1
|
Lin Y, McClements DJ, Zhang J, Ke L, He Y, Xiao J, Cao Y, Liu X. In vitro digestive behavior of emulsifier-stabilized excipient emulsions affects the bioaccessibility of flavonoids. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2146-2157. [PMID: 39468933 DOI: 10.1002/jsfa.13985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 08/22/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Flavonoids, found in common vegetables and fruits, have health benefits that are often limited by their low bioavailability. Excipient emulsions provide an effective strategy to overcome these obstacles. However, the nature of the emulsifier used to formulate excipient emulsions and the chemical structure of the flavonoids both affect the bioaccessibility of the flavonoids. RESULTS The purpose of this study was to investigate the impact of the interfacial properties of excipient emulsions on the in vitro gastrointestinal fate of representative structural flavonoids (quercetin, kaempferol, and apigenin) through the INFOGEST method. Tween 80 (TW80) (a nonionic surfactant) was more effective at reducing the oil-water interfacial tension than whey protein isolate (WPI) (a protein-based emulsifier) or octenyl succinic anhydride (OSA)-modified starch (MS) (a polysaccharide-based emulsifier). Moreover, TW80 created excipient emulsions with smaller oil droplets, which were more resistant to oral and gastric conditions. The WPI-emulsions underwent severe flocculation in the gastric phase, leading to an appreciable increase in particle size (from 220 to 3000 nm). The TW80-coated oil droplets were more digestible than WPI- or MS-coated ones. This was attributed to the larger lipid surface area for lipase attachment. The bioaccessibility of quercetin, kaempferol, and apigenin was also affected by emulsifiers: TW 80 (25% to 45%) > WPI (14% to 29%) ≈ MS (15% to 25%). Flavonoid bioaccessibility appeared to be related to their molecular properties. CONCLUSION This study provides guidance for the design of effective excipient emulsions to enhance the bioavailability of flavonoids. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yanping Lin
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | | | - Junlin Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Liang Ke
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yi He
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xiaojuan Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
2
|
Su S, Liu Y, Li H, Xia H, Li P, Qin S, Shi M, Guo S, Zeng C. Effect of lipid type on betulin-stabilized water-in-oil Pickering emulsion: emulsion properties, in vitro digestion, and betulin bioaccessibility. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:769-779. [PMID: 39258952 DOI: 10.1002/jsfa.13867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND The Pickering emulsion delivery technique is widely acknowledged for its efficacy in serving as a carrier that can encapsulate functional components effectively. Previous studies have shown significant differences in the stability of Pickering emulsions composed of different oil phases and in the bioaccessibility of the encapsulated functional ingredients. This study therefore investigated the effects of different carrier oils in the betulin self-stabilized water-in-oil (W/O) Pickering emulsion on the stability of the emulsion and bioaccessibility of betulin. RESULTS The results showed that the oil type was one of the main factors affecting the stability of the emulsion. Palm oil and coconut oil provided better storage stability and centrifugal stability due to the high saturated fatty acid content. The bioavailability of betulin correlated significantly with the composition and characteristics of fatty acids in carrier oils. Carrier oils rich in low-saturation long-chain fatty acids tended to release more free fatty acids (FFAs), thus forming larger and more mixed micelles with stronger swelling and dissolution ability, resulting in a relatively high bioaccessibility of betulin. In contrast, the bioaccessibility of betulin in the emulsion prepared by coconut oil (with high saturated fatty acid content) was relatively low (1.17%). CONCLUSION The results of this study indicate that selecting an appropriate carrier oil is important for the design of self-stabilized W/O Pickering emulsions to improve the bioaccessibility of betulin and other lipophilic bioactivities effectively. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuxian Su
- Department of Food Science and Technology, College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yugang Liu
- Department of Food Science and Technology, College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Haiyan Li
- Department of Food Science and Technology, College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Huiping Xia
- Department of Food Science and Technology, College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Peiwang Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Si Qin
- Department of Food Science and Technology, College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Meng Shi
- Department of Food Science and Technology, College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Shiyin Guo
- Department of Food Science and Technology, College of Food Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Rapeseed Oil Nutrition Health and Deep Development Engineering Technology Research Center, Hunan Agricultural University, Changsha, China
| | - Chaoxi Zeng
- Department of Food Science and Technology, College of Food Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Rapeseed Oil Nutrition Health and Deep Development Engineering Technology Research Center, Hunan Agricultural University, Changsha, China
| |
Collapse
|
3
|
Manzoor MF, Riaz S, Verma DK, Waseem M, Goksen G, Ali A, Zeng XA. Nutraceutical tablets: Manufacturing processes, quality assurance, and effects on human health. Food Res Int 2024; 197:115197. [PMID: 39593282 DOI: 10.1016/j.foodres.2024.115197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/17/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024]
Abstract
Consumers are increasingly focused on food products' nutritional content and health aspects. Nutraceutical tablets containing nutritional supplements have seen remarkable progress and are well-known for their precise dosage, which can improve consumer health by increasing the intake of bioactive compounds and vital nutrients. Oral nutraceuticals are frequently used to enhance consumer well-being, with around 80% of products being in solid form. This manuscript aims to thoroughly analyze and summarize the gathered literature using various search engines to investigate key trends in the market, the components involved, and the functional impact of nutraceutical tablets. Furthermore, the manuscript explores various nutraceutical tablets such as chewable tablets, gelling capsules, vitamin tablets, spirulina tablets, and bran tablets. A perspective is provided on multiple production and manufacturing methods of nutraceutical tablets, along with comparing these processes. Following this, evaluating quality characteristics and enforcing quality assurance procedures have been emphasized. The manuscript discussed the physiological breakdown of ingestible nutraceutical tablets in the human body and the possible toxic effects of the components found in these tablets. Furthermore, the focus is on producing nutraceutical tablets in a more environmentally friendly manner, tackling sustainability issues, offering solutions, and delving into potential opportunities. This manuscript will create a significant platform for people from the research, scientific, and industrial fields seeking novel and inventive projects.
Collapse
Affiliation(s)
- Muhammad Faisal Manzoor
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, School of Food Science and Engineering, Foshan University, Foshan, China; School of Food Science and Engineering, South China University of Technology, Guangzhou, China.
| | - Sakhawat Riaz
- The State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science, Anhui Agriculture University, Hefei, China
| | - Deepak Kumar Verma
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Muhammad Waseem
- Department of Food Science & Technology, Faculty of Agriculture & Environment, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100, Mersin, Turkey
| | - Anwar Ali
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 St., 02-776 Warsaw, Poland
| | - Xin-An Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, School of Food Science and Engineering, Foshan University, Foshan, China; School of Food Science and Engineering, South China University of Technology, Guangzhou, China.
| |
Collapse
|
4
|
Subhasri D, Leena MM, Moses JA, Anandharamakrishnan C. Factors affecting the fate of nanoencapsulates post administration. Crit Rev Food Sci Nutr 2024; 64:11949-11973. [PMID: 37599624 DOI: 10.1080/10408398.2023.2245462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Nanoencapsulation has found numerous applications in the food and nutraceutical industries. Micro and nanoencapsulated forms of bioactives have proven benefits in terms of stability, release, and performance in the body. However, the encapsulated ingredient is often subjected to a wide range of processing conditions and this is followed by storage, consumption, and transit along the gastrointestinal tract. A strong understanding of the fate of nanoencapsulates in the biological system is mandatory as it provides valuable insights for ingredient selection, formulation, and application. In addition to their efficacy, there is also the need to assess the safety of ingested nanoencapsulates. Given the rising research and commercial focus of this subject, this review provides a strong focus on their interaction factors and mechanisms, highlighting their prospective biological fate. This review also covers various approaches to studying the fate of nanoencapsulates in the body. Also, with emphasis on the overall scope, the need for a new advanced integrated common methodology to evaluate the fate of nanoencapsulates post-administration is discussed.
Collapse
Affiliation(s)
- D Subhasri
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, India
| | - M Maria Leena
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, India
- Department of Biotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Tiruchirappalli, India
| | - J A Moses
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, India
| | - C Anandharamakrishnan
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, India
- CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Ministry of Science and Technology, Government of India, Industrial Estate PO, Thiruvananthapuram, INDIA
| |
Collapse
|
5
|
Fernandes JM, Araújo JF, Gonçalves RFS, Vicente AA, Pinheiro AC. Emulsions vs excipient emulsions as α-tocopherol delivery systems: Formulation optimization and behaviour under in vitro digestion. Food Res Int 2024; 192:114743. [PMID: 39147549 DOI: 10.1016/j.foodres.2024.114743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 08/17/2024]
Abstract
Oil-in-water emulsions (EM) have been extensively used for the encapsulation of lipophilic bioactive compounds and posterior incorporation into food matrices to obtain functional foods. Conversely, novel excipient oil-in-water emulsions (EXC) present identical composition and structure as EM, albeit are not bioactive by themselves since no bioactive compound is encapsulated. Instead, EXC aims at improving the bioavailability of foods' natural bioactive compounds upon co-ingestion with nutrient-rich foods. In this work, EM and EXC were produced and their stability and functionality as delivery systems for α-tocopherol compared. Emulsions were formulated with corn oil and lecithin, and their composition was optimized using experimental designs. Formulations produced with 3 % lecithin and 5 % oil attained smallest particles sizes with the lowest polydispersity index of all tested formulations and remained stable up to 60 days. Encapsulation of α-tocopherol did not have a significative impact on the structural properties of the particles produced with the same composition. α-tocopherol stability during in vitro digestion was superior in EM regardless the processing methodology (EM stability < 50 %, EXC stability < 29 %), indicating that EM offered greater protection against the digestive environment. α-tocopherol's bioaccessibility was significantly increased when encapsulated or when digested with added excipient emulsions (82-92 % and 87-90 % for EM and EXC, respectively). In conclusion, EM were more efficient vehicles for the selected bioactive compound, however, the good results obtained with EXC imply that excipient emulsions have a great potential for applications on foods to improve their natural bioactive compounds' bioavailability without the need of further processing.
Collapse
Affiliation(s)
- J M Fernandes
- Centre of Biological Engineering, University of Minho Braga, Portugal.
| | - J F Araújo
- Centre of Biological Engineering, University of Minho Braga, Portugal
| | - R F S Gonçalves
- Centre of Biological Engineering, University of Minho Braga, Portugal
| | - A A Vicente
- Centre of Biological Engineering, University of Minho Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal
| | - A C Pinheiro
- Centre of Biological Engineering, University of Minho Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
6
|
Martínez-Sánchez V, Calvo MV, Fontecha J, Pérez-Gálvez A. The Role of Food Matrices Supplemented with Milk Fat Globule Membrane in the Bioaccessibility of Lipid Components and Adaptation of Cellular Lipid Metabolism of Caco-2 Cells. Nutrients 2024; 16:2798. [PMID: 39203935 PMCID: PMC11357557 DOI: 10.3390/nu16162798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
This study aimed to evaluate the digestive efficiency of food matrices supplemented with milk fat globule membrane isolated from buttermilk (BM-MFGM), using the INFOGEST in vitro digestion protocol hyphenated with the assessment of the digested material on the lipid profile of the Caco-2 cell culture model. First, we examined lipid profiles in food matrices supplemented with BM-MFGM and their subsequent digestion. The results showed distinct lipid profiles in different food matrices and micellar fractions. The presence of BM-MFGM lipids changed the cellular lipid profiles in Caco-2 cell cultures, with diverging contents in cholesteryl esters, triacylglycerides, and neutral lipids depending on the micellar food matrix factor. Hierarchical clustering analysis revealed patterns in cellular lipid responses to micellar stimuli, while volcano plots highlighted significant changes in cellular lipid profiles post-treatment. Thus, this study underscores the importance of in vitro digestion protocols in guiding food matrix selection for bioactive ingredient supplementation, elucidating intestinal epithelium responses to digested food stimuli.
Collapse
Affiliation(s)
- Victoria Martínez-Sánchez
- Group of Chemistry and Biochemistry of Pigments, Instituto de la Grasa (CSIC), Building 46, 41013 Sevilla, Spain;
| | - María Visitación Calvo
- Food Lipid Biomarkers and Health Group, Institute of Food Science Research (CSIC-UAM), 28049 Madrid, Spain; (M.V.C.); (J.F.)
| | - Javier Fontecha
- Food Lipid Biomarkers and Health Group, Institute of Food Science Research (CSIC-UAM), 28049 Madrid, Spain; (M.V.C.); (J.F.)
| | - Antonio Pérez-Gálvez
- Group of Chemistry and Biochemistry of Pigments, Instituto de la Grasa (CSIC), Building 46, 41013 Sevilla, Spain;
| |
Collapse
|
7
|
Majeed A, Majeed S, Parameswarappa AK, Murali A, Gudimallam S, Siddegowda C, Chandrashekar H, Mundkur L. A randomized, double-blind, placebo-controlled study to evaluate the benefits of a standardized Nigella sativa oil containing 5% thymoquinone in reducing the symptoms of seasonal allergy. Medicine (Baltimore) 2024; 103:e39243. [PMID: 39121267 PMCID: PMC11315530 DOI: 10.1097/md.0000000000039243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/19/2024] [Indexed: 08/11/2024] Open
Abstract
BACKGROUND Allergic rhinitis (AR) or seasonal allergy characterized by sneezing, nasal congestion, nasal itching, and nasal discharge, triggered by immune reactions to environmental allergens. Present day customers also monitor the personal improvements in the area of Evidence-Based natural medicines/supplements. METHODS A randomized, double-blind, placebo-controlled study was conducted on 65 participants aged 18 to 60 years having 2 or more allergic symptoms like sneezing, rhinorrhoea, nasal obstruction, and nasal itching for a cumulative period greater than 1 hour per day. The study participants received a capsule of NSO (250 mg) with 2.5 mg piperine (BioPerine) as a bioavailability enhancer or a placebo, twice a day, after food for 15 days. The primary objectives were evaluated by mean change in Total Nasal Symptom Score and the duration of AR symptoms per day from baseline to Day 15. Secondary endpoints were changes in Total Ocular Symptoms Score, AR symptom frequency and severity, serum Immunoglobulin E levels, and Patient Global Impression of Change scale. Adverse events were monitored throughout the study. RESULTS Sixty-five patients were enrolled and all of them completed the study, N = 33 in NSO and N = 32 in placebo. A significant reduction in Total Nasal Symptom Score and Total Ocular Symptoms Score was observed in the NSO group compared to the placebo, highlighting the potential of NSO in alleviating AR symptoms. The episodes of AR symptoms per day and the frequency of symptoms in 24 hours reduced significantly in 15 days in both groups, but the extent of improvement was significantly higher in NSO compared to placebo. Improvement in Patient Global Impression of Change was also significantly better in NSO compared to the placebo. Serum Immunoglobulin E levels decreased in NSO but were not significantly different from placebo. No clinically significant changes were observed in vital signs, liver and renal function, lipid profile, hematology, fasting blood sugar, or urine analysis at the end of the study. CONCLUSION The result of the study demonstrates that NSO 250 mg with 2.5 mg piperine is an effective and well-tolerated supplement for the management of AR symptoms.
Collapse
Affiliation(s)
- Anju Majeed
- Sami-Sabinsa Group Limited, Bangalore, Karnataka, India
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Kasapoğlu KN, Sus N, Kruger J, Frank J, Özçelik B. Fabrication of phenolic loaded spray-dried nanoliposomes stabilized by chitosan and whey protein: Digestive stability, transepithelial transport and bioactivity retention of phenolics. Int J Biol Macromol 2024; 271:132676. [PMID: 38821805 DOI: 10.1016/j.ijbiomac.2024.132676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
Low bioavailability of phenolic compounds (phenolics) results in low in vivo bioactivity, thus their co-encapsulation could enhance potential health benefits. In this study, reconstitutable nanoliposomes loaded with phenolics varying in solubility were fabricated using spray drying after stabilized by chitosan (CH) or whey protein (WP). The physicochemical properties, biocompatibility, digestive fate, and bioactivity retention of phenolics in different forms were investigated. The surface charge of nanoliposomes (NL) shifted from -18.7 mV to positive due to conjugation with cationic CH (53.1 mV) and WP (14 mV) after spray drying while it was -26.6 mV for only spray-dried phenolics (SDP). Encapsulation efficiency of the tested phenolics ranged between 64.7 % and 95.1 %. Simulated gastrointestinal digestion/Caco-2 cell model was used to estimate the digestive fate of the phenolics yielding up to 3-fold higher bioaccessibility for encapsulated phenolics compared to their native form, combined or individually. However, the cellular uptake or transepithelial transport of phenolics did not differ significantly among formulations, except trans-resveratrol in WP-NL. On the contrary, the suppressive effect of phenolics on fatty acid induced hepatocellular lipid accumulation was strongly dependent on the encapsulation method, no activity was retained by SDP. These findings suggested that reconstitutable nanoliposomes can improve the absorption of phenolics by facilitating their bioaccessibility and thermal and/or processing stability during spray drying.
Collapse
Affiliation(s)
- Kadriye Nur Kasapoğlu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey; Department of Food Biofunctionality (140b), Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 28, 70599 Stuttgart, Germany.
| | - Nadine Sus
- Department of Food Biofunctionality (140b), Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 28, 70599 Stuttgart, Germany.
| | - Johanita Kruger
- Department of Food Biofunctionality (140b), Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 28, 70599 Stuttgart, Germany.
| | - Jan Frank
- Department of Food Biofunctionality (140b), Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 28, 70599 Stuttgart, Germany.
| | - Beraat Özçelik
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey; BIOACTIVE Research & Innovation Food Manufacturing Industry Trade LTD Co, 34469 Maslak, Istanbul, Turkey.
| |
Collapse
|
9
|
Sriprablom J, Winuprasith T, Suphantharika M, Wongsagonsup R. Physical properties and in-vitro gastrointestinal digestion of oil-in-water emulsions stabilized by single- and dual-modified cassava starches with cross-linking and octenylsuccinylation. Int J Biol Macromol 2024; 262:129965. [PMID: 38325686 DOI: 10.1016/j.ijbiomac.2024.129965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/07/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
The different modified cassava starches (MCS) obtained by either single or dual modifications with cross-linking (CL) and octenylsuccinylation (OS), including 2%CL, 3%OS, 2%CL-3%OS, and 3%OS-2%CL, were used to stabilize soybean oil-in-water emulsions (oil content 10% (w/w)) at a concentration of 4.5% (w/w) compared to native cassava starch (NCS) and their physical properties and in-vitro gastrointestinal digestion were investigated. The emulsions stabilized with NCS and 2%CL-MCS had larger oil droplet sizes, higher viscosity, and lower negative charge than the emulsions stabilized by single- or dual-MCS with 3%OS. All MCS-stabilized emulsions showed a higher emulsion stability against creaming than the NCS-stabilized emulsion. Under a simulated gastrointestinal tract, all 3%OS-MCS promoted droplet flocculation, while the less ionic NCS and the 2%CL-MCS showed a decrease in droplet size after passing through the mouth and stomach stages. The lipid digestion rate of emulsions stabilized with different MCS and NCS followed the following order: 3%OS >2%CL-3%OS > 3%OS-2%CL > 2%CL > NCS. The NCS- and 2%CL-stabilized emulsions had a lower lipid digestion rate, possibly due to the larger droplet sizes and higher viscosity of the initial emulsions, which delays access of lipase enzymes to lipid droplet surfaces, compared to all 3%OS-MCS-stabilized emulsions.
Collapse
Affiliation(s)
- Jiratthitikan Sriprablom
- Institute of Nutrition, Mahidol University, Nakhon Pathom 73170, Thailand; Division of Food Technology, Kanchanaburi Campus, Mahidol University, Kanchanaburi 71150, Thailand
| | | | - Manop Suphantharika
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Rungtiwa Wongsagonsup
- Institute of Nutrition, Mahidol University, Nakhon Pathom 73170, Thailand; Division of Food Technology, Kanchanaburi Campus, Mahidol University, Kanchanaburi 71150, Thailand.
| |
Collapse
|
10
|
Verma C, Dubey S, Bose R, Alfantazi A, Ebenso EE, Rhee KY. Zwitterions and betaines as highly soluble materials for sustainable corrosion protection: Interfacial chemistry and bonding with metal surfaces. Adv Colloid Interface Sci 2024; 324:103091. [PMID: 38281394 DOI: 10.1016/j.cis.2024.103091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/04/2024] [Accepted: 01/21/2024] [Indexed: 01/30/2024]
Abstract
The primary requirements for interfacial adsorption and corrosion inhibition are solubility and the existence of polar functional groups, particularly charges. Traditional organic inhibitors have a solubility issue due to the hydrophobic moieties they incorporate. Most documented organic inhibitors have aromatic rings, hydrocarbon chains, and a few functional groups. The excellent solubility and high efficacy of zwitterions and betaines make them the perfect replacements for insoluble corrosion inhibitors. Zwitterions and betaines are more easily soluble because of interactions between their positive and negative charges (-COO-, -PO3-, -NH3, -NHR2, -NH2R, -SO3- etc.) and the polar solvents. The positive and negative charges also aid these molecules' physical and chemical adsorption at the metal-electrolyte interfaces. They develop a corrosion-inhibiting layer through their adsorption. After becoming adsorbed at the metal-electrolyte interface, they act as mixed-type inhibitors, slowing both cathodic and anodic processes. They usually adsorb according to the Langmuir adsorption isotherm. In this article, the corrosion inhibition potential of zwitterions and betaines in the aqueous phase, as well as their mode of action, are reviewed. This article details the advantages and disadvantages of utilizing zwitterions and betaines for sustainable corrosion protection.
Collapse
Affiliation(s)
- Chandrabhan Verma
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Shikha Dubey
- Department of Chemistry, School of Sciences, Hemvati Nandan Bahuguna Garhwal University, Srinagar 246174, Garhwal, India
| | - Ranjith Bose
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Akram Alfantazi
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Eno E Ebenso
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1710, South Africa
| | - Kyong Yop Rhee
- Department of Mechanical Engineering, College of Engineering, Kyung Hee University, Yongin 445-701, South Korea.
| |
Collapse
|
11
|
Wang Q, Wang X, Cai D, Yu J, Chen X, Niu W, Wang S, Liu X, Zhou D, Yin F. Hydrolysis and Transport Characteristics of Phospholipid Complex of Alkyl Gallates: Potential Sustained Release of Alkyl Gallate and Gallic Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2145-2153. [PMID: 38226868 DOI: 10.1021/acs.jafc.3c05731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Phospholipid complexes of alkyl gallates (A-GAs) including ethyl gallate (EG), propyl gallate (PG), and butyl gallate (BG) were successfully prepared by the thin film dispersion method. HPLC-UV analysis in an everted rat gut sac model indicated that A-GAs can be liberated from phospholipid complexes, which were further hydrolyzed by intestinal lipase to generate free gallic acid (GA). Both A-GAs and GA are able to cross the membrane, and the hydrolysis rate of A-GAs and the transport rate of GA are positively correlated with the alkyl chain length. Especially, compared with the corresponding physical mixtures, the phospholipid complexes exhibit slower sustained-release of A-GAs and GA. Therefore, the formation of phospholipid complexes is an effective approach to prolong the residence time in vivo and additionally enhance the bioactivities of A-GAs and GA. More importantly, through regulating the carbon skeleton lengths, controlled-release of alkyl gallates and gallic acid from phospholipid complexes will be achieved.
Collapse
Affiliation(s)
- Qian Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Xinmiao Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Dong Cai
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Jinghan Yu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Xuan Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, People's Republic of China
| | - Weiyuan Niu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Siya Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Xiaoyang Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Dayong Zhou
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Fawen Yin
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| |
Collapse
|
12
|
Pittia P, Blanc S, Heer M. Unraveling the intricate connection between dietary factors and the success in long-term space missions. NPJ Microgravity 2023; 9:89. [PMID: 38092789 PMCID: PMC10719368 DOI: 10.1038/s41526-023-00331-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 10/18/2023] [Indexed: 12/17/2023] Open
Abstract
In recent decades of spaceflight, inadequate caloric intake has posed significant nutritional challenges, contributing to muscle degradation, weakened immune and cardiovascular systems during and after space missions. This challenge becomes more acute on longer exploration missions, where transporting all food for the entire mission becomes a logistical challenge. This places immense pressure on the food system, requiring energy-dense, varied, stable, and palatable food options. Prolonged storage can lead to nutrient degradation, reducing their bioavailability and bioaccessibility to astronauts. Research is essential not only to improve the quality and stability of space food but also to enhance nutrient bioavailability, thereby reducing weight and volume of food. Muscle and bone loss represent major risks during extended spaceflight, prompting extensive efforts to find exercise countermeasures. However, increased exercise requires additional energy intake, and finding the optimal balance between energy needs and the preservation of muscle and bone mass is challenging. Currently, there is no reliable way to measure total energy expenditure and activity-related energy expenditures in real-time. Systematic research is necessary to develop onboard technology for accurate energy expenditure and body composition monitoring. This research should aim to establish an optimal exercise regimen that balances energy requirements while maintaining astronaut strength and minimizing food transport. In summary, this overview outlines key actions needed for future exploration missions to maintain body mass and physical strength of space travellers. It addresses the requirements for food processing and preservation, considerations for space food formulation and production, and the essential measures to be implemented.
Collapse
Affiliation(s)
| | | | - Martina Heer
- IU International University of Applied Sciences, Erfurt, Germany.
- University of Bonn, Institute of Nutritional and Food Sciences, Bonn, Germany.
| |
Collapse
|
13
|
Dassoff E, Shireen A, Wright A. Lipid emulsion structure, digestion behavior, physiology, and health: a scoping review and future directions. Crit Rev Food Sci Nutr 2023; 65:320-352. [PMID: 37947287 DOI: 10.1080/10408398.2023.2273448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Research investigating the effects of the food matrix on health is needed to untangle many unresolved questions in nutritional science. Emulsion structure plays a fundamental role in this inquiry; however, the effects of oil-in-water emulsion structure on broad metabolic, physiological, and health-related outcomes have not been comprehensively reviewed. This systematic scoping review targets this gap and examines methodological considerations for the field of relating food structure and health. MEDLINE, Web of Science, and CAB Direct were searched from inception to December 2022, returning 3106 articles, 52 of which were eligible for inclusion. Many investigated emulsion lipid droplet size and/or gastric colloidal stability and their relation to postprandial weight-loss-related outcomes. The present review also identifies numerous novel relationships between emulsion structures and health-related outcomes. "Omics" endpoints present an exciting avenue for more comprehensive analysis in this area, yet interpretation remains difficult. Identifying valid surrogate biomarkers for long-term outcomes and disease risk will be a turning point for food structure research, leading to breakthroughs in the pace and utility of research that generates advancements in health. The review's findings and recommendations aim to support new hypotheses, future trial design, and evidence-based emulsion design for improved health and well-being.
Collapse
Affiliation(s)
- Erik Dassoff
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Arshia Shireen
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Amanda Wright
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
14
|
Siddiqui SA, Azmy Harahap I, Suthar P, Wu YS, Ghosh N, Castro-Muñoz R. A Comprehensive Review of Phytonutrients as a Dietary Therapy for Obesity. Foods 2023; 12:3610. [PMID: 37835263 PMCID: PMC10572887 DOI: 10.3390/foods12193610] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Obesity is a complex medical condition mainly caused by eating habits, genetics, lifestyle, and medicine. The present study deals with traditional diets like the Mediterranean diet, Nordic diet, African Heritage diet, Asian diet, and DASH, as these are considered to be sustainable diets for curing obesity. However, the bioavailability of phytonutrients consumed in the diet may vary, depending on several factors such as digestion and absorption of phytonutrients, interaction with other substances, cooking processes, and individual differences. Hence, several phytochemicals, like polyphenols, alkaloids, saponins, terpenoids, etc., have been investigated to assess their efficiencies and safety in the prevention and treatment of obesity. These phytochemicals have anti-obesity effects, mediated via modulation of many pathways, such as decreased lipogenesis, lipid absorption, accelerated lipolysis, energy intake, expenditure, and preadipocyte differentiation and proliferation. Owing to these anti-obesity effects, new food formulations incorporating these phytonutrients were introduced that can be beneficial in reducing the prevalence of obesity and promoting public health.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Department of Biotechnology and Sustainability, Technical University of Munich, Essigberg 3, 94315 Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing Str. 7, 49610 Quakenbrück, Germany
| | | | - Priyanka Suthar
- Department of Food Science and Technology, Dr. Y. S. Parmar University of Horticulture and Forestry, Solan 173230, Himachal Pradesh, India;
| | - Yuan Seng Wu
- School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Malaysia;
| | - Nibedita Ghosh
- Department of Pharmacology, Girijananda Chowdhury University, Guwahati 781017, Assam, India;
| | - Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Av. Eduardo Monroy Cárdenas 2000, San Antonio Buenavista, Toluca de Lerdo 50110, Mexico
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
15
|
McClements DJ. Ultraprocessed plant-based foods: Designing the next generation of healthy and sustainable alternatives to animal-based foods. Compr Rev Food Sci Food Saf 2023; 22:3531-3559. [PMID: 37350040 DOI: 10.1111/1541-4337.13204] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/29/2023] [Accepted: 06/05/2023] [Indexed: 06/24/2023]
Abstract
Numerous examples of next-generation plant-based foods, such as meat, seafood, egg, and dairy analogs, are commercially available. These products are usually designed to have physicochemical properties, sensory attributes, and functional behaviors that match those of the animal-sourced products they are designed to replace. However, there has been concern about the potential negative impacts of these foods on human nutrition and health. In particular, many of these products have been criticized for being ultraprocessed foods that contain numerous ingredients and are manufactured using harsh processing operations. In this article, the concept of ultraprocessed foods is introduced and its relevance to describe the properties of next-generation plant-based foods is discussed. Most commercial plant-based meat, seafood, egg, and dairy analogs currently available do fall into this category, and so can be classified as ultraprocessed plant-based (UPB) foods. The nutrient content, digestibility, bioavailability, and gut microbiome effects of UPB foods are compared to those of animal-based foods, and the potential consequences of any differences on human health are discussed. Some commercial UPB foods would not be considered healthy based on their nutrient profiles, especially those plant-based cheeses that contain low levels of protein and high levels of fat, starch, and salt. However, it is argued that UPB foods can be designed to have good nutritional profiles and beneficial health effects. Finally, areas where further research are still needed to create a more healthy and sustainable food supply are discussed.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, Hangzhou, China
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
16
|
Feng Y, Luo X, Li Z, Fan X, Wang Y, He RR, Liu M. A ferroptosis-targeting ceria anchored halloysite as orally drug delivery system for radiation colitis therapy. Nat Commun 2023; 14:5083. [PMID: 37607944 PMCID: PMC10444825 DOI: 10.1038/s41467-023-40794-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 08/10/2023] [Indexed: 08/24/2023] Open
Abstract
Radiation colitis is the leading cause of diarrhea and hematochezia in pelvic radiotherapy patients. This work advances the pathogenesis of radiation colitis from the perspective of ferroptosis. An oral Pickering emulsion is stabilized with halloysite clay nanotubes to alleviate radiation colitis by inhibiting ferroptosis. Ceria nanozyme grown in situ on nanotubes can scavenge reactive oxygen species, and deferiprone was loaded into the lumen of nanotubes to relieve iron stress. These two strategies effectively inhibit lipid peroxidation and rescue ferroptosis in the intestinal microenvironment. The clay nanotubes play a critical role as either a medicine to alleviate colitis, a nanocarrier that targets the inflamed colon by electrostatic adsorption, or an interfacial stabilizer for emulsions. This ferroptosis-based strategy was effective in vitro and in vivo, providing a prospective candidate for radiotherapy protection via rational regulation of specific oxidative stress.
Collapse
Affiliation(s)
- Yue Feng
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, 511443, Guangzhou, China
| | - Xiang Luo
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, 510632, Guangzhou, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 510632, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, 510632, Guangzhou, China
| | - Zichun Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, 510632, Guangzhou, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 510632, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, 510632, Guangzhou, China
| | - Xinjuan Fan
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, 510655, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, 510655, Guangzhou, China
| | - Yiting Wang
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, 510655, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, 510655, Guangzhou, China
| | - Rong-Rong He
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, 510632, Guangzhou, China.
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 510632, Guangzhou, China.
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, 510632, Guangzhou, China.
| | - Mingxian Liu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, 511443, Guangzhou, China.
| |
Collapse
|
17
|
Nicolescu A, Babotă M, Barros L, Rocchetti G, Lucini L, Tanase C, Mocan A, Bunea CI, Crișan G. Bioaccessibility and bioactive potential of different phytochemical classes from nutraceuticals and functional foods. Front Nutr 2023; 10:1184535. [PMID: 37575331 PMCID: PMC10415696 DOI: 10.3389/fnut.2023.1184535] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/15/2023] [Indexed: 08/15/2023] Open
Abstract
Nutraceuticals and functional foods are composed of especially complex matrices, with polyphenols, carotenoids, minerals, and vitamins, among others, being the main classes of phytochemicals involved in their bioactivities. Despite their wide use, further investigations are needed to certify the proper release of these phytochemicals into the gastrointestinal medium, where the bioaccessibility assay is one of the most frequently used method. The aim of this review was to gather and describe different methods that can be used to assess the bioaccessibility of nutraceuticals and functional foods, along with the most important factors that can impact this process. The link between simulated digestion testing of phytochemicals and their in vitro bioactivity is also discussed, with a special focus on the potential of developing nutraceuticals and functional foods from simple plant materials. The bioactive potential of certain classes of phytochemicals from nutraceuticals and functional foods is susceptible to different variations during the bioaccessibility assessment, with different factors contributing to this variability, namely the chemical composition and the nature of the matrix. Regardless of the high number of studies, the current methodology fails to assume correlations between bioaccessibility and bioactivity, and the findings of this review indicate a necessity for updated and standardized protocols.
Collapse
Affiliation(s)
- Alexandru Nicolescu
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Mihai Babotă
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, Târgu Mures, Romania
| | - Lillian Barros
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Bragança, Portugal
- Laboratório Associado Para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Corneliu Tanase
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, Târgu Mures, Romania
| | - Andrei Mocan
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Claudiu I. Bunea
- Viticulture and Oenology Department, Advanced Horticultural Research Institute of Transylvania, Faculty of Horticulture and Business in Rural Development, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Gianina Crișan
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
18
|
Markoulli M, Ahmad S, Arcot J, Arita R, Benitez-Del-Castillo J, Caffery B, Downie LE, Edwards K, Flanagan J, Labetoulle M, Misra SL, Mrugacz M, Singh S, Sheppard J, Vehof J, Versura P, Willcox MDP, Ziemanski J, Wolffsohn JS. TFOS Lifestyle: Impact of nutrition on the ocular surface. Ocul Surf 2023; 29:226-271. [PMID: 37100346 DOI: 10.1016/j.jtos.2023.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 04/28/2023]
Abstract
Nutrients, required by human bodies to perform life-sustaining functions, are obtained from the diet. They are broadly classified into macronutrients (carbohydrates, lipids, and proteins), micronutrients (vitamins and minerals) and water. All nutrients serve as a source of energy, provide structural support to the body and/or regulate the chemical processes of the body. Food and drinks also consist of non-nutrients that may be beneficial (e.g., antioxidants) or harmful (e.g., dyes or preservatives added to processed foods) to the body and the ocular surface. There is also a complex interplay between systemic disorders and an individual's nutritional status. Changes in the gut microbiome may lead to alterations at the ocular surface. Poor nutrition may exacerbate select systemic conditions. Similarly, certain systemic conditions may affect the uptake, processing and distribution of nutrients by the body. These disorders may lead to deficiencies in micro- and macro-nutrients that are important in maintaining ocular surface health. Medications used to treat these conditions may also cause ocular surface changes. The prevalence of nutrition-related chronic diseases is climbing worldwide. This report sought to review the evidence supporting the impact of nutrition on the ocular surface, either directly or as a consequence of the chronic diseases that result. To address a key question, a systematic review investigated the effects of intentional food restriction on ocular surface health; of the 25 included studies, most investigated Ramadan fasting (56%), followed by bariatric surgery (16%), anorexia nervosa (16%), but none were judged to be of high quality, with no randomized-controlled trials.
Collapse
Affiliation(s)
- Maria Markoulli
- School of Optometry and Vision Science, UNSW Sydney, NSW, Australia.
| | - Sumayya Ahmad
- Icahn School of Medicine of Mt. Sinai, New York, NY, USA
| | - Jayashree Arcot
- Food and Health, School of Chemical Engineering, UNSW Sydney, Australia
| | - Reiko Arita
- Department of Ophthalmology, Itoh Clinic, Saitama, Japan
| | | | | | - Laura E Downie
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Katie Edwards
- School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Australia
| | - Judith Flanagan
- School of Optometry and Vision Science, UNSW Sydney, NSW, Australia; Vision CRC, USA
| | - Marc Labetoulle
- Ophthalmology Department, Hospital Bicêtre, APHP, Paris-Saclay University, Le Kremlin-Bicêtre, France; IDMIT (CEA-Paris Saclay-Inserm U1184), Fontenay-aux-Roses, France
| | - Stuti L Misra
- Department of Ophthalmology, New Zealand National Eye Centre, The University of Auckland, Auckland, New Zealand
| | | | - Sumeer Singh
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - John Sheppard
- Virginia Eye Consultants, Norfolk, VA, USA; Eastern Virginia Medical School, Norfolk, VA, USA
| | - Jelle Vehof
- Departments of Ophthalmology and Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Section of Ophthalmology, School of Life Course Sciences, King's College London, London, UK; Department of Ophthalmology, Vestfold Hospital Trust, Tønsberg, Norway
| | - Piera Versura
- Cornea and Ocular Surface Analysis - Translation Research Laboratory, Ophthalmology Unit, DIMEC Alma Mater Studiorum Università di Bologna, Italy; IRCCS AOU di Bologna Policlinico di Sant'Orsola, Bologna, Italy
| | - Mark D P Willcox
- School of Optometry and Vision Science, UNSW Sydney, NSW, Australia
| | - Jillian Ziemanski
- School of Optometry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - James S Wolffsohn
- College of Health & Life Sciences, School of Optometry, Aston University, Birmingham, UK
| |
Collapse
|
19
|
Solubilization of α-tocopherol and curcumin by polyoxyethylene alkyl ether surfactants: Effect of alkyl chain structure. Food Chem 2023; 408:135170. [PMID: 36525729 DOI: 10.1016/j.foodchem.2022.135170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
The effects of the structural characteristics of the alkyl chains of polyoxyethylene alkyl ether-type surfactants (Brij) on the solubilization of α-tocopherol and curcumin by surfactant micelles were investigated: Brij L23 (lauryl; C12:0); S20 (stearyl; C18:0); and Brij O20 (oleyl; C18:1). When α-tocopherol or curcumin were solubilized in Brij micelle solutions below their maximum solubilization concentrations (Cmax), the Brij L23 micelles exhibited the largest increase in dimensions due to the presence of the guest molecules. Above Cmax, excess α-tocopherol existed as microemulsion droplets whereas excess curcumin existed as insoluble crystals. Our results suggest that the guest molecules were preferentially located within the palisade layers of micelles, which can be attributed to the fact that they contained bother polar and non-polar moieties. These results may be important for the formulation of colloidal delivery systems to encapsulate and deliver oil-soluble vitamins and nutraceuticals.
Collapse
|
20
|
Majeed M, Nagabhushanam K, Devarajan TV, Saklecha S, Reddy SVK, Mundkur L. A minor metabolite from Curcuma longa effective against metabolic syndrome: results from a randomized, double-blind, placebo-controlled clinical study. Food Funct 2023; 14:4722-4733. [PMID: 37114318 DOI: 10.1039/d2fo03627d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Metabolic syndrome (MetS) is characterized by the presence of at least three interrelated risk factors, including central obesity, hypertension, elevated serum triglycerides, low serum high-density lipoproteins, and insulin resistance. Abdominal obesity is considered a predominant risk factor. Lifestyle changes with medications to lower cholesterol, blood sugar, and hypertension are the general treatment approaches. Functional foods and bioactive food ingredients represent versatile tools for addressing different aspects of MetS. In a randomized placebo-controlled clinical study, we evaluated the effect of Calebin A, a minor bioactive phytochemical from Curcuma longa, on metabolic syndrome in obese adults (N = 100), and 94 individuals completed the study (N = 47 in both groups). They were subjected to Calebin A supplementation for 90 days, which resulted in a statistically significant reduction in their body weight, waist circumference, body mass index, low-density lipoprotein-cholesterol, and triglyceride levels compared to those with the placebo. A small but significant increase in high-density lipoprotein-cholesterol levels was also observed in these individuals. Furthermore, Calebin A showed a positive effect on adipokines by reducing circulating leptin levels. Finally, C-reactive protein levels were significantly reduced in Calebin A-supplemented individuals, suggesting a beneficial impact on managing MetS-induced inflammation. Blood glucose levels, insulin resistance, and blood pressure levels were not affected by Calebin A. In conclusion, Calebin A may be an effective supplement for managing abdominal obesity, dyslipidemia, and systemic inflammation in individuals with metabolic syndrome. This study was prospectively registered on the Clinical Trial Registry of India (CTRI) with the registration number CTRI/2021/09/036495. https://ctri.nic.in/Clinicaltrials/advancesearchmain.php.
Collapse
Affiliation(s)
- Muhammed Majeed
- Sami-Sabinsa Group Limited, 19/1&19/2, I Main, II Phase, Peenya Industrial Area, Bengaluru, Karnataka 560058, India.
- Sabinsa Corporation, 20 Lake Drive, East Windsor, NJ 08520, USA
| | | | - T V Devarajan
- Apollo First Med Hospitals, 154, Poonamallee High Rd, Kilpauk, Chennai, Tamil Nadu 600010, India
| | - Santhosh Saklecha
- Santosh Hospital, 6, 1, Promenade Rd, Coles Park Pulikeshi Nagar, Bengaluru, Karnataka 560005, India
| | - S Venkata Krishna Reddy
- Vijaya Super Specialty Hospital, 41-A, 16 II, Raghava Cine Complex Rd, Pogathota, Nellore, Andhra Pradesh 524001, India
| | - Lakshmi Mundkur
- Sami-Sabinsa Group Limited, 19/1&19/2, I Main, II Phase, Peenya Industrial Area, Bengaluru, Karnataka 560058, India.
| |
Collapse
|
21
|
Liu Y, Xia H, Guo S, Li P, Qin S, Shi M, Zeng C. Effect and mechanism of edible oil co-digestion on the bioaccessibility and bioavailability of ursolic acid. Food Chem 2023; 423:136220. [PMID: 37156140 DOI: 10.1016/j.foodchem.2023.136220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/15/2023] [Accepted: 04/18/2023] [Indexed: 05/10/2023]
Abstract
Ursolic acid (UA), a pentacyclic triterpenoid, has gained attentions due to its various health-promoting benefits, but exhibits poor bioavailability. This could be enhanced by changing the food matrix of UA in which it is present. In this study, several UA systems were constructed to investigate the bioaccessibility and bioavailability of UA in combination with in vitro simulated digestion and Caco-2 cell models. The results showed that the bioaccessibility of UA was significantly improved after adding rapeseed oil. Caco-2 cell models showed that the UA-oil blend was more advantageous than UA emulsion in total absorption. The results indicate that the location of UA distribution in oil determines the ease of UA release into the mixed micellar phase. This paper brings a new research idea and basis for the design of improving the bioavailability of hydrophobic compounds.
Collapse
Affiliation(s)
- Yugang Liu
- Department of Food Science and Technology, College of Food Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China.
| | - Huiping Xia
- Department of Food Science and Technology, College of Food Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China.
| | - Shiyin Guo
- Department of Food Science and Technology, College of Food Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China; Hunan Rapeseed Oil Nutrition Health and Deep Development Engineering Technology Research Center, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China.
| | - Peiwang Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, 658 Shaoshan South Road, Tianxin District, Changsha, Hunan 410128, China.
| | - Si Qin
- Department of Food Science and Technology, College of Food Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China
| | - Meng Shi
- Department of Food Science and Technology, College of Food Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China.
| | - Chaoxi Zeng
- Department of Food Science and Technology, College of Food Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China; Hunan Rapeseed Oil Nutrition Health and Deep Development Engineering Technology Research Center, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China.
| |
Collapse
|
22
|
Lin Y, McClements DJ, Xiao J, Cao Y, Liu X. In Vitro-In Vivo Study of the Impact of Excipient Emulsions on the Bioavailability and Antioxidant Activity of Flavonoids: Influence of the Carrier Oil Type. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1488-1498. [PMID: 36580279 DOI: 10.1021/acs.jafc.2c05836] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The influence of the carrier oil type on the bioavailability and bioactivity of flavonoids (quercetin, kaempferol, and apigenin) was examined using in vitro digestion, in situ intestinal perfusion, and pharmacokinetic studies. Here, medium-chain triglycerides (MCTs), long-chain triglycerides (LCTs), or MCT/LCT mixtures (1:1, w/w) served as the oil phase of excipient emulsions. Overall, the bioavailability and antioxidant activity of flavonoids increased when they were coingested with excipient emulsions. The in vitro bioaccessibility of flavonoids was affected by the carrier oil: LCT (17.9-22.8%) > MCT/LCT (12.1-13.7%) > MCT (9.2-12.6%). These differences were mainly attributed to the fact that the mixed micelles formed after the digestion of LCTs had larger hydrophobic domains to solubilize more flavonoids. However, in vivo pharmacokinetic experiments showed that the flavonoid concentrations in rat serum were comparable for all carrier oils (p > 0.05). Our results assist in formulating excipient emulsions to enhance the efficacy of flavonoids.
Collapse
Affiliation(s)
- Yanping Lin
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| | - Xiaojuan Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| |
Collapse
|
23
|
Maurya VK, Shakya A, Bashir K, Jan K, McClements DJ. Fortification by design: A rational approach to designing vitamin D delivery systems for foods and beverages. Compr Rev Food Sci Food Saf 2023; 22:135-186. [PMID: 36468215 DOI: 10.1111/1541-4337.13066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 12/09/2022]
Abstract
Over the past few decades, vitamin D deficiency has been recognized as a serious global public health challenge. The World Health Organization has recommended fortification of foods with vitamin D, but this is often challenging because of its low water solubility, poor chemical stability, and low bioavailability. Studies have shown that these challenges can be overcome by encapsulating vitamin D within well-designed delivery systems containing nanoscale or microscale particles. The characteristics of these particles, such as their composition, size, structure, interfacial properties, and charge, can be controlled to attain desired functionality for specific applications. Recently, there has been great interest in the design, production, and application of vitamin-D loaded delivery systems. Many of the delivery systems reported in the literature are unsuitable for widespread application due to the complexity and high costs of the processing operations required to fabricate them, or because they are incompatible with food matrices. In this article, the concept of "fortification by design" is introduced, which involves a systematic approach to the design, production, and testing of colloidal delivery systems for the encapsulation and fortification of oil-soluble vitamins, using vitamin D as a model. Initially, the challenges associated with the incorporation of vitamin D into foods and beverages are reviewed. The fortification by design concept is then described, which involves several steps: (i) selection of appropriate vitamin D form; (ii) selection of appropriate food matrix; (iii) identification of appropriate delivery system; (iv) identification of appropriate production method; (vii) establishment of appropriate testing procedures; and (viii) system optimization.
Collapse
Affiliation(s)
- Vaibhav Kumar Maurya
- Centre for Food Research and Analysis, National Institute of Food Technology Entrepreneurship and Management, Sonepat, India
| | - Amita Shakya
- Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonepat, India
| | - Khalid Bashir
- Department of Food Technology, Jamia Hamdard, New Delhi, India
| | - Kulsum Jan
- Department of Food Technology, Jamia Hamdard, New Delhi, India
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA.,Department of Food Science & Bioengineering, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
24
|
Liao L, Julian McClements D, Chen X, Zhu Y, Liu Y, Liang R, Zou L, Liu W. Dietary proteins as excipient ingredients for improving the solubility, stability, and bioaccessibility of quercetin: Role of intermolecular interactions. Food Res Int 2022; 161:111806. [DOI: 10.1016/j.foodres.2022.111806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/16/2022] [Accepted: 08/18/2022] [Indexed: 11/28/2022]
|
25
|
Santos FH, Panda SK, Ferreira DCM, Dey G, Molina G, Pelissari FM. Targeting infections and inflammation through micro and nano-nutraceuticals. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
26
|
Prototypes of Nutraceutical Products From Microparticles Loaded With Stilbenes Extracted From Grape Cane. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Luo H, Li Z, Straight CR, Wang Q, Zhou J, Sun Y, Lo CY, Yi L, Wu Y, Huang J, Wolfe W, Sutherland DZ, Miller MS, McClements DJ, Decker EA, Xiao H. Black pepper and vegetable oil-based emulsion synergistically enhance carotenoid bioavailability of raw vegetables in humans. Food Chem 2022; 373:131277. [PMID: 34799132 DOI: 10.1016/j.foodchem.2021.131277] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022]
Abstract
This study demonstrated the combination of black pepper and a canola oil-based emulsion synergistically enhanced carotenoid bioavailability of raw vegetables in humans. In a randomized crossover design, healthy young adults consumed (1) vegetable salad (control), (2) salad with canola oil emulsion (COE), (3) salad with black pepper (BP), and (4) salad with canola oil emulsion and black pepper (COE + BP). COE + BP led to a higher AUC0-10h of total plasma carotenoids (p < 0.0005) than the control (6.1-fold), BP (2.1-fold), and COE (3.0-fold). COE + BP increased AUC0-10h of plasma lutein, α-carotene, β-carotene, and lycopene by 4.8, 9.7, 7.6, and 5.5-fold than the control, respectively (p < 0.0001). COE + BP produced a significant synergy in increasing both Cmax and AUC0-10h of total carotenoids, α-carotene, β-carotene, and lycopene. Moreover, COE + BP produced a stronger enhancement on AUC0-10h of total carotenoids, α-carotene, β-carotene, and lycopene in females than in males.
Collapse
Affiliation(s)
- Haiyan Luo
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Zhengze Li
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Chad R Straight
- Department of Kinesiology, University of Massachusetts, Amherst, MA 01003, USA
| | - Qi Wang
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Jiazhi Zhou
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Yukun Sun
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Chia-Yu Lo
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Lingxiao Yi
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Yanyan Wu
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Jingyuan Huang
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - William Wolfe
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | | | - Mark S Miller
- Department of Kinesiology, University of Massachusetts, Amherst, MA 01003, USA
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Eric A Decker
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
28
|
Unveiling the Bioactive Potential of Fresh Fruit and Vegetable Waste in Human Health from a Consumer Perspective. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Food supply disruption and shortage verified during the current pandemic events are a scenario that many anticipate for the near future. The impact of climate changes on food production, the continuous decrease in arable land, and the exponential growth of the human population are important drivers for this problem. In this context, adding value to food waste is an obvious strategy to mitigate food shortages, but there is a long way to go in this field. Globally, it is estimated that one-third of all food produced is lost. This is certainly due to many different factors, but the lack of awareness of the consumer about the nutritional value of certain foods parts, namely peels and seeds, is certainly among them. In this review, we will unveil the nutritional and bioactive value of the waste discarded from the most important fresh fruit and vegetables consumed worldwide as a strategy to decrease food waste. This will span the characterization of the bioactive composition of selected waste from fruits and vegetables, particularly their seeds and peels, and their possible uses, whether in our diet or recycled to other ends.
Collapse
|
29
|
Abuhassira-Cohen Y, Livney YD. Enhancing bioavailability of encapsulated hydrophobic nutraceuticals: Insights from in-vitro, in-vivo and clinical studies. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
30
|
Luo H, Li Z, Yao M, McClements DJ, Xiao H. Impact of excipient emulsions made from different types of oils on the bioavailability and metabolism of curcumin in gastrointestinal tract. Food Chem 2022; 370:130980. [PMID: 34628238 DOI: 10.1016/j.foodchem.2021.130980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/10/2021] [Accepted: 08/27/2021] [Indexed: 11/18/2022]
Abstract
Low bioavailability currently limits the potential of curcumin as a health-promoting dietary compound. This study therefore explored the potential of excipient emulsions to improve curcumin bioavailability. Oil-in-water excipient emulsions were prepared using different types of oils: corn oil, olive oil, and medium chain triglycerides (MCT). The excipient emulsions increased the transportation rate of curcumin across the Caco-2 cell monolayer and showed ability to protect curcumin from metabolism in the enterocytes, with the olive oil-based systems exhibiting the highest efficacy. In addition, most of curcumin metabolites were present as hexahydro-curcumin (HHC) and its conjugates. Our results show that excipient emulsions can improve curcumin bioavailability by increasing its trans-enterocyte absorption and reducing cellular metabolism. Moreover, they show that these effects depend on the type of oil used to produce them. These findings have important implications for the rational design of lipid-based delivery systems to enhance the bioavailability of hydrophobic nutraceuticals like curcumin.
Collapse
Affiliation(s)
- Haiyan Luo
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, United States
| | - Zhengze Li
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, United States
| | - Mingfei Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | | | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
31
|
Kanyuck K, Mills T, Norton I, Norton-Welch A. Release of glucose and maltodextrin DE 2 from gellan gum gels and the impacts of gel structure. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
32
|
Abstract
For the past few years, there has been a surge in the use of nutraceuticals. The global nutraceuticals market in 2020 was USD 417.66 billion, and the market value is expected to increase by 8.9% compound annual growth rate from 2020 to 2028. This is because nutraceuticals are used to treat and prevent various diseases such as cancer, skin disorders, gastrointestinal, ophthalmic, diabetes, obesity, and central nervous system-related diseases. Nutritious food provides the required amount of nutrition to the human body through diet, whereas most of the bioactive agents present in the nutrients are highly lipophilic, with low aqueous solubility leading to poor dissolution and oral bioavailability. Also, the nutraceuticals like curcumin, carotenoids, anthocyanins, omega-3 fatty acids, vitamins C, vitamin B12, and quercetin have limitations such as poor solubility, chemical instability, bitter taste, and an unpleasant odor. Additionally, the presence of gastrointestinal (GIT) membrane barriers, varied pH, and reaction with GIT enzymes cause the degradation of some of the nutraceuticals. Nanotechnology-based nutrient delivery systems can be used to improve oral bioavailability by increasing nutraceutical stability in foods and GIT, increasing nutraceutical solubility in intestinal fluids, and decreasing first-pass metabolism in the gut and liver. This article has compiled the properties and applications of various nanocarriers such as polymeric nanoparticles, micelles, liposomes, niosomes, solid lipid nanocarriers, nanostructured lipid carrier, microemulsion, nanoemulsion, dendrimers in organic nanoparticles, and nanocomposites for effective delivery of bioactive molecules.
Collapse
|
33
|
Recent Advancement in Chitosan-Based Nanoparticles for Improved Oral Bioavailability and Bioactivity of Phytochemicals: Challenges and Perspectives. Polymers (Basel) 2021; 13:polym13224036. [PMID: 34833334 PMCID: PMC8617804 DOI: 10.3390/polym13224036] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
The excellent therapeutic potential of a variety of phytochemicals in different diseases has been proven by extensive studies throughout history. However, most phytochemicals are characterized by a high molecular weight, poor aqueous solubility, limited gastrointestinal permeability, extensive pre-systemic metabolism, and poor stability in the harsh gastrointestinal milieu. Therefore, loading of these phytochemicals in biodegradable and biocompatible nanoparticles (NPs) might be an effective approach to improve their bioactivity. Different nanocarrier systems have been developed in recent decades to deliver phytochemicals. Among them, NPs based on chitosan (CS) (CS-NPs), a mucoadhesive, non-toxic, and biodegradable polysaccharide, are considered the best nanoplatform for the oral delivery of phytochemicals. This review highlights the oral delivery of natural products, i.e., phytochemicals, encapsulated in NPs prepared from a natural polymer, i.e., CS, for improved bioavailability and bioactivity. The unique properties of CS for oral delivery such as its mucoadhesiveness, non-toxicity, excellent stability in the harsh environment of the GIT, good solubility in slightly acidic and alkaline conditions, and ability to enhance intestinal permeability are discussed first, and then the outcomes of various phytochemical-loaded CS-NPs after oral administration are discussed in detail. Furthermore, different challenges associated with the oral delivery of phytochemicals with CS-NPs and future directions are also discussed.
Collapse
|
34
|
Boonlao N, Ruktanonchai UR, Anal AK. Enhancing bioaccessibility and bioavailability of carotenoids using emulsion-based delivery systems. Colloids Surf B Biointerfaces 2021; 209:112211. [PMID: 34800865 DOI: 10.1016/j.colsurfb.2021.112211] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/25/2021] [Accepted: 11/07/2021] [Indexed: 02/07/2023]
Abstract
The consumption of foods rich in antioxidants, vitamins, minerals including carotenoids etc. can boost the immune system to help fight off various infections including SARS- CoV 2 and other viruses. Carotenoids have been gaining attention particularly in food and pharmaceutical industries owing to their diverse functions including their role as pro-vitamin A activity, potent antioxidant properties, and quenching of reactive oxygen (ROS), such as singlet oxygen and lipid peroxides within the lipid bilayer of the cell membrane. Nevertheless, carotenoids being lipophilic, have poor solubility in aqueous medium and are also chemically instable. They are susceptible to degrade under stimuli environmental conditions during food processing, storage and gastrointestinal passage. They also exhibit poor oral bioavailability, thus, their applications in aqueous-based foods are limited. As a consequent, suitable delivery systems including colloids-based are needed to enhance the solubility, stability and bioavailability of carotenoids. This review presents challenges of incorporation and delivery of carotenoids focusing on stability and factors affecting bioavailability. Furthermore, designed factors impacting bioaccessibility and bioavailability of carotenoids using emulsion-based delivery systems are explicitly explained. Each delivery system exhibits its own advantages and disadvantages; thus, the delivery systems should be designed based on their targets and their further applications.
Collapse
Affiliation(s)
- Nuntarat Boonlao
- Department of Food, Agriculture and Bioresources, Asian Institute of Technology, P.O. Box 4, Klong Luang, Pathum Thani 12120, Thailand
| | | | - Anil Kumar Anal
- Department of Food, Agriculture and Bioresources, Asian Institute of Technology, P.O. Box 4, Klong Luang, Pathum Thani 12120, Thailand.
| |
Collapse
|
35
|
Han J, Ye T, Liu YH, Chen X, Miao GP. Effects of food matrix and probiotics on the bioavailability of curcumin in different nanoformulations. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5627-5635. [PMID: 33713049 DOI: 10.1002/jsfa.11215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 02/18/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Nanoparticles can improve the bioavailability of bioactive compounds. Concomitant intake of food can affect pharmacokinetic profiles by altering dissolution, absorption, metabolism, and elimination behavior. Studies on the effects of food and its supplements on the bioavailability of bioactives in nanoformulations are few. In this study, the effects of typical food (milk, sugar, high-fat diet, and regular kibble) and a widely consumed probiotic [Bifidobacterium lactis Bb-12® (Bb-12)] on the bioavailability of curcumin in four formulations [simply suspended curcumin (Cur-SS) and curcumin in nanoemulsions (Cur-NEs), in single-walled carbon nanotubes (Cur-SWNTs), and in nanostructured lipid carriers (Cur-NLCs)] were investigated. RESULTS Fasting treatment and sugar co-ingestion can significantly enhance the bioavailability of curcumin in Cur-NEs and Cur-SWNTs, respectively. Compared with the fasting treatment, co-ingestion with regular kibble reduced the absorption of curcumin in Cur-NEs and Cur-SWNTs. Ingesting milk along with Cur-NE is also not recommended. The mechanisms behind these phenomena were briefly discussed. This study revealed for the first time that the intestinal colonization of Bb-12 reduces the bioavailability of curcumin and this reduction can be attenuated by nanoformulations SWNTs and NLCs, but not NEs. The reason for this difference was the protective effects of the former two nanoformulations against curcumin degradation by Bb-12 according to in vitro experiments. CONCLUSION Dietary status (including supplementary probiotics) can dramatically influence the bioavailability of curcumin in nanoformulations. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Juan Han
- Department of Bioengineering, Huainan Normal University, Huainan, China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, China
| | - Tao Ye
- Department of Bioengineering, Huainan Normal University, Huainan, China
| | - Yao-Hui Liu
- Department of Bioengineering, Huainan Normal University, Huainan, China
| | - Xin Chen
- Department of Bioengineering, Huainan Normal University, Huainan, China
| | - Guo-Peng Miao
- Department of Bioengineering, Huainan Normal University, Huainan, China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, China
| |
Collapse
|
36
|
Shah BR, Xu W, Mráz J. Formulation and characterization of zein/chitosan complex particles stabilized Pickering emulsion with the encapsulation and delivery of vitamin D 3. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5419-5428. [PMID: 33647164 DOI: 10.1002/jsfa.11190] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 02/22/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Pickering emulsions (PEs) which are stabilized by solid particles instead of surfactants have recently attracted tremendous attentions due to their non-toxic and long-term stable nature. In the current study, we fabricated and characterized zein (ZN)/chitosan (CS) complex particles (ZNCSPs) stabilized PE for the encapsulation and delivery of vitamin D3 . RESULTS The ZNCSPs were synthesized with different ratios, i.e. 1:1, 1:1.5 and 1:2 to investigate the optimum ratio. Transmission electron microscopy observations showed the spherical nature with smooth surface of the obtained particles in the case of ZNCS ratio 1:1.5 and 1:2. Furthermore, ζ-potential values for the these particles were 32.53 ± 1.3 and 52.86 ± 0.68 mV respectively, indicating particles with (1:2) being more stable than 1:1.5. Thereafter, using these particles, the PEs were successfully formulated with different oil (medium chain triglyceride) fractions (330, 500 and 660 g kg-1 ). The emulsions were evaluated for stability during storage and against different environmental factors including pH, temperature and ionic strength on the creaming indices (CIs) of these emulsions. The results demonstrated that the PEs with oil fractions 330 and 500 g kg-1 exhibited significant stability during storage, particularly the ones with 500 g kg-1 oil fractions which were stable against all the tested parameters. Finally, the prepared PEs were evaluated as efficient delivery system by encapsulating and delivering vitamin D3 . In vitro drug release profile confirmed sustained and controlled release of the encapsulated vitamin D3 . CONCLUSION Overall, our findings suggest that ZNCSPs can be promising stabilizers for stable PEs that can be used as potential delivery systems in food, cosmetic and pharmaceutical industries. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- B R Shah
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| | - W Xu
- College of Life Science, Xinyang Normal University, Xinyang, P. R. China
| | - J Mráz
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| |
Collapse
|
37
|
Tackling older adults’ malnutrition through the development of tailored food products. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
38
|
Positive effects of ultrasound pretreatment on the bioaccessibility and cellular uptake of bioactive compounds from broccoli: Effect on cell wall, cellular matrix and digesta. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Rocha‐Guzmán NE, Cháirez‐Ramírez MH, Pérez‐Martínez JD, Rosas‐Flores W, Ornelas‐Paz JDJ, Moreno‐Jiménez MR, González‐Laredo RF, Gallegos‐Infante JA. Use of organogel‐based emulsions (o/w) as a tool to increase the bioaccessibility of lupeol, curcumin, and quercetin. J AM OIL CHEM SOC 2021. [DOI: 10.1002/aocs.12528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | | | | | - Walfred Rosas‐Flores
- Departamento de Ingenierías Química y Bioquímica TecNM/Instituto Tecnológico de Durango Durango Mexico
| | | | | | | | | |
Collapse
|
40
|
|
41
|
A Brief Updated Review of Advances to Enhance Resveratrol's Bioavailability. Molecules 2021; 26:molecules26144367. [PMID: 34299642 PMCID: PMC8305180 DOI: 10.3390/molecules26144367] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 11/17/2022] Open
Abstract
Resveratrol (RES) has a low bioavailability. This limitation was addressed in an earlier review and several recommendations were offered. A literature search was conducted in order to determine the extent of the research that was conducted in line with these recommendations, along with new developments in this field. Most of the identified studies were pre-clinical and confirmed the heightened activity of RES analogues compared to their parent compound. Although this has provided additional scientific kudos for these compounds and has strengthened their potential to be developed into phytopharmaceutical products, clinical trials designed to confirm this increased activity remain lacking and are warranted.
Collapse
|
42
|
Arshad R, Gulshad L, Haq I, Farooq MA, Al‐Farga A, Siddique R, Manzoor MF, Karrar E. Nanotechnology: A novel tool to enhance the bioavailability of micronutrients. Food Sci Nutr 2021; 9:3354-3361. [PMID: 34136200 PMCID: PMC8194941 DOI: 10.1002/fsn3.2311] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 12/17/2022] Open
Abstract
Nanotechnology has revolutionized the field of food systems, diagnostics, therapeutics, pharmaceuticals, the agriculture sector, and nutraceuticals. Nanoparticles are playing important role in giving the solution to enhance bioavailability of oral delivery of bioactive compounds. This review revealed that nanoparticles can improve the bioavailability of micronutrients, for example, vitamin B12, vitamin A, folic acid, and iron. However, toxicity associated with nanoparticle-based delivery systems is still a major concern after ingestion of nano-based supplements. The mode of the mechanism of nanomaterial along with bioactive components in different physiological conditions of the human body is also a major gap in the field of nanoceuticals. In the future, more evidence-based clinical investigations are needed to confirm the exact approach to physiological changes in the human body.
Collapse
Affiliation(s)
- Rizwan Arshad
- University Institute of Diet and Nutritional SciencesThe University of Lahore, Gujrat CampusGujratPakistan
| | - Lubaba Gulshad
- University Institute of Diet and Nutritional SciencesThe University of Lahore, Gujrat CampusGujratPakistan
| | - Iahtisham‐Ul‐ Haq
- School of Food and NutritionFaculty of Allied Health SciencesMinhaj UniversityLahorePakistan
| | - Muhammad Adil Farooq
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
- Department of Food Science and TechnologyKhwaja Fareed University of Engineering and Information TechnologyRahim Yar KhanPakistan
| | - Ammar Al‐Farga
- Department of BiochemistryCollege of SciencesUniversity of JeddahJeddahSaudi Arabia
| | - Rabia Siddique
- Department of ChemistryGovernment College University FaisalabadFaisalabadPakistan
| | | | - Emad Karrar
- Department of Food Engineering and TechnologyFaculty of Engineering and TechnologyUniversity of GeziraWad MedaniSudan
| |
Collapse
|
43
|
de Melo APZ, da Rosa CG, Noronha CM, Machado MH, Sganzerla WG, Bellinati NVDC, Nunes MR, Verruck S, Prudêncio ES, Barreto PLM. Nanoencapsulation of vitamin D3 and fortification in an experimental jelly model of Acca sellowiana: Bioaccessibility in a simulated gastrointestinal system. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
44
|
Ma JJ, Huang XN, Yin SW, Yu YG, Yang XQ. Bioavailability of quercetin in zein-based colloidal particles-stabilized Pickering emulsions investigated by the in vitro digestion coupled with Caco-2 cell monolayer model. Food Chem 2021; 360:130152. [PMID: 34034052 DOI: 10.1016/j.foodchem.2021.130152] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/17/2021] [Accepted: 05/15/2021] [Indexed: 10/21/2022]
Abstract
Protein-based Pickering emulsions have received considerable attention as nutraceutical vehicles. However, the oral bioavailability of nutraceuticals encapsulated in Pickering emulsions was not well established. In this work, a simulated gastrointestinal tract/Caco-2 cell culture model was applied to investigate the oral bioavailability of quercetin encapsulated in zein-based Pickering emulsions with quercetin in zein particles as the control. Pickering emulsions with shell (ZCP-QE) and core quercetin (ZCPE-Q) were constructed, and quercetin bioaccessibility, cell uptake and secretion, and the overall bioavailability were evaluated and compared. The overall oral bioavailability of quercetin was increased from 2.71% (bulk oil) to 38.18% (ZCPs-Q) and 18.97% (ZCPE-Q), particularly reached 41.22% for ZCP-QE. This work took new insights into the contributions of bioaccessibility and absorption (cell uptake plus secretion) to the overall oral bioavailability of quercetin. A schematic representation is proposed to relate the types of colloidal nanostructures in the digesta to the uptake, cell absorption, and overall oral bioavailability of quercetin. This study provided an attractive basis for identifying effective strategies to improve the oral bioavailability of hydrophobic nutraceuticals.
Collapse
Affiliation(s)
- Juan-Juan Ma
- Research and Development Center of Food Proteins, School of Food Science and Engineering and Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, PR China
| | - Xiao-Nan Huang
- Research and Development Center of Food Proteins, School of Food Science and Engineering and Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, PR China
| | - Shou-Wei Yin
- Research and Development Center of Food Proteins, School of Food Science and Engineering and Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, PR China; Sino-Singapore International Joint Research Institute, Guangzhou 510640, PR China.
| | - Yi-Gang Yu
- Research and Development Center of Food Proteins, School of Food Science and Engineering and Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, PR China.
| | - Xiao-Quan Yang
- Research and Development Center of Food Proteins, School of Food Science and Engineering and Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, PR China
| |
Collapse
|
45
|
Tiwari P, Ali R, Ishrat R, Arfin N. Study of interaction between zein and curcumin using spectroscopic and in silico techniques. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
Charpashlo E, Ghorani B, Mohebbi M. Multilayered electrospinning strategy for increasing the bioaccessibility of lycopene in gelatin-based sub-micron fiber structures. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106411] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
47
|
Shahidi F, Pan Y. Influence of food matrix and food processing on the chemical interaction and bioaccessibility of dietary phytochemicals: A review. Crit Rev Food Sci Nutr 2021; 62:6421-6445. [PMID: 33787422 DOI: 10.1080/10408398.2021.1901650] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Consumption of phytochemicals-rich foods shows the health effect on some chronic diseases. However, the bioaccessibility of these phytochemicals is extremely low, and they are often consumed in the diet along with the food matrix. The food matrix can be described as a complex assembly of various physical and chemical interactions that take place between the compounds present in the food. Some studies indicated that the physiological response and the health benefits of phytochemicals are resultant in these interactions. Some food substrates inhibit the absorption of phytochemicals via this interaction. Moreover, processing technologies have been developed to facilitate the release and/or to increase the accessibility of phytochemicals in plants or breakdown of the food matrix. Food processing processes may disrupt the activity of phytochemicals or reduce bioaccessibility. Enhancement of functional and sensorial attributes of phytochemicals in the daily diet may be achieved by modifying the food matrix and food processing in appropriate ways. Therefore, this review concisely elaborated on the mechanism and the influence of food matrix in different parts of the digestive tract in the human body, the chemical interaction between phytochemicals and other compounds in a food matrix, and the various food processing technologies on the bioaccessibility and chemical interaction of dietary phytochemicals. Moreover, the enhancing of phytochemical bioaccessibility through food matrix design and the positive/negative of food processing for dietary phytochemicals was also discussed in this study.
Collapse
Affiliation(s)
- Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Yao Pan
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.,State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang, Jiangxi, China
| |
Collapse
|
48
|
Alqahtani MS, Kazi M, Alsenaidy MA, Ahmad MZ. Advances in Oral Drug Delivery. Front Pharmacol 2021; 12:618411. [PMID: 33679401 PMCID: PMC7933596 DOI: 10.3389/fphar.2021.618411] [Citation(s) in RCA: 350] [Impact Index Per Article: 87.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
The oral route is the most common route for drug administration. It is the most preferred route, due to its advantages, such as non-invasiveness, patient compliance and convenience of drug administration. Various factors govern oral drug absorption including drug solubility, mucosal permeability, and stability in the gastrointestinal tract environment. Attempts to overcome these factors have focused on understanding the physicochemical, biochemical, metabolic and biological barriers which limit the overall drug bioavailability. Different pharmaceutical technologies and drug delivery systems including nanocarriers, micelles, cyclodextrins and lipid-based carriers have been explored to enhance oral drug absorption. To this end, this review will discuss the physiological, and pharmaceutical barriers influencing drug bioavailability for the oral route of administration, as well as the conventional and novel drug delivery strategies. The challenges and development aspects of pediatric formulations will also be addressed.
Collapse
Affiliation(s)
- Mohammed S. Alqahtani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Nanobiotechnology Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad A. Alsenaidy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Nanobiotechnology Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Z. Ahmad
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
49
|
McClements DJ, Öztürk B. Utilization of Nanotechnology to Improve the Handling, Storage and Biocompatibility of Bioactive Lipids in Food Applications. Foods 2021; 10:foods10020365. [PMID: 33567622 PMCID: PMC7915003 DOI: 10.3390/foods10020365] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
Bioactive lipids, such as fat-soluble vitamins, omega-3 fatty acids, conjugated linoleic acids, carotenoids and phytosterols play an important role in boosting human health and wellbeing. These lipophilic substances cannot be synthesized within the human body, and so people must include them in their diet. There is increasing interest in incorporating these bioactive lipids into functional foods designed to produce certain health benefits, such as anti-inflammatory, antioxidant, anticancer and cholesterol-lowering properties. However, many of these lipids have poor compatibility with food matrices and low bioavailability because of their extremely low water solubility. Moreover, they may also chemically degrade during food storage or inside the human gut because they are exposed to certain stressors, such as high temperatures, oxygen, light, moisture, pH, and digestive/metabolic enzymes, which again reduces their bioavailability. Nanotechnology is a promising technology that can be used to overcome many of these limitations. The aim of this review is to highlight different kinds of nanoscale delivery systems that have been designed to encapsulate and protect bioactive lipids, thereby facilitating their handling, stability, food matrix compatibility, and bioavailability. These systems include nanoemulsions, solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), nanoliposomes, nanogels, and nano-particle stabilized Pickering emulsions.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, Hangzhou 310018, China
- Correspondence:
| | - Bengü Öztürk
- Department of Food Engineering, Faculty of Engineering, Yeditepe University, Istanbul 34755, Turkey;
| |
Collapse
|
50
|
Galanakis CM. Functionality of Food Components and Emerging Technologies. Foods 2021; 10:128. [PMID: 33435589 PMCID: PMC7826514 DOI: 10.3390/foods10010128] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/31/2020] [Accepted: 01/06/2021] [Indexed: 01/08/2023] Open
Abstract
This review article introduces nutrition and functional food ingredients, explaining the widely cited terms of bioactivity, bioaccessibility, and bioavailability. The factors affecting these critical properties of food components are analyzed together with their interaction and preservation during processing. Ultimately, the effect of emerging (non-thermal) technologies on different food components (proteins, carbohydrates, lipids, minerals, vitamins, polyphenols, glucosinolates, polyphenols, aroma compounds, and enzymes) is discussed in spite of preserving their functional properties. Non-thermal technologies can maintain the bioavailability of food components, improve their functional and technological properties, and increase the recovery yields from agricultural products. However, the optimization of operational parameters is vital to avoid degradation of macromolecules and the oxidation of labile compounds.
Collapse
Affiliation(s)
- Charis M. Galanakis
- Research & Innovation Department, Galanakis Laboratories, P.C. 73131 Chania, Greece;
- Food Waste Recovery Group, ISEKI Food Association, P.C. 1190 Vienna, Austria
| |
Collapse
|