1
|
Luangphai S, Thuptimdang P, Buddhiranon S, Chanawanno K. Aza-BODIPY-based logic gate chemosensors and their applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124806. [PMID: 39018674 DOI: 10.1016/j.saa.2024.124806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/06/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
Dimethylaniline-substituted aza-BODIPY dyes (DA, DM, DP) were designed and synthesized aiming for ion detection. The Zn2+ recognition ability was found in all compounds and the binding mechanism was possibly via dimethylaniline sites linked to the aza-BODIPY core. Upon Zn2+ addition, the new absorption band and the color change occurred due to the altered charge transfer of the adducts. The custom-made colorimeter was successfully integrated into the dye's application, demonstrating a good linear relationship between resistance values and Zn2+ concentration. The chromophore test strips were fabricated and exhibited distinct color changes upon aqueous Zn2+ exposure. The compound DA also exhibits logical behavior with DA-Zn2+-Cu2+ system. In terms of environmental hazards, the compounds exhibited no adverse effect on Pseudomonas putida at the concentration level of 0.2 mg/mL. These findings indicated that all synthesized aza-BODIPYs might be suitable for chemosensor probes for Zn2+ detection with possibly low environmental risk.
Collapse
Affiliation(s)
- Sasipan Luangphai
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pumis Thuptimdang
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sasiwimon Buddhiranon
- Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
| | - Kullapa Chanawanno
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
2
|
Zhao C, Aziz A, Lu W, Xu H, Asif M, Shuang S, Dong C. A turn-on anthraquinone-derived colorimetric and fluorometric dual-mode probe for highly selective Hg 2+ determination and bioimaging in living organisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135694. [PMID: 39217944 DOI: 10.1016/j.jhazmat.2024.135694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Mercury ion (Hg2+) is considered a harmful neurotoxin, and real-time monitoring of Hg2+ concentrations in environmental and biological samples is critical. Fluorescent probes are a rapidly emerging visualization tool owing to their simple design and good selectivity. Herein, a novel fluorescence (FL) probe 2-(4-((6-((quinolin-8-yloxy)methyl)pyridin-2-yl)methyl)piperazin-1-yl)anthracene-9,10-dione (QPPA) is designed using piperazine as a linker between the anthraquinone group, which serves as a fluorophore, and N4O as the Hg2+ ligand. The probe exhibits FL "turn-on" sensing of Hg2+ because the complex inhibits the photo-induced electron transfer (PET) process. Moreover, QPPA can overcome the invasion by other possible cations, resulting in a clear color change from orange to colorless with the addition Hg2+. The chelation of QPPA with Hg2+ in a 1:1 ratio. Subsequently, the theoretically determined binding sites of the ligand to Hg2+ are validated through 1H NMR titration. The in situQPPA-Hg2+ complex can be subjected to Hg2+ extraction following the introduction of S2- owing to its robust binding capacity. The exceptional limit of detection values for Hg2+ and S2- are obtained as 63.0 and 79.1 nM (S/N = 3), respectively. Moreover, QPPA can display bright red FL in the presence of Hg2+ in different biological specimens such as HeLa cells, zebrafish, onion root tip tissues, and water flea Daphnia carinata, further providing an effective strategy for environmental monitoring and bioimaging of Hg2+ in living organisms.
Collapse
Affiliation(s)
- Chen Zhao
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China
| | - Ayesha Aziz
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China
| | - Wenjing Lu
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China
| | - Hongmei Xu
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China
| | - Muhammad Asif
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China.
| | - Shaomin Shuang
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China
| | - Chuan Dong
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China.
| |
Collapse
|
3
|
Li F, Lu L, Wu Y, Meng L, Zhu B, Xu Q, Zhuang G, Zhuang J. Nitrogen and Sulfur Co-doped Carbon Dots for Ratiometric Fluorometric Determination of Mercury Ions. J Fluoresc 2024:10.1007/s10895-024-04010-2. [PMID: 39441260 DOI: 10.1007/s10895-024-04010-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Nitrogen and sulfur co-doped carbon dots (N, S-CDs) were prepared for dual-channel ratiometric fluorescence determination of mercury ions (Hg2+). The dual-emission N, S-CDs were synthesized using a simple one-pot hydrothermal treatment. When excited with visible light, N,S-CDs exhibited two emission peaks at 390 and 500 nm. Notably, the presence of Hg2+ caused a considerable decrease in the fluorescence of N, S-CDs at 500 nm, mainly due to the static quenching effect. In comparison, the fluorescence at 390 nm was almost unchanged. With a limit of detection (LOD) of 0.21 µM for Hg2+, the N, S-CDs were successfully applied to the unlabeled ratiometric fluorescence determination of Hg2+ in actual water samples with good recoveries (94.5-107.8%). In conclusion, this developed ratiometric fluorescent sensor provides a reliable, environmentally friendly, rapid, and efficient platform for detecting Hg2+ in environmental applications.
Collapse
Affiliation(s)
- Fenglan Li
- Department of Forensic Science, Fujian Police College, Fuzhou, 350007, China
| | - Liqin Lu
- Department of Forensic Science, Fujian Police College, Fuzhou, 350007, China
| | - Yutong Wu
- The Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Liang Meng
- Department of Forensic Science, Fujian Police College, Fuzhou, 350007, China
| | - Binling Zhu
- Department of Forensic Science, Fujian Police College, Fuzhou, 350007, China
| | - Quanming Xu
- Department of Forensic Science, Fujian Police College, Fuzhou, 350007, China.
| | - Guoxin Zhuang
- Department of Forensic Science, Fujian Police College, Fuzhou, 350007, China.
| | - Junyang Zhuang
- The Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
4
|
Paul E, Raza R, Dhara SR, Baildya N, Ghosh K. 6-Aminocoumarin-derived Schiff base gelators: aggregation and sensing of CN -, Fe 3+, Cu 2+ and CO 2 under different conditions. RSC Adv 2024; 14:32759-32770. [PMID: 39429939 PMCID: PMC11484512 DOI: 10.1039/d4ra05503a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Herein, we report the synthesis, characterization, supramolecular gelation and multiple applications of 6-aminocoumarin-derived Schiff bases 1 and 2. Both Schiff bases underwent gelation in DMF-H2O (2 : 1, v/v), DMSO-H2O (2 : 1, v/v) and dioxane-H2O (2 : 1, v/v) involving weak forces. Furthermore, the gels were stable and exhibited good viscoelastic properties. The storage modulus (G') of each gel was considerably higher than its loss modulus (G''). The higher value of the crossover point and lower value of tan δ for the gel of Schiff base 2 compared to the gel of Schiff base 1 demonstrated the better gelation behaviour of 2 than that of 1 in DMF-H2O (2 : 1, v/v). Further, iodo-analogue 2 exhibited cross-linked helical morphology, whereas non-iodo analogue 1 exhibited long chain fibrous morphology, as observed via FESEM. These differences in morphology and viscoelastic behaviors were attributed to the iodo group present in 2, which influenced its aggregation involving halogen bonding. To demonstrate their application, the DMF-H2O (2 : 1, v/v) gels of both 1 and 2 recognized CN- over a series of other anions by exhibiting a gel-to-sol phase change. Besides anion sensing, gels 1 and 2 selectively detected Fe3+ and Cu2+ ions over other metal ions via a gel-to-gel colour change. Finally, CN--treated solutions of 1 and 2 allowed the successful detection of CO2 by the naked eye. Moreover, the detection was possible using a test-kit method.
Collapse
Affiliation(s)
- Eshani Paul
- Department of Chemistry, University of Kalyani Kalyani 741235 India +91 3325828282 +91 3325828750-305
| | - Rameez Raza
- Department of Chemistry, University of Kalyani Kalyani 741235 India +91 3325828282 +91 3325828750-305
| | - Subrata Ranjan Dhara
- Department of Chemistry, University of Kalyani Kalyani 741235 India +91 3325828282 +91 3325828750-305
| | - Nabajyoti Baildya
- Department of Chemistry, University of Kalyani Kalyani 741235 India +91 3325828282 +91 3325828750-305
| | - Kumaresh Ghosh
- Department of Chemistry, University of Kalyani Kalyani 741235 India +91 3325828282 +91 3325828750-305
| |
Collapse
|
5
|
Chen X, Zheng H, Li X, Ruan Z, Lu Q, He W, Lin J, Ran J, Liu S. AIE-based ratiometric fluorescent probe for mercury ion, medium-dependent fluorescence color change and optimized sensitivity in solid state. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123482. [PMID: 37804707 DOI: 10.1016/j.saa.2023.123482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/26/2023] [Accepted: 09/30/2023] [Indexed: 10/09/2023]
Abstract
A new AIE-based luminogen TPES, as a ratiometric fluorescence probe for mercury(II) was readily synthesized. The probe combined the advantages of the outstanding specificity of Hg2+-triggered deprotection reaction of thioketal and the brilliant emission of AIEgens in aggregated state. Once encountered aqueous Hg2+, fluorescent color of TPES in THF-H2O (fw = 98%) altered from blue to green rapidly, while other metal cations gave no interference to the probe. And the mechanism of this chemosensor was carefully verified by 1H NMR analysis, FTIR and MS spectra. As expected, TPES exhibits excellent selectivity and sensitivity towards Hg2+ in the solid state. When using filter paper as the solid medium, the fabricated test strips could signify Hg2+ ions with the LOD as 1 × 10-5 M (Hg2+ in aqueous solution), accompanied with a distinct emitting altered from blue to green. Furthermore, by changing the medium from filter paper to silica gel plate, a more significant fluorescence alteration from blue to yellow was achieved, and the LOD was further optimized to 1 × 10-6 M as discerned by naked-eye.
Collapse
Affiliation(s)
- Xiaoli Chen
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China
| | - Haixia Zheng
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China
| | - Xinyi Li
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China
| | - Zhijun Ruan
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China.
| | - Qiqi Lu
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China
| | - Wentao He
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China
| | - Junqi Lin
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China
| | - Jingwen Ran
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China.
| | - Shanshan Liu
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China.
| |
Collapse
|
6
|
He M, Zheng B, Wei Y, Xiao Y, Kou L, Shang N. Portable smartphone-assisted ratiometric fluorescent test paper based on one-pot synthesized dual emissive carbon dots for visualization and quantification of mercury ions. Anal Bioanal Chem 2023; 415:5769-5779. [PMID: 37466680 DOI: 10.1007/s00216-023-04858-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023]
Abstract
Dual-emissive fluorescent carbon dots (CDs) were prepared through the solvothermal method with citric acid and urea as raw materials and dimethylformamide as the solvent. Two emission peaks were observed at 465 nm and 630 nm. Hg2+ could selectively quench the fluorescence at 630 nm, but the fluorescence intensity at 465 nm was less affected. Accordingly, a ratiometric fluorescence sensor for Hg2+ detection was developed, with a linear detection range of 0.5-40 μM and a limit of detection (LOD) of 37 nM. The dual-emissive CDs were loaded on the surface of the filter paper to fabricate Hg2+ detection test paper. The color of the test paper could be changed from pink purple to blue by the addition of Hg2+, and thus the qualitative and quantitative detection of Hg2+ could be realized. The concentration distinguishable by the naked eye reached 50 μM, and the quantitative detection range was 5-10,000 μM. This method shows excellent selectivity for Hg2+ and can be used to detect Hg2+ in real water samples, providing a highly potential sensing platform for rapid on-site detection of mercury ions.
Collapse
Affiliation(s)
- Mengyuan He
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, China.
| | - Bo Zheng
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, China
| | - Yuanhang Wei
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, China
| | - Yu Xiao
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, China
| | - Lixin Kou
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, China
| | - Ning Shang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, China
| |
Collapse
|
7
|
Liu J, Zhong K, Feng Y, Feng L. Efficient cobalt hydroxide nanosheets for enhanced electrochemical sensing of Hg (II) ion. CHEMOSPHERE 2023; 334:139015. [PMID: 37224973 DOI: 10.1016/j.chemosphere.2023.139015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/12/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
A sensitive electrochemical device was suggested via the modification of a simple graphite rod electrode (GRE) with cobalt hydroxide (Co(OH)2) nanosheets. After closed circuit process on the modified electrode, the anodic stripping voltammetry (ASV) technique was used for measuring of Hg(II). In optimal experimental conditions, the suggested assay depicted a linear response over a broad range in the range 0.25-30 μg L-1, with the lowest detection limit of 0.07 μg L-1. Besides good selectivity, the sensor also indicated excellent reproducibility with a relative standard deviation (RSD) value of 2.9%. Moreover, the Co(OH)2-GRE showed satisfactory sensing performance in real water samples with appropriate recovery values (96.0-102.5%). Additionally, possible interfering cations were examined, but no significant interference was found. By taking some merits such high sensitivity, remarkable selectivity and good precision, this strategy is expected to provide an efficient protocol for the electrochemical measuring of toxic Hg(II) in environmental matrices.
Collapse
Affiliation(s)
- Jiajun Liu
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Kunyu Zhong
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yi Feng
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Li Feng
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
8
|
Hadi H, Safari R, Landarani‐Isfahani A, Shamlouei HR. An Experimental and Quantum (QTAIM) Performance Study of a Proposed Molecular Chemosensor: A Quinazolinone‐Based Sensor for Hg
2+
Ion Detection. ChemistrySelect 2023. [DOI: 10.1002/slct.202203885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Hamid Hadi
- Department of Chemistry Physical Chemistry group Lorestan University Khorramabad Iran
| | - Reza Safari
- Department of Chemistry Physical Chemistry group University of Qom Qom Iran
| | | | - Hamid Reza Shamlouei
- Department of Chemistry Physical Chemistry group Lorestan University Khorramabad Iran
| |
Collapse
|
9
|
Guo W, Wang S, Hao H, Kong X, Yan H, Zhu H, Li Y, Zhou H, Zhong D, Dai F. Introducing anthracene and amino groups into Ln-OFs for the photoreduction of Cr( vi) without additional photosensitizers or cocatalysts. Inorg Chem Front 2023. [DOI: 10.1039/d3qi00102d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
The stable LCUH-100 was designed and synthesized, by incorporating chromophores into lanthanide MOFs, as a high-efficiency photocatalyst, which can rapidly and efficiently reduce Cr(vi) under visible-light irradiation and has good cycle stability.
Collapse
Affiliation(s)
- Wenxiao Guo
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Pharmacy, School of Chemistry and Chemical Engineering, College of Materials Science and Engineering, and Dongchang College, Liaocheng University, Liaocheng 252059, China
| | - Shufang Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Pharmacy, School of Chemistry and Chemical Engineering, College of Materials Science and Engineering, and Dongchang College, Liaocheng University, Liaocheng 252059, China
| | - Hongguo Hao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Pharmacy, School of Chemistry and Chemical Engineering, College of Materials Science and Engineering, and Dongchang College, Liaocheng University, Liaocheng 252059, China
| | - Xiangjin Kong
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Pharmacy, School of Chemistry and Chemical Engineering, College of Materials Science and Engineering, and Dongchang College, Liaocheng University, Liaocheng 252059, China
| | - Hui Yan
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Pharmacy, School of Chemistry and Chemical Engineering, College of Materials Science and Engineering, and Dongchang College, Liaocheng University, Liaocheng 252059, China
| | - Hongjie Zhu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Pharmacy, School of Chemistry and Chemical Engineering, College of Materials Science and Engineering, and Dongchang College, Liaocheng University, Liaocheng 252059, China
| | - Yunwu Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Pharmacy, School of Chemistry and Chemical Engineering, College of Materials Science and Engineering, and Dongchang College, Liaocheng University, Liaocheng 252059, China
| | - Huawei Zhou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Pharmacy, School of Chemistry and Chemical Engineering, College of Materials Science and Engineering, and Dongchang College, Liaocheng University, Liaocheng 252059, China
| | - Dichang Zhong
- Institute for New Energy Materials and Low Carbon Technologies School of Materials Science and Engineering Tianjin University of Technology, Tianjin 300384, China
| | - Fangna Dai
- College of Science, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| |
Collapse
|
10
|
Kaur P, Singh K. Analyte Detection: A Decade of Progress in the Development of Optical/Fluorescent Sensing Probes. CHEM REC 2023; 23:e202200184. [PMID: 36180394 DOI: 10.1002/tcr.202200184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/12/2022] [Indexed: 01/24/2023]
Abstract
The development of selective and sensitive chemical sensors capable of detecting metal ions, anions, neutral species, explosives and hazardous substances, selectively and sensitively has attracted considerable interest of various research groups. The presence of such analytes within the permissible limits is often beneficial, but the excess amounts may lead to lethal effects to both the environment as well as the living organisms. Owing to the toxicity of the heavy metal ions, toxic anions and nitro-aromatics which are main constituents of explosives, the timely detection of these materials is most desirable to ensure safety and security of the mankind. In this personal account, we present several classes of molecular sensors that were specifically designed in our lab during the past decade for detecting several species in solutions, solid state as well as biological media. Modulation of the optical properties in response to the presence of guest species, led to selective and sensitive detection protocols, and was supported by the theoretical studies wherever possible. We have also extended the application of some of these probes for the on-site detection of analytes by developing the paper strips, glass slides and even the wool and cotton fabrics loaded with probes. One such development represents detection of palladium in human urine and blood samples collected from clinical samples. Additionally, the sensing events in some cases have successfully been reproduced in the live cancer cells. Based on the ease and cost-effective synthesis of the molecular probes, we hope that this account shall provide significant information to researchers in understanding the structure dependent sensing capabilities of the molecular probes.
Collapse
Affiliation(s)
- Paramjit Kaur
- Department of Chemistry, Centre of Advanced Study, Guru Nanak Dev University, Amritsar-, 143 005, India
| | - Kamaljit Singh
- Department of Chemistry, Centre of Advanced Study, Guru Nanak Dev University, Amritsar-, 143 005, India
| |
Collapse
|
11
|
Dias GG, O Rodrigues M, Paz ERS, P Nunes M, Araujo MH, Rodembusch FS, da Silva Júnior EN. Aryl-Phenanthro[9,10- d]imidazole: A Versatile Scaffold for the Design of Optical-Based Sensors. ACS Sens 2022; 7:2865-2919. [PMID: 36250642 DOI: 10.1021/acssensors.2c01687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fluorescent and colorimetric sensors are important tools for investigating the chemical compositions of different matrices, including foods, environmental samples, and water. The high sensitivity, low interference, and low detection limits of these sensors have inspired scientists to investigate this class of sensing molecules for ion and molecule detection. Several examples of fluorescent and colorimetric sensors have been described in the literature; this Review focuses particularly on phenanthro[9,10-d]imidazoles. Different strategies have been developed for obtaining phenanthro[9,10-d]imidazoles, which enable modification of their optical properties upon interaction with specific analytes. These sensing responses usually involve changes in the fluorescence intensity and/or color arising from processes like photoinduced electron transfer, intramolecular charge transfer, intramolecular proton transfer in the excited state, and Förster resonance energy transfer. In this Review, we categorized these sensors into two different groups: those bearing formyl groups and their derivatives and those based on other molecular groups. The different optical responses of phenanthro[9,10-d]imidazole-based sensors upon interaction with specific analytes are discussed.
Collapse
Affiliation(s)
- Gleiston G Dias
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, MG. Brazil
| | - Marieli O Rodrigues
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, CEP, Porto Alegre 91501-970, RS. Brazil
| | - Esther R S Paz
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, MG. Brazil
| | - Mateus P Nunes
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, MG. Brazil
| | - Maria H Araujo
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, MG. Brazil
| | - Fabiano S Rodembusch
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, CEP, Porto Alegre 91501-970, RS. Brazil
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, MG. Brazil
| |
Collapse
|
12
|
Tang H, Wang Y, Chen Z, Yang K, Qin J, Li X, Li H, Gao L, Lu S, Wang K. A cationic iridium(III) complex containing a thiosemicarbazide unit: Synthesis and application for turn-on chemiluminescent detection of Hg 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121396. [PMID: 35636135 DOI: 10.1016/j.saa.2022.121396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/01/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
A novel cationic iridium(III) complex [(ppy)2Ir(bPCPC)]PF6 (ppy: 2-phenylpyridine; bPCPC: 2-([2,2'-bipyridine]-4-carbonyl)-N-phenylhydrazinecarbothioamide) containing a thiosemicarbazide unit was designed and synthesized. The thiosemicarbazide unit was a sensitive functional group to Hg2+, when it reacted with Hg2+, it was desulphurized and thus led to the formation of 1,3,4-oxadiazole, [(ppy)2Ir(bPCPC)]PF6 resultantly was used as a "turn-on" chemodosimeter for luminescent detection of Hg2+ in DMF/PBS buffer solution at pH = 7-11. Except for Ag+, recognition capability of [(ppy)2Ir(bPCPC)]PF6 to Hg2+ was not interfered by other common metal ions (Co2+, Li+, Zn2+, Pb2+, K+, Al3+, Na+, Mn2+, Cu2+, Fe2+, Fe3+, Cr3+, Ba2+, Mg2+, Ni2+ and Ca2+). The detection limit was 1.83 × 10-9 mol∙L-1 (0.37 ppb), which indicated the complex was a highly sensitive chemiluminescent detection reagent of Hg2+.
Collapse
Affiliation(s)
- Huaijun Tang
- Key Laboratory of Green-Chemistry Materials in University of Yunnan Province, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650500, China.
| | - Yuhong Wang
- Key Laboratory of Green-Chemistry Materials in University of Yunnan Province, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650500, China
| | - Zeyu Chen
- Key Laboratory of Green-Chemistry Materials in University of Yunnan Province, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650500, China; College of Materials Science and Engineering, Hunan University, Changsha 410082, China.
| | - Kaixin Yang
- Key Laboratory of Green-Chemistry Materials in University of Yunnan Province, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650500, China
| | - Jing Qin
- Key Laboratory of Green-Chemistry Materials in University of Yunnan Province, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650500, China
| | - Xianghua Li
- Key Laboratory of Green-Chemistry Materials in University of Yunnan Province, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650500, China
| | - Haoju Li
- Key Laboratory of Green-Chemistry Materials in University of Yunnan Province, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650500, China
| | - Long Gao
- Key Laboratory of Green-Chemistry Materials in University of Yunnan Province, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650500, China
| | - Shiyou Lu
- Key Laboratory of Green-Chemistry Materials in University of Yunnan Province, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650500, China
| | - Kaimin Wang
- Key Laboratory of Green-Chemistry Materials in University of Yunnan Province, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650500, China
| |
Collapse
|
13
|
Diana FRM, Suratman A, Wahyuni ET, Mudasir M, Suherman S. Development of N,S-CDs fluorescent probe method for early detection of Cr(VI) in the environment. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02454-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Hu W, Wang J. Design, synthesis and evaluation of liver-targeting fluorescent probes for detecting mercury ions. Dalton Trans 2022; 51:11005-11012. [PMID: 35791897 DOI: 10.1039/d2dt01393b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three fluorescent glycosyl-rhodamine probes with good selectivity and sensitivity toward Hg2+ were developed. The detection limit of the probes toward Hg2+ is as low as 94.6 nM, which can be used to detect trace Hg2+ in solution. 1 : 1 stoichiometry was the most possible recognition mode of the probes toward Hg2+, and the OFF/ON mechanism of the probes toward Hg2+ could be attributed to the closing or opening of the rhodamine spiral structure caused by Hg2+. The detection of Hg2+ is reversible, which is beneficial for the recycling of probes. Moreover, these low cytotoxic probes can be safely and selectively applied to monitor Hg2+ levels in hepatocytes, and the fluorescence response follows a trend of Rho-Gal > Rho-Lac > Rho-Glu in HepG2 cells because the galactose group in Rho-Gal can selectively recognize ASGPR overexpressed on HepG2 cells.
Collapse
Affiliation(s)
- Wei Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - Jianyi Wang
- Medical College, Guangxi University, Nanning 530004, China.
| |
Collapse
|
15
|
Kavitha V, Viswanathamurthi P, Haribabu J, Echeverria C. A new subtle and integrated detector to sense Hg2+ions: A vision towards its applicability on water samples and live cells. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
P K, Abbo H, Cherian AR, Titinchi S, Varghese A. An Efficient Inclusion Complex Based Fluorescent Sensor for Mercury (II) and its Application in Live-Cell Imaging. J Fluoresc 2022; 32:1109-1124. [PMID: 35305207 DOI: 10.1007/s10895-022-02931-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/06/2022] [Indexed: 11/29/2022]
Abstract
The formation of an inclusion complex between hydroxypropyl-β-cyclodextrin (H-CD) and 4-acetylphenyl-4-(((6-chlorobenzo[d]thiazol-2-yl)-imino)-methyl)-benzoate (L) was investigated by FT-IR, 1H-NMR, X-ray diffraction (XRD), FT-Raman, scanning electron microscope (SEM) techniques in the solid-state, absorption and emission spectroscopy in the liquid state and the virtual state as molecular docking technique. The binding properties of the inclusion complex (H-CD: L) with cations in deionized water was observed via absorbance and photoluminescence (PL) emission spectroscopy. The fluorescence probe (H-CD: L) inclusion complex (IC) was examined for several heavy metal cations, and identified that the PL emission wavelength of the complex displayed a continuous rise in the fluorescence intensity for Hg2+. A linearity range of 1 × 10-8 - 11 × 10-8 M and limit of detection value of 2.71 × 10-10 M was found to be achieved for the detection of Hg2+. This outcome proves that the inclusion complex H-CD: L would be a promising material for the development a solid-state fluorescence probe for detecting Hg2+. It also shows application in real sample analysis and cell imaging.
Collapse
Affiliation(s)
- Keerthana P
- Department of Chemistry, CHRIST (Deemed To Be University), Hosur Road, Bengaluru, 560029, India
| | - Hanna Abbo
- Department of Chemistry, University of the Western Cape, Cape Town, South Africa.,Department of Chemistry, College of Science, University of Basrah, Basrah, Iraq
| | - Anila Rose Cherian
- Department of Chemistry, CHRIST (Deemed To Be University), Hosur Road, Bengaluru, 560029, India
| | - Salam Titinchi
- Department of Chemistry, University of the Western Cape, Cape Town, South Africa
| | - Anitha Varghese
- Department of Chemistry, CHRIST (Deemed To Be University), Hosur Road, Bengaluru, 560029, India.
| |
Collapse
|
17
|
Liu S, Zhang X, Yan C, Zhou P, Zhang L, Li Q, Zhang R, Chen L, Zhang L. A small molecule fluorescent probe for mercury ion analysis in broad low pH range: Spectral, optical mechanism and application studies. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127701. [PMID: 34775312 DOI: 10.1016/j.jhazmat.2021.127701] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/18/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Development of new fluorescent probes for mercury ion analysis in environmental or living organism is undergoing quick growth due to its detrimental toxicity to environmental safety, ecological security, and human being. However, in most cases, the industrial waste water is acidic whereas it remains a great challenge to real-time monitor mercury ion directly at low pH using small molecule fluorescence probe. In this study, we have successfully designed and synthesized the Naph (1, 8-Naphthalimide derivative) -based small molecule probe termed as Naph-NSS capable of monitoring mercury ion in a broad range at low pH (from 2.0 to 7.0). The solid spectral studies demonstrated the high sensitivity and selectivity of the probe towards mercury ion among various species. After binding with Hg2+, the fluorescence of Naph-NSS greatly enhanced, and the mechanism of which was investigated by DFT studies. The probe was able to be loaded on paper strip for instant and fast detection of mercury ions. In addition, the probe is also suitable for detection of mercury ion in environmental samples, living cells and in vivo.
Collapse
Affiliation(s)
- Shudi Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China.
| | - Xia Zhang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Chaoxian Yan
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Panpan Zhou
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Li Zhang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Qingzhong Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China
| | - Renjie Zhang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China
| | - Lingxin Chen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China.
| | - Liangwei Zhang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
18
|
Choi MG, Yun BH, Kim HM, Ahn S, Chang SK. Colorimetric screening of elevated urinary mercury levels by a novel Hg 2+-selective probe of resorufin phosphinothioate. RSC Adv 2022; 12:24107-24113. [PMID: 36093249 PMCID: PMC9400507 DOI: 10.1039/d2ra04093j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022] Open
Abstract
Urinary mercury levels are the most reliable indicators of mercury exposure but identifying them requires complex techniques and heavy instruments. In this research, we reported a simple and convenient urinary mercury analysis method using a readily available office scanner. Probe MP-1 synthesized by the reaction of resorufin and dimethylthiophosphinoyl chloride revealed Hg2+-selective chromogenic and fluorescent signaling behavior. Signaling was realized through Hg2+-induced deprotection of the phosphinothioate protecting group in the resorufin-based probe MP-1 to yield the parent fluorochrome. A pronounced colorimetric response of color change from light yellow to pink alongside a turn-on type fluorescence enhancement was perceived exclusively toward Hg2+ ions over other metal ions and anions. The colorimetry provided a more advantageous ratiometric approach than the simple fluorometric analysis exhibiting an off–on type response, with a detection limit of 12 nM (2.4 ppb). The Hg2+ signaling of the MP-1 probe was not disturbed by the presence of coexisting metal ions and anions. The sensitive and convenient diagnosis of clinically important neurological symptoms and fatal inorganic mercury levels in urine was successfully demonstrated using a standard office scanner. A Hg2+ selective signaling probe, resorufin phosphinothioate, for the colorimetric diagnosis of clinically elevated mercury levels in urine samples using an office scanner was developed.![]()
Collapse
Affiliation(s)
- Myung Gil Choi
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Byung Hoon Yun
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyeong Min Kim
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sangdoo Ahn
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Suk-Kyu Chang
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
19
|
Manna SK, Mondal S, Jana B, Samanta K. Recent advances in tin ion detection using fluorometric and colorimetric chemosensors. NEW J CHEM 2022. [DOI: 10.1039/d2nj00383j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The innovation of chemosensors for tin ions (Sn4+/Sn2+) has evolved as a key research topic in recent decades, garnering a lot of attention due to their environmental, industrial and biological importance.
Collapse
Affiliation(s)
- Saikat Kumar Manna
- Department of Chemistry, Haldia Government College, Debhog, Haldia, Purba Medinipur – 721657, West Bengal, India
| | - Sanchita Mondal
- Department of Chemistry, Sree Chaitanya College, Habra, North 24 Parganas, West Bengal-743268, India
| | - Barnali Jana
- Department of Chemistry, Haldia Government College, Debhog, Haldia, Purba Medinipur – 721657, West Bengal, India
| | - Khokan Samanta
- Department of Chemistry, Haldia Government College, Debhog, Haldia, Purba Medinipur – 721657, West Bengal, India
| |
Collapse
|
20
|
Development of a Si-rhodamine-based NIR fluorescence probe for highly specific and quick response of Hg2+ and its applications to biological imaging. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
Recent Advances on the Development of Chemosensors for the Detection of Mercury Toxicity: A Review. SEPARATIONS 2021. [DOI: 10.3390/separations8100192] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The harmful impact of mercury on biological systems is of great concern. Regardless of the efforts made by the regulating agencies, a decrease in Hg2+ concentration has not been realized, and hence mercury accumulation in the environment remains of utmost concern. Designing novel and efficient probes for recognition and detection of toxic metals in environmental samples has been of primary importance. Among the available techniques, probe designs involving the study of spectral properties has been preferred because of its obvious ease of instrumentation. Furthermore, occurrence of significant changes in the visible portion of electronic spectra enables detection by the naked eye, thereby endorsing the preference for development of probes with off-on binary responses to aid in the in-field sample analysis. The prominence is further streamlined to the use of fluorescence to help characterize on-response the cellular detection of Hg2+ with ease. In order to overcome the problem of developing efficient probes or sensors bearing fluorescence on-response mechanism that can work effectively in physiological conditions, various methodologies, such as chemo-dosimetric reaction mechanisms for the designing of new luminescent ligands, are being adopted. Additionally, modified charge transfer processes are also being considered for optical detection of the mercury (II) ion. In this review, all such possible techniques have been discussed in detail.
Collapse
|
22
|
Dey N. A simple strategy for the visual detection and discrimination of Hg 2+ and CH 3Hg + species using fluorescent nanoaggregates. Dalton Trans 2021; 50:12563-12569. [PMID: 34137406 DOI: 10.1039/d1dt01455b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fluorescent nanoaggregates (FNAs) based on phenanthroline-based amphiphiles show changes in solution color from colorless to yellow upon addition of both Hg2+ (LOD ∼4 ppb) and CH3Hg+ (LOD ∼18 ppb). However, the extent of fluorescence quenching is more prominent with Hg2+ (∼12 fold) than with CH3Hg+ (∼4 fold). Also, unlike Hg2+, the interaction of CH3Hg+ needs more time, ∼10 min at room temperature. Experimental evidence indicates that both mercury species coordinate with the phenanthroline unit and facilitate the charge transfer interaction while destabilizing the nanoassembly. The lower charge density on CH3Hg+ along with its large size compared to Hg2+ may be the reason for such observations. Interestingly, FNAs show a selective response towards CH3Hg+ when pre-treated with EDTA. Further, analysis of heavy metal pollutants in drinking water and biological samples was performed. High recovery values ranging from 96% to 103.0% were estimated along with relatively small standard deviations (<3%). Low-cost, reusable test strips were designed for rapid, on-site detection of mercury species. Further, the in situ formed metal complexes are allowed to interact with thiol-containing amino acids. As expected, CH3Hg+, being less thiophillic, endures less interaction with cysteine. Mechanistic investigations indicate that thiolated amino acids can bind with the metal ion center and form a tertiary complex (cooperative interaction).
Collapse
Affiliation(s)
- Nilanjan Dey
- Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan. .,Department of Chemistry, BITS-Pilani Hyderabad Campus, Shameerpet, Hyderabad-500078, Telangana, India
| |
Collapse
|
23
|
Dey N. Metal-Ion-Responsive Chromogenic Probe for Rapid, On-Location Detection of Foodborne Bacterial Pathogens in Contaminated Food Items. ACS APPLIED BIO MATERIALS 2021; 4:6893-6902. [PMID: 35006989 DOI: 10.1021/acsabm.1c00600] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
An amphiphilic chromogenic probe based on an oxidized di(indolyl)arylmethane backbone has been utilized for visual detection of both Cu2+ (detection limit = 8.5 ppb) and Hg2+ (detection limit = 10.2 ppb) ions via mutually independent sensing pathways. The Cu2+ ion binds to the carboxylate ends (donor site) and induces a color change from orange to yellow in the aqueous medium, while coordinating Hg2+ at the bisindolyl moiety (acceptor site) can result in the formation of a red-colored solution. Interestingly, by selecting the proper excitation channel, we can specifically excite either the monomer species or nanoaggregates. The addition of Hg2+ enhances the monomer fluorescence, while Cu2+ induces quenching. However, in both cases, metal-ion coordination triggers dissociation of a preformed self-assembled structure. Further, the in-situ-formed Cu(II) complex was utilized for rapid, on-location detection of food-borne pathogens, such as Escherichia coli (E. coli) in contaminated food items and water (detection limit = 52 CFU·mL-1). E. coli induces reduction of Cu2+ to Cu+ and transforms the yellow-colored solution into an orange-colored solution. Finally, low-cost, reusable paper strips were designed as an eco-friendly, sustainable strategy to detect bacterial pathogens.
Collapse
Affiliation(s)
- Nilanjan Dey
- Department of Chemistry, BITS-Pilani, Hyderabad Campus, Shameerpet, Hyderabad, Telangana 500078, India.,Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| |
Collapse
|
24
|
Yang N, Liu H. Tetraphenylpyrene-bridged silsesquioxane-based fluorescent hybrid porous polymer with selective metal ions sensing and efficient phenolic pollutants adsorption activities. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Gauthama B, Narayana B, Sarojini B, Suresh N, Sangappa Y, Kudva AK, Satyanarayana G, Raghu SV. Colorimetric “off–on” fluorescent probe for selective detection of toxic Hg2+ based on rhodamine and its application for in-vivo bioimaging. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
26
|
Zhang J, Zang Q, Yang F, Zhang H, Sun JZ, Tang BZ. Sulfur Conversion to Multifunctional Poly( O-thiocarbamate)s through Multicomponent Polymerizations of Sulfur, Diols, and Diisocyanides. J Am Chem Soc 2021; 143:3944-3950. [PMID: 33657807 DOI: 10.1021/jacs.1c00243] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sulfur, which is generated from the waste byproducts in the oil and gas refinery industry, is an abundant, cheap, stable, and readily available source in the world. However, the utilization of excessive amounts of sulfur is mostly limited, and developing novel methods for sulfur conversion is still a global concern. Here, we report a facile one-step conversion from elemental sulfur to functional poly(O-thiocarbamate)s through a multicomponent polymerization of sulfur, diols, and diisocyanides, which possesses a series of advantages such as mild condition (55 °C), short reaction time (1 h), 100% atom economy, and transition-metal free in the catalyst system. Seven poly(O-thiocarbamate)s are constructed with high yields (up to 95%), large molecular weight (up to 53100 of Mw), good solubility in organic solvents, and completely new polymer structures. The poly(O-thiocarbamate)s possess a high refractive index above 1.7 from 600 to 1700 nm by adjusting the sulfur content. By incorporating tetraphenylethene (TPE) moieties into the polymer structure, the poly(O-thiocarbamate)s can also be designed as fluorescent sensors to detect harmful metal cation of Hg2+ in a turn-on mode with high sensitivity (LOD = 32 nM) and excellent selectivity (over interference cations of Pb2+, Au3+, Ag+). Different from the previous reports, the exact coordination structure is first identified by single-crystal X-ray diffraction, which is revealed in a tetracoordination fashion (two sulfur and two chloride) using a model coordination compound.
Collapse
Affiliation(s)
- Jie Zhang
- MOE Key Laboratory of Macromolecules Synthesis of Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qiguang Zang
- MOE Key Laboratory of Macromolecules Synthesis of Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Fulin Yang
- MOE Key Laboratory of Macromolecules Synthesis of Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Haoke Zhang
- MOE Key Laboratory of Macromolecules Synthesis of Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jing Zhi Sun
- MOE Key Laboratory of Macromolecules Synthesis of Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ben Zhong Tang
- MOE Key Laboratory of Macromolecules Synthesis of Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, the Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
27
|
Bhardwaj V, Nurchi VM, Sahoo SK. Mercury Toxicity and Detection Using Chromo-Fluorogenic Chemosensors. Pharmaceuticals (Basel) 2021; 14:123. [PMID: 33562543 PMCID: PMC7915024 DOI: 10.3390/ph14020123] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 12/27/2022] Open
Abstract
Mercury (Hg), this non-essential heavy metal released from both industrial and natural sources entered into living bodies, and cause grievous detrimental effects to the human health and ecosystem. The monitoring of Hg2+ excessive accumulation can be beneficial to fight against the risk associated with mercury toxicity to living systems. Therefore, there is an emergent need of novel and facile analytical approaches for the monitoring of mercury levels in various environmental, industrial, and biological samples. The chromo-fluorogenic chemosensors possess the attractive analytical parameters of low-cost, enhanced detection ability with high sensitivity, simplicity, rapid on-site monitoring ability, etc. This review was narrated to summarize the mercuric ion selective chromo-fluorogenic chemosensors reported in the year 2020. The design of sensors, mechanisms, fluorophores used, analytical performance, etc. are summarized and discussed.
Collapse
Affiliation(s)
- Vinita Bhardwaj
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat 395007, India;
| | - Valeria M. Nurchi
- Dipartimento di Scienze della Vita e dell’Ambiente, Università di Cagliari, Cittadella Universitaria, 09042 Monserrato-Cagliari, Italy
| | - Suban K. Sahoo
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat 395007, India;
| |
Collapse
|
28
|
Chen SY, Li Z, Li K, Yu XQ. Small molecular fluorescent probes for the detection of lead, cadmium and mercury ions. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213691] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
29
|
Ghosh S, Baildya N, Ghosh NN, Ghosh K. Naphthalimide-decorated imino-phenol: supramolecular gelation and selective sensing of Fe 3+ and Cu 2+ ions under different experimental conditions. NEW J CHEM 2021. [DOI: 10.1039/d1nj00259g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Compound 1 forms gels in DMF–H2O (1 : 1, v/v) and DMSO–H2O (1 : 1, v/v). While it was insensitive to any metal ion in DMF–H2O, the gel state was responsive to Fe3+ over the other metal ions studied. In CH3CN or aqueous CH3CN compound 1 senses Cu2+ ion.
Collapse
Affiliation(s)
- Sumit Ghosh
- Department of Chemistry
- University of Kalyani
- Kalyani-741235
- India
| | | | | | - Kumaresh Ghosh
- Department of Chemistry
- University of Kalyani
- Kalyani-741235
- India
| |
Collapse
|
30
|
Rajadurai M, Reddy ER. Tuning the sensitivity towards mercury via cooperative binding to d-fructose: dual fluorescent chemosensor based on 1,8-naphthyridine-boronic acid derivative. RSC Adv 2021; 11:14862-14870. [PMID: 35423996 PMCID: PMC8698319 DOI: 10.1039/d1ra02122b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/06/2021] [Indexed: 12/27/2022] Open
Abstract
A novel fluorescent chemosensor naphthyridine-boronic acid derivative (1.1) was synthesized and its ability to act as a selective chemosensor was examined for various metal ions. Compound 1.1 displayed highly selective fluorescence quenching upon interaction with Hg2+, possibly by means of photo induced electron transfer (PET) mechanism. The binding stoichiometry of the naphthyridine-boronic acid–Hg2+ complex and the association constant was determined. It was found that in the presence of d-fructose at physiological concentration, the sensitivity of chemosensor 1.1 towards Hg2+ improved by at least 7 times, perhaps as a result of the cooperative binding of both d-fructose and mercury ion to the sensor. Till now, the presented dual d-fructose–mercury chemosensor is the first example of utilizing boronic acid–diol complexation for enhancement of the sensor's sensitivity towards a toxic metal ion. The utility of compound 1.1 lays in applications in the food industry, e.g. for detection of mercury contamination of high fructose corn syrup, or in estimation of mercury in polluted biological samples and underground water. This new dual d-fructose–mercury chemosensor is the first example of utilizing boronic acid–diol complexation for enhancement of the sensor's sensitivity towards toxic metal ions.![]()
Collapse
Affiliation(s)
- Marina Rajadurai
- Center for Innovation in Molecular & Pharmaceuticals Sciences (CIMPS)
- Dr Reddy's Institute of Life Sciences
- University of Hyderabad Campus
- Hyderabad 500046
- India
| | - E. Ramanjaneya Reddy
- Center for Innovation in Molecular & Pharmaceuticals Sciences (CIMPS)
- Dr Reddy's Institute of Life Sciences
- University of Hyderabad Campus
- Hyderabad 500046
- India
| |
Collapse
|
31
|
Liu S, Feng D, Zhang L, Song H, Wang Y, Zhang X, Zhao Q, Chen L. A reaction-based ratiometric fluorescent probe for mercury ion detection in aqueous solution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 243:118817. [PMID: 32829160 DOI: 10.1016/j.saa.2020.118817] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 07/31/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Mercury ions are crucially harmful to ecosystem and human being due to their characters of bioaccumulation and difficulty of biochemical degradation. Therefore, development of mercury ion detection methods has attracted increasing interests recently. In this study, we successfully synthesized a hydroxyphenylbenzothiazole (HBT)-based fluorescent probe HBT-Hg in an extremely simple manner for mercuric ions detection. The spectral studies revealed that the probe HBT-Hg could react with Hg2+ selectively and sensitively in PBS buffer (10 mM, pH = 7.40), showing ratiometric fluorescent changes from blue to light green. The response mechanism of the probe HBT-Hg and Hg2+ was finally confirmed by HPLC analysis, viz., the probe HBT-Hg converted to its precursor compound 1. Finally, the probe HBT-Hg was successfully applied in monitoring Hg2+ in living A549 cells.
Collapse
Affiliation(s)
- Shudi Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China
| | - Di Feng
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Liangwei Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China.
| | - He Song
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China
| | - Yue Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Xia Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Qingjun Zhao
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China.
| |
Collapse
|
32
|
Liu B, Liu J, He J, Zhang J, Zhou H, Gao C. A novel red-emitting fluorescent probe for the highly selective detection of Hg2+ ion with AIE mechanism. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2020.110944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
33
|
López-Alled CM, Murfin LC, Kociok-Köhn G, James TD, Wenk J, Lewis SE. Colorimetric detection of Hg 2+ with an azulene-containing chemodosimeter via dithioacetal hydrolysis. Analyst 2020; 145:6262-6269. [PMID: 32926021 DOI: 10.1039/d0an01404d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Azulene is a bicyclic aromatic chromophore that absorbs in the visible region. Its absorption maximum undergoes a hypsochromic shift if a conjugated electron-withdrawing group is introduced at the C1 position. This fact can be exploited in the design of a colorimetric chemodosimeter that functions by the transformation of a dithioacetal to the corresponding aldehyde upon exposure to Hg2+ ions. This chemodosimeter exhibits good chemoselectivity over other metal cations, and responds with an unambiguous colour change clearly visible to the naked eye. Its synthesis is concise and its ease of use makes it appropriate in resource-constrained environments, for example in determing mercury content of drinking water sources in the developing world.
Collapse
Affiliation(s)
- Carlos M López-Alled
- Centre for Sustainable and Circular Technologies, University of Bath, Bath, BA2 7AY, UK.
| | | | | | | | | | | |
Collapse
|
34
|
Patil NS, Dhake RB, Ahamed MI, Fegade U. A Mini Review on Organic Chemosensors for Cation Recognition (2013-19). J Fluoresc 2020; 30:1295-1330. [DOI: 10.1007/s10895-020-02554-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 05/11/2020] [Indexed: 11/28/2022]
|
35
|
Ahmmed E, Mondal A, Sarkar A, Chakraborty S, Lohar S, Saha NC, Dhara K, Chattopadhyay P. Bilirubin Quantification in Human Blood Serum by Deoxygenation Reaction Switch-Triggered Fluorescent Probe. ACS APPLIED BIO MATERIALS 2020; 3:4074-4080. [PMID: 35025482 DOI: 10.1021/acsabm.0c00170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A coumarin-based fluorescent compound, bilirubin fluorescent probe N-oxide (BFPNox), was successfully designed and synthesized for highly selective and sensitive detection of free bilirubin with short response time. The fluorescence "turn-on" response of the probe is based on the in situ generated Fe2+-mediated deoxygenation reaction of N-oxide from the diethylarylamine group of the probe, where the group attached to the coumarin π-conjugated system is responsible for the fluorescence quenching state of the probe, BFPNox. Here, the reaction of the added Fe3+ ions with bilirubin produces Fe2+ ions in situ in aqueous buffer. Fluorescence enhancement of BFPNox was achieved by more than 12-fold when a double equivalent of bilirubin solution was added in reaction buffer at pH 7.2 (50 mM HEPES, 5% DMSO) at 25 °C under excitation at 400 nm. It detected free bilirubin as low as 76 nM in an aqueous system without any interference of metal ions, anions, and other important biomolecules with a linear concentration range of 0-10 μM (R2 = 0.991). The probe was also employed in the estimation of free bilirubin in human serum specimens to verify the efficacy of this probe. With these, it is revealed that this probe is a good candidate to be used as a powerful diagnostic tool for the assessment of free bilirubin with significant accuracy and reliability.
Collapse
Affiliation(s)
- Ejaj Ahmmed
- Department of Chemistry, The University of Burdwan, Golapbag, Burdwan 713104, West Bengal, India
| | - Asit Mondal
- Department of Chemistry, The University of Burdwan, Golapbag, Burdwan 713104, West Bengal, India
| | - Arnab Sarkar
- Department of Chemistry, The University of Burdwan, Golapbag, Burdwan 713104, West Bengal, India
| | - Sujaya Chakraborty
- Department of Chemistry, The University of Burdwan, Golapbag, Burdwan 713104, West Bengal, India
| | - Somenath Lohar
- Department of Chemistry, The University of Burdwan, Golapbag, Burdwan 713104, West Bengal, India
| | - Nimai Chandra Saha
- Vice Chancellor's Research Group, The University of Burdwan, Burdwan 713104, West Bengal, India
| | - Koushik Dhara
- Department of Chemistry, Sambhu Nath College, Labpur, Birbhum 731303, West Bengal, India
| | - Pabitra Chattopadhyay
- Department of Chemistry, The University of Burdwan, Golapbag, Burdwan 713104, West Bengal, India
| |
Collapse
|
36
|
Hu D, Liao S, Chen X, Du J, Dawood K, Chauhan S, Gao C, Li W. A Simple Fluorescence Turn‐on Probe for the Detection of Hg
2+
Ion in Aqueous Solution and Soil With
AIE
and
ICT
Mechanisms. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Danling Hu
- Hubei Key Laboratory of Biomass Fibers and Eco‐dyeing & Finishing, Department of Chemical and Chemical EngineeringWuhan Textile University Wuhan Hubei 430073 People's Republic of China
| | - Sijie Liao
- Hubei Key Laboratory of Biomass Fibers and Eco‐dyeing & Finishing, Department of Chemical and Chemical EngineeringWuhan Textile University Wuhan Hubei 430073 People's Republic of China
| | - Xue Chen
- Hubei Key Laboratory of Biomass Fibers and Eco‐dyeing & Finishing, Department of Chemical and Chemical EngineeringWuhan Textile University Wuhan Hubei 430073 People's Republic of China
| | - Jincao Du
- Hubei Key Laboratory of Biomass Fibers and Eco‐dyeing & Finishing, Department of Chemical and Chemical EngineeringWuhan Textile University Wuhan Hubei 430073 People's Republic of China
| | - Kamran Dawood
- Hubei Key Laboratory of Biomass Fibers and Eco‐dyeing & Finishing, Department of Chemical and Chemical EngineeringWuhan Textile University Wuhan Hubei 430073 People's Republic of China
| | - Sachin Chauhan
- Hubei Key Laboratory of Biomass Fibers and Eco‐dyeing & Finishing, Department of Chemical and Chemical EngineeringWuhan Textile University Wuhan Hubei 430073 People's Republic of China
| | - Chao Gao
- Hubei Key Laboratory of Biomass Fibers and Eco‐dyeing & Finishing, Department of Chemical and Chemical EngineeringWuhan Textile University Wuhan Hubei 430073 People's Republic of China
| | - Wei Li
- Hubei Key Laboratory of Biomass Fibers and Eco‐dyeing & Finishing, Department of Chemical and Chemical EngineeringWuhan Textile University Wuhan Hubei 430073 People's Republic of China
| |
Collapse
|
37
|
Panja S, Mondal S, Ghosh S, Ghosh U, Ghosh K. Effect of Substitution at Amine Functionality of 2,6-Diaminopyridine-Coupled Rhodamine on Metal-Ion Interaction and Self-Assembly. ACS OMEGA 2020; 5:13984-13993. [PMID: 32566865 PMCID: PMC7301565 DOI: 10.1021/acsomega.0c01384] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/21/2020] [Indexed: 05/08/2023]
Abstract
2,6-Diaminopyridine-coupled rhodamines 1 and 2 have been synthesized, and the effect of substitution on amine functionality toward metal-ion interactions and self-assembly is thoroughly investigated. Both the compounds effectively recognize different metal ions of biological significance fluorimetrically and colorimetrically with a high degree of selectivity and sensitivities. While compound 1 is sensitive to Fe3+ ions, compound 2 is responsive to both Fe3+ and Al3+ ions in aqueous CH3CN (4/1, v/v; 10 mM tris HCl buffer, pH 6.8). The sensing mechanism involves the metal-ion chelation-induced spirolactam ring opening of the rhodamine scaffold that results in both color and fluorescence changes, while the extent of interactions with the metal ions is truly governed by the chemical structure of the compounds. Both 1 and 2 are proficient in detecting Fe3+ and Al3+ ions in human lung cancer cells (A549). As new findings, unlike 1, compound 2 formed a faint pink gel in the toluene-hexane mixture solvent (1:1, v/v), and the gel state of 2 selectively recognizes Ag+ ions by exhibiting a phase change from gel to purple sol. Experimental findings establish the role of the formamide moiety in forming the self-assembly.
Collapse
Affiliation(s)
- Santanu Panja
- Department
of Chemistry, University of Kalyani, Kalyani 741235, India
- School
of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K.
| | - Subhendu Mondal
- Department
of Chemistry, University of Kalyani, Kalyani 741235, India
| | - Sourav Ghosh
- Department
of Biochemistry and Biophysics, University
of Kalyani, Kalyani 741235, India
| | - Utpal Ghosh
- Department
of Biochemistry and Biophysics, University
of Kalyani, Kalyani 741235, India
| | - Kumaresh Ghosh
- Department
of Chemistry, University of Kalyani, Kalyani 741235, India
- ,
| |
Collapse
|
38
|
Fluorescent, colourimetric, and ratiometric probes based on diverse fluorophore motifs for mercuric(II) ion (Hg 2+) sensing: highlights from 2011 to 2019. CHEMICAL PAPERS 2020; 74:3195-3232. [PMID: 32427198 PMCID: PMC7229441 DOI: 10.1007/s11696-020-01180-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/28/2020] [Indexed: 01/12/2023]
Abstract
Though it has not been shown to deliver any biological importance, mercuric(II) ion (Hg2+) is a deleterious cation which poses grievous effects to the human body and/or the ecosystem, hence, the need for its sensitive and selective monitoring in both environmental and biological systems. Over the years, there has been a great deal of work in the use of fluorescent, colourimetric, and/or ratiometric probes for Hg2+ recognition. Essentially, the purpose of this review article is to give an overview of the advances made in the constructions of such probes based on the works reported in the period from 2011 to 2019. Discussion in this review work has been tailored to the kinds of fluorophore scaffolds used for the constructions of the probes reported. Selected examples of probes under each fluorophore subcategory were discussed with mentions of the typically determined parameters in an analytical sensing operation, including modulation in fluorescence intensity, optimal pH, detection limit, and association constant. The environmental and biological application ends of the probes were also touched where necessary. Important generalisations and conclusions were given at the end of the review. This review article highlights 196 references.
Collapse
|
39
|
Pati C, Chattopadhyay AP, Ghosh K. Diamino malenonitrile-linked naphthalimide in selective sensing of F-, CN-, Hg2+ and Cu2+ under different experimental conditions. Supramol Chem 2020. [DOI: 10.1080/10610278.2020.1749628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Chiranjit Pati
- Department of Chemistry, University of Kalyani, Kalyani, India
| | | | - Kumaresh Ghosh
- Department of Chemistry, University of Kalyani, Kalyani, India
| |
Collapse
|
40
|
Ghosh S, Panja A, Ghosh K. Selective Dosimetric Sensing of Hg
2+
Ions by Design‐Based Small Molecular Gelator. ChemistrySelect 2020. [DOI: 10.1002/slct.202000528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sumit Ghosh
- Department of ChemistryUniversity of Kalyani Kalyani 741235 India
| | - Atanu Panja
- Department of ChemistryUniversity of Kalyani Kalyani 741235 India
| | - Kumaresh Ghosh
- Department of ChemistryUniversity of Kalyani Kalyani 741235 India
| |
Collapse
|
41
|
Mao J, Hai Y, Ye H, You L. Adaptive Covalent Networks Enabled by Dual Reactivity: The Evolution of Reversible Covalent Bonds, Their Molecular Assemblies, and Guest Recognition. J Org Chem 2020; 85:5351-5361. [PMID: 32250630 DOI: 10.1021/acs.joc.0c00051] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Adaptive chemistry allows transformation and selection within molecular networks, and adaptive systems composed of different types of dynamic covalent reactions (DCRs) are challenging. Herein, we demonstrate dual reactivity-based covalent networks encompassing the regulation of and switching between C-N- and C-S-based reversible covalent assemblies. The creation and exchange of C-N- or C-S-derived assemblies exhibiting diverse architectures, including linear structures, macrocycles, and cages, were achieved. The shift of reactivity then permitted the interconversion between C-N- and C-S-containing assemblies. Moreover, the adaption of intramolecular and intermolecular scaffolds was feasible via linker design. The latent hemiaminal chirality center offered a pathway for the induction of chirality within assemblies. Finally, switchable structural change and controlled extraction of ions were realized with Hg2+ as a guest for macrocycles. The remarkable complexity of networks described herein could open the door for the utility in sophisticated functional systems.
Collapse
Affiliation(s)
- Jialin Mao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Hai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hebo Ye
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Lei You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
42
|
Li X, Du K, Xie C, Wu Y, Zhang B, Tang D. A highly sensitive and selective colorimetric probe based on a cycloruthenated complex: an Hg 2+-promoted switch of thiophene coordination. Dalton Trans 2020; 49:2024-2032. [PMID: 31993593 DOI: 10.1039/c9dt02934f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A cyclometalated ruthenium complex [Ru(pthb)(bpy)2]+ (1, bpy = 2,2'-bipyridine, Hpthb = 3,3-dimethyl-2-(5-pyridylthiophen-2-yl)vinyl-benzo[e]indolium-1-propylsulfonate) could be converted from a C-coordinated structure to non-metallated species with N,S-bonded Hpthb upon treatment with mercury(ii) ions in water. Strikingly, the switch in the coordination mode resulted in a great absorption change along with a change in the solution color of 1 from dark red to light yellow. Therefore, 1 can be used as a colorimetric probe to detect mercury(ii) ions by the naked eye. Although the emission was not observed for 1 in water, it still demonstrated an appreciably low detection limit of 21 nM by using UV-Vis absorption spectroscopy, which was comparable with those of some probes determined by ratiometric fluorescence spectroscopy.
Collapse
Affiliation(s)
- Xianghong Li
- Key Laboratory of Analytical Chemistry of State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, PR China.
| | | | | | | | | | | |
Collapse
|
43
|
Patil SK, Das D. A novel rhodamine-based optical probe for mercury(II) ion in aqueous medium: A nanomolar detection, wide pH range and real water sample application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 225:117504. [PMID: 31494379 DOI: 10.1016/j.saa.2019.117504] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/21/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
In present work, we designed and synthesized new chemosensor RPy, containing the rhodamine and 2,6-pyridinedicarboxaldehyde functionality, for the selective detection of mercury (II) (Hg2+) ion in aqueous DMSO solvents. The RPy acts as "turn ON" probe for Hg2+ ion with high selectivity and sensitivity over the series of other competing metal ions based on colorimetric and fluorimetric techniques. Due to the incorporation of two rhodamine moieties enhance the chelation sites for mercury binding, which reflects in the lowering of the detection limit up to 26 nM. The Job plot method confirms the 1:2 stoichiometric interactions between the RPy and Hg2+ ion. The formation of the chelation complex between RPy and Hg2+ ion with spirolactam ring opening was thoroughly investigated by absorption, emission, 1H NMR, and mass analysis. The detection of Hg2+ ion by RPy is retained at broad pH range 4-9. Further, the probe RPy is successfully explored to measure the contamination of Hg2+ ion in the real water samples using spike and recovery method.
Collapse
Affiliation(s)
- Sagar K Patil
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai 400 019, India
| | - Dipanwita Das
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai 400 019, India.
| |
Collapse
|
44
|
Aliaga ME, Gazitua M, Rojas-Bolaños A, Fuentes-Estrada M, Durango D, García-Beltrán O. A selective thioxothiazolidin-coumarin probe for Hg 2+ based on its desulfurization reaction. Exploring its potential for live cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 224:117372. [PMID: 31344574 DOI: 10.1016/j.saa.2019.117372] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/06/2019] [Accepted: 07/07/2019] [Indexed: 06/10/2023]
Abstract
Sensing the most toxic heavy metal (mercury) has attracted a lot of attention in recent years due to its extreme harmfulness to both human health and the environment. Thus, we reported herein the synthesis, spectroscopic and kinetic characterization, and biological evaluation of a new thioxothiazolidin coumarin derivative (ILA92), which undergoes a desulfurization reaction induced by mercuric ions (Hg2+). This process is the origin of a selective sensing of Hg2+ ions in aqueous solution by colorimetric and fluorescent methods. Furthermore, the probe showed great potential for imaging Hg2+ in living cells.
Collapse
Affiliation(s)
- Margarita E Aliaga
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 6094411, Chile.
| | - Marcela Gazitua
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 6094411, Chile
| | - Andrea Rojas-Bolaños
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22, Calle 67, Ibagué 730002, Colombia
| | - Marcial Fuentes-Estrada
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22, Calle 67, Ibagué 730002, Colombia
| | - Diego Durango
- Universidad Nacional de Colombia, Sede Medellín, Escuela de Química, Carrera 65, No. 59A-110, Medellín, Colombia
| | - Olimpo García-Beltrán
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22, Calle 67, Ibagué 730002, Colombia.
| |
Collapse
|
45
|
Zhao M, Shao GK, Guo YS, Tang YL, Liu JB, Guo DS. A reaction-type receptor for the multi-feature detection of Hg2+ in water and living cells. NEW J CHEM 2020. [DOI: 10.1039/d0nj01995j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first optical and redox-active receptor of reaction-type has been developed for efficiently multi-model survey of Hg2+.
Collapse
Affiliation(s)
- Mei Zhao
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Shandong Normal University
- Jinan 250014
| | - Guang-Kui Shao
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Shandong Normal University
- Jinan 250014
| | - Yu-Shuang Guo
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Shandong Normal University
- Jinan 250014
| | - Yan-Ling Tang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Shandong Normal University
- Jinan 250014
| | - Jian-Biao Liu
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Shandong Normal University
- Jinan 250014
| | - Dian-Shun Guo
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Shandong Normal University
- Jinan 250014
| |
Collapse
|
46
|
Rahman MM, Alamry KA, Awual MR, Mekky AE. Efficient Hg(II) ionic probe development based on one-step synthesized diethyl thieno[2,3-b]thiophene-2,5-dicarboxylate (DETTDC2) onto glassy carbon electrode. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104291] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
47
|
Hong M, Chen Y, Zhang Y, Xu D. A novel rhodamine-based Hg 2+ sensor with a simple structure and fine performance. Analyst 2019; 144:7351-7358. [PMID: 31663523 DOI: 10.1039/c9an01608b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An excellent spectral sensor for Hg2+ named 2-(2-((2-aminoethyl)thio)ethyl)-3',6'-bis(diethylamino)spiro[isoindoline-1,9'-xanthen]-3-one (RMTE) was achieved by a one-step reaction between rhodamine B and thiobisethylamine. RMTE could detect Hg2+ in nearly pure water reversibly and highly selectively, indicated by a new increasing absorption peak at 561 nm and 170-fold enhanced fluorescence at 578 nm coupled with remarkable visual and fluorescence color changes. When the Hg2+ concentration ([Hg2+]) varied from 0 to 120 μM, the absorbance and fluorescence intensity of the RMTE solution responded linearly to [Hg2+] with the detection limits of 2.08 and 0.14 μM, respectively. RMTE could work in ecologically and biologically favorable pH values of 6.41-8.33. The binding mode of RMTE toward Hg2+ was 1 : 1. RMTE could monitor Hg2+ in environmental water and living cells effectively with low cytotoxicity.
Collapse
Affiliation(s)
- Miaomiao Hong
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China.
| | | | | | | |
Collapse
|
48
|
Adak AK, Dutta B, Manna SK, Sinha C. Rhodamine-Appended Benzophenone Probe for Trace Quantity Detection of Pd 2+ in Living Cells. ACS OMEGA 2019; 4:18987-18995. [PMID: 31763520 PMCID: PMC6868589 DOI: 10.1021/acsomega.9b01860] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 08/27/2019] [Indexed: 05/15/2023]
Abstract
Designing a fluorogenic probe for the determination of Pd2+ is a challenging analytical task. Pd2+ is a potentially toxic and harmful substance even at a very low level of contamination in the end product. Herein, a promising spirolactam-functionalized chemosensor, rhodamine-appended benzophenone (HBR), is designed and characterized by spectroscopic (1H NMR, 13C NMR, ESI-MS, and FT-IR) data along with the single-crystal X-ray diffraction technique. It acts as a highly sensitive and selective fluorogenic chemosensor for Pd2+ ions over other environmentally relevant cations in aqueous ethanol (1:1, v/v) at pH 7.4. The limit of detection (LOD) is 34 nM that is far below the WHO recommended Pd uptake (47 μM). The plausible mechanism involves the specific binding of HBR with Pd2+ and the formation of 1:1 stoichiometry of the complex, which has been supported by ESI-MS, FT-IR data, Job plot, and association constant data (Benesi-Hildebrand plot). The computation study has been attempted to explain the ring cleavage fluorescence enhancement scheme of HBR upon binding with Pd2+. Furthermore, this "turn-on" probe has successfully applied to image the Pd2+ ion in cultured MDA-MB-231 cells.
Collapse
Affiliation(s)
- Arup Kumar Adak
- Bidhannagar
College, EB-2, Sector −1, Salt Lake, Kolkata 700064, West Bengal, India
- Department
of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Basudeb Dutta
- Department
of Chemistry, Aliah University, Kolkata 700156, West Bengal, India
| | - Saikat Kumar Manna
- Haldia
Government College, Debhog, Haldia, Purba Medinipur 721657, West Bengal, India
| | - Chittaranjan Sinha
- Department
of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India
- E-mail:
| |
Collapse
|
49
|
Sharma S, Dubey G, Sran BS, Bharatam PV, Hundal G. Fabrication of a Hydrazone-Based Al(III)-Selective "Turn-On" Fluorescent Chemosensor and Ensuing Potential Recognition of Picric Acid. ACS OMEGA 2019; 4:18520-18529. [PMID: 31737810 PMCID: PMC6854579 DOI: 10.1021/acsomega.9b02132] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
A hydrazone-based N'1,N'3-bis((E)-4-(diethylamino)-2 -hydroxybenzylidene)isophthalohydrazide (NDHIPH), has been synthesized, characterized, and assessed for its highly selective and sensitive (limit of detection, 2.53 nM) response toward Al(III) via fluorescence enhancement in 95% aqueous medium. All experimental results of analytical studies are in good consonance with the theoretical studies performed. Further, this NDHIPH-Al(III) ensemble is used for selective and sensitive (12.15 nM) detection of explosive picric acid (PA) via fluorescence quenching. This reversible behavior of NDHIPH toward Al(III) and PA is used for the creation of a molecular logic gate.
Collapse
Affiliation(s)
- Sanyog Sharma
- Department
of Chemistry, UGC Center for Advance Studies, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Gurudutt Dubey
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research, S.A.S. Nagar 160062, Punjab, India
| | - Balkaran Singh Sran
- Department
of Chemistry, UGC Center for Advance Studies, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Prasad V. Bharatam
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research, S.A.S. Nagar 160062, Punjab, India
| | - Geeta Hundal
- Department
of Chemistry, UGC Center for Advance Studies, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| |
Collapse
|
50
|
Al-Shamsi N, Laptenok SP, Bufaroosha MS, Greish YE, Saleh N. Time-resolved photoluminescence of 6-thienyl-lumazine fluorophores in cellulose acetate nanofibers for detection of mercury ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 222:117189. [PMID: 31177004 DOI: 10.1016/j.saa.2019.117189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/21/2019] [Accepted: 05/26/2019] [Indexed: 06/09/2023]
Abstract
Time-resolved photoluminescence measurements were used to characterize the photophysical properties of 6-thienyllumazine (TLm) fluorophores in cellulose acetate nanofibers (NFs) in the presence and absence of mercuric acetate salts. In solution, excited-state proton transfer (ESPT) from TLm to water molecules was investigated at pH from 2 to 12. The insertion of thienyl group into lumazine introduces cis and trans conformers while keeping the same tautomerization structures. Global and target analyses were employed to resolve the true emission spectra of all prototropic, tautomeric, and rotameric species for TLm in water. The results support the premise that only the cis conformers are related to the ESPT process. However, no ESPT from TLm to a nearby water molecule was observed in NFs. The addition of NFs increases the excited-state lifetime of TLm in the solid state because of combined polarity/confinement effects. The solid-state fluorescence of TLm (in NFs) was quenched by mercuric acetate through different mechanisms-dynamic and static-depending on the applied pressure-atmospheric and vacuum, respectively. The new solid-state sensor is simple, ecofriendly, and instantly fabricated. TLM-loaded NFs can detect mercuric ions at a concentration of 50 picomolar. The formation of non-fluorescent ground-state complex between TLm molecules and mercuric ions inside the pores of NFs was achieved under vacuum condition.
Collapse
Affiliation(s)
- Noura Al-Shamsi
- Chemistry Department, College of Science, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Sergey P Laptenok
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, P.O. Box 4700, Thuwal 23955-6900, Saudi Arabia
| | - Muna S Bufaroosha
- Chemistry Department, College of Science, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Yaser E Greish
- Chemistry Department, College of Science, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Na'il Saleh
- Chemistry Department, College of Science, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates.
| |
Collapse
|