; 191:114620. [PMID: 36379406 DOI: 10.1016/j.addr.2022.114620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/15/2022]
Abstract
Metals are indispensable for the activities of all living things, from single-celled organisms to higher organisms, including humans. Beyond their intrinsic quality as metal ions, metals help creatures to maintain requisite biological processes by forming coordination complexes with endogenous ligands that are broadly distributed in nature. These types of naturally occurring chelating reactions are found through the kingdoms of life, including bacteria, plants and animals. Mimicking these naturally occurring coordination complexes with intrinsic biocompatibility may offer an opportunity to develop nanomedicine toward clinical applications. Herein, we introduce representative examples of naturally occurring coordination complexes in a selection of model organisms and highlight such bio-inspired metal-chelating nanomaterials for theranostic applications.
Collapse
Affiliation(s)
- Wonsik Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea; Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Dong Yun Lee
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Seoul 05505, Republic of Korea; Translational Biomedical Research Group, Biomedical Research Center, Asan Institute for Life Science, Asan Medical Center, 88 Olympic-ro 43-gil, Seoul 05505, Republic of Korea.
| | - Eugene Moon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea; Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Sangyong Jon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea; Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea.
| |
Collapse
|
48
|
Jin R, Fu X, Pu Y, Fu S, Liang H, Yang L, Nie Y, Ai H. Clinical translational barriers against nanoparticle-based imaging agents. Adv Drug Deliv Rev 2022; 191:114587. [PMID: 36309148 DOI: 10.1016/j.addr.2022.114587] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/22/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023]
Abstract
Nanoparticle based imaging agents (NIAs) have been intensively explored in bench studies. Unfortunately, only a few cases have made their ways to clinical translation. In this review, clinical trials of NIAs were investigated for understanding possible barriers behind that. First, the complexity of multifunctional NIAs is considered a main barrier because it brings uncertainty to batch-to-batch fabrication, and results in sophisticated in vivo behaviors. Second, inadequate biosafety studies slow down the translational work. Third, NIA uptake at disease sites is highly heterogeneous, and often exhibits poor targeting efficiency. Focusing on the aforementioned problems, key design parameters were analyzed including NIAs' size, composition, surface characteristics, dosage, administration route, toxicity, whole-body distribution and clearance in clinical trials. Possible strategies were suggested to overcome these barriers. Besides, regulatory guidelines as well as scale-up and reproducibility during manufacturing process were covered as they are also key factors to consider during clinical translation of NIAs.
Collapse
Affiliation(s)
- Rongrong Jin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xiaomin Fu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yiyao Pu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Shengxiang Fu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Hong Liang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yu Nie
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Hua Ai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
49
|
Li Z, Song J, Yang H. Emerging low-dimensional black phosphorus: from physical-optical properties to biomedical applications. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1355-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
50
|
Recent progress in multifunctional conjugated polymer nanomaterial-based synergistic combination phototherapy for microbial infection theranostics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|