1
|
Ugodnikov A, Persson H, Simmons CA. Bridging barriers: advances and challenges in modeling biological barriers and measuring barrier integrity in organ-on-chip systems. LAB ON A CHIP 2024; 24:3199-3225. [PMID: 38689569 DOI: 10.1039/d3lc01027a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Biological barriers such as the blood-brain barrier, skin, and intestinal mucosal barrier play key roles in homeostasis, disease physiology, and drug delivery - as such, it is important to create representative in vitro models to improve understanding of barrier biology and serve as tools for therapeutic development. Microfluidic cell culture and organ-on-a-chip (OOC) systems enable barrier modelling with greater physiological fidelity than conventional platforms by mimicking key environmental aspects such as fluid shear, accurate microscale dimensions, mechanical cues, extracellular matrix, and geometrically defined co-culture. As the prevalence of barrier-on-chip models increases, so does the importance of tools that can accurately assess barrier integrity and function without disturbing the carefully engineered microenvironment. In this review, we first provide a background on biological barriers and the physiological features that are emulated through in vitro barrier models. Then, we outline molecular permeability and electrical sensing barrier integrity assessment methods, and the related challenges specific to barrier-on-chip implementation. Finally, we discuss future directions in the field, as well important priorities to consider such as fabrication costs, standardization, and bridging gaps between disciplines and stakeholders.
Collapse
Affiliation(s)
- Alisa Ugodnikov
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada.
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Henrik Persson
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada.
| | - Craig A Simmons
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada.
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| |
Collapse
|
2
|
Shevchuk O, Palii S, Pak A, Chantada N, Seoane N, Korda M, Campos-Toimil M, Álvarez E. Vessel-on-a-Chip: A Powerful Tool for Investigating Endothelial COVID-19 Fingerprints. Cells 2023; 12:cells12091297. [PMID: 37174696 PMCID: PMC10177552 DOI: 10.3390/cells12091297] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/21/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
Coronavirus disease (COVID-19) causes various vascular and blood-related reactions, including exacerbated responses. The role of endothelial cells in this acute response is remarkable and may remain important beyond the acute phase. As we move into a post-COVID-19 era (where most people have been or will be infected by the SARS-CoV-2 virus), it is crucial to define the vascular consequences of COVID-19, including the long-term effects on the cardiovascular system. Research is needed to determine whether chronic endothelial dysfunction following COVID-19 could lead to an increased risk of cardiovascular and thrombotic events. Endothelial dysfunction could also serve as a diagnostic and therapeutic target for post-COVID-19. This review covers these topics and examines the potential of emerging vessel-on-a-chip technology to address these needs. Vessel-on-a-chip would allow for the study of COVID-19 pathophysiology in endothelial cells, including the analysis of SARS-CoV-2 interactions with endothelial function, leukocyte recruitment, and platelet activation. "Personalization" could be implemented in the models through induced pluripotent stem cells, patient-specific characteristics, or genetic modified cells. Adaptation for massive testing under standardized protocols is now possible, so the chips could be incorporated for the personalized follow-up of the disease or its sequalae (long COVID) and for the research of new drugs against COVID-19.
Collapse
Affiliation(s)
- Oksana Shevchuk
- Department of Pharmacology and Clinical Pharmacology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Svitlana Palii
- Department of Pharmacology and Clinical Pharmacology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Anastasiia Pak
- Department of Medical Biochemistry, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Nuria Chantada
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Nuria Seoane
- Physiology and Pharmacology of Chronic Diseases (FIFAEC) Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Mykhaylo Korda
- Department of Medical Biochemistry, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Manuel Campos-Toimil
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Physiology and Pharmacology of Chronic Diseases (FIFAEC) Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ezequiel Álvarez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
- CIBERCV, Institute of Health Carlos III, 28220 Madrid, Spain
| |
Collapse
|
3
|
Pérez-Rodríguez S, Huang SA, Borau C, García-Aznar JM, Polacheck WJ. Microfluidic model of monocyte extravasation reveals the role of hemodynamics and subendothelial matrix mechanics in regulating endothelial integrity. BIOMICROFLUIDICS 2021; 15:054102. [PMID: 34548891 PMCID: PMC8443302 DOI: 10.1063/5.0061997] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/26/2021] [Indexed: 05/08/2023]
Abstract
Extravasation of circulating cells is an essential process that governs tissue inflammation and the body's response to pathogenic infection. To initiate anti-inflammatory and phagocytic functions within tissues, immune cells must cross the vascular endothelial barrier from the vessel lumen to the subluminal extracellular matrix. In this work, we present a microfluidic approach that enables the recreation of a three-dimensional, perfused endothelial vessel formed by human endothelial cells embedded within a collagen-rich matrix. Monocytes are introduced into the vessel perfusate, and we investigate the role of luminal flow and collagen concentration on extravasation. In vessels conditioned with the flow, increased monocyte adhesion to the vascular wall was observed, though fewer monocytes extravasated to the collagen hydrogel. Our results suggest that the lower rates of extravasation are due to the increased vessel integrity and reduced permeability of the endothelial monolayer. We further demonstrate that vascular permeability is a function of collagen hydrogel mass concentration, with increased collagen concentrations leading to elevated vascular permeability and increased extravasation. Collectively, our results demonstrate that extravasation of monocytes is highly regulated by the structural integrity of the endothelial monolayer. The microfluidic approach developed here allows for the dissection of the relative contributions of these cues to further understand the key governing processes that regulate circulating cell extravasation and inflammation.
Collapse
Affiliation(s)
| | - Stephanie A. Huang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
4
|
Bioengineered in vitro models of leukocyte-vascular interactions. Biochem Soc Trans 2021; 49:693-704. [PMID: 33843967 DOI: 10.1042/bst20200620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 01/13/2023]
Abstract
Leukocytes continuously circulate our body through the blood and lymphatic vessels. To survey invaders or abnormalities and defend our body against them, blood-circulating leukocytes migrate from the blood vessels into the interstitial tissue space (leukocyte extravasation) and exit the interstitial tissue space through draining lymphatic vessels (leukocyte intravasation). In the process of leukocyte trafficking, leukocytes recognize and respond to multiple biophysical and biochemical cues in these vascular microenvironments to determine adequate migration and adhesion pathways. As leukocyte trafficking is an essential part of the immune system and is involved in numerous immune diseases and related immunotherapies, researchers have attempted to identify the key biophysical and biochemical factors that might be responsible for leukocyte migration, adhesion, and trafficking. Although intravital live imaging of in vivo animal models has been remarkably advanced and utilized, bioengineered in vitro models that recapitulate complicated in vivo vascular structure and microenvironments are needed to better understand leukocyte trafficking since these in vitro models better allow for spatiotemporal analyses of leukocyte behaviors, decoupling of interdependent biological factors, better controlling of experimental parameters, reproducible experiments, and quantitative cellular analyses. This review discusses bioengineered in vitro model systems that are developed to study leukocyte interactions with complex microenvironments of blood and lymphatic vessels. This review focuses on the emerging concepts and methods in generating relevant biophysical and biochemical cues. Finally, the review concludes with expert perspectives on the future research directions for investigating leukocyte and vascular biology using the in vitro models.
Collapse
|
5
|
Boeri L, Perottoni S, Izzo L, Giordano C, Albani D. Microbiota-Host Immunity Communication in Neurodegenerative Disorders: Bioengineering Challenges for In Vitro Modeling. Adv Healthc Mater 2021; 10:e2002043. [PMID: 33661580 PMCID: PMC11468246 DOI: 10.1002/adhm.202002043] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/01/2021] [Indexed: 12/12/2022]
Abstract
Human microbiota communicates with its host by secreting signaling metabolites, enzymes, or structural components. Its homeostasis strongly influences the modulation of human tissue barriers and immune system. Dysbiosis-induced peripheral immunity response can propagate bacterial and pro-inflammatory signals to the whole body, including the brain. This immune-mediated communication may contribute to several neurodegenerative disorders, as Alzheimer's disease. In fact, neurodegeneration is associated with dysbiosis and neuroinflammation. The interplay between the microbial communities and the brain is complex and bidirectional, and a great deal of interest is emerging to define the exact mechanisms. This review focuses on microbiota-immunity-central nervous system (CNS) communication and shows how gut and oral microbiota populations trigger immune cells, propagating inflammation from the periphery to the cerebral parenchyma, thus contributing to the onset and progression of neurodegeneration. Moreover, an overview of the technological challenges with in vitro modeling of the microbiota-immunity-CNS axis, offering interesting technological hints about the most advanced solutions and current technologies is provided.
Collapse
Affiliation(s)
- Lucia Boeri
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”Politecnico di MilanoPiazza Leonardo da Vinci 32Milan20133Italy
| | - Simone Perottoni
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”Politecnico di MilanoPiazza Leonardo da Vinci 32Milan20133Italy
| | - Luca Izzo
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”Politecnico di MilanoPiazza Leonardo da Vinci 32Milan20133Italy
| | - Carmen Giordano
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”Politecnico di MilanoPiazza Leonardo da Vinci 32Milan20133Italy
| | - Diego Albani
- Department of NeuroscienceIstituto di Ricerche Farmacologiche Mario Negri IRCCSvia Mario Negri 2Milan20156Italy
| |
Collapse
|
6
|
Najibi AJ, Mooney DJ. Cell and tissue engineering in lymph nodes for cancer immunotherapy. Adv Drug Deliv Rev 2020; 161-162:42-62. [PMID: 32750376 PMCID: PMC7736208 DOI: 10.1016/j.addr.2020.07.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/03/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023]
Abstract
In cancer, lymph nodes (LNs) coordinate tumor antigen presentation necessary for effective antitumor immunity, both at the levels of local cellular interactions and tissue-level organization. In this review, we examine how LNs may be engineered to improve the therapeutic outcomes of cancer immunotherapy. At the cellular scale, targeting the LNs impacts the potency of cancer vaccines, immune checkpoint blockade, and adoptive cell transfer. On a tissue level, macro-scale biomaterials mimicking LN features can function as immune niches for cell reprogramming or delivery in vivo, or be utilized in vitro to enable preclinical testing of drugs and vaccines. We additionally review strategies to induce ectopic lymphoid sites reminiscent of LNs that may improve antitumor T cell priming.
Collapse
Affiliation(s)
- Alexander J Najibi
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138.
| |
Collapse
|
7
|
Lauranzano E, Campo E, Rasile M, Molteni R, Pizzocri M, Passoni L, Bello L, Pozzi D, Pardi R, Matteoli M, Ruiz-Moreno A. A Microfluidic Human Model of Blood-Brain Barrier Employing Primary Human Astrocytes. ACTA ACUST UNITED AC 2019; 3:e1800335. [PMID: 32648668 DOI: 10.1002/adbi.201800335] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/20/2019] [Indexed: 12/19/2022]
Abstract
The neurovascular unit (NVU) is the most important biological barrier between vascular districts and central nervous system (CNS) parenchyma, which maintains brain homeostasis, protects the CNS from pathogens penetration, and mediates neuroimmune communication. T lymphocytes migration across the blood-brain barrier is heavily affected in different brain diseases, representing a major target for novel drug development. In vitro models of NVU could represent a primary tool to investigate the molecular events occurring at this interface. To move toward the establishment of personalized therapies, a patient-related NVU-model is set, incorporating human primary astrocytes integrated into a microfluidic platform. The model is morphologically and functionally characterized, proving to be an advantageous tool to investigate human T lymphocytes transmigration and thus the efficacy of potential novel drugs affecting this process.
Collapse
Affiliation(s)
- Eliana Lauranzano
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089, Rozzano, MI, Italy
| | - Elena Campo
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089, Rozzano, MI, Italy
| | - Marco Rasile
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089, Rozzano, MI, Italy.,Department of Biomedical Science, Laboratory of Pharmacology and Brain Pathology, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, MI, Italy
| | - Raffaella Molteni
- Division of Immunology, Transplantation and Infectious Diseases, Leukocyte Biology Unit, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy
| | - Marco Pizzocri
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089, Rozzano, MI, Italy
| | - Lorena Passoni
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089, Rozzano, MI, Italy
| | - Lorenzo Bello
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089, Rozzano, MI, Italy.,Department of Oncology and Hematology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Davide Pozzi
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089, Rozzano, MI, Italy.,Department of Biomedical Science, Laboratory of Pharmacology and Brain Pathology, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, MI, Italy
| | - Ruggero Pardi
- Division of Immunology, Transplantation and Infectious Diseases, Leukocyte Biology Unit, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy.,School of Medicine, Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
| | - Michela Matteoli
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089, Rozzano, MI, Italy.,Department of Biomedical Science, Laboratory of Pharmacology and Brain Pathology, Humanitas University, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, MI, Italy
| | - Ana Ruiz-Moreno
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089, Rozzano, MI, Italy
| |
Collapse
|
8
|
Xu H, Liu X, Le W. Recent advances in microfluidic models for cancer metastasis research. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Park SM, Kim H, Song KH, Eom S, Park H, Doh J, Kim DS. Ultra-thin, aligned, free-standing nanofiber membranes to recapitulate multi-layered blood vessel/tissue interface for leukocyte infiltration study. Biomaterials 2018; 169:22-34. [DOI: 10.1016/j.biomaterials.2018.03.053] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 01/13/2023]
|
10
|
Endothelial cell monolayer-based microfluidic systems mimicking complex in vivo microenvironments for the study of leukocyte dynamics in inflamed blood vessels. Methods Cell Biol 2018; 146:23-42. [DOI: 10.1016/bs.mcb.2018.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
11
|
Rayner SG, Zheng Y. Engineered Microvessels for the Study of Human Disease. J Biomech Eng 2017; 138:2545529. [PMID: 27537085 DOI: 10.1115/1.4034428] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Indexed: 12/22/2022]
Abstract
The microvasculature is an extensive, heterogeneous, and complex system that plays a critical role in human physiology and disease. It nourishes almost all living human cells and maintains a local microenvironment that is vital for tissue and organ function. Operating under a state of continuous flow, with an intricate architecture despite its small caliber, and subject to a multitude of biophysical and biochemical stimuli, the microvasculature can be a complex subject to study in the laboratory setting. Engineered microvessels provide an ideal platform that recapitulates essential elements of in vivo physiology and allows study of the microvasculature in a precise and reproducible way. Here, we review relevant structural and functional vascular biology, discuss different methods to engineer microvessels, and explore the applications of this exciting tool for the study of human disease.
Collapse
Affiliation(s)
- Samuel G Rayner
- Department of Pulmonary and Critical Care Medicine, University of Washington School of Medicine, Campus Box 356522, Seattle, WA 98195 e-mail:
| | - Ying Zheng
- Department of Bioengineering, University of Washington, 3720 15th Avenue NE, Seattle, WA 98105;Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109 e-mail:
| |
Collapse
|
12
|
Ross AE, Belanger MC, Woodroof JF, Pompano RR. Spatially resolved microfluidic stimulation of lymphoid tissue ex vivo. Analyst 2017; 142:649-659. [PMID: 27900374 PMCID: PMC7863610 DOI: 10.1039/c6an02042a] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The lymph node is a structurally complex organ of the immune system, whose dynamic cellular arrangements are thought to control much of human health. Currently, no methods exist to precisely stimulate substructures within the lymph node or analyze local stimulus-response behaviors, making it difficult to rationally design therapies for inflammatory disease. Here we describe a novel integration of live lymph node slices with a microfluidic system for local stimulation. Slices maintained the cellular organization of the lymph node while making its core experimentally accessible. The 3-layer polydimethylsiloxane device consisted of a perfusion chamber stacked atop stimulation ports fed by underlying microfluidic channels. Fluorescent dextrans similar in size to common proteins, 40 and 70 kDa, were delivered to live lymph node slices with 284 ± 9 μm and 202 ± 15 μm spatial resolution, respectively, after 5 s, which is sufficient to target functional zones of the lymph node. The spread and quantity of stimulation were controlled by varying the flow rates of delivery; these were predictable using a computational model of isotropic diffusion and convection through the tissue. Delivery to two separate regions simultaneously was demonstrated, to mimic complex intercellular signaling. Delivery of a model therapeutic, glucose-conjugated albumin, to specific regions of the lymph node indicated that retention of the drug was greater in the B-cell zone than in the T-cell zone. Together, this work provides a novel platform, the lymph node slice-on-a-chip, to target and study local events in the lymph node and to inform the development of new immunotherapeutics.
Collapse
Affiliation(s)
- Ashley E Ross
- University of Virginia, Dept. of Chemistry, PO Box 400319, McCormick Rd, Charlottesville, VA 22904, USA.
| | | | | | | |
Collapse
|
13
|
Chimen M, Apta BHR, Mcgettrick HM. Introduction: T Cell Trafficking in Inflammation and Immunity. Methods Mol Biol 2017; 1591:73-84. [PMID: 28349476 DOI: 10.1007/978-1-4939-6931-9_6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
T cell migration across vascular endothelium is essential for T cell responses, as through the expression of specific tissue-homing receptors, these cells then access peripheral tissues, with the goal of eliminating invading pathogens and/or tumor cells. However, aberrant trafficking of T cells to peripheral tissues contributes to the development of most chronic inflammatory diseases. Very little is known about the mechanisms by which T cell trafficking is regulated during inflammation, and it is thus difficult to target this aspect of pathology for the development of new therapies. It is therefore important to understand the pathways involved in regulating the recruitment of immune cells.
Collapse
Affiliation(s)
- Myriam Chimen
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Bonita H R Apta
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Edgbaston, Birmingham, West Midlands, B15 2TT, UK
| | - Helen M Mcgettrick
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
14
|
Huang Q, Antensteiner M, Liu XY, Lin C, Vogler EA. Graphical analysis of mammalian cell adhesion in vitro. Colloids Surf B Biointerfaces 2016; 148:211-219. [PMID: 27606494 DOI: 10.1016/j.colsurfb.2016.07.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/06/2016] [Accepted: 07/09/2016] [Indexed: 11/27/2022]
Abstract
Short-term (<2h) cell adhesion kinetics of 3 different mammalian cell types: MDCK (epithelioid), MC3T3-E1 (osteoblastic), and MDA-MB-231 (cancerous) on 7 different substratum surface chemistries spanning the experimentally-observable range of water wettability (surface energy) are graphically analyzed to qualitatively elucidate commonalities and differences among cell/surface/suspending media combinations. We find that short-term mammalian cell attachment/adhesion in vitro correlates with substratum surface energy as measured by water adhesion tension, τ≡γlvcosθ, where γlv is water liquid-vapor interfacial energy (72.8 mJ/m2) and cosθ is the cosine of the advancing contact angle subtended by a water droplet on the substratum surface. No definitive functional relationships among cell-adhesion kinetic parameters and τ were observed as in previous work, but previously-observed general trends were reproduced, especially including a sharp transition in the magnitude of kinetic parameters from relatively low-to-high near τ=0mJ/m2, although the exact adhesion tension at which this transition occurs is difficult to accurately estimate from the current data set. We note, however, that the transition is within the hydrophobic range based on the τ=30mJ/m2 surface-energetic dividing line that has been proposed to differentiate "hydrophobic" surfaces from "hydrophilic". Thus, a rather sharp hydrophobic/hydrophilic contrast is observed for cell adhesion for disparate cell/surface combinations.
Collapse
Affiliation(s)
- Qiaoling Huang
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China.
| | - Martin Antensteiner
- Departments of Materials Science and Engineering and Bioengineering, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Xiang Yang Liu
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117542, Singapore, Singapore; Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China.
| | - Changjian Lin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Erwin A Vogler
- Departments of Materials Science and Engineering and Bioengineering, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
15
|
Ramadan Q, Gijs MAM. In vitro micro-physiological models for translational immunology. LAB ON A CHIP 2015; 15:614-36. [PMID: 25501670 DOI: 10.1039/c4lc01271b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The immune system is a source of regulation of the human body and is key for its stable functioning. Animal models have been successfully used for many years to study human immunity and diseases and provided significant contributions to the development of powerful new therapies. However, such models inevitably display differences from the human metabolism and disease state and therefore may correlate poorly with the human conditions. This explains the interest for the use of in vitro models of human cells, which have better potential to assist in understanding the physiological events that characterize the immune response in humans. Microfluidic technologies offer great capabilities to create miniaturized in vivo-like physiological models that mimic tissue-tissue interactions and simulate the body metabolism in both the healthy and diseased states. The micro-scale features of these microfluidic systems allow positioning heterogeneous cellular cultures in close proximity to each other in a dynamic fluidic environment, thereby allowing efficient cell-cell interactions and effectively narrowing the gap between in vivo and in vitro conditions. Due to the relative simplicity of these systems, compared to animal models, it becomes possible to investigate cell signaling by monitoring the metabolites transported from one tissue to another in real time. This allows studying detailed physiological events and in consequence understanding the influence of metabolites on a specific tissue/organ function as well as on the healthy/diseased state modulation. Numerous in vitro models of human organs have been developed during the last few years, aiming to mimic as closely as possible the in vivo characteristics of such organs. This technology is still in its infancy, but is promised a bright future in industrial and medical applications. Here we review the recent literature, in which functional microphysiological models have been developed to mimic tissues and to explore multi-tissue interactions, focusing in particular on the study of immune reactions, inflammation and the development of diseases. Also, an outlook on the opportunities and issues for further translational development of functional in vitro models in immunology will be presented.
Collapse
Affiliation(s)
- Qasem Ramadan
- Bioelectronics Laboratory, Institute of Microelectronics, 11 Science Park II, Singapore 117685.
| | | |
Collapse
|