1
|
Bhushan D, Shoran S, Kumar R, Gupta R. Plant biomass-based nanoparticles for remediation of contaminants from water ecosystems: Recent trends, challenges, and future perspectives. CHEMOSPHERE 2024; 365:143340. [PMID: 39278321 DOI: 10.1016/j.chemosphere.2024.143340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Green nanomaterials can mitigate ecological concerns by minimizing the impact of toxic contaminants on human and environmental health. Biosynthesis seems to be drawing unequivocal attention as the traditional methods of producing nanoparticles through chemical and physical routes are not sustainable. In order to utilize plant biomass, the current review outlines a sustainable method for producing non-toxic plant biomass-based nanoparticles and discusses their applications as well as recent trends involved in the remediation of contaminants, like organic/inorganic pollutants, pharmaceuticals, and radioactive pollutants from aquatic ecosystems. Plant biomass-based nanoparticles have been synthesized using various vegetal components, such as leaves, roots, flowers, stems, seeds, tuber, and bark, for applications in water purification. Phyto-mediated green nanoparticles are effectively utilized to treat contaminated water and reduce harmful substances. Effectiveness of adsorption has also been studied using variable parameters, e.g., pH, initial contaminant concentration, contact time, adsorbent dose, and temperature. Removal of environmental contaminants through reduction, photocatalytic degradation, and surface adsorption mechanisms, such as physical adsorption, precipitation, complexation, and ion exchange, primarily due to varying pH solutions and complex functional groups. In the case of organic pollutants, most of the contaminants have been treated by catalytic reduction and photodegradation involving the formation of NaBH4, H2O2, or both. Whereas electrostatic interaction, metal complexation, H-bonding, π- π associations, and chelation along with reduction have played a major role in the adsorption of heavy metals, pharmaceuticals, radioactive, and other inorganic pollutants. This review also highlights several challenges, like particle size, toxicity, stability, functional groups, cost of nanoparticle production, nanomaterial dynamics, and biological interactions, along with renewability and recycling of nanoparticles. Lastly, this review concluded that plant-biomass-based nanoparticles provide a sustainable, eco-friendly remediation method, utilizing the unique properties of nanomaterials and minimizing chemical synthesis risks.
Collapse
Affiliation(s)
- Divya Bhushan
- Department of Environmental Sciences, J.C. Bose University of Science & Technology, YMCA, Faridabad, Haryana, India
| | - Sachin Shoran
- Department of Environmental Sciences, J.C. Bose University of Science & Technology, YMCA, Faridabad, Haryana, India
| | - Rakesh Kumar
- Department of Biosystems Engineering, Auburn University, Auburn, AL, 36849, USA.
| | - Renuka Gupta
- Department of Environmental Sciences, J.C. Bose University of Science & Technology, YMCA, Faridabad, Haryana, India.
| |
Collapse
|
2
|
Hussain A, Azam S, Rehman K, Ali M, Hamid Akash MS, Zhou X, Rauf A, Alshammari A, Albekairi NA, AL-Ghamdi AH, Quresh AK, Khan S, Khan MU. Green synthesis of Fe and Zn-NPs, phytochemistry and pharmacological evaluation of Phlomis cashmeriana Royle ex Benth. Heliyon 2024; 10:e33327. [PMID: 39027488 PMCID: PMC467069 DOI: 10.1016/j.heliyon.2024.e33327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
This investigation portrays the phytochemical screening, green synthesis, characterization of Fe and Zn nanoparticles, their antibacterial, anti-inflammation, cytotoxicity, and anti-thrombolytic activities. Four dissimilar solvents such as, n-hexane, chloroform, ethyl acetate and n-butanol were used to prepare the extracts of Phlomis cashmeriana Royle ex Benth. This is valued medicinal plant (Family Lamiaceae), native to mountains of Afghanistan and Kashmir. In the GC-MS study of its extract, the identified phytoconstituents have different nature such as terpenoids, alcohol and esters. The synthesized nanoparticles were characterized by SEM, UV, XRD, and FT-IR. The phytochemical analysis showed that the plant contains TPC (total phenolic content) 297.51 mg GAE/g and TFC (total flavonoid content) 467.24 mg CE/g. The cytotoxicity values have shown that the chloroform, n-butanol and aqueous extracts were more toxic than other extracts. The anti-inflammatory potential of n-butanol and aqueous extracts was found higher than all other extracts. Chloroform and n-hexane extracts have low MIC values against both E. coli and S. aureus bacterial strains. Chloroform and aqueous extracts have great anti-thrombolytic potential than all other extracts. Overall, this study successfully synthesized the nanoparticles and provides evidence that P. cashmeriana have promising bioactive compounds that could serve as potential source in the drug formulation.
Collapse
Affiliation(s)
- Amjad Hussain
- Institute of Chemistry, University of Okara, Okara, 56300, Punjab, Pakistan
| | - Sajjad Azam
- Institute of Chemistry, University of Okara, Okara, 56300, Punjab, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, The Women University, Multan, Pakistan
| | - Meher Ali
- Department of Chemistry, Karakoram International University, Gilgit, 15100, Pakistan
| | | | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Pakistan
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh, 11451, Saudi Arabia
| | - Norah A. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdullah Hamed AL-Ghamdi
- Pharmaceutical Care Department, Namerah General Hospital, Ministry of Health, Namerah, 65439, Saudi Arabia
| | - Ahmad Kaleem Quresh
- Department of Chemistry, University of Sahiwal, Sahiwal, 574000, Punjab, Pakistan
| | - Shoaib Khan
- Department of chemistry, Abbottabad University of Science and Technology AUST, Havelian, Abbottabad, Pakistan
| | | |
Collapse
|
3
|
Kumar V, Kaushik NK, Tiwari SK, Singh D, Singh B. Green synthesis of iron nanoparticles: Sources and multifarious biotechnological applications. Int J Biol Macromol 2023; 253:127017. [PMID: 37742902 DOI: 10.1016/j.ijbiomac.2023.127017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
Green synthesis of iron nanoparticles is a highly fascinating research area and has gained importance due to reliable, sustainable and ecofriendly protocol for synthesizing nanoparticles, along with the easy availability of plant materials and their pharmacological significance. As an alternate to physical and chemical synthesis, the biological materials, like microorganisms and plants are considered to be less costly and environment-friendly. Iron nanoparticles with diverse morphology and size have been synthesized using biological extracts. Microbial (bacteria, fungi, algae etc.) and plant extracts have been employed in green synthesis of iron nanoparticles due to the presence of various metabolites and biomolecules. Physical and biochemical properties of biologically synthesized iron nanoparticles are superior to that are synthesized using physical and chemical agents. Iron nanoparticles have magnetic property with thermal and electrical conductivity. Iron nanoparticles below a certain size (generally 10-20 nm), can exhibit a unique form of magnetism called superparamagnetism. They are non-toxic and highly dispersible with targeted delivery, which are suitable for efficient drug delivery to the target. Green synthesized iron nanoparticles have been explored for multifarious biotechnological applications. These iron nanoparticles exhibited antimicrobial and anticancerous properties. Iron nanoparticles adversely affect the cell viability, division and metabolic activity. Iron nanoparticles have been used in the purification and immobilization of various enzymes/proteins. Iron nanoparticles have shown potential in bioremediation of various organic and inorganic pollutants. This review describes various biological sources used in the green synthesis of iron nanoparticles and their potential applications in biotechnology, diagnostics and mitigation of environmental pollutants.
Collapse
Affiliation(s)
- Vinod Kumar
- Department of Biotechnology, Central University of Haryana, Jant-Pali, Mahendergarh 123031, Haryana, India
| | - Naveen Kumar Kaushik
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Sector 125, Noida, Uttar Pradesh 201313, India
| | - S K Tiwari
- Department of Genetics, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Davender Singh
- Department of Physics, RPS Degree College, Balana, Satnali Road, Mahendragarh 123029, Haryana, India
| | - Bijender Singh
- Department of Biotechnology, Central University of Haryana, Jant-Pali, Mahendergarh 123031, Haryana, India; Laboratory of Bioprocess Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India.
| |
Collapse
|
4
|
Zhang X, Sathiyaseelan A, Naveen KV, Lu Y, Wang MH. Research progress in green synthesis of manganese and manganese oxide nanoparticles in biomedical and environmental applications - A review. CHEMOSPHERE 2023:139312. [PMID: 37354955 DOI: 10.1016/j.chemosphere.2023.139312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
Nanomaterials and nanotechnology have this unassailable position for environmental remediation and medicine. Currently, global environmental pollution and public health problems are increasing and need to be urgently addressed. Manganese (Mn) is one of the essential metal elements for plants and animals, it is necessary to integrate with nanotechnology. Mn and Mn oxide (MnO) nanoparticles (NPs) have applications in dye degradation, biomedicine, electrochemical sensors, plant and animal growth, and catalysis. However, the current research is limited, especially in terms of optimal synthesis of Mn and MnO NPs, separation, purification conditions, and the development of potential application areas is too basic and do not support by in-depth studies. Hence, this review comprehensively discusses the classification, green synthesis methods, and applications of Mn and MnO NPs in biomedical, environmental, and other fields and gives a perspective for the future.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Kumar Vishven Naveen
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Yuting Lu
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
5
|
Ahmed SF, Mofijur M, Rafa N, Chowdhury AT, Chowdhury S, Nahrin M, Islam ABMS, Ong HC. Green approaches in synthesising nanomaterials for environmental nanobioremediation: Technological advancements, applications, benefits and challenges. ENVIRONMENTAL RESEARCH 2022; 204:111967. [PMID: 34450159 DOI: 10.1016/j.envres.2021.111967] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/09/2021] [Accepted: 08/19/2021] [Indexed: 05/27/2023]
Abstract
Green synthesis approaches of nanomaterials (NMs) have received considerable attention in recent years as it addresses the sustainability issues posed by conventional synthesis methods. However, recent works of literature do not present the complete picture of biogenic NMs. This paper addresses the previous gaps by providing insights into the stability and toxicity of NMs, critically reviewing the various biological agents and solvents required for synthesis, sheds light on the factors that affect biosynthesis, and outlines the applications of NMs across various sectors. Despite the advantages of green synthesis, current methods face challenges with safe and appropriate solvent selection, process parameters that affect the synthesis process, nanomaterial cytotoxicity, bulk production and NM morphology control, tedious maintenance, and knowledge deficiencies. Consequently, the green synthesis of NMs is largely trapped in the laboratory phase. Nevertheless, the environmental friendliness, biocompatibility, and sensitivities of the resulting NMs have wider applications in biomedical science, environmental remediation, and consumer industries. To the scale-up application of biogenic NMs, future research should be focused on understanding the mechanisms of the synthesis processes, identifying more biological and chemical agents that can be used in synthesis, and developing the practicality of green synthesis at the industrial scale, and optimizing the factors affecting the synthesis process.
Collapse
Affiliation(s)
- Shams Forruque Ahmed
- Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh.
| | - M Mofijur
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW, 2007, Australia; Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia.
| | - Nazifa Rafa
- Environmental Sciences Program, Asian University for Women, Chattogram, 4000, Bangladesh
| | | | - Sidratun Chowdhury
- Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh; Bangladesh Center for Advanced Studies (BCAS), Bangladesh
| | - Muntasha Nahrin
- Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh
| | - A B M Saiful Islam
- Department of Civil and Construction Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam, 31451, Saudi Arabia
| | - Hwai Chyuan Ong
- Centre for Green Technology, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW, 2007, Australia.
| |
Collapse
|
6
|
Schuster S, Su Yien Ting A. Decolourisation of triphenylmethane dyes by biogenically synthesised iron nanoparticles from fungal extract. Mycology 2022; 13:56-67. [PMID: 35186413 PMCID: PMC8856070 DOI: 10.1080/21501203.2021.1948928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
In this study, the extract from endophytic Fusarium proliferatum was used to synthesise iron nanoparticles (Fe-NPs). The properties of the biogenically synthesised Fe-NPs were then characterised by field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX) and Fourier transform infrared spectroscopy (FTIR). The efficacy of the synthesised Fe-NPs in decolourizing triphenylmethane dyes was evaluated. Results revealed that fungal extract from F. proliferatum was successfully used to synthesise Fe-NPs. The Fe-NPs produced were 20-50 nm in size, and consist of substantial elemental Fe content (14.83%). The FTIR spectra revealed the presence of amino acids and proteins on the surface of the Fe-NPs, confirming the biogenic synthesis of the Fe-NPs. When tested for decolourisation, the Fe-NPs were most effective in decolourising Methyl Violet (28.9%), followed by Crystal Violet (23.8%) and Malachite Green (18.3%). This study is the first few to report the biogenic synthesis of Fe-NPs using extracts from an endophytic Fusarium species and their corresponding dye decolourisation activities.
Collapse
|
7
|
Efficient electrochemical detection of hazardous para-nitrophenol based on a carbon paste electrode modified with green synthesized gold/iron oxide nanocomposite. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02094-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Sharma B, Kumari N, Mathur S, Sharma V. A systematic review on iron-based nanoparticle-mediated clean-up of textile dyes: challenges and prospects of scale-up technologies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:312-331. [PMID: 34665422 DOI: 10.1007/s11356-021-16846-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
The projected increase of the global textile industry to USD1002.84 billion in 2027 indicates a simultaneous increase in water pollution due to textile dye-rich voluminous effluents highlighting the requirement of source clean-up. This review analyzes the colossal amount of literature on lab-scale nanoremediation technologies involving iron-based nanoparticles and the mechanistic aspects. However, not many studies are in place with regard to execution because there are several bottlenecks in the scale-up of the technology. This review attempts to identify the limitations of scale-up by focusing on each step of nanoremediation from synthesis of iron-based nanoparticles to their applications. The most prominent appears to be the low economic viability of physico-chemical synthesis of nanoparticles, lack of appropriate toxicity studies of iron-based nanoparticles, and dearth of studies on field applications. It is recommended that above studies should be made not only on lab scale but also on field samples preferably utilizing microbial products based green synthesized iron-based nanoparticles and conducting toxicity studies. Besides, immobilization of the nanoparticles on renewable material greatly enhances the sustainability and economic value of the process. Furthermore, since the chemical composition of dye-rich effluents varies among industries, effluent specific optimization of process parameters and kinetics thereof is also a major prerequisite for scale-up. The value of this review lies in the fact that it brings, for the first time, a comprehensive and critical systematization of various aspects needing attention in order to scale-up such effective nanoremediation processes.
Collapse
Affiliation(s)
- Baby Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1 Kant Kalwar, NH11C, RIICO Industrial Area, Jaipur, Rajasthan, 303007, India
| | - Nilima Kumari
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, 304022, India
| | - Shruti Mathur
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1 Kant Kalwar, NH11C, RIICO Industrial Area, Jaipur, Rajasthan, 303007, India
| | - Vinay Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1 Kant Kalwar, NH11C, RIICO Industrial Area, Jaipur, Rajasthan, 303007, India.
| |
Collapse
|
9
|
Liu L, Chen WT, Kihara S, Kilmartin PA. Green synthesis of akaganéite (β-FeOOH) nanocomposites as peroxidase-mimics and application for discoloration of methylene blue. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113163. [PMID: 34229137 DOI: 10.1016/j.jenvman.2021.113163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/08/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
This work reports an environmentally benign and readily scalable process for production of akaganéite (β-FeOOH) nanocomposites by using abundant gallic acid or grape seed tannins and urea. Influences from those phytochemicals on the properties of β-FeOOH nanocomposites were investigated by X-ray powder diffraction, Fourier transform infrared spectroscopy, Thermogravimetric analysis, Scanning electron microscopy, Transmission electron microscopy, UV-Vis spectroscopy and Photoluminescence. The addition of 0.1% (w/v) grape seed tannins or gallic acid (640 mg L-1) solution yielded single-crystalline β-FeOOH nanocomposites with reduced dimensions, increased porosities and BET surface area, and no oxidized impurities such as hematite (Fe2O3) were formed. The added grape seed tannins (S0.8) or gallic acid together with less urea (0.8 M) produced β-FeOOH nanocomposites with higher activities as peroxidase mimics compared to those prepared with only urea (C0.8). Moreover, S0.8 was more efficient in methylene blue (MB) discoloration compared to C0.8 at all three pH values of 4, 7 and 11, and the S0.8-mediated MB degradation pathways at pH 4 and 7 were different from those at pH 11 due to the generation of different predominant oxidants. The overall MB discoloration efficacies by S0.8 at pH 4, 7 and 11 were combinative effects of both physical adsorption and chemical reactions. These β-FeOOH nanocomposites possess great potential as peroxidase mimics for facile monitoring of excess hydrogen peroxide and applications in environmental remediation.
Collapse
Affiliation(s)
- Lingdai Liu
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Wan-Ting Chen
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Shinji Kihara
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Paul A Kilmartin
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
10
|
Mondal P, Anweshan A, Purkait MK. Green synthesis and environmental application of iron-based nanomaterials and nanocomposite: A review. CHEMOSPHERE 2020; 259:127509. [PMID: 32645598 DOI: 10.1016/j.chemosphere.2020.127509] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 05/28/2023]
Abstract
Green chemistry has been proven to be an efficient route for nanoparticle synthesis. Plant extract based green synthesis of various nanoparticles is extensively studied since the last decade. This paper "Green synthesis and environmental application of Iron-based nanomaterials and nanocomposite: A review" unveils all the possible greener techniques for the synthesis of iron-based nanoparticles and nanocomposites. The use of different plant sources, microorganisms, and various biocompatible green reagents such as biopolymers, cellulose, haemoglobin, and glucose for the synthesis of iron nanoparticles reported in the last decade are summarized. The microwave method, along with hydrothermal synthesis due to their lower energy consumption are also been referred to as a green route. Apart from different plant parts, waste leaves and roots used for the synthesis of iron nanoparticles are extensively briefed here. This review is thus compact in nature which covers all the broad areas of green synthesis of iron nanoparticles (NPs) and iron-based nanocomposites. Detailed discussion on environmental applications of the various green synthesized iron NPs and their composites with performance efficiency is provided in this review article. The advantages of bimetallic iron-based nanocomposites over iron NPs in various environmental applications are discussed in detail. The hazards and toxic properties of green synthesized iron-based NPs are compared with those obtained from chemical methods. The prospects and challenges section of this article provides a vivid outlook of adapting such useful technique into a more versatile process with certain inclusions which may encourage and provide a new direction to future research.
Collapse
Affiliation(s)
- Piyal Mondal
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - A Anweshan
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Mihir Kumar Purkait
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India.
| |
Collapse
|
11
|
Monga Y, Kumar P, Sharma RK, Filip J, Varma RS, Zbořil R, Gawande MB. Sustainable Synthesis of Nanoscale Zerovalent Iron Particles for Environmental Remediation. CHEMSUSCHEM 2020; 13:3288-3305. [PMID: 32357282 DOI: 10.1002/cssc.202000290] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Nanoscale zerovalent iron (nZVI) particles represent an important material for diverse environmental applications because of their exceptional electron-donating properties, which can be exploited for applications such as reduction, catalysis, adsorption, and degradation of a broad range of pollutants. The synthesis and assembly of nZVI by using biological and natural sustainable resources is an attractive option for alleviating environmental contamination worldwide. In this Review, various green synthesis pathways for generating nZVI particles are summarized and compared with conventional chemical and physical methods. In addition to describing the latest environmentally benign methods for the synthesis of nZVI, their properties and interactions with diverse biomolecules are discussed, especially in the context of environmental remediation and catalysis. Future prospects in the field are also considered.
Collapse
Affiliation(s)
- Yukti Monga
- Green Chem. Network Centre, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Pawan Kumar
- Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Rakesh K Sharma
- Green Chem. Network Centre, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Jan Filip
- Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Manoj B Gawande
- Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
- Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna, Maharashtra, 431213, India
| |
Collapse
|
12
|
Oxidative Impact of Carob Leaf Extract–Synthesized Iron Oxide Magnetic Nanoparticles on the Kidney, Liver, Testis, and Spleen of Wistar Rats. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-00704-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Ramar K, Ahamed AJ, Muralidharan K. Robust green synthetic approach for the production of iron oxide nanorods and its potential environmental and cytotoxicity applications. ADV POWDER TECHNOL 2019. [DOI: 10.1016/j.apt.2019.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
14
|
Arsenic Removal from Mining Effluents Using Plant-Mediated, Green-Synthesized Iron Nanoparticles. Processes (Basel) 2019. [DOI: 10.3390/pr7100759] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Arsenic contamination in industrial and mining effluents has always been a serious concern. Recently, nano-sized iron particles have been proven effective in sorptive removal of arsenic, because of their unique surface characteristics. In this study, green synthesis of iron nanoparticles was performed using a mixed extract of two plant species, namely Prangos ferulacea and Teucrium polium, for the specific purpose of arsenic (III) removal from the aqueous environment. Results of UV-visible spectrometry, X-ray powder diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR) analyses confirmed the formation of iron nanoparticles from Prangos ferulacea (Pf) and Teucrium polium (Tp) extracts. The synthesized Fe nanoparticles morphology was studied via microscopy imaging. The particle size was 42 nm, as assessed by dynamic light scattering (DLS) analysis. Adsorption experiments were also designed and performed, which indicated 93.8% arsenic removal from the aqueous solution at 200 rpm agitation rate, 20 min agitation time, pH 6, initial concentration of 0.1 g/L, and adsorbent dosage of 2 g/L. Adsorption isotherm models were investigated, and the maximum uptake capacity was determined to be about 61.7 mg/g. The kinetic data were best represented by the pseudo-second kinetic model (R2 = 0.99). The negative value of Gibbs free energy, the enthalpy (−7.20 kJ/mol), and the entropy (−57 J/mol.K) revealed the spontaneous and exothermic nature of the adsorption process. Moreover, the small quantity of the activation energy confirmed the physical mechanism of arsenic adsorption onto iron nanoparticles and that the process is not temperature sensitive.
Collapse
|
15
|
Johnson A, Uwa P. Eco-friendly synthesis of iron nanoparticles using Uvaria chamae: Characterization and biological activity. INORG NANO-MET CHEM 2019. [DOI: 10.1080/24701556.2019.1661448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Atim Johnson
- Department of Chemistry, University of Uyo, Uyo Akwa Ibom State, Nigeria
| | - Patricia Uwa
- Department of Chemistry, University of Uyo, Uyo Akwa Ibom State, Nigeria
| |
Collapse
|
16
|
García FE, Senn AM, Meichtry JM, Scott TB, Pullin H, Leyva AG, Halac EB, Ramos CP, Sacanell J, Mizrahi M, Requejo FG, Litter MI. Iron-based nanoparticles prepared from yerba mate extract. Synthesis, characterization and use on chromium removal. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 235:1-8. [PMID: 30669088 DOI: 10.1016/j.jenvman.2019.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/06/2018] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
Iron-based nanoparticles were synthesized by a rapid method at room temperature using yerba mate (YM) extracts with FeCl3 in different proportions. Materials prepared from green tea (GT) extracts were also synthesized for comparison. These materials were thoroughly characterized by chemical analyses, XRD, magnetization, SEM-EDS, TEM-SAED, FTIR, UV-Vis, Raman, Mössbauer and XANES spectroscopies, and BET area analysis. It was concluded that the products are nonmagnetic iron complexes of the components of the extracts. The applicability of the materials for Cr(VI) (300 μM) removal from aqueous solutions at pH 3 using two Cr(VI):Fe molar ratios (MR), 1:3 and 1:0.5, has been tested. At Cr(VI):Fe MR = 1:3, the best YM materials gave complete Cr(VI) removal after two minutes of contact, similar to that obtained with commercial nanoscale zerovalent iron (N25), with dissolved Fe(II), and with a likewise prepared GT material. At a lower Cr(VI):Fe MR (1:0.5), although Cr(VI) removal was not complete after 20 min of reaction, the YM nanoparticles were more efficient than N25, GT nanoparticles and Fe(II) in solution. The results suggest that an optimal Cr(VI):Fe MR ratio could be reached when using the new YM nanoparticles, able to achieve a complete Cr(VI) reduction, and leaving very low Cr and Fe concentrations in the treated solutions. The rapid preparation of the nanoparticles would allow their use in removal of pollutants in soils and groundwater by direct injection of the mixture of precursors.
Collapse
Affiliation(s)
- Fabiana E García
- Gerencia Química, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, 1650, San Martín, Prov. de, Buenos Aires, Argentina
| | - Alejandro M Senn
- Gerencia Química, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, 1650, San Martín, Prov. de, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz, 2290, 1425, CABA, Argentina
| | - Jorge M Meichtry
- Gerencia Química, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, 1650, San Martín, Prov. de, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz, 2290, 1425, CABA, Argentina
| | - Thomas B Scott
- Interface Analysis Centre, School of Physics, HH Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL, United Kingdom
| | - Huw Pullin
- School of Ocean and Earth Sciences, Cardiff University, Park Place, Cardiff, CF10 3AT, United Kingdom
| | - Ana G Leyva
- Departamento Física de la Materia Condensada, Gerencia de Investigaciones y Aplicaciones, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, 1650, San Martín, Prov. de, Buenos Aires, Argentina; Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, Martín de Irigoyen 3100, 1650, San Martín, Prov. de, Buenos Aires, Argentina; Instituto de Nanociencia y Nanotecnología (INN), CNEA-CONICET, Av. Gral. Paz 1499, 1650, San Martín, Prov. de, Buenos Aires, Argentina
| | - Emilia B Halac
- Departamento Física de la Materia Condensada, Gerencia de Investigaciones y Aplicaciones, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, 1650, San Martín, Prov. de, Buenos Aires, Argentina; Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, Martín de Irigoyen 3100, 1650, San Martín, Prov. de, Buenos Aires, Argentina
| | - Cinthia P Ramos
- Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz, 2290, 1425, CABA, Argentina; Departamento Física de la Materia Condensada, Gerencia de Investigaciones y Aplicaciones, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, 1650, San Martín, Prov. de, Buenos Aires, Argentina; Instituto de Nanociencia y Nanotecnología (INN), CNEA-CONICET, Av. Gral. Paz 1499, 1650, San Martín, Prov. de, Buenos Aires, Argentina
| | - Joaquín Sacanell
- Departamento Física de la Materia Condensada, Gerencia de Investigaciones y Aplicaciones, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, 1650, San Martín, Prov. de, Buenos Aires, Argentina; Instituto de Nanociencia y Nanotecnología (INN), CNEA-CONICET, Av. Gral. Paz 1499, 1650, San Martín, Prov. de, Buenos Aires, Argentina
| | - M Mizrahi
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET and Dto. Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Diag. 113 y 64, 1900, La Plata, Argentina
| | - Félix G Requejo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET and Dto. Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Diag. 113 y 64, 1900, La Plata, Argentina
| | - Marta I Litter
- Gerencia Química, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, 1650, San Martín, Prov. de, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Godoy Cruz, 2290, 1425, CABA, Argentina; Instituto de Investigación e Ingeniería Ambiental, Universidad Nacional de General San Martín, Campus Miguelete, Av. 25 de Mayo y Francia, 1650, San Martín, Prov. de Buenos Aires, Argentina.
| |
Collapse
|
17
|
Ravikumar K, Sudakaran SV, Ravichandran K, Pulimi M, Natarajan C, Mukherjee A. Green synthesis of NiFe nano particles using Punica granatum peel extract for tetracycline removal. JOURNAL OF CLEANER PRODUCTION 2019; 210:767-776. [DOI: 10.1016/j.jclepro.2018.11.108] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
|
18
|
Polymeric Nanocomposites of Iron–Oxide Nanoparticles (IONPs) Synthesized Using Terminalia chebula Leaf Extract for Enhanced Adsorption of Arsenic(V) from Water. COLLOIDS AND INTERFACES 2019. [DOI: 10.3390/colloids3010017] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study demonstrates the ecofriendly synthesis of iron–oxide nanoparticles (IONPs) and their stabilization with polymers, i.e., chitosan (C) and polyvinyl alcohol (PVA)–alginate (PA), along with a further investigation for the removal of arsenic(As(V)) from water. IONPs with an average diameter of less than 100 nm were prepared via a green synthesis process using an aqueous leaf extract of Terminalia chebula. Batch experiments were conducted to compare the removal efficiency of As(V) by these adsorbents. Factors such as pH and adsorbent dosages significantly affected the removal of arsenate As(V) by IONPs and polymer-supported reactive IONPs. Several adsorption kinetic models, such as pseudo first-order, and pseudo second-order Langmuir and Freundlich isotherms, were used to describe the adsorption of As(V). The removal of As(V) by IONPs follows the Langmuir adsorption isotherm. The highest monolayer saturation adsorption capacity as obtained from the Langmuir adsorption isotherm for IONPs was 28.57 mg/g. As(V) adsorption by polymer-supported IONPs best fit the Freundlich model, and maximum adsorption capacities of 34.4 mg/g and 40.3 mg/g were achieved for chitosan- and PVA–alginate-supported IONPs, respectively. However, among these absorbents, PVA–alginate-supported IONPs were found to be more effective than the other adsorbents in terms of adsorption, stability, and reusability.
Collapse
|
19
|
Green synthesis of iron nanoparticles by Rosemary extract and cytotoxicity effect evaluation on cancer cell lines. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.07.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Mirza AU, Kareem A, Nami SAA, Khan MS, Rehman S, Bhat SA, Mohammad A, Nishat N. Biogenic synthesis of iron oxide nanoparticles using Agrewia optiva and Prunus persica phyto species: Characterization, antibacterial and antioxidant activity. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 185:262-274. [PMID: 29981488 DOI: 10.1016/j.jphotobiol.2018.06.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/08/2018] [Accepted: 06/20/2018] [Indexed: 10/28/2022]
Abstract
A phytoextract mediated synthesis of iron oxide nanoparticles using Agrewia optiva (Dhaman or Biul) and Prunus persica (Peach) leaf extract as capping and stabilizing agent without using hazardous toxic chemicals via biogenic route has been studied. The biogenic method of synthesis is convenient, rapid, cost effective and ecofriendly. The green synthesized nanoparticles were characterized by Ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, Attenuated total reflectance spectroscopy, X-ray diffraction analysis, scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy and dynamic light scattering measurements. The antibacterial study was determined by agar well diffusion method to measure the efficiency of both phyto species extract and its mediated iron oxide nanoparticles against five gram positive bacterial stains such as Staphylococcus aureus (S. aureus), Streptococcus mutans (S. mutans), Streptococcus pyrogenes (S. pyrogenes), Corynebacterium diphtheriae (C. diphtheriae) and Corynebacterium xerosis (C. xerosis) and three gram negative bacterial stains such as Escherichia coli (E. coli), Klebsiella pneuomoniae (K. pneuomoniae) and Pseudomonas aeruginosa (P. aeruginosa). The antibiotic Ciprofloxacin and Gentamicin have been used as reference standard drugs for gram positive and gram negative bacterial stains, respectively. The antioxidant activity of the phyto extracts and prepared nanoparticles have been performed using 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical assay employing l-ascorbic acid as a standard.
Collapse
Affiliation(s)
- Azar Ullah Mirza
- Material Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Abdul Kareem
- Material Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Shahab A A Nami
- Department of Kulliyat, Faculty of Unani Medicine, Aligarh Muslim University, Aligarh 202002, India
| | - Mohd Shoeb Khan
- Interdisciplinary Nanotechnology Centre, Aligarh Muslim University, Aligarh 202002, India
| | - Sumbul Rehman
- Department of Ilmul Advia, Faculty of Unani Medicine, Aligarh Muslim University, Aligarh 202002, India
| | - Shahnawaz Ahmad Bhat
- Material Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Abdulrahman Mohammad
- Material Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Nahid Nishat
- Material Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
21
|
Harnessing the wine dregs: An approach towards a more sustainable synthesis of gold and silver nanoparticles. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 178:302-309. [PMID: 29175604 DOI: 10.1016/j.jphotobiol.2017.11.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/17/2017] [Accepted: 11/18/2017] [Indexed: 12/21/2022]
Abstract
In recent years, the management of food waste processing has emerged as a major concern. One such type of food waste, grape pomace, has been shown to be a great source of bioactive compounds which might be used for more environmentally - friendly processes for the synthesis of nanomaterials. In this study, grape pomace of Vitis vinifera has been used for the obtainment of an aqueous extract. Firstly, the reducing activity, total phenolic content and DPPH scavenging activity of the aqueous extract were determined. Then, the aqueous extract was used for the synthesis of gold and silver nanoparticles. The formation of spherical and stable nanoparticles with mean diameters of 35.3±5.2nm for Au@GP and 42.9±6.4nm for Ag@GP was confirmed by UV-vis spectroscopy and transmission electron microscopy. Furthermore, the functional group of biomolecules present in grape pomace extract, Au@GP and Ag@GP, were characterized by Fourier transform infrared spectroscopy prior to and after the synthesis, in order to obtain information about the biomolecules involved in the reducing and stabilization process. This study is the first to deal with the use of Vitis vinifera grape pomace in obtaining gold and silver nanoparticles through an eco-friendly, quick, one-pot synthetic route.
Collapse
|
22
|
Nithya K, Sathish A, Senthil Kumar P, Ramachandran T. Functional group‐assisted green synthesised superparamagnetic nanoparticles for the rapid removal of hexavalent chromium from aqueous solution. IET Nanobiotechnol 2017. [DOI: 10.1049/iet-nbt.2016.0259] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Kamaraj Nithya
- Department of Chemical Engineering & Material ScienceAmrita School of Engineering, CoimbatoreAmrita Vishwa Vidyapeetham, Amrita UniversityCoimbatoreIndia
| | - Asha Sathish
- Department of SciencesAmrita School of Engineering, CoimbatoreAmrita Vishwa Vidyapeetham, Amrita UniversityCoimbatoreIndia
| | | | - Thiagarajan Ramachandran
- Department of SciencesAmrita School of Engineering, CoimbatoreAmrita Vishwa Vidyapeetham, Amrita UniversityCoimbatoreIndia
| |
Collapse
|
23
|
Xiao Z, Zhang H, Xu Y, Yuan M, Jing X, Huang J, Li Q, Sun D. Ultra-efficient removal of chromium from aqueous medium by biogenic iron based nanoparticles. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2016.10.047] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Saif S, Tahir A, Chen Y. Green Synthesis of Iron Nanoparticles and Their Environmental Applications and Implications. NANOMATERIALS (BASEL, SWITZERLAND) 2016; 6:E209. [PMID: 28335338 PMCID: PMC5245755 DOI: 10.3390/nano6110209] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/17/2016] [Accepted: 11/07/2016] [Indexed: 12/18/2022]
Abstract
Recent advances in nanoscience and nanotechnology have also led to the development of novel nanomaterials, which ultimately increase potential health and environmental hazards. Interest in developing environmentally benign procedures for the synthesis of metallic nanoparticles has been increased. The purpose is to minimize the negative impacts of synthetic procedures, their accompanying chemicals and derivative compounds. The exploitation of different biomaterials for the synthesis of nanoparticles is considered a valuable approach in green nanotechnology. Biological resources such as bacteria, algae fungi and plants have been used for the production of low-cost, energy-efficient, and nontoxic environmental friendly metallic nanoparticles. This review provides an overview of various reports of green synthesised zero valent metallic iron (ZVMI) and iron oxide (Fe₂O₃/Fe₃O₄) nanoparticles (NPs) and highlights their substantial applications in environmental pollution control. This review also summarizes the ecotoxicological impacts of green synthesised iron nanoparticles opposed to non-green synthesised iron nanoparticles.
Collapse
Affiliation(s)
- Sadia Saif
- Department of Environmental Science, Lahore College for Women University, Lahore 54000, Pakistan.
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Arifa Tahir
- Department of Environmental Science, Lahore College for Women University, Lahore 54000, Pakistan.
| | - Yongsheng Chen
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
25
|
Luo F, Yang D, Chen Z, Megharaj M, Naidu R. Characterization of bimetallic Fe/Pd nanoparticles by grape leaf aqueous extract and identification of active biomolecules involved in the synthesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 562:526-532. [PMID: 27110966 DOI: 10.1016/j.scitotenv.2016.04.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 04/08/2016] [Accepted: 04/08/2016] [Indexed: 06/05/2023]
Abstract
This paper reports the detailed composition and morphology of one-step green synthesized bimetallic Fe/Pd nanoparticles (NPs) using grape leaf aqueous extract and identification of active biomolecules involved in the synthesis employing various techniques. Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) revealed that Fe/Pd NPs were polydispersed and quasi-spherical with a diameter ranging from 2 to 20nm. X-ray Photoelectron Spectroscopy (XPS) and Energy Dispersive X-ray Spectroscopy (EDS) provided evidence for the composition of Fe and Pd and for their species existing on the surface of Fe/Pd NPs. In addition, biomolecules in the grape leaf aqueous extract were identified but their functions are still unclear. Biomolecules in the aqueous extract such as methoxy-phenyl-oxime, N-benzoyl-2-cyano-histamine, 2-ethyl-phenol, 1,2-benzenediol, β-hydroxyquebracamine, hydroquinone, 2-methoxy-4-vinylphenol, 5-methyl-2-furancarboxaldehyde, 4-(3-hydroxybutyl)-3,5,5-trimethyl-2-cyclohexen and some polyphenolic compounds were identified as reducing and capping agents, which were studied by Chromatography-Mass Spectroscopy (GC-MS), XPS and Fourier Transform Infrared Spectroscopy (FTIR). Our finding suggests a new insight into cost-effective, simple, and environmentally benign production of bimetallic Fe/Pd NPs.
Collapse
Affiliation(s)
- Fang Luo
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Die Yang
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Zuliang Chen
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
26
|
Xiao Z, Yuan M, Yang B, Liu Z, Huang J, Sun D. Plant-mediated synthesis of highly active iron nanoparticles for Cr (VI) removal: Investigation of the leading biomolecules. CHEMOSPHERE 2016; 150:357-364. [PMID: 26921588 DOI: 10.1016/j.chemosphere.2016.02.056] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 12/15/2015] [Accepted: 02/12/2016] [Indexed: 05/24/2023]
Abstract
The eco-friendly synthesis and application of Fe nanoparticles (Fe NPs) with higher activity and stability has aroused wide attention in the field of pollutant remediation. In this work, 15 plants extracts were selected for the plant-mediated synthesis of Fe NPs. The as-synthesized particles' morphology and structure were characterized by transmission electron microscopy, X-ray diffraction and UV-Vis spectroscopy. The contents of four main active biomolecules in the 15 extracts were determined, and comparative studies were further carried out to clarify the key component closely related to the reducing capacity. The results demonstrate that polyphenol is the leading ingredient involved in the biosynthesis of Fe NPs. Then Fe products synthesized by three extracts with distinct content of polyphenol were employed to remove Cr (VI) in the aqueous solution, indicating that the activity of the Fe NPs for Cr (VI) removal is consistent with the reducing capacity of the extracts. Furthermore, the Fe NPs synthesized by S. jambos(L.) Alston extract (SJA-Fe NPs) showed significant removal capacity of Cr(VI) with 698.6 mg Cr(VI) per g of iron.
Collapse
Affiliation(s)
- Zhengli Xiao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Chemical Biology, Xiamen University, Xiamen 361005, China
| | - Min Yuan
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Chemical Biology, Xiamen University, Xiamen 361005, China
| | - Bin Yang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Chemical Biology, Xiamen University, Xiamen 361005, China
| | - Zhaoyan Liu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Chemical Biology, Xiamen University, Xiamen 361005, China
| | - Jiale Huang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Chemical Biology, Xiamen University, Xiamen 361005, China
| | - Daohua Sun
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Chemical Biology, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
27
|
Luo F, Yang D, Chen Z, Megharaj M, Naidu R. One-step green synthesis of bimetallic Fe/Pd nanoparticles used to degrade Orange II. JOURNAL OF HAZARDOUS MATERIALS 2016; 303:145-53. [PMID: 26530891 DOI: 10.1016/j.jhazmat.2015.10.034] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 10/14/2015] [Accepted: 10/15/2015] [Indexed: 05/22/2023]
Abstract
To reduce cost and enhance reactivity, bimetallic Fe/Pd nanoparticles (NPs) were firstly synthesized using grape leaf aqueous extract to remove Orange II. Green synthesized bimetallic Fe/Pd NPs (98.0%) demonstrated a far higher ability to remove Orange II in 12h compared to Fe NPs (16.0%). Meanwhile, all precursors, e.g., grape leaf extract, Fe(2+) and Pd(2+), had no obvious effect on removing Orange II since less than 2.0% was removed. Kinetics study revealed that the removal rate fitted well to the pseudo-first-order reduction and pseudo-second-order adsorption model, meaning that removing Orange II via Fe/Pd NPs involved both adsorption and catalytic reduction. The remarkable stability of Fe/Pd NPs showed the potential application for removing azo dyes. Furthermore, Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR) confirmed the changes in Fe/Pd NPs before and after reaction with Orange II. High Performance Liquid Chromatography-Mass Spectrum (HPLC-MS) identified the degraded products in the removal of Orange II, and finally a removal mechanism was proposed. This one-step strategy using grape leaf aqueous extract to synthesize Fe/Pd NPs is simple, cost-effective and environmentally benign, making possible the large-scale production of Fe/Pd NPs for field remediation.
Collapse
Affiliation(s)
- Fang Luo
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Die Yang
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Zuliang Chen
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ravendra Naidu
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
28
|
Rengasamy M, Anbalagan K, Kodhaiyolii S, Pugalenthi V. Castor leaf mediated synthesis of iron nanoparticles for evaluating catalytic effects in transesterification of castor oil. RSC Adv 2016. [DOI: 10.1039/c5ra15186d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A castor (Ricinus communis) leaf extract mediated process was developed for the synthesis of iron nanoparticles. The phytosynthesized iron nanoparticles were used as a catalyst for castor biodiesel production.
Collapse
Affiliation(s)
- Mookan Rengasamy
- Department of Petrochemical Technology
- Bharathidasan Institute of Technology
- Anna University
- Tiruchirappalli-620 024
- India
| | - Krishnasamy Anbalagan
- Department of Biotechnology
- Bharathidasan Institute of Technology
- Anna University
- Tiruchirappalli-620 024
- India
| | - Shanmugam Kodhaiyolii
- Department of Biotechnology
- Bharathidasan Institute of Technology
- Anna University
- Tiruchirappalli-620 024
- India
| | - Velan Pugalenthi
- Department of Biotechnology
- Bharathidasan Institute of Technology
- Anna University
- Tiruchirappalli-620 024
- India
| |
Collapse
|
29
|
Luo F, Yang D, Chen Z, Megharaj M, Naidu R. The mechanism for degrading Orange II based on adsorption and reduction by ion-based nanoparticles synthesized by grape leaf extract. JOURNAL OF HAZARDOUS MATERIALS 2015; 296:37-45. [PMID: 25910458 DOI: 10.1016/j.jhazmat.2015.04.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 04/07/2015] [Accepted: 04/10/2015] [Indexed: 05/24/2023]
Abstract
Biomolecules taken from plant extracts have often been used in the single-step synthesis of iron-based nanoparticles (Fe NPs) due to their low cost, environmental safety and sustainable properties. However, the composition of Fe NPs and the degradation mechanism of organic contaminants by them are limited because these are linked to the reactivity of Fe NPs. In this study, Fe NPs synthesized by grape leaf extract served to remove Orange II. Batch experiments showed that more than 92% of Orange II was removed by Fe NPs at high temperature based on adsorption and reduction and confirmed by kinetic studies. To understand the role of Fe NPs in the removal process of azo dye, surface analysis via X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) were employed, showing that the Fe NPs were composed of biomolecules, hydrous iron oxides and Fe(0), thus providing evidence for the adsorption of Orange II onto hydrous iron oxides and its reduction by Fe(0). Degraded products such as 2-naphthol were identified using LC-MS analysis. A degradation mechanism based on asymmetrical azo bond cleavage for the removal of Orange II was proposed.
Collapse
Affiliation(s)
- Fang Luo
- Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of Environments, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Die Yang
- Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of Environments, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Zuliang Chen
- Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of Environments, University of South Australia, Mawson Lakes, SA 5095, Australia.
| | - Mallavarapu Megharaj
- Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of Environments, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Ravendra Naidu
- Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of Environments, University of South Australia, Mawson Lakes, SA 5095, Australia
| |
Collapse
|