1
|
Berlinck RGS, Skellam E. Discovery, Biosynthesis, Total Synthesis, and Biological Activities of Solanapyrones: [4 + 2] Cycloaddition-Derived Polyketides of Fungal Origin. JOURNAL OF NATURAL PRODUCTS 2024; 87:2892-2906. [PMID: 39545605 DOI: 10.1021/acs.jnatprod.4c00818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Solanapyrones are metabolites bearing a 3,4-dehydrodecalin moiety isolated from cultures of different fungi that are associated with plant diseases. Research on solanapyrones resulted in the first report of a Diels-Alderase enzyme implicated in natural product biosynthesis related to the formation of the 3,4-dehydrodecalin core. In addition, several total syntheses of solanapyrones have been reported, which are also connected with the formation of the characteristic cycloaddition-derived 3,4-dehydrodecalin moiety. This Review provides the first comprehensive overview on the chemistry, biosynthesis, and biological activities of solanapyrones under the theme of synthetic and biosynthetic research progress on cycloaddition-derived secondary metabolites.
Collapse
Affiliation(s)
- Roberto G S Berlinck
- Instituto de Quimica de São Carlos, Universidade de São Paulo, CP 780, São Carlos, São Paulo CEP 13560-970, Brazil
| | - Elizabeth Skellam
- Department of Chemistry, BioDiscovery Institute, University of North Texas, Denton, Texas 76203, United States
| |
Collapse
|
2
|
Peramuna T, Wood GE, Hu Z, Wendt KL, Aguila LKT, Kim CM, Duerfeldt AS, Cichewicz RH. Semisynthetic Tetramate-Containing Fungal Metabolites with Activity against Trichomonas vaginalis and Mycoplasma genitalium. ACS Med Chem Lett 2024; 15:1933-1939. [PMID: 39563796 PMCID: PMC11571018 DOI: 10.1021/acsmedchemlett.4c00386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/21/2024] Open
Abstract
Tetramic acid-containing natural products are well known for their promising biological activity against various diseases. In our previous study, we reported fungal-derived tetramic acid-containing natural products with activity against Trichomonas vaginalis. Here, we demonstrate that Mycoplasma genitalium is also highly susceptible to this chemotype and we uncovered the initial structure activity relationships on disparate tetramate chemotypes in phomasetin (6) and pyrrolocin A (10). Further, 6 and 10 were modified using "click" chemistry to re-engineer bioactivity. Compounds 6 and 10 hold promise as a pipeline-diversifying chemotype for promising leads against T. vaginalis and M. genitalium.
Collapse
Affiliation(s)
- Thilini Peramuna
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Gwendolyn E Wood
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington 98104, United States
| | - Ziwei Hu
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Stephenson Life Sciences Research Center, Norman, Oklahoma 73019, United States
| | - Karen L Wendt
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Laarni Kendra T Aguila
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington 98104, United States
| | - Caroline M Kim
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington 98104, United States
| | - Adam S Duerfeldt
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Robert H Cichewicz
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
3
|
Ola ARB. Cis -decalin tetramic acid metabolite from a mangrove derived endophytic fungus Nigrospora oryzae. J Antibiot (Tokyo) 2024; 77:778-782. [PMID: 39117971 DOI: 10.1038/s41429-024-00764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024]
Abstract
Most of the natural products containing tetramic acid have trans configuration of the decalin moiety. Undana A (1), a new cis decalin-bearing tetramic acid metabolite was isolated from endophytic fungi Nigrospora oryzae associated with Avicennia marina. The structure was determined based on the mass and NMR spectral data together with the comparison of the literature. This is the first report of cis decalin-tetramic acid metabolite from the mangrove endophytic fungus. Compound 1 was tested for cytotoxic against L5178Y mouse cancer cells and antibacterial activity against several gram-positive including MRSA and gram-negative bacteria but was found inactive.
Collapse
Affiliation(s)
- Antonius R B Ola
- Department of Chemistry, Faculty of Science and Engineering-Universitas Nusa Cendana, Jln Adi Sucipto Penfui, Kupang, NTT, Indonesia.
- Laboratorium Terpadu (Biosains), Universitas Nusa Cendana, Jln. Adi Sucipto Penfui, Kupang, NTT, Indonesia.
| |
Collapse
|
4
|
Pham KL, Maier ME. Approach to the Core Structure of Signermycin B. ChemistryOpen 2024; 13:e202400103. [PMID: 38809061 DOI: 10.1002/open.202400103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/22/2024] [Indexed: 05/30/2024] Open
Abstract
Among the natural tetramic acids with a decalinoyl part, signermycin B is unique because it contains a cis-decalin. In this paper, we demonstrate that the cis-decalin section of signermycin B can be accessed by an anionic oxy-Cope rearrangement. The substrate, a tricyclic dienol was prepared by an intramolecular Diels-Alder reaction of a masked ortho-benzoquinone, generated by oxidation of an α-methoxyphenol in presence of cis-2-hexenol. After a superfluous bromine on the cycloadduct was removed, reaction of the tricyclic ketone with isopropenylmagnesium bromide led to the tricyclic trienol that underwent the oxy-Cope rearrangement to a cis-decalinone. While we could show, that introduction of the 4-ethyl substituent (signermycin B numbering) is possible by enolate alkylation, the 4-epi-isomer was formed.
Collapse
Affiliation(s)
- Khoa Linh Pham
- Eberhard Karls Universität Tübingen, Institut für Organische Chemie, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Martin E Maier
- Eberhard Karls Universität Tübingen, Institut für Organische Chemie, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| |
Collapse
|
5
|
Charria-Girón E, Zeng H, Gorelik TE, Pahl A, Truong KN, Schrey H, Surup F, Marin-Felix Y. Arcopilins: A New Family of Staphylococcus aureus Biofilm Disruptors from the Soil Fungus Arcopilus navicularis. J Med Chem 2024; 67:15029-15040. [PMID: 39141525 PMCID: PMC11403616 DOI: 10.1021/acs.jmedchem.4c00585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Biofilms represent a key challenge in the treatment of microbial infections; for instance, Staphylococcus aureus causes chronic or fatal infections by forming biofilms on medical devices. Herein, the fungus Arcopilus navicularis was found to produce a novel family of PKS-NRPS metabolites that are able to disrupt preformed biofilms of S. aureus. Arcopilins A-F (1-6), tetramic acids, and arcopilin G (7), a 2-pyridone, were elucidated using HR-ESI-MS and one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopy. Their absolute configuration was established by the synthesis of MPTA-esters for 2, analysis of 1H-1H coupling constants, and ROESY correlations, along with comparison with the crystal structure of 7. Arcopilin A (1) not only effectively disrupts preformed biofilms of S. aureus but also potentiates the activity of gentamicin and vancomycin up to 115- and 31-fold times, respectively. Our findings demonstrate the potential application of arcopilins for the conjugated treatment of infections caused by S. aureus with antibiotics unable to disrupt preformed biofilms.
Collapse
Affiliation(s)
- Esteban Charria-Girón
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Haoxuan Zeng
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Tatiana E Gorelik
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Department Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany
| | - Alexandra Pahl
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Khai-Nghi Truong
- Rigaku Europe SE, Hugenottenallee 167, 63263 Neu-Isenburg, Germany
| | - Hedda Schrey
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Frank Surup
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Yasmina Marin-Felix
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| |
Collapse
|
6
|
Backx S, Van Vooren J, Geerts J, Hyde C, Van Hecke O, Pappaert H, Dewitte K, Ameye M, Audenaert K, Desmedt W, Mangelinckx S. Study of Amino Acid-Derived 3-Acyltetramic Acids as Herbicidal Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19644-19656. [PMID: 39225292 DOI: 10.1021/acs.jafc.4c04811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The growing problem of herbicide resistance necessitates the development of novel herbicidal active ingredients, together with other integrated weed management approaches. Natural products are a major source of inspiration for novel actives. In previous research, we identified a 3-acyltetramic acid of microbial origin that inhibited algal growth in marine biofilms, at least in part through inhibition of photosystem II. In this work, we demonstrate the herbicidal effect of this lead compound and construct multiple libraries to test the impact of the different substituents of the central scaffold in order to study the structure-activity relationships. Among these analogues, the highest activities were found for medium- to long-chain acyl groups and apolar secondary amino acid residues. Finally, we provide first insights into the herbicidal mechanisms and present preliminary field-trial and ecotoxicological results for TA12-Pro, the most active analogue in our library. Together, this research shows the potential of 3-acyltetramic acids for herbicide development.
Collapse
Affiliation(s)
- Simon Backx
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Jelle Van Vooren
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | - Jasper Geerts
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | - Cédric Hyde
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | - Owen Van Hecke
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | - Hanne Pappaert
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | - Kevin Dewitte
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | - Maarten Ameye
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
- Inagro, Ieperseweg 87, 8800 Roeselare, Belgium
| | - Kris Audenaert
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | - Willem Desmedt
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Burg. van Gansberghelaan 96, 9820 Merelbeke, Belgium
| | - Sven Mangelinckx
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
7
|
Shambalova VE, Larkovich RV, Aldoshin AS, Lyssenko KA, Nechaev MS, Nenajdenko VG. Sequential Modification of Pyrrole Ring with up to Three Different Nucleophiles. J Org Chem 2024; 89:11183-11194. [PMID: 39087640 DOI: 10.1021/acs.joc.4c00726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
An umpolung strategy was used for the preparation of highly functionalized 3-pyrrolin-2-ones. This approach involves dearomative double chlorination of 1H-pyrroles to form highly reactive dichloro-substituted 2H-pyrroles. The resulting intermediate reacts selectively with wet alcohols to form the corresponding alkoxy-substituted 3-pyrrolin-2-ones via double nucleophilic substitution in up to 99% yield. The subsequent reaction with different N-, O-, and S-nucleophiles opens access to highly functionalized pyrrolinones bearing additional functionality. The overall outcome of the reported sequence is step-by-step nucleophilic modification of pyrroles with three different nucleophiles. All steps were found to be highly efficient and 100% regioselective. This transformation proceeds under mild conditions and does not require any catalyst to give final products in very high yields. The obtained experimental results are in perfect agreement with the data obtained by theoretical investigation of these reactions.
Collapse
Affiliation(s)
- Victoria E Shambalova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russian Federation
| | - Roman V Larkovich
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russian Federation
| | - Alexander S Aldoshin
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russian Federation
| | - Konstantin A Lyssenko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russian Federation
| | - Mikhail S Nechaev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russian Federation
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, Moscow 119991, Russian Federation
| | - Valentine G Nenajdenko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russian Federation
| |
Collapse
|
8
|
Kim HW, Lee JW, Shim SH. Biosynthesis, biological activities, and structure-activity relationships of decalin-containing tetramic acid derivatives isolated from fungi. Nat Prod Rep 2024; 41:1294-1317. [PMID: 38916377 DOI: 10.1039/d4np00013g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Covering: up to December 2023Decalin-containing tetramic acid derivatives, especially 3-decalinoyltetramic acids (3-DTAs), are commonly found as fungal secondary metabolites. Numerous biological activities of this class of compounds, such as antibiotic, antiviral, antifungal, antiplasmodial, and antiprotozoal properties, have been the subject of ongoing research. For this reason, these molecules have attracted a lot of interest from the scientific community and various efforts including semi-synthesis, co-culturing with bacteria and biosynthetic gene sequencing have been made to obtain more derivatives. In this review, 3-DTAs are classified into four major groups based on the absolute configuration of the bicyclic decalin ring. Their biosynthetic pathways, various biological activities, and structure-activity relationship are then introduced.
Collapse
Affiliation(s)
- Hyun Woo Kim
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Jin Woo Lee
- College of Pharmacy, Dongguk University, Goyang, Republic of Korea.
| | - Sang Hee Shim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
9
|
Grundmann CO, Guzman J, Vilcinskas A, Pupo MT. The insect microbiome is a vast source of bioactive small molecules. Nat Prod Rep 2024; 41:935-967. [PMID: 38411238 DOI: 10.1039/d3np00054k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Covering: September 1964 to June 2023Bacteria and fungi living in symbiosis with insects have been studied over the last sixty years and found to be important sources of bioactive natural products. Not only classic producers of secondary metabolites such as Streptomyces and other members of the phylum Actinobacteria but also numerous bacteria from the phyla Proteobacteria and Firmicutes and an impressive array of fungi (usually pathogenic) serve as the source of a structurally diverse number of small molecules with important biological activities including antimicrobial, cytotoxic, antiparasitic and specific enzyme inhibitors. The insect niche is often the exclusive provider of microbes producing unique types of biologically active compounds such as gerumycins, pederin, dinactin, and formicamycins. However, numerous insects still have not been described taxonomically, and in most cases, the study of their microbiota is completely unexplored. In this review, we present a comprehensive survey of 553 natural products produced by microorganisms isolated from insects by collating and classifying all the data according to the type of compound (rather than the insect or microbial source). The analysis of the correlations among the metadata related to insects, microbial partners, and their produced compounds provides valuable insights into the intricate dynamics between insects and their symbionts as well as the impact of their metabolites on these relationships. Herein, we focus on the chemical structure, biosynthesis, and biological activities of the most relevant compounds.
Collapse
Affiliation(s)
| | - Juan Guzman
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- Institute for Insect Biotechnology, Justus-Liebig-University, Giessen, Germany
| | - Mônica Tallarico Pupo
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
10
|
Oyadomari Y, Goto Y, Suganuma K, Kawazu SI, Becking LE, Fusetani N, Nakao Y. Aurantoside L, a New Tetramic Acid Glycoside with Anti-Leishmanial Activity Isolated from the Marine Sponge Siliquariaspongia japonica. Mar Drugs 2024; 22:171. [PMID: 38667788 PMCID: PMC11050911 DOI: 10.3390/md22040171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
A new tetramic acid glycoside, aurantoside L (1), was isolated from the sponge Siliquariaspongia japonica collected at Tsushima Is., Nagasaki Prefecture, Japan. The structure of aurantoside L (1) composed of a tetramic acid bearing a chlorinated polyene system and a trisaccharide part was elucidated using spectral analysis. Aurantoside L (1) showed anti-parasitic activity against L. amazonensis with an IC50 value of 0.74 µM.
Collapse
Affiliation(s)
- Yasumoto Oyadomari
- Department of Chemistry and Biochemistry, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan;
| | - Yasuyuki Goto
- Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan;
| | - Keisuke Suganuma
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro 080-8555, Japan; (K.S.); (S.-i.K.)
| | - Shin-ichiro Kawazu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro 080-8555, Japan; (K.S.); (S.-i.K.)
| | - Leontine E. Becking
- Aquaculture & Fisheries Group, Wageningen University & Research, P.O. Box 338, Bode 32, 6700 AH Wageningen, The Netherlands;
- Naturalis Biodiversity Center, Darwinweg 2, 23333 CR Leiden, The Netherlands
| | - Nobuhiro Fusetani
- Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan;
| | - Yoichi Nakao
- Department of Chemistry and Biochemistry, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan;
- Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan;
| |
Collapse
|
11
|
Huang Z, Zhu W, Bai Y, Bai X, Zhang H. Non-ribosomal peptide synthetase (NRPS)-encoding products and their biosynthetic logics in Fusarium. Microb Cell Fact 2024; 23:93. [PMID: 38539193 PMCID: PMC10967133 DOI: 10.1186/s12934-024-02378-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/21/2024] [Indexed: 11/11/2024] Open
Abstract
Fungal non-ribosomal peptide synthetase (NRPS)-encoding products play a paramount role in new drug discovery. Fusarium, one of the most common filamentous fungi, is well-known for its biosynthetic potential of NRPS-type compounds with diverse structural motifs and various biological properties. With the continuous improvement and extensive application of bioinformatic tools (e.g., anti-SMASH, NCBI, UniProt), more and more biosynthetic gene clusters (BGCs) of secondary metabolites (SMs) have been identified in Fusarium strains. However, the biosynthetic logics of these SMs have not yet been well investigated till now. With the aim to increase our knowledge of the biosynthetic logics of NPRS-encoding products in Fusarium, this review firstly provides an overview of research advances in elucidating their biosynthetic pathways.
Collapse
Affiliation(s)
- Ziwei Huang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wangjie Zhu
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yifan Bai
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xuelian Bai
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
12
|
Zang H, Cheng Y, Li M, Zhou L, Hong LL, Deng H, Lin HW, Zhou Y. Mutagenetic analysis of the biosynthetic pathway of tetramate bripiodionen bearing 3-(2H-pyran-2-ylidene)pyrrolidine-2,4-dione skeleton. Microb Cell Fact 2024; 23:87. [PMID: 38515152 PMCID: PMC10956176 DOI: 10.1186/s12934-024-02364-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/12/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Natural tetramates are a family of hybrid polyketides bearing tetramic acid (pyrrolidine-2,4-dione) moiety exhibiting a broad range of bioactivities. Biosynthesis of tetramates in microorganisms is normally directed by hybrid polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) machineries, which form the tetramic acid ring by recruiting trans- or cis-acting thioesterase-like Dieckmann cyclase in bacteria. There are a group of tetramates with unique skeleton of 3-(2H-pyran-2-ylidene)pyrrolidine-2,4-dione, which remain to be investigated for their biosynthetic logics. RESULTS Herein, the tetramate type compounds bripiodionen (BPD) and its new analog, featuring the rare skeleton of 3-(2H-pyran-2-ylidene)pyrrolidine-2,4-dione, were discovered from the sponge symbiotic bacterial Streptomyces reniochalinae LHW50302. Gene deletion and mutant complementation revealed the production of BPDs being correlated with a PKS-NRPS biosynthetic gene cluster (BGC), in which a Dieckmann cyclase gene bpdE was identified by sit-directed mutations. According to bioinformatic analysis, the tetramic acid moiety of BPDs should be formed on an atypical NRPS module constituted by two discrete proteins, including the C (condensation)-A (adenylation)-T (thiolation) domains of BpdC and the A-T domains of BpdD. Further site-directed mutagenetic analysis confirmed the natural silence of the A domain in BpdC and the functional necessities of the two T domains, therefore suggesting that an unusual aminoacyl transthiolation should occur between the T domains of two NRPS subunits. Additionally, characterization of a LuxR type regulator gene led to seven- to eight-fold increasement of BPDs production. The study presents the first biosynthesis case of the natural molecule with 3-(2H-pyran-2-ylidene)pyrrolidine-2,4-dione skeleton. Genomic mining using BpdD as probe reveals that the aminoacyl transthiolation between separate NRPS subunits should occur in a certain population of NRPSs in nature.
Collapse
Affiliation(s)
- Haixia Zang
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yijia Cheng
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Mengjia Li
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Lin Zhou
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Li-Li Hong
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Hai Deng
- Department of Chemistry, University of Aberdeen, Aberdeen, AB24 3UE, UK
| | - Hou-Wen Lin
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Yongjun Zhou
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
13
|
Kwon HJ, Choi EH, Choi U, Park SH. Biological production of epicoccamide-aglycone and its cytotoxicity. Bioorg Med Chem Lett 2023; 96:129524. [PMID: 37839713 DOI: 10.1016/j.bmcl.2023.129524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Epicoccamide (EPC) is an O-d-mannosylated acyltetramic acid of Epicoccum origin and is a bolaamphiphilic fungal polyketide. EPC displays weak toxicity against Staphylococcus aureus and HeLa cell lines. The EPC biosynthetic gene cluster was previously identified in Epicoccum nigrum and knockout of the glycosyltransferase gene (epcB) abolished EPC production. EPC-aglycone was expected in the epcB knockout but was not found. This study demonstrates that extractive culture using the hydrophobic resin Diaion HP-20 resulted in the production of EPC-aglycone, which was isolated using chromatographic separation techniques, and its structural identity was substantiated by chemical analyses. EPC-aglycone displayed strong antibacterial activity against Staphylococcus aureus, with the minimal inhibitory concentration of 1 μg/mL (64 μg/mL for EPC). EPC-aglycone displayed higher levels of growth inhibition against HeLa cell line (the half inhibitory concentration, 19 μM) and WI-38 (15 μM) cell line than EPC (76 μM and 38 μM vs. HeLa and WI-38, respectively). The dose-response curve fit of growth inhibition indicated that EPC-aglycone adopted a shallow curve (low slope factor), which was different from that of EPC, suggesting that their cellular targets are distinct from each other. This study substantiates that the d-mannose attachment is the final step in EPC biosynthesis, showcasing a glycosylation-mediated modulation of the biological activity of simple acyltetramic acid. This study also highlights the usefulness of extractive cultures in mining cryptic microbial natural products.
Collapse
Affiliation(s)
- Hyung-Jin Kwon
- Department of Biological Sciences and Bioinformatics, Myongji University, Yongin-si, Gyeonggi-do 17058, Republic of Korea.
| | - Eun Ha Choi
- Department of Biological Sciences and Bioinformatics, Myongji University, Yongin-si, Gyeonggi-do 17058, Republic of Korea
| | - Umji Choi
- Department of Biological Sciences and Bioinformatics, Myongji University, Yongin-si, Gyeonggi-do 17058, Republic of Korea
| | - Si-Hyung Park
- Department of Oriental Medicine Resources and Institute for Traditional Korean Medicine Industry, Mokpo National University, Muan-gun, Jeollanam-do 58554, Republic of Korea
| |
Collapse
|
14
|
Demir Ö, Zeng H, Schulz B, Schrey H, Steinert M, Stadler M, Surup F. Bioactive Compounds from an Endophytic Pezicula sp. Showing Antagonistic Effects against the Ash Dieback Pathogen. Biomolecules 2023; 13:1632. [PMID: 38002314 PMCID: PMC10669340 DOI: 10.3390/biom13111632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
A fungal endophyte originating from the Canary Islands was identified as a potent antagonist against the fungal phytopathogen Hymenoscyphus fraxineus, which causes the devastating ash dieback disease. This endophyte was tentatively identified as Pezicula cf. ericae, using molecular barcoding. Isolation of secondary metabolites by preparative high-performance liquid chromatography (HPLC) yielded the known compounds CJ-17,572 (1), mycorrhizin A (3) and cryptosporioptides A-C (4-6), besides a new N-acetylated dihydroxyphenylalanin derivative 2, named peziculastatin. Planar structures were elucidated by NMR and HRMS data, while the relative stereochemistry of 2 was assigned by H,H and C,H coupling constants. The assignment of the unknown stereochemistry of CJ-17,572 (1) was hampered by the broadening of NMR signals. Nevertheless, after semisynthetic conversion of 1 into its methyl derivatives 7 and 8, presumably preventing tautomeric effects, the relative configuration could be assigned, whereas comparison of ECD data to those of related compounds determined the absolute configuration. Metabolites 1 and 3 showed significant antifungal effects in vitro against H. fraxineus. Furthermore, 4-6 exhibited significant dispersive effects on preformed biofilms of S. aureus at concentrations up to 2 µg/mL, while the biofilm formation of C. albicans was also inhibited. Thus, cryptosporioptides might constitute a potential source for the development of novel antibiofilm agents.
Collapse
Affiliation(s)
- Özge Demir
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany; (Ö.D.); (H.Z.); (H.S.); (M.S.)
| | - Haoxuan Zeng
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany; (Ö.D.); (H.Z.); (H.S.); (M.S.)
| | - Barbara Schulz
- Institute of Microbiology, Technical University of Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany; (B.S.); (M.S.)
| | - Hedda Schrey
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany; (Ö.D.); (H.Z.); (H.S.); (M.S.)
- Institute of Microbiology, Technical University of Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany; (B.S.); (M.S.)
| | - Michael Steinert
- Institute of Microbiology, Technical University of Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany; (B.S.); (M.S.)
| | - Marc Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany; (Ö.D.); (H.Z.); (H.S.); (M.S.)
- Institute of Microbiology, Technical University of Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany; (B.S.); (M.S.)
| | - Frank Surup
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany; (Ö.D.); (H.Z.); (H.S.); (M.S.)
- Institute of Microbiology, Technical University of Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany; (B.S.); (M.S.)
| |
Collapse
|
15
|
Zhang Y, Liao G, Wang M, Zhang Z, Liu L, Song Y, Wang D, Hao T, Feng J, Xia B, Wang Y, Tang X, Chen Y. Human-associated bacteria adopt an unusual route for synthesizing 3-acetylated tetramates for environmental adaptation. MICROBIOME 2023; 11:97. [PMID: 37147735 PMCID: PMC10161427 DOI: 10.1186/s40168-023-01548-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/11/2023] [Indexed: 05/07/2023]
Abstract
BACKGROUND Tetramates or tetramic acid-containing compounds (TACs) are a group of bioactive natural products featuring a pyrrolidine-2,4-dione ring acknowledged being closed via Dieckmann cyclization. The cariogenic Streptococcus mutans strains bearing a muc biosynthetic gene cluster (BGC) can synthesize mutanocyclin (MUC), a 3-acetylated TAC that can inhibit both leukocyte chemotaxis and filamentous development in Candida albicans. Some strains can also accumulate reutericyclins (RTCs), the intermediates of MUC biosynthesis with antibacterial activities. However, the formation mechanism of the pyrrolidine-2,4-dione ring of MUC and the distribution of muc-like BGCs along with their ecological functions has not been explored extensively. RESULTS We demonstrated that a key intermediate of MUC biosynthesis, M-307, is installed by a hybrid nonribosomal peptide synthetase-polyketide synthase assembly line and its pyrrolidine-2,4-dione ring is closed via an unprecedented lactam bond formation style. Subsequent C-3 acetylation will convert M-307 to RTCs, which is then hydrolyzed by a deacylase, MucF, to remove the N-1 fatty acyl appendage to generate MUC. Distribution analysis showed that the muc-like BGCs distribute predominantly in human-associated bacteria. Interestingly, most of the muc-like BGCs possessing a mucF gene were isolated from human or livestock directly, indicating their involvement in alleviating the host's immune attacks by synthesizing MUC; while those BGCs lacking mucF gene distribute mainly in bacteria from fermented products, suggesting that they tend to synthesize RTCs to compete with neighboring bacteria. It is noteworthy that many bacteria in the same habitats (e.g., the oral cavity) lack the muc-like BGC, but possess functional MucF homologues to "detoxify" RTCs to MUC, including several competitive bacteria of S. mutans. We also comparably studied the distribution of TAS1, a fungal enzyme responsible for the production of phytotoxic tenuazonic acids (TeAs), a class of 3-acetylated TACs with similar structure but distinct biosynthetic mechanism to MUC, and found that it mainly exists in plants or crops. CONCLUSIONS The in vivo and in vitro experiments revealed that the pyrrolidine-2,4-dione ring of MUC is closed via lactam bond formation, which may be adopted by many TACs without 3-acyl decorations. Besides, we found that muc-like BGCs are widespread in human-associated bacteria and their shapes and main products can be influenced by the habitat environment and vice versa. By comparing with TeAs, we provided thought-provoking insights into how ecological and evolutionary forces drive bacteria and fungi to construct a common 3-acetylated pyrrolidine-2,4-dione core through different routes, and how the biosynthetic processes are delicately controlled to generate diverse 3-acetylated TACs for environmental adaptation. Video Abstract.
Collapse
Affiliation(s)
- Yuwei Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ge Liao
- Institute of Chemical Biology, Shenzhen Bay Laboratory, 518132, Shenzhen, China
| | - Min Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, Guangdong, China
| | - Zhao Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, 100034, China
| | - Liwei Liu
- Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China
| | - Yuqin Song
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dacheng Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tingting Hao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Feng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Xia
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yixiang Wang
- Central Laboratory Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Xiaoyu Tang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, 518132, Shenzhen, China.
| | - Yihua Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
16
|
Amycolatopsis from Desert Specialist Fungus-Growing Ants Suppresses Contaminant Fungi Using the Antibiotic ECO-0501. Appl Environ Microbiol 2023; 89:e0183822. [PMID: 36700628 PMCID: PMC9972958 DOI: 10.1128/aem.01838-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Symbiotic Actinobacteria help fungus-growing ants suppress fungal pathogens through the production of antifungal compounds. Trachymyrmex ants of the southwest desert of the United States inhabit a unique niche far from the tropical rainforests in which most fungus-growing ant species are found. These ants may not encounter the specialist fungal pathogen Escovopsis known to threaten colonies of other fungus-growing ants. It is unknown whether Actinobacteria associated with these ants antagonize contaminant fungi and, if so, what the chemical basis of such antagonism is. We find that Pseudonocardia and Amycolatopsis strains isolated from three desert specialist Trachymyrmex species do antagonize diverse contaminant fungi isolated from field-collected ant colonies. We did not isolate the specialist fungal pathogen Escovopsis in our sampling. We trace strong antifungal activity from Amycolatopsis isolates to the molecule ECO-0501, an antibiotic that was previously under preclinical development as an antibacterial agent. In addition to suppression of contaminant fungi, we find that this molecule has strong activity against ant-associated Actinobacteria and may also play a role in bacterial competition in this niche. By studying interspecies interactions in a previously unexplored niche, we have uncovered novel bioactivity for a structurally unique antibiotic. IMPORTANCE Animal hosts often benefit from chemical defenses provided by microbes. These molecular defenses are a potential source of novel antibiotics and offer opportunities for understanding how antibiotics are used in ecological contexts with defined interspecies interactions. Here, we recover contaminant fungi from nests of Trachymyrmex fungus-growing ants of the southwest desert of the United States and find that they are suppressed by Actinobacteria isolated from these ants. The antibiotic ECO-0501 is an antifungal agent used by some of these Amycolatopsis bacterial isolates. This antibiotic was previously investigated in preclinical studies and known only for antibacterial activity.
Collapse
|
17
|
tert-Butyl 2-Amino-3-cyano-5-oxo-4-phenyl-5,7-dihydropyrano[2,3-c]pyrrole-6(4H)-carboxylate. MOLBANK 2023. [DOI: 10.3390/m1575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Organocatalyzed synthesis of tert-butyl 2-amino-3-cyano-5-oxo-4-phenyl-5,7-dihydropyrano[2,3-c]pyrrole-6(4H)-carboxylate, prepared from Boc-tetramic acid and benzylidenemalononitrile, is disclosed. Two bifunctional noncovalent organocatalysts were employed, yielding the product as a racemic mixture in both cases. The structure of the new synthesized compound was confirmed by high resolution mass-spectrometry, 1H- and 13C-NMR, HSQC, and IR spectroscopy.
Collapse
|
18
|
3-(1-Ethylamino-ethylidene)-1-methyl-pyrrolidine-2,4-dione. MOLBANK 2023. [DOI: 10.3390/m1556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
3-(1-Ethylamino-ethylidene)-1-methyl-pyrrolidine-2,4-dione was obtained as an unexpected product in a three-step synthesis starting with o-nitrobenzoyl sarcosine, acetoacetanilide and ethylamine. The compound showed moderate antibacterial activity against S. aureus and E. coli.
Collapse
|
19
|
Nie Q, Guo S, Gao X. Unraveling the biosynthesis of penicillenols by genome mining PKS-NRPS gene clusters in Penicillium citrinum. AIChE J 2022; 68:e17885. [PMID: 36591370 PMCID: PMC9797205 DOI: 10.1002/aic.17885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/16/2022] [Indexed: 01/05/2023]
Abstract
Penicillenols belong to the family of tetramic acids with anticancer and antibacterial activities. Here, we report the discovery of the biosynthetic gene cluster (pnc) for penicillenol A1 and E in Penicillium citrinum ATCC9849 by genome mining. We discover the pnc cluster based on the results of gene deletions in P. citrinum and gene cluster heterologous expression in Aspergillus nidulans. We also propose the assembly line of the PKS module in PncA with the reduction by PncB provides a highly reduce polyketide chain to be further linked with an L-threonine molecule and released from PncA to produce penicillenol E. Further formation of penicillenol A1 requires the N-methylation of tetramic acid group by PncC. Our work deepens the understanding of the biosynthetic logic for N-methylated tetramic acids and contributes to the discovery of new penicillenols by genome mining.
Collapse
Affiliation(s)
- Qiuyue Nie
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
| | - Shuqi Guo
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
| | - Xue Gao
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| |
Collapse
|
20
|
Liu X, Wen S, You W, Wang X, Li QX, Bian Q, Lv P, Hua R. Efficient Total Synthesis and Herbicidal Activity of 3-Acyltetramic Acids: Endogenous Abscisic Acid Synthesis Regulators. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13510-13517. [PMID: 36251501 DOI: 10.1021/acs.jafc.2c04382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
An efficient synthesis method will allow a large number of tetramic acid analogues to be synthesized for property and potency optimization. In this study, a facile and efficient method was described for the synthesis of 3-acyltetramic acids. The synthesis was accomplished mainly via (1) mild intramolecular cyclization and (2) the formation of β-ketoamides between nucleophiles and acyl Meldrum's acids. 3-Acyltetramic acid exhibited phytotoxicity against Echinochloa crusgalli and Portulaca oleracea. At a dosage of 750 g ha-1, 6k and 6a showed high herbicidal activity against E. crusgalli, Digitaria sanguinalis and P. oleracea, Amaranthus retroflexus, respectively. 6k inhibited the synthesis of endogenous abscisic acid, thus seedling germination and plant growth. The incorporation of various acyl Meldrum's acids and amino acid esters was applicable to the parallel synthesis of 3-acyltetramic acids. The mode of action and herbicidal activity indicate that 3-tetramic acid had good herbicidal performance and was a promising herbicide candidate. This study will provide a reference for novel herbicide development.
Collapse
Affiliation(s)
- Xiankun Liu
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resource & Environment, Anhui Agricultural University, 130 Changjiangxi Road, Hefei, Anhui230036, China
| | - Shiqiang Wen
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resource & Environment, Anhui Agricultural University, 130 Changjiangxi Road, Hefei, Anhui230036, China
| | - Weichen You
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resource & Environment, Anhui Agricultural University, 130 Changjiangxi Road, Hefei, Anhui230036, China
| | - Xiaofei Wang
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resource & Environment, Anhui Agricultural University, 130 Changjiangxi Road, Hefei, Anhui230036, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, Hawaii96822, United States
| | - Qiang Bian
- National Pesticide Engineering Research Center (Tianjin), Nankai University, Tianjin300071, China
| | - Pei Lv
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resource & Environment, Anhui Agricultural University, 130 Changjiangxi Road, Hefei, Anhui230036, China
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, Anhui235000, China
| | - Rimao Hua
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resource & Environment, Anhui Agricultural University, 130 Changjiangxi Road, Hefei, Anhui230036, China
| |
Collapse
|
21
|
Synthesis and Antifungal Activity of New butenolide Containing Methoxyacrylate Scaffold. Molecules 2022; 27:molecules27196541. [PMID: 36235077 PMCID: PMC9573425 DOI: 10.3390/molecules27196541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
In order to improve the antifungal activity of new butenolides containing oxime ether moiety, a series of new butenolide compounds containing methoxyacrylate scaffold were designed and synthesized, based on the previous reports. Their structures were characterized by 1H NMR, 13C NMR, HR-MS spectra, and X-ray diffraction analysis. The in vitro antifungal activities were evaluated by the mycelium growth rate method. The results showed that the inhibitory activities of these new compounds against Sclerotinia sclerotiorum were significantly improved, in comparison with that of the lead compound 3-8; the EC50 values of V-6 and VI-7 against S. sclerotiorum were 1.51 and 1.81 mg/L, nearly seven times that of 3-8 (EC50 10.62 mg/L). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observation indicated that compound VI-3 had a significant impact on the structure and function of the hyphal cell of S. sclerotiorum mycelium and the positive control trifloxystrobin. Molecular simulation docking results indicated that the introduction of methoxyacrylate scaffold is beneficial to improving the antifungal activity of these compounds against S. sclerotiorum, which can be used as the lead for further structure optimization.
Collapse
|
22
|
Dong YQ, Wang K, Zhuo CX. Molybdenum-Catalyzed Intermolecular Deoxygenative Cross-Coupling Reactions of 1,2-Diketones with α-Ketoamides. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yuan-Qing Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Kai Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Chun-Xiang Zhuo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, P. R. China
| |
Collapse
|
23
|
Hirasawa S, Kurashima T, Hasegawa T, Souma K, Kanomata N. Total Synthesis of (±)-Azaspirene via Crystallization-induced Diastereomer Transformation. CHEM LETT 2022. [DOI: 10.1246/cl.220299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shun Hirasawa
- Department of Chemistry and Biochemistry, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Takashi Kurashima
- Department of Chemistry and Biochemistry, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Takahiro Hasegawa
- Department of Chemistry and Biochemistry, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Kazunori Souma
- Department of Applied Chemistry, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Nobuhiro Kanomata
- Department of Chemistry and Biochemistry, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
24
|
Kobayashi K, Kogen H, Tamura O. Total Synthesis of Phaeosphaerides with STAT3 Inhibitory Activity. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kenichi Kobayashi
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido
| | - Hiroshi Kogen
- Graduate School of Pharmaceutical Sciences, Meiji Pharmaceutical University
| | | |
Collapse
|
25
|
Wittmann L, Wachter AC, Schrey H, Schobert R. Synthetic Approach to the Natural N-Nitrosohydroxylamino Tetramic Acid JBIR-141. Org Lett 2022; 24:5171-5175. [PMID: 35815821 DOI: 10.1021/acs.orglett.2c02006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An analogue of the Streptomyces metabolite JBIR-141, featuring a delicate N-nitrosohydroxylamine, a 3-acyltetramic acid, and an oxazoline, was synthesized by a convergent strategy from l-alanine, l-threonine, and l-glutamic acid. Key steps were the cyclization of an Ala-Thr derivative to give the oxazoline, a Dieckmann condensation affording the 3-acyltetramic acid, and the N-nitrosation of a hydroxylamino derivative of glutamic acid. An adequate protecting group strategy was established for coupling the three building blocks.
Collapse
Affiliation(s)
- Lea Wittmann
- Organic Chemistry Laboratory, University Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth, Germany
| | - Anja C Wachter
- Organic Chemistry Laboratory, University Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth, Germany
| | - Hedda Schrey
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Rainer Schobert
- Organic Chemistry Laboratory, University Bayreuth, Universitaetsstrasse 30, 95440 Bayreuth, Germany
| |
Collapse
|
26
|
Hansen KA, Kim RR, Lawton ES, Tran J, Lewis SK, Deol AS, Van Arnam EB. Bacterial Associates of a Desert Specialist Fungus-Growing Ant Antagonize Competitors with a Nocamycin Analog. ACS Chem Biol 2022; 17:1824-1830. [PMID: 35730734 DOI: 10.1021/acschembio.2c00187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fungus-growing ants are defended by antibiotic-producing bacterial symbionts in the genus Pseudonocardia. Nutrients provisioned by the ants support these symbionts but also invite colonization and competition from other bacteria. As an arena for chemically mediated bacterial competition, this niche offers a window into ecological antibiotic function with well-defined competing organisms. From multiple colonies of the desert specialist ant Trachymyrmex smithi, we isolated Amycolatopsis bacteria that inhibit the growth of Pseudonocardia symbionts under laboratory conditions. Using bioassay-guided fractionation, we discovered a novel analog of the antibiotic nocamycin that is responsible for this antagonism. We identified the biosynthetic gene cluster for this antibiotic, which has a suite of oxidative enzymes consistent with this molecule's more extensive oxidative tailoring relative to similar tetramic acid antibiotics. High genetic similarity to globally distributed soil Amycolatopsis isolates suggest that this ant-derived Amycolatopsis strain may be an opportunistic soil strain whose antibiotic production allows for competition in this specialized niche. This nocamycin analog adds to the catalog of novel bioactive molecules isolated from bacterial associates of fungus-growing ants, and its activity against ant symbionts represents, to our knowledge, the first putative ecological function for the widely distributed enoyl tetramic acid family of antibiotics.
Collapse
Affiliation(s)
- Katherine A Hansen
- Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California 91711, United States
| | - Rose R Kim
- Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California 91711, United States
| | - Elisabeth S Lawton
- Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California 91711, United States
| | - Janet Tran
- Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California 91711, United States
| | - Stephanie K Lewis
- Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California 91711, United States
| | - Arjan S Deol
- Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California 91711, United States
| | - Ethan B Van Arnam
- Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California 91711, United States
| |
Collapse
|
27
|
Kirsch SH, Haeckl FPJ, Müller R. Beyond the approved: target sites and inhibitors of bacterial RNA polymerase from bacteria and fungi. Nat Prod Rep 2022; 39:1226-1263. [PMID: 35507039 DOI: 10.1039/d1np00067e] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: 2016 to 2022RNA polymerase (RNAP) is the central enzyme in bacterial gene expression representing an attractive and validated target for antibiotics. Two well-known and clinically approved classes of natural product RNAP inhibitors are the rifamycins and the fidaxomycins. Rifampicin (Rif), a semi-synthetic derivative of rifamycin, plays a crucial role as a first line antibiotic in the treatment of tuberculosis and a broad range of bacterial infections. However, more and more pathogens such as Mycobacterium tuberculosis develop resistance, not only against Rif and other RNAP inhibitors. To overcome this problem, novel RNAP inhibitors exhibiting different target sites are urgently needed. This review includes recent developments published between 2016 and today. Particular focus is placed on novel findings concerning already known bacterial RNAP inhibitors, the characterization and development of new compounds isolated from bacteria and fungi, and providing brief insights into promising new synthetic compounds.
Collapse
Affiliation(s)
- Susanne H Kirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany. .,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - F P Jake Haeckl
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany. .,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany. .,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany.,Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
28
|
Zhao DL, Liu J, Han XB, Wang M, Peng YL, Ma SQ, Cao F, Li YQ, Zhang CS. Decalintetracids A and B, two pairs of unusual 3-decalinoyltetramic acid derivatives with phytotoxicity from Fusarium equiseti D39. PHYTOCHEMISTRY 2022; 197:113125. [PMID: 35157922 DOI: 10.1016/j.phytochem.2022.113125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
The filamentous fungi Fusarium sp. are well-known for their ability to produce abundant specialised metabolites with attractive chemical structures and bioactivities. In this study, chemical analyses of the endophyte F. equiseti D39 led to the isolation and identification of two pairs of undescribed 3-decalinoyltetramic acids (3DTAs) E/Z diastereomers, decalintetracids A and B. Their structures were elucidated by comprehensive spectroscopic analysis and quantum-chemical calculations. Although 3DTAs were commonly reported from fungi, decalintetracid A possessed an unprecedented tricyclo [7.2.1.02,7] dodecane skeleton, which added the diversity of these fungal metabolites. In addition, decalintetracid B was featured by a unique 6/6/5 ring system core. A plausible biosynthetic pathway for decalintetracids A and B was proposed. Both compounds exhibited phytotoxicity toward Amaranthus retroflexus L. and Amaranthus hybrid, indicating their potential as natural herbicides.
Collapse
Affiliation(s)
- Dong-Lin Zhao
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, People's Republic of China
| | - Jing Liu
- Zunyi Branch, Guizhou Tobacco Company, Zunyi, 563000, People's Republic of China
| | - Xiao-Bin Han
- Zunyi Branch, Guizhou Tobacco Company, Zunyi, 563000, People's Republic of China
| | - Mei Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, People's Republic of China
| | - Yu-Long Peng
- Zunyi Branch, Guizhou Tobacco Company, Zunyi, 563000, People's Republic of China
| | - Si-Qi Ma
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, People's Republic of China
| | - Fei Cao
- College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, People's Republic of China.
| | - Yi-Qiang Li
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, People's Republic of China.
| | - Cheng-Sheng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, People's Republic of China.
| |
Collapse
|
29
|
New 3-Acyl Tetramic Acid Derivatives from the Deep-Sea-Derived Fungus Lecanicillium fusisporum. Mar Drugs 2022; 20:md20040255. [PMID: 35447928 PMCID: PMC9031249 DOI: 10.3390/md20040255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 11/16/2022] Open
Abstract
Seven rare C3-C6 reduced 3-acyl tetramic acid derivatives, lecanicilliumins A–G (1–7), along with the known analogue cladosporiumin D (8), were obtained from the extract of the deep-sea-derived fungus Lecanicillium fusisporum GXIMD00542 within the family Clavipitacae. Their structures were elucidated by extensive spectroscopic data analysis, quantum chemistry calculations and chemical reaction. Compounds 1, 2, 5–7 exhibited moderate anti-inflammatory activity against NF-κB production using lipopolysaccharide (LPS) induced RAW264.7 cells with EC50 values range of 18.49–30.19 μM.
Collapse
|
30
|
De Tommaso G, Salvatore MM, Siciliano A, Staropoli A, Vinale F, Nicoletti R, DellaGreca M, Guida M, Salvatore F, Iuliano M, Andolfi A. Interaction of the Fungal Metabolite Harzianic Acid with Rare-Earth Cations (La 3+, Nd 3+, Sm 3+, Gd 3+). MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061959. [PMID: 35335320 PMCID: PMC8954165 DOI: 10.3390/molecules27061959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/16/2022]
Abstract
Rare-earth elements are emerging contaminants of soil and water bodies which destiny in the environment and effects on organisms is modulated by their interactions with natural ligands produced by bacteria, fungi and plants. Within this framework, coordination by harzianic acid (H2L), a Trichoderma secondary metabolite, of a selection of tripositive rare-earth cations Ln3+ (Ln3+ = La3+, Nd3+, Sm3+, and Gd3+) was investigated at 25 °C, and in a CH3OH/0.1 M NaClO4 (50/50 w/w) solvent, using mass spectrometry, circular dichroism, UV-Vis spectrophotometry, and pH measurements. Experimental data can be satisfactorily explained by assuming, for all investigated cations, the formation of a mono-complex (LnL+) and a bis-complex (LnL2-). Differences were found between the formation constants of complexes of different Ln3+ cations, which can be correlated with ionic radius. Since gadolinium is the element that raises the most concern among lanthanide elements, its effects on organisms at different levels of biological organization were explored, in the presence and absence of harzianic acid. Results of ecotoxicological tests suggest that harzianic acid can decrease gadolinium biotoxicity, presumably because of complex formation with Gd3+.
Collapse
Affiliation(s)
- Gaetano De Tommaso
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (G.D.T.); (M.M.S.); (M.D.)
| | - Maria Michela Salvatore
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (G.D.T.); (M.M.S.); (M.D.)
- Institute for Sustainable Plant Protection, National Research Council, 80055 Portici, Italy; (A.S.); (F.V.)
| | - Antonietta Siciliano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (A.S.); (M.G.)
| | - Alessia Staropoli
- Institute for Sustainable Plant Protection, National Research Council, 80055 Portici, Italy; (A.S.); (F.V.)
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Francesco Vinale
- Institute for Sustainable Plant Protection, National Research Council, 80055 Portici, Italy; (A.S.); (F.V.)
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
| | - Rosario Nicoletti
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
- Council for Agricultural Research and Economics, Research Centre for Olive, Fruit and Citrus Crops, 81100 Caserta, Italy
| | - Marina DellaGreca
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (G.D.T.); (M.M.S.); (M.D.)
| | - Marco Guida
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (A.S.); (M.G.)
| | - Francesco Salvatore
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (G.D.T.); (M.M.S.); (M.D.)
- Correspondence: (F.S.); (M.I.); (A.A.); Tel.: +39-081-2539179 (A.A.)
| | - Mauro Iuliano
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (G.D.T.); (M.M.S.); (M.D.)
- Correspondence: (F.S.); (M.I.); (A.A.); Tel.: +39-081-2539179 (A.A.)
| | - Anna Andolfi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (G.D.T.); (M.M.S.); (M.D.)
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
- Correspondence: (F.S.); (M.I.); (A.A.); Tel.: +39-081-2539179 (A.A.)
| |
Collapse
|
31
|
Meguro Y, Ito J, Nakagawa K, Kuwahara S. Total Synthesis of the Broad-Spectrum Antibiotic Amycolamicin. J Am Chem Soc 2022; 144:5253-5257. [PMID: 35297637 DOI: 10.1021/jacs.2c00647] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The total synthesis of the antibiotic amycolamicin with a hybrid molecular architecture composed of five ring systems, which exhibits potent antibacterial activity against a wide range of drug-resistant bacteria, has been achieved in a convergent manner. A protecting-group-free intramolecular Diels-Alder reaction of a hydroxy tetraenal intermediate promoted by two equivalents of Et2AlCl, which proceeds highly diastereoselectively via an endo-equatorial transition state, has been utilized to construct the trans-decalin moiety of the molecule. The full structure of amycolamicin was assembled by a completely stereoconvergent N-acylation of a northern N-glycoside unit (α-anomer/β-anomer = 1:1.1) with a southern β-keto thioester segment followed by installation of the central tetramic acid moiety.
Collapse
Affiliation(s)
- Yasuhiro Meguro
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Junya Ito
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Kiyotaka Nakagawa
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Shigefumi Kuwahara
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-0845, Japan
| |
Collapse
|
32
|
Drescher C, Brückner R. Structure‐Proving Syntheses of the Polyenoyltetramic Acids Pyranonigrin J and I. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Christian Drescher
- Institut für Organische Chemie Albert-Ludwigs-Universität Albertstraße 21 79104 Freiburg Germany
| | - Reinhard Brückner
- Institut für Organische Chemie Albert-Ludwigs-Universität Albertstraße 21 79104 Freiburg Germany
| |
Collapse
|
33
|
Guo Y, Contesini FJ, Wang X, Ghidinelli S, Tornby DS, Andersen TE, Mortensen UH, Larsen TO. Biosynthesis of Calipyridone A Represents a Fungal 2-Pyridone Formation without Ring Expansion in Aspergillus californicus. Org Lett 2022; 24:804-808. [PMID: 35045257 DOI: 10.1021/acs.orglett.1c03792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A chemical investigation of the filamentous fungus Aspergillus californicus led to the isolation of a polyketide-nonribosomal peptide hybrid, calipyridone A (1). A putative biosynthetic gene cluster cpd for production of 1 was next identified by genome mining. The role of the cpd cluster in the production of 1 was confirmed by multiple gene deletion experiments in the host strain as well as by heterologous expression of the hybrid gene cpdA inAspergillus oryzae. Moreover, chemical analyses of the mutant strains allowed the biosynthesis of 1 to be elucidated. The results indicate that the generation of the 2-pyridone moiety of 1 via nucleophilic attack of the iminol nitrogen to the carbonyl carbon is different from the biosynthesis of other fungal 2-pyridone products through P450-catalyzed tetramic acid ring expansions. In addition, two biogenetic intermediates, calipyridones B and C, showed modest inhibition effects on the plaque-forming ability of SARS-CoV-2.
Collapse
Affiliation(s)
- Yaojie Guo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark.,Department of Microbiology, Zhejiang University School of Medicine, Yuhangtang Road 866, Hangzhou 310058, China
| | - Fabiano J Contesini
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| | - Xinhui Wang
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| | - Simone Ghidinelli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Ditte S Tornby
- Department of Clinical Research, University of Southern Denmark, Winløwsparken 21, 2. sal, 5000 Odense, Denmark
| | - Thomas E Andersen
- Department of Clinical Research, University of Southern Denmark, Winløwsparken 21, 2. sal, 5000 Odense, Denmark
| | - Uffe H Mortensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| | - Thomas O Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
34
|
González Y, de los Santos-Villalobos S, Castro-Longoria E. Trichoderma Secondary Metabolites Involved in Microbial Inhibition. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Unten Y, Murai M, Sakai K, Asami Y, Yamamoto T, Masuya T, Miyoshi H. Natural tetramic acids elicit multiple inhibitory actions against mitochondrial machineries presiding over oxidative phosphorylation. Biosci Biotechnol Biochem 2021; 85:2368-2377. [PMID: 34625801 DOI: 10.1093/bbb/zbab176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/04/2021] [Indexed: 11/14/2022]
Abstract
The mitochondrial machineries presiding over ATP synthesis via oxidative phosphorylation are promising druggable targets. Fusaramin, a 3-acyl tetramic acid isolated from Fusarium concentricum FKI-7550, is an inhibitor of oxidative phosphorylation in Saccharomyces cerevisiae mitochondria, although its target has yet to be identified. Fusaramin significantly interfered with [3H]ADP uptake by yeast mitochondria at the concentration range inhibiting oxidative phosphorylation. A photoreactive fusaramin derivative (pFS-5) specifically labeled voltage-dependent anion channel 1 (VDAC1), which facilitates trafficking of ADP/ATP across the outer mitochondrial membrane. These results strongly suggest that the inhibition of oxidative phosphorylation by fusaramin is predominantly attributable to the impairment of VDAC1 functions. Fusaramin also inhibited FoF1-ATP synthase and ubiquinol-cytochrome c oxidoreductase (complex III) at concentrations higher than those required for the VDAC inhibition. Considering that other tetramic acid derivatives are reported to inhibit FoF1-ATP synthase and complex III, natural tetramic acids were found to elicit multiple inhibitory actions against mitochondrial machineries.
Collapse
Affiliation(s)
- Yufu Unten
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Masatoshi Murai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | - Yukihiro Asami
- Graduate School of Infection Control Sciences
- Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, Japan
| | - Takenori Yamamoto
- Division of Molecular Target and Gene Therapy Production, National Institute of Health Sciences, Kanagawa, Japan
| | - Takahiro Masuya
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Hideto Miyoshi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
36
|
Mohamed GA, Ibrahim SRM. Untapped Potential of Marine-Associated Cladosporium Species: An Overview on Secondary Metabolites, Biotechnological Relevance, and Biological Activities. Mar Drugs 2021; 19:645. [PMID: 34822516 PMCID: PMC8622643 DOI: 10.3390/md19110645] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
The marine environment is an underexplored treasure that hosts huge biodiversity of microorganisms. Marine-derived fungi are a rich source of novel metabolites with unique structural features, bioactivities, and biotechnological applications. Marine-associated Cladosporium species have attracted considerable interest because of their ability to produce a wide array of metabolites, including alkaloids, macrolides, diketopiperazines, pyrones, tetralones, sterols, phenolics, terpenes, lactones, and tetramic acid derivatives that possess versatile bioactivities. Moreover, they produce diverse enzymes with biotechnological and industrial relevance. This review gives an overview on the Cladosporium species derived from marine habitats, including their metabolites and bioactivities, as well as the industrial and biotechnological potential of these species. In the current review, 286 compounds have been listed based on the reported data from 1998 until July 2021. Moreover, more than 175 references have been cited.
Collapse
Affiliation(s)
- Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sabrin R. M. Ibrahim
- Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia;
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
37
|
Pang X, Chen W, Wang X, Zhou X, Yang B, Tian X, Wang J, Xu S, Liu Y. New Tetramic Acid Derivatives From the Deep-Sea-Derived Fungus Penicillium sp. SCSIO06868 With SARS-CoV-2 M pro Inhibitory Activity Evaluation. Front Microbiol 2021; 12:730807. [PMID: 34646250 PMCID: PMC8503681 DOI: 10.3389/fmicb.2021.730807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/27/2021] [Indexed: 11/18/2022] Open
Abstract
Three new tetramic acid derivatives (1–3) and a new polyketide (4) along with eight known compounds (5–12) were isolated from cultures of the deep-sea-derived fungus Penicillium sp. SCSIO06868. Four new structures were elucidated by analysis of one-dimensional/two-dimensional nuclear magnetic resonance (NMR) data and high-resolution electrospray ionization mass spectrometry. Their absolute configurations were established by X-ray crystallography analysis and comparison of the experimental and reported electronic circular dichroism (ECD) values or specific optical rotation. Compound 3 exhibited potent, selective inhibitory activities against Staphylococcus aureus and methicillin-resistant S. aureus with minimum inhibitory concentration values of both 2.5 μg/ml. Also, compound 3 showed weak antiviral activity against severe acute respiratory syndrome coronavirus 2 main protease, which was responsible for the coronavirus disease 2019 pandemic.
Collapse
Affiliation(s)
- Xiaoyan Pang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences (CAS), Guangzhou, China.,Sanya Institute of Oceanology, SCSIO, Yazhou Scientific Bay, Sanya, China.,College of Chemistry and Materials Science, Jinan University, Guangzhou, China
| | - Weihao Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences (CAS), Guangzhou, China
| | - Xin Wang
- Center for Innovative Marine Drug Screening and Evaluation, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences (CAS), Guangzhou, China.,Sanya Institute of Oceanology, SCSIO, Yazhou Scientific Bay, Sanya, China
| | - Bin Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences (CAS), Guangzhou, China.,Sanya Institute of Oceanology, SCSIO, Yazhou Scientific Bay, Sanya, China
| | - Xinpeng Tian
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences (CAS), Guangzhou, China.,Sanya Institute of Oceanology, SCSIO, Yazhou Scientific Bay, Sanya, China
| | - Junfeng Wang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences (CAS), Guangzhou, China.,Sanya Institute of Oceanology, SCSIO, Yazhou Scientific Bay, Sanya, China
| | - Shihai Xu
- College of Chemistry and Materials Science, Jinan University, Guangzhou, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences (CAS), Guangzhou, China.,Sanya Institute of Oceanology, SCSIO, Yazhou Scientific Bay, Sanya, China
| |
Collapse
|
38
|
Matiadis D, Stefanou V, Tsironis D, Panagiotopoulou A, Igglessi-Markopoulou O, Markopoulos J. Synthesis and preliminary biological evaluation of antibacterial and antifungal 5-arylidene tetramic acid-cadmium(II) complexes. Arch Pharm (Weinheim) 2021; 354:e2100305. [PMID: 34570387 DOI: 10.1002/ardp.202100305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 11/09/2022]
Abstract
The synthesis and biological evaluation of 5-arylidene-N-acetyl-tetramic acids cadmium(II) complexes are reported. Eleven novel compounds were prepared, characterized by nuclear magnetic resonance experiments and screened for their antimicrobial activity against five bacterial species (Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and methicillin-resistant Staphylococcus aureus [MRSA]) and two fungi (Candida albicans and Cryptococcus neoformans). The complexes showed similar or enhanced activities against MRSA in comparison to the corresponding ligands and, additionally, promising antifungal activities against C. neoformans. The most active compounds 3c and 3h showed remarkable activities against MRSA (minimum inhibitory activity [MIC] values of 32 and 4 μg/ml, respectively) and C. neoformans (MIC values of 8 and 16 μg/ml, respectively), accompanied by no human cell toxicity and hemolytic activity within the tested concentration range. The results demonstrate that appropriately functionalized tetramic acids attached with lipophilic alkanoyl chain and after complexation with cadmium(II) ions may act as valuable lead compounds for further investigations toward the development of novel antibacterial and/or antifungal agents.
Collapse
Affiliation(s)
- Dimitris Matiadis
- Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, Athens, Greece
| | - Valentina Stefanou
- Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, Athens, Greece
| | - Dimitrios Tsironis
- Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, Athens, Greece
| | - Angeliki Panagiotopoulou
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Ag. Paraskevi, Attiki, Greece
| | - Olga Igglessi-Markopoulou
- Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, Athens, Greece
| | - John Markopoulos
- Department of Chemistry, Laboratory of Inorganic Chemistry, University of Athens, Panepistimiopolis, Athens, Greece
| |
Collapse
|
39
|
Galitz A, Nakao Y, Schupp PJ, Wörheide G, Erpenbeck D. A Soft Spot for Chemistry-Current Taxonomic and Evolutionary Implications of Sponge Secondary Metabolite Distribution. Mar Drugs 2021; 19:448. [PMID: 34436287 PMCID: PMC8398655 DOI: 10.3390/md19080448] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022] Open
Abstract
Marine sponges are the most prolific marine sources for discovery of novel bioactive compounds. Sponge secondary metabolites are sought-after for their potential in pharmaceutical applications, and in the past, they were also used as taxonomic markers alongside the difficult and homoplasy-prone sponge morphology for species delineation (chemotaxonomy). The understanding of phylogenetic distribution and distinctiveness of metabolites to sponge lineages is pivotal to reveal pathways and evolution of compound production in sponges. This benefits the discovery rate and yield of bioprospecting for novel marine natural products by identifying lineages with high potential of being new sources of valuable sponge compounds. In this review, we summarize the current biochemical data on sponges and compare the metabolite distribution against a sponge phylogeny. We assess compound specificity to lineages, potential convergences, and suitability as diagnostic phylogenetic markers. Our study finds compound distribution corroborating current (molecular) phylogenetic hypotheses, which include yet unaccepted polyphyly of several demosponge orders and families. Likewise, several compounds and compound groups display a high degree of lineage specificity, which suggests homologous biosynthetic pathways among their taxa, which identifies yet unstudied species of this lineage as promising bioprospecting targets.
Collapse
Affiliation(s)
- Adrian Galitz
- Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany; (A.G.); (G.W.)
| | - Yoichi Nakao
- Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan;
| | - Peter J. Schupp
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, 26111 Wilhelmshaven, Germany;
- Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg (HIFMB), 26129 Oldenburg, Germany
| | - Gert Wörheide
- Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany; (A.G.); (G.W.)
- GeoBio-Center, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
- SNSB-Bavarian State Collection of Palaeontology and Geology, 80333 Munich, Germany
| | - Dirk Erpenbeck
- Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany; (A.G.); (G.W.)
- GeoBio-Center, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
| |
Collapse
|
40
|
Sakai K, Unten Y, Kimishima A, Nonaka K, Chinen T, Sakai K, Usui T, Shiomi K, Iwatsuki M, Murai M, Miyoshi H, Asami Y, Ōmura S. Traminines A and B, produced by Fusarium concentricum, inhibit oxidative phosphorylation in Saccharomyces cerevisiae mitochondria. J Ind Microbiol Biotechnol 2021; 48:6338109. [PMID: 34343309 PMCID: PMC8788869 DOI: 10.1093/jimb/kuab051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/29/2021] [Indexed: 11/13/2022]
Abstract
Two new tetramic acid derivatives, traminines A (1) and B (2), were isolated from a culture broth of Fusarium concentricum FKI-7550 by bioassay-guided fractionation using multidrug-sensitive Saccharomyces cerevisiae 12geneΔ0HSR-iERG6. The chemical structures of 1 and 2 were elucidated by NMR studies. Compounds 1 and 2 inhibited the growth of the multidrug-sensitive yeast strain on nonfermentable medium containing glycerol, but not on fermentable medium containing glucose. These results strongly suggest that they target mitochondrial machineries presiding over ATP production via oxidative phosphorylation. Throughout the assay monitoring overall ADP-uptake/ATP-release in yeast mitochondria, 1 and 2 were shown to inhibit one or more enzymes involving oxidative phosphorylation. Based on biochemical characterization, we found that the interference with oxidative phosphorylation by 1 is attributable to the dual inhibition of complex III and FoF1-ATPase, whereas that by 2 is solely due to the inhibition of complex III.
Collapse
Affiliation(s)
- Katsuyuki Sakai
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yufu Unten
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Aoi Kimishima
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.,Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1, shirokane Minato-ku, Tokyo 108-8641, Japan
| | - Kenichi Nonaka
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.,Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1, shirokane Minato-ku, Tokyo 108-8641, Japan
| | - Takumi Chinen
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Kazunari Sakai
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.,Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1, shirokane Minato-ku, Tokyo 108-8641, Japan
| | - Takeo Usui
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Kazuro Shiomi
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.,Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1, shirokane Minato-ku, Tokyo 108-8641, Japan
| | - Masato Iwatsuki
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.,Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1, shirokane Minato-ku, Tokyo 108-8641, Japan
| | - Masatoshi Murai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hideto Miyoshi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yukihiro Asami
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.,Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1, shirokane Minato-ku, Tokyo 108-8641, Japan
| | - Satoshi Ōmura
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1, shirokane Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
41
|
Ye ZP, Hu YZ, Guan JP, Chen K, Liu F, Gao J, Xiao JA, Xiang HY, Chen XQ, Yang H. Photocatalytic Cyclization/Defluorination Domino Sequence to Access 3-Fluoro-1,5-dihydro-2 H-pyrrol-2-one Scaffold. Org Lett 2021; 23:4754-4758. [PMID: 34061549 DOI: 10.1021/acs.orglett.1c01477] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We herein report an unprecedented photoinduced cyclization/defluorination domino process of N-allylbromodifluoroacetamide with cyclic secondary amines. Consequently, a wide array of valuable 3-fluoro-1,5-dihydro-2H-pyrrol-2-ones were facilely prepared from readily available starting materials under mild conditions. Preliminary mechanistic investigations suggest that a radical chain propagation and amine-promoted defluorination pathway are presumably involved in this transformation.
Collapse
Affiliation(s)
- Zhi-Peng Ye
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yuan-Zhuo Hu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jian-Ping Guan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Fang Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jie Gao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jun-An Xiao
- College of Chemistry and Materials Science, Nanning Normal University, Nanning 530001, Guangxi, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Xiao-Qing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
42
|
Primahana G, Narmani A, Surup F, Teponno RB, Arzanlou M, Stadler M. Five Tetramic Acid Derivatives Isolated from the Iranian Fungus Colpoma quercinum CCTU A372. Biomolecules 2021; 11:biom11060783. [PMID: 34067463 PMCID: PMC8224775 DOI: 10.3390/biom11060783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 01/31/2023] Open
Abstract
Submerged mycelial cultures of the ascomycete Colpoma quercinum CCTU A372 were found to produce five previously undescribed tetramic acids, for which we propose the trivial names colposetins A-C (1-3) and colpomenoic acids A and B (4 and 5), along with the known compounds penicillide (6) and monodictyphenone (7). The planar structures of 1-5 were determined by high-resolution electrospray ionization mass spectrometry (HR-ESIMS) and extensive 1D and 2D nuclear magnetic resonance (NMR) spectroscopy. Their absolute configurations were determined by the combination of electronic circular dischroism (ECD) analysis, J-based configurational analysis, and a rotating-frame Overhauser effect spectroscopy (ROESY) experiment. Colposetin B displayed weak antimicrobial activity against Bacillus subtilis and Mucor hiemalis (MIC 67 µg/mL).
Collapse
Affiliation(s)
- Gian Primahana
- Department Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany; (G.P.); (A.N.); (F.S.); (R.B.T.)
- Research Center for Chemistry, Indonesian Institute of Sciences (LIPI), Kawasan Puspiptek, Serpong, 15314 Tangerang Selatan, Indonesia
| | - Abolfazl Narmani
- Department Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany; (G.P.); (A.N.); (F.S.); (R.B.T.)
- Department of Plant Protection, Faculty of Agriculture, University of Tabriz, Tabriz 51666, Iran;
| | - Frank Surup
- Department Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany; (G.P.); (A.N.); (F.S.); (R.B.T.)
| | - Rémy Bertrand Teponno
- Department Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany; (G.P.); (A.N.); (F.S.); (R.B.T.)
- Department of Chemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Mahdi Arzanlou
- Department of Plant Protection, Faculty of Agriculture, University of Tabriz, Tabriz 51666, Iran;
| | - Marc Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany; (G.P.); (A.N.); (F.S.); (R.B.T.)
- Correspondence:
| |
Collapse
|
43
|
Hussain H, Mamadalieva NZ, Ali I, Elizbit, Green IR, Wang D, Zou L, Simal-Gandara J, Cao H, Xiao J. Fungal glycosides: Structure and biological function. Trends Food Sci Technol 2021; 110:611-651. [DOI: 10.1016/j.tifs.2021.02.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
44
|
Mo X, Gulder TAM. Biosynthetic strategies for tetramic acid formation. Nat Prod Rep 2021; 38:1555-1566. [PMID: 33710214 DOI: 10.1039/d0np00099j] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Covering: up to the end of 2020Natural products bearing tetramic acid units as part of complex molecular architectures exhibit a broad range of potent biological activities. These compounds thus attract significant interest from both the biosynthetic and synthetic communities. Biosynthetically, most of the tetramic acids are derived from hybrid polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) machineries. To date, over 30 biosynthetic gene clusters (BGCs) involved in tetramate formation have been identified, from which different biosynthetic strategies evolved in Nature to assemble this intriguing structural unit were characterized. In this Highlight we focus on the biosynthetic concepts of tetramic acid formation and discuss the molecular mechanism towards selected representatives in detail, providing a systematic overview for the development of strategies for targeted tetramate genome mining and future applications of tetramate-forming biocatalysts for chemo-enzymatic synthesis.
Collapse
Affiliation(s)
- Xuhua Mo
- Shandong Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, 266109 Qingdao, China. and Chair of Technical Biochemistry, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany.
| | - Tobias A M Gulder
- Chair of Technical Biochemistry, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany.
| |
Collapse
|
45
|
Coordination Properties of the Fungal Metabolite Harzianic Acid toward Toxic Heavy Metals. TOXICS 2021; 9:toxics9020019. [PMID: 33498433 PMCID: PMC7909447 DOI: 10.3390/toxics9020019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/15/2022]
Abstract
Some Trichoderma strains are known for their capacity to produce harzianic acid, a metabolite belonging to the tetramic acid derivatives. Harzianic acid has interesting biological properties, such as antimicrobial activities against phytopathogenic fungi and promotion of plant growth. It also possesses remarkable chemical properties, including the chelating properties toward essential transition metals, which might be related to the biological activities. Increasing knowledge on chelating properties might be relevant for understanding the various beneficial effects of harzianic acid in the interaction between the producer fungi and plants. In this work, the coordination capacity of harzianic acid was studied to evaluate the formation and stability of complexes formed with toxic heavy metals (i.e., Cd2+, Co2+, Ni2+, and Pb2+), which might have a crucial role in the tolerance of plants growing in metal-contaminated soils and in abiotic stress.
Collapse
|
46
|
De Rosa M, Verdino A, Soriente A, Marabotti A. The Odd Couple(s): An Overview of Beta-Lactam Antibiotics Bearing More Than One Pharmacophoric Group. Int J Mol Sci 2021; 22:E617. [PMID: 33435500 PMCID: PMC7826672 DOI: 10.3390/ijms22020617] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 01/15/2023] Open
Abstract
β-lactam antibiotics are among the most important and widely used antimicrobials worldwide and are comprised of a large family of compounds, obtained by chemical modifications of the common scaffolds. Usually these modifications include the addition of active groups, but less frequently, molecules were synthesized in which either two β-lactam rings were joined to create a single bifunctional compound, or the azetidinone ring was joined to another antibiotic scaffold or another molecule with a different activity, in order to create a molecule bearing two different pharmacophoric functions. In this review, we report some examples of these derivatives, highlighting their biological properties and discussing how this strategy can lead to the development of innovative antibiotics that can represent either novel weapons against the rampant increase of antimicrobial resistance, or molecules with a broader spectrum of action.
Collapse
Affiliation(s)
- Margherita De Rosa
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, 84084 Fisciano (SA), Italy; (A.V.); (A.S.)
| | | | | | - Anna Marabotti
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, 84084 Fisciano (SA), Italy; (A.V.); (A.S.)
| |
Collapse
|
47
|
Muehlebach M, Buchholz A, Zambach W, Schaetzer J, Daniels M, Hueter O, Kloer DP, Lind R, Maienfisch P, Pierce A, Pitterna T, Smejkal T, Stafford D, Wildsmith L. Spiro N-methoxy piperidine ring containing aryldiones for the control of sucking insects and mites: discovery of spiropidion. PEST MANAGEMENT SCIENCE 2020; 76:3440-3450. [PMID: 31943711 DOI: 10.1002/ps.5743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/07/2020] [Accepted: 01/13/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Crop protection solutions for the control of key economic sucking pests derive essentially from neuronal and muscular acting chemistries, wherein neonicotinoid uses largely dominated for the last two decades. Anticipating likely resistance development of some of those arthropod species to this particular class, we intensified research activities on a non-neuronal site of action targeting insect growth and development some 10 years ago. RESULTS Our innovation path featured reactivation of a scarcely used and simple building block from the 1960s, namely N-methoxy-4-piperidone 3. Its judicious incorporation into the 2-aryl-1,3-dione scaffold of IRAC group 23 inhibitors of fatty acid biosynthesis resulted in novel tetramic acid derivatives acting on acetyl-coenzyme A carboxylase (ACCase). The optimization campaign focused on modulation of the aryl substitution pattern and understanding substituent options at the lactam nitrogen position of those spiroheterocyclic pyrrolidine-dione derivatives towards an effective control of sucking insects and mites. This work gratifyingly culminated in the discovery of spiro N-methoxy piperidine containing proinsecticide spiropidion 1. Following in planta release, its insecticidally active dione metabolite 2 is translaminar and two-way systemic (both xylem and phloem mobile) for a full plant protection against arthropod pests. CONCLUSION Owing to such unique plant systemic properties, growing shoots and roots actually not directly exposed to spiropidion-based chemistry after foliar application nevertheless benefit from its long-lasting efficacy. Spiropidion is for use in field crops, speciality crops and vegetables controlling a broad range of sucking pests. In light of other performance and safety profiles of spiropidion, an IPM fit may be expected. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Anke Buchholz
- Syngenta Crop Protection AG, R&D, Stein, Switzerland
| | | | | | - Miriam Daniels
- Syngenta Jealott's Hill Int. Research Center, R&D, Berkshire, UK
| | - Ottmar Hueter
- Syngenta Crop Protection AG, R&D, Stein, Switzerland
| | - Daniel P Kloer
- Syngenta Jealott's Hill Int. Research Center, R&D, Berkshire, UK
| | - Rob Lind
- Syngenta Jealott's Hill Int. Research Center, R&D, Berkshire, UK
| | - Peter Maienfisch
- Syngenta Crop Protection AG, Research Portfolio, Basel, Switzerland
| | - Andy Pierce
- Syngenta Jealott's Hill Int. Research Center, R&D, Berkshire, UK
| | | | - Tomas Smejkal
- Syngenta Crop Protection AG, R&D, Stein, Switzerland
| | - David Stafford
- Syngenta Jealott's Hill Int. Research Center, R&D, Berkshire, UK
| | - Laura Wildsmith
- Syngenta Jealott's Hill Int. Research Center, R&D, Berkshire, UK
| |
Collapse
|
48
|
Schütznerová E, Přibylka A, Medran NS, Krchňák V. Greening Solid-Phase Organic Synthesis: Environmentally Conscious Synthesis of Pharmaceutically Relevant Privileged Structures 5,6-Dihydropyridin-2(1 H)-ones and Quinolin-2(1 H)-ones. J Org Chem 2020; 85:11867-11881. [PMID: 32841557 DOI: 10.1021/acs.joc.0c01623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Solid-phase organic synthesis (SPOS) is a very efficient methodology for the synthesis of diverse organic molecules, particularly exploited in drug discovery. Here, we present the transformation of the traditional SPOS to an eco-friendlier methodology on examples of pharmacologically relevant privileged structures 5,6-dihydropyridin-2(1H)-ones and quinolin-2(1H)-ones. The green approach is primarily based on the utilization of environmentally friendly solvent 2-MeTHF in all steps of the synthesis. Target heterocycles were synthesized by extending our previously published synthesis of five-membered tetramic acid analogues to six-membered cycles. The crucial step of the synthesis is cyclization via nonclassical Wittig olefination of resin-bound esters. Traditional and green protocols provided comparable results with respect to purity and yield of products, thus opening the way for greener access to a variety of diverse heterocycles.
Collapse
Affiliation(s)
- Eva Schütznerová
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Adam Přibylka
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Noelia S Medran
- Instituto de Quı́mica Rosario-IQUIR (CONICET), Facultad de Ciencias Bioquı́micas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario S2002LRK, Argentina
| | - Viktor Krchňák
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, 771 46 Olomouc, Czech Republic.,Department of Chemistry and Biochemistry, 251 Nieuwland Science Center, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
49
|
Minami A, Ugai T, Ozaki T, Oikawa H. Predicting the chemical space of fungal polyketides by phylogeny-based bioinformatics analysis of polyketide synthase-nonribosomal peptide synthetase and its modification enzymes. Sci Rep 2020; 10:13556. [PMID: 32782278 PMCID: PMC7421883 DOI: 10.1038/s41598-020-70177-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/24/2020] [Indexed: 11/10/2022] Open
Abstract
Fungal polyketide synthase (PKS)–nonribosomal peptide synthetase (NRPS) hybrids are key enzymes for synthesizing structurally diverse hybrid natural products (NPs) with characteristic biological activities. Predicting their chemical space is of particular importance in the field of natural product chemistry. However, the unexplored programming rule of the PKS module has prevented prediction of its chemical structure based on amino acid sequences. Here, we conducted a phylogenetic analysis of 884 PKS–NRPS hybrids and a modification enzyme analysis of the corresponding biosynthetic gene cluster, revealing a hidden relationship between its genealogy and core structures. This unexpected result allowed us to predict 18 biosynthetic gene cluster (BGC) groups producing known carbon skeletons (number of BGCs; 489) and 11 uncharacterized BGC groups (171). The limited number of carbon skeletons suggests that fungi tend to select PK skeletons for survival during their evolution. The possible involvement of a horizontal gene transfer event leading to the diverse distribution of PKS–NRPS genes among fungal species is also proposed. This study provides insight into the chemical space of fungal PKs and the distribution of their biosynthetic gene clusters.
Collapse
Affiliation(s)
- Atsushi Minami
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
| | - Takahiro Ugai
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Taro Ozaki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Hideaki Oikawa
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
| |
Collapse
|
50
|
Kumar PS, Ling CY, Zhou ZB, Dong YL, Sun CL, Song YX, Wong NK, Ju JH. Chemical Diversity of Metabolites and Antibacterial Potential of Actinomycetes Associated with Marine Invertebrates from Intertidal Regions of Daya Bay and Nansha Islands. Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720040062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|