1
|
Pandey B, Wang Z, Jimenez A, Bhatia E, Jain R, Beach A, Maniar D, Hosten J, O'Farrell L, Vantucci C, Hur D, Noel R, Ringquist R, Smith C, Ochoa MA, Roy K. A Dual-Adjuvanted Parenteral-Intranasal Subunit Nanovaccine generates Robust Systemic and Mucosal Immunity Against SARS-CoV-2 in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402792. [PMID: 39352717 PMCID: PMC11615772 DOI: 10.1002/advs.202402792] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 09/09/2024] [Indexed: 12/06/2024]
Abstract
Existing parenteral SARS-CoV-2 vaccines produce only limited mucosal responses, essential for reducing transmission and achieving sterilizing immunity. Appropriately designed mucosal boosters can overcome the shortcomings of parenteral vaccines and enhance pre-existing systemic immunity. Here, a new protein subunit nanovaccine is developed by utilizing dual-adjuvanted (RIG-I: PUUC RNA and TLR-9: CpG DNA) polysaccharide-amino acid-lipid nanoparticles (PAL-NPs) along with SARS-CoV-2 S1 trimer protein, that can be delivered both intramuscularly (IM) and intranasally (IN) to generate balanced mucosal-systemic SARS-CoV-2 immunity. Mice receiving IM-Prime PUUC+CpG PAL subunit nanovaccine, followed by an IN-Boost, developed high levels of IgA, IgG, and cellular immunity in the lungs and showed robust systemic humoral immunity. Interestingly, as a purely intranasal subunit vaccine (IN-Prime/IN-Boost), PUUC+CpG PAL-NPs induced stronger lung-specific T cell immunity than IM-Prime/IN-Boost, and a comparable IgA and neutralizing antibodies, although with a lower systemic antibody response, indicating that a fully mucosal delivery route for SARS-CoV-2 vaccination may also be feasible. The data suggest that PUUC+CpG PAL subunit nanovaccine is a promising candidate for generating SARS-CoV-2 specific mucosal immunity.
Collapse
MESH Headings
- Animals
- Mice
- Immunity, Mucosal/immunology
- Immunity, Mucosal/drug effects
- SARS-CoV-2/immunology
- Administration, Intranasal/methods
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- COVID-19/immunology
- COVID-19/prevention & control
- Nanoparticles/administration & dosage
- Vaccines, Subunit/immunology
- Vaccines, Subunit/administration & dosage
- Antibodies, Viral/immunology
- Female
- Adjuvants, Vaccine/administration & dosage
- Spike Glycoprotein, Coronavirus/immunology
- Adjuvants, Immunologic/administration & dosage
- Antibodies, Neutralizing/immunology
- Mice, Inbred BALB C
- Nanovaccines
Collapse
Affiliation(s)
- Bhawana Pandey
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| | - Zhengying Wang
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| | - Angela Jimenez
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| | - Eshant Bhatia
- Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| | - Ritika Jain
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| | - Alexander Beach
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| | - Drishti Maniar
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| | - Justin Hosten
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| | - Laura O'Farrell
- Physiological Research LaboratoryGeorgia Institute of TechnologyAtlantaGAUSA
| | - Casey Vantucci
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| | - David Hur
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| | - Richard Noel
- Physiological Research LaboratoryGeorgia Institute of TechnologyAtlantaGAUSA
| | - Rachel Ringquist
- The Parker H. Petit Institute for Bioengineering and BiosciencesSchool of Chemical & Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| | - Clinton Smith
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| | - Miguel A. Ochoa
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| | - Krishnendu Roy
- Wallace H. Coulter Department of Biomedical EngineeringThe Parker H. Petit Institute for Bioengineering and BiosciencesMarcus Center for Therapeutic Cell Characterization and ManufacturingGeorgia Institute of TechnologyAtlantaGAUSA
- Department of Biomedical EngineeringDepartment of Chemical and Biomolecular EngineeringSchool of EngineeringDepartment of Pathology, Microbiology and ImmunologySchool of MedicineVanderbilt UniversityNashvilleTNUSA
| |
Collapse
|
2
|
Chen P, Dong B, Yao W. Numerical simulation study of nanoparticle diffusion in gray matter. Comput Struct Biotechnol J 2024; 25:95-104. [PMID: 38974013 PMCID: PMC11225016 DOI: 10.1016/j.csbj.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 07/09/2024] Open
Abstract
Purpose Nanomedicine-based approaches have shown great potential in the treatment of central nervous system diseases. However, the fate of nanoparticles (NPs) within the brain parenchyma has not received much attention. The complexity of the microstructure of the brain and the invisibility of NPs make it difficult to study NP transport within the grey matter. Moreover, regulation of NP delivery is not fully understood. Methods 2D interstitial system (ISS) models reflecting actual extracellular space (ECS) were constructed. A particle tracing model was used to simulate the diffusion of the NPs. The effect of NP size on NP diffusion was studied using numerical simulations. The diffusion of charged NPs was explored by comparing experimental and numerical simulation data, and the effect of cell membrane potential on the diffusion of charged NPs was further studied. Results The model was verified using previously published experimental data. Small NPs could diffuse efficiently into the ISS. The diffusion of charged NPs was hindered in the ISS. Changes in cell membrane potential had little effect on NP diffusion. Conclusion This study constructed 2D brain ISS models that reflected the actual ECS and simulated the diffusion of NPs within it. The study found that uncharged small NPs could effectively diffuse within the ISS and that the cell membrane potential had a limited effect on the diffusion of charged NPs. The model and findings of this study can aid the design of nanomedicines and nanocarriers for the diagnosis and treatment of brain diseases.
Collapse
Affiliation(s)
- Peiqian Chen
- Tongren Hospital, No. 1111, Xianxia Rd., Shanghai, China
- School of Medicine, Shanghai Jiao Tong University, No. 280, South Chongqing Rd., Shanghai, China
| | - Bing Dong
- School of Nuclear Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Rd., Shanghai, China
| | - Weiwu Yao
- Tongren Hospital, No. 1111, Xianxia Rd., Shanghai, China
- School of Medicine, Shanghai Jiao Tong University, No. 280, South Chongqing Rd., Shanghai, China
| |
Collapse
|
3
|
Issler T, Turner RJ, Prenner EJ. Membrane-Nanoparticle Interactions: The Impact of Membrane Lipids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404152. [PMID: 39212640 DOI: 10.1002/smll.202404152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/08/2024] [Indexed: 09/04/2024]
Abstract
The growing field of nanotechnology presents opportunity for applications across many sectors. Nanostructures, such as nanoparticles, hold distinct properties based on their size, shape, and chemical modifications that allow them to be utilized in both highly specific as well as broad capacities. As the classification of nanoparticles becomes more well-defined and the list of applications grows, it is imperative that their toxicity be investigated. One such cellular system that is of importance are cellular membranes (biomembranes). Membranes present one of the first points of contact for nanoparticles at the cellular level. This review will address current studies aimed at defining the biomolecular interactions of nanoparticles at the level of the cell membrane, with a specific focus of the interactions of nanoparticles with prominent lipid systems.
Collapse
Affiliation(s)
- Travis Issler
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Raymond J Turner
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Elmar J Prenner
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
4
|
Song G, Li B, Yang Z, Lin H, Cheng J, Huang Y, Xing C, Lv F, Bai H, Wang S. Regulation of Cell Membrane Potential through Supramolecular System for Activating Calcium Ion Channels. J Am Chem Soc 2024; 146:25383-25393. [PMID: 39196894 DOI: 10.1021/jacs.4c10710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
The regulation of the cell membrane potential plays a crucial role in governing the transmembrane transport of various ions and cellular life processes. However, in situ and on-demand modulation of cell membrane potential for ion channel regulation is challenging. Herein, we have constructed a supramolecular assembly system based on water-soluble cationic oligo(phenylenevinylene) (OPV) and cucurbit[7]uril (CB[7]). The controllable disassembly of OPV/4CB[7] combined with the subsequent click reaction provides a step-by-step adjustable surface positive potential. These processes can be employed in situ on the plasma membrane to modulate the membrane potential on-demand for precisely controlling the activation of the transient receptor potential vanilloid 1 (TRPV1) ion channel and up-regulating exogenous calcium-responsive gene expression. Compared with typical optogenetics, electrogenetics, and mechanogenetics, our strategy provides a perspective supramolecular genetics toolbox for the regulation of membrane potential and downstream intracellular gene regulation events.
Collapse
Affiliation(s)
- Gang Song
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Boying Li
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Zhiwen Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hongrui Lin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Junjie Cheng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yiming Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Chengfen Xing
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Haotian Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
5
|
Dzulkharnien NSF, Rohani R, Tan Kofli N, Mohd Kasim NA, Abd Muid S, Patrick M, Mohd Fauzi NA, Alias H, Ahmad Radzuan H. Enhanced binding interaction and antibacterial inhibition for nanometal oxide particles activated with Aloe Vulgarize through one-pot ultrasonication techniques. Bioorg Chem 2024; 150:107513. [PMID: 38905888 DOI: 10.1016/j.bioorg.2024.107513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/23/2024]
Abstract
The interaction of green zinc oxide nanoparticles (ZnO NPs) with bacterial strains are still scarcely reported. This work was conducted to study the green-one-pot-synthesized ZnO NPs from the Aloe Vulgarize (AV) leaf peel extract assisted with different sonication techniques followed by the physicochemical, biological activities and molecular docking studies. The NPs structure was analyzed using FTIR, UV-vis and EDX. The morphology, particle size and crystallinity of ZnO NPs were identified using FESEM and XRD. It was found that the formed flower-like structure with sharp edge and fine size of particulates in ZnO NPs/AV could enhance the bacterial inhibition. The minimum inhibitory concentration (MIC) for all the tested bacterial strains is at 3.125 µg/ml and the bacterial growth curve are dependent on the ZnO NPs dosage. The results of disc diffusion revealed that the ZnO NPs/AV possess better antibacterial effect with bigger ZOI due to the presence of AV active ingredient. The molecular docking between active ingredients of AV in the NPs with the protein of IFCM and 1MWU revealed that low binding energy (Ebind = -6.56 kcal/mol and -8.99 kcal/mol, respectively) attributes to the excessive hydrogen bond from AV that highly influenced their interaction with the amino acid of the selected proteins. Finally, the cytotoxicity test on the biosynthesized ZnO NPs with concentration below 20 µg/ml are found nontoxic on the HDF cell. Overall, ZnO NPs/20 % AV (probe sonication) is considered as the best synthesis option due to its efficient one-pot method, short sonication time but own the best antibacterial effect.
Collapse
Affiliation(s)
- Nur Syafiqah Farhanah Dzulkharnien
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| | - Rosiah Rohani
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia; Research Centre for Sustainable Process Technology, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Noorhisham Tan Kofli
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| | - Noor Alicezah Mohd Kasim
- Faculty of Medicine, Universiti Teknologi Mara Selangor Branch, Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia
| | - Suhaila Abd Muid
- Faculty of Medicine, Universiti Teknologi Mara Selangor Branch, Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia
| | - Melonney Patrick
- Faculty of Medicine, Universiti Teknologi Mara Selangor Branch, Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia
| | - Noor Akhmazillah Mohd Fauzi
- Department of Chemical Engineering Technology, Faculty of Engineering Technology, Universiti Tun Hussein Onn Malaysia, 86400, Johor, Malaysia
| | - Hajar Alias
- Department of Chemical Engineering, Faculty of Chemical Engineering and Natural Resources, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Husna Ahmad Radzuan
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| |
Collapse
|
6
|
Ahmed M, Kurungottu P, Swetha K, Atla S, Ashok N, Nagamalleswari E, Bonam SR, Sahu BD, Kurapati R. Role of NLRP3 inflammasome in nanoparticle adjuvant-mediated immune response. Biomater Sci 2024. [PMID: 38867716 DOI: 10.1039/d4bm00439f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome is pivotal in orchestrating the immune response induced by nanoparticle adjuvants. Understanding the intricate mechanisms underlying the activation of NLRP3 inflammasome by these adjuvants is crucial for deciphering their immunomodulatory properties. This review explores the involvement of the NLRP3 inflammasome in mediating immune responses triggered by nanoparticle adjuvants. It delves into the signaling pathways and cellular mechanisms involved in NLRP3 activation, highlighting its significance in modulating the efficacy and safety of nanoparticle-based adjuvants. A comprehensive grasp of the interplay between NLRP3 inflammasome and nanoparticle adjuvants holds promise for optimizing vaccine design and advancing immunotherapeutic strategies.
Collapse
Affiliation(s)
- Momitul Ahmed
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati 781101, India.
| | - Pavithra Kurungottu
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India.
| | - K Swetha
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India.
| | - Sandeep Atla
- Texas A&M Drug Discovery Center, Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | - Nivethitha Ashok
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India.
| | - Easa Nagamalleswari
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Srinivasa Reddy Bonam
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Bidya Dhar Sahu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati 781101, India.
| | - Rajendra Kurapati
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India.
| |
Collapse
|
7
|
Tunçer Çağlayan S, Gurbanov R. Modulation of bacterial membranes and cellular macromolecules by dimethyl sulfoxide: A dose-dependent study providing novel insights. Int J Biol Macromol 2024; 267:131581. [PMID: 38615866 DOI: 10.1016/j.ijbiomac.2024.131581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Using Escherichia coli as a model, this manuscript delves into the intricate interactions between dimethyl sulfoxide (DMSO) and membranes, cellular macromolecules, and the effects on various aspects of bacterial physiology. Given DMSO's wide-ranging use as a solvent in microbiology, we investigate the impacts of both non-growth inhibitory (1.0 % and 2.5 % v/v) and slightly growth-inhibitory (5.0 % v/v) concentrations of DMSO. The results demonstrate that DMSO causes alterations in bacterial membrane potential, influences the electrochemical characteristics of the cell surface, and exerts substantial effects on the composition and structure of cellular biomolecules. Genome-wide gene expression data from DMSO-treated E. coli was used to further investigate and bolster the results. The findings of this study provide valuable insights into the complex relationship between DMSO and biological systems, with potential implications in drug delivery and cellular manipulation. However, it is essential to exercise caution when utilizing DMSO to enhance the solubility and delivery of bioactive compounds, as even at low concentrations, DMSO exerts non-inert effects on cellular macromolecules and processes.
Collapse
Affiliation(s)
- Sinem Tunçer Çağlayan
- Vocational School of Health Services, Department of Medical Services and Techniques, Bilecik Şeyh Edebali University, 11100 Bilecik, Turkey.
| | - Rafig Gurbanov
- Department of Bioengineering, Bilecik Şeyh Edebali University, 11100 Bilecik, Turkey; Central Research Laboratory, Bilecik Şeyh Edebali University, 11100 Bilecik, Turkey
| |
Collapse
|
8
|
Ji Y, Wang Y, Wang X, Lv C, Zhou Q, Jiang G, Yan B, Chen L. Beyond the promise: Exploring the complex interactions of nanoparticles within biological systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133800. [PMID: 38368688 DOI: 10.1016/j.jhazmat.2024.133800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/04/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
The exploration of nanoparticle applications is filled with promise, but their impact on the environment and human health raises growing concerns. These tiny environmental particles can enter the human body through various routes, such as the respiratory system, digestive tract, skin absorption, intravenous injection, and implantation. Once inside, they can travel to distant organs via the bloodstream and lymphatic system. This journey often results in nanoparticles adhering to cell surfaces and being internalized. Upon entering cells, nanoparticles can provoke significant structural and functional changes. They can potentially disrupt critical cellular processes, including damaging cell membranes and cytoskeletons, impairing mitochondrial function, altering nuclear structures, and inhibiting ion channels. These disruptions can lead to widespread alterations by interfering with complex cellular signaling pathways, potentially causing cellular, organ, and systemic impairments. This article delves into the factors influencing how nanoparticles behave in biological systems. These factors include the nanoparticles' size, shape, charge, and chemical composition, as well as the characteristics of the cells and their surrounding environment. It also provides an overview of the impact of nanoparticles on cells, organs, and physiological systems and discusses possible mechanisms behind these adverse effects. Understanding the toxic effects of nanoparticles on physiological systems is crucial for developing safer, more effective nanoparticle-based technologies.
Collapse
Affiliation(s)
- Yunxia Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Changjun Lv
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bing Yan
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
9
|
Wang X, Wang J, Liu S, Dou M, Gao B. Sterilization mechanism and nanotoxicity of visible light-driven defective carbon nitride and UV-excited TiO 2. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132109. [PMID: 37734307 DOI: 10.1016/j.jhazmat.2023.132109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/05/2023] [Accepted: 07/19/2023] [Indexed: 09/23/2023]
Abstract
The sterilization effect of photocatalysis and biotoxicity of nanomaterial catalysts have attracted high attention. In this study, the novel visible-driven defective carbon nitride (VL/DCN) system exhibits non-photoreactivation, non-toxic superior performance compared with traditional ultraviolet radiation (UV) and UV/titanium dioxide (UV/TiO2). The inactivation of antibiotic-resistant bacteria (ARB) by novel VL/DCN still reached 7 log within 4 h, and the reduction rates of aminoglycoside gene strB and tetracycline gene tetA exceeded 0.8 log and 1.2 log, respectively. Further, the sterilization mechanism and nanotoxicity were contrastively and systematically analyzed among above three systems as following. Firstly, in the VL/DCN system, reactive oxygen species (ROSs) generated from photocatalytic process leads to the destruction of cell membranes, resulting in dissolving out of potassium ion (K+), protein and cell membrane ATP content. Thus, resistant bacteria were completely inactivated and photoreactivation disappears. In contrast, the UV only acted on bacterial DNA and existed the light resurrection. The UV/TiO2 strictly dependent on ultraviolet light and can be used in limited scenarios. Secondly, in cell viability analysis by human lung cell line BEAS-2B experiments, the 10% inhibition of cell growth when DCN was 600 mg/L much lower than 28% inhibition of cell growth when TiO2 was only 200 mg/L. The expression of pro-inflammatory cytokines ((Interleukin, IL) -6), IL-8, IL-1β) under the effect of DCN was 1.5-fold, 5.7-fold and 3.7-fold lower than TiO2, respectively. Meanwhile, DCN induced cells to produce less ROSs, malondialdehyde (MDA), and more superoxide dismutase (SOD). Above results demonstrated that DCN has far lower cytotoxicity than TiO2. This study provides theoretical support for the application of photocatalytic sterilization technology and the exploration of the toxicity of nanomaterials.
Collapse
Affiliation(s)
- Xiaoyue Wang
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Haidian District, Beijing 100044, China
| | - Jin Wang
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Haidian District, Beijing 100044, China.
| | - Shanjun Liu
- Jinan Environmental Research Academy, Jinan 250102, China
| | - Mengmeng Dou
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Haidian District, Beijing 100044, China
| | - Boru Gao
- China International Engineering Consulting Corporation, Beijing 100048, China
| |
Collapse
|
10
|
Hsu PH, Hazam PK, Huang YP, Yeh JC, Chen YR, Li CC, Chang CF, Liou JW, Chen JY. Sequential rearrangement and stereochemical reorganization to design an antimicrobial peptide with enhanced stability. Biomed Pharmacother 2024; 170:116088. [PMID: 38159380 DOI: 10.1016/j.biopha.2023.116088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024] Open
Abstract
Antimicrobial peptides (AMPs) are natural molecules that function within the innate immune system to counteract pathogenic invasion and minimize the detrimental consequences of infection. However, utilizing these molecules for medical applications has been challenging. In this study, we selected a model AMP with poor stability, Tilapia Piscidin 4 (TP4), and modified its sequence and chirality (TP4-γ) to improve its potential for clinical application. The strategy of chirality inversion was inspired by the cereulide peptide, which has a DDLL enantiomer pattern and exhibits exceptional stability. Sequential substitution of key residues and selective chirality inversion yielded a less toxic peptide with enhanced stability and notable antimicrobial activity. In addition to its superior stability profile and antimicrobial activity, TP4-γ treatment reduced the level of LPS-induced nitric oxide (NO) release in a macrophage cell line. This reduction in NO release may reflect anti-inflammatory properties, as NO is widely known to promote inflammatory processes. Hence, our heterochiral peptide construct shows a more suitable pharmacokinetic profile than its parental compound, and further studies are warranted to develop the molecule for potential clinical application.
Collapse
Affiliation(s)
- Po-Hsien Hsu
- Institute of Fisheries Science, National Taiwan University, 1 Roosevelt Road, Section 4, Taipei 106, Taiwan
| | - Prakash Kishore Hazam
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Rd., Jiaushi, Ilan 262, Taiwan
| | - Yi-Ping Huang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Jih-Chao Yeh
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Rd., Jiaushi, Ilan 262, Taiwan
| | - Yun-Ru Chen
- Academia Sinica Protein Clinic, Institute of Biological Chemistry, Academia Sinica, 128, Academia Road, Section 2, Nankang District, Taipei 115, Taiwan
| | - Chao-Chin Li
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Chi-Fon Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.
| | - Je-Wen Liou
- Department of Biochemistry, School of Medicine, Tzu Chi University, 701, Section 3, Chung-Yang Rd, Hualien 970, Taiwan.
| | - Jyh-Yih Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Rd., Jiaushi, Ilan 262, Taiwan; The iEGG and Animal Biotechnology Center and the Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
11
|
Davis B, Lee K, Wang X, Wang Y. Deoxyribonucleic Acid-Based Polyvalent Ligand-Receptor Binding for Engineering the Cell Surface with Nanoparticles. Biomacromolecules 2023. [PMID: 37289935 DOI: 10.1021/acs.biomac.3c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tethering nanoparticles (NPs) onto the cell surface is critical to cellular hitchhiking applications, such as targeted NP delivery and enhanced cell therapy. While numerous methods have been developed to achieve NP attachment onto the cell membrane, they often face limitations such as the use of complicated cell surface modifications or low-efficiency NP attachment. The purpose of this work was to explore a DNA-based synthetic ligand-receptor pair for NP attachment to the surface of live cells. Polyvalent ligand mimics were used to functionalize NPs, while the cell membrane was functionalized with DNA-based cell receptor mimics. Base pair-directed polyvalent hybridization allowed the NPs to bind to the cells quickly and efficiently. Notably, the process of attaching NPs to cells did not require sophisticated chemical conjugation on the cell membrane or involve any cytotoxic cationic polymers. Therefore, DNA-based polyvalent ligand-receptor binding is promising to various applications ranging from cell surface engineering to NP delivery.
Collapse
Affiliation(s)
- Brandon Davis
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Kyungsene Lee
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Xuelin Wang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yong Wang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
12
|
Skłodowski K, Chmielewska-Deptuła SJ, Piktel E, Wolak P, Wollny T, Bucki R. Metallic Nanosystems in the Development of Antimicrobial Strategies with High Antimicrobial Activity and High Biocompatibility. Int J Mol Sci 2023; 24:2104. [PMID: 36768426 PMCID: PMC9917064 DOI: 10.3390/ijms24032104] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Antimicrobial resistance is a major and growing global problem and new approaches to combat infections caused by antibiotic resistant bacterial strains are needed. In recent years, increasing attention has been paid to nanomedicine, which has great potential in the development of controlled systems for delivering drugs to specific sites and targeting specific cells, such as pathogenic microbes. There is continued interest in metallic nanoparticles and nanosystems based on metallic nanoparticles containing antimicrobial agents attached to their surface (core shell nanosystems), which offer unique properties, such as the ability to overcome microbial resistance, enhancing antimicrobial activity against both planktonic and biofilm embedded microorganisms, reducing cell toxicity and the possibility of reducing the dosage of antimicrobials. The current review presents the synergistic interactions within metallic nanoparticles by functionalizing their surface with appropriate agents, defining the core structure of metallic nanoparticles and their use in combination therapy to fight infections. Various approaches to modulate the biocompatibility of metallic nanoparticles to control their toxicity in future medical applications are also discussed, as well as their ability to induce resistance and their effects on the host microbiome.
Collapse
Affiliation(s)
- Karol Skłodowski
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland
| | | | - Ewelina Piktel
- Independent Laboratory of Nanomedicine, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Przemysław Wolak
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielce 19A, 25-317 Kielce, Poland
| | - Tomasz Wollny
- Holy Cross Oncology Center of Kielce, Artwińskiego 3, 25-734 Kielce, Poland
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielce 19A, 25-317 Kielce, Poland
| |
Collapse
|
13
|
Sreelatha S, Kumar N, Rajani S. Biological effects of Thymol loaded chitosan nanoparticles (TCNPs) on bacterial plant pathogen Xanthomonas campestris pv. campestris. Front Microbiol 2022; 13:1085113. [PMID: 36620059 PMCID: PMC9815552 DOI: 10.3389/fmicb.2022.1085113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Engineered nanomaterials can provide eco-friendly alternatives for crop disease management. Chitosan based nanoparticles has shown beneficial applications in sustainable agricultural practices and effective healthcare. Previously we demonstrated that Thymol loaded chitosan nanoparticles (TCNPs) showed bactericidal activity against Xanthomonas campestris pv campestris (Xcc), a bacterium that causes black rot disease in brassica crops. Despite the progress in assessing the antibacterial action of TCNPs, the knowledge about the molecular response of Xcc when exposed to TCNPs is yet to be explored. In the present study, we combined physiological, spectroscopic and untargeted metabolomics studies to investigate the response mechanisms in Xcc induced by TCNPs. Cell proliferation and membrane potential assays of Xcc cells exposed to sub-lethal concentration of TCNPs showed that TCNPs affects the cell proliferation rate and damages the cell membrane altering the membrane potential. FTIR spectroscopy in conjunction with untargeted metabolite profiling using mass spectrometry of TCNPs treated Xcc cells revealed alterations in amino acids, lipids, nucleotides, fatty acids and antioxidant metabolites. Mass spectroscopy analysis revealed a 10-25% increase in nucleic acid, fatty acids and antioxidant metabolites and a 20% increase in lipid metabolites while a decrease of 10-20% in amino acids and carbohydrates was seen in in TCNP treated Xcc cells. Overall, our results demonstrate that the major metabolic perturbations induced by TCNPs in Xcc are associated with membrane damage and oxidative stress, thus providing information on the mechanism of TCNPs mediated cytotoxicity. This will aid towards the development of nano- based agrochemicals as an alternative to chemical pesticides in future.
Collapse
|
14
|
Perini DA, Parra-Ortiz E, Varó I, Queralt-Martín M, Malmsten M, Alcaraz A. Surface-Functionalized Polystyrene Nanoparticles Alter the Transmembrane Potential via Ion-Selective Pores Maintaining Global Bilayer Integrity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14837-14849. [PMID: 36417698 PMCID: PMC9974068 DOI: 10.1021/acs.langmuir.2c02487] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Although nanoplastics have well-known toxic effects toward the environment and living organisms, their molecular toxicity mechanisms, including the nature of nanoparticle-cell membrane interactions, are still under investigation. Here, we employ dynamic light scattering, quartz crystal microbalance with dissipation monitoring, and electrophysiology to investigate the interaction between polystyrene nanoparticles (PS NPs) and phospholipid membranes. Our results show that PS NPs adsorb onto lipid bilayers creating soft inhomogeneous films that include disordered defects. PS NPs form an integral part of the generated channels so that the surface functionalization and charge of the NP determine the pore conductive properties. The large difference in size between the NP diameter and the lipid bilayer thickness (∼60 vs ∼5 nm) suggests a particular and complex lipid-NP assembly that is able to maintain overall membrane integrity. In view of this, we suggest that NP-induced toxicity in cells could operate in more subtle ways than membrane disintegration, such as inducing lipid reorganization and transmembrane ionic fluxes that disrupt the membrane potential.
Collapse
Affiliation(s)
- D. Aurora Perini
- Laboratory
of Molecular Biophysics, Department of Physics, Universitat Jaume I, 12071Castellón, Spain
| | - Elisa Parra-Ortiz
- Department
of Pharmacy, University of Copenhagen, DK-2100Copenhagen, Denmark
| | - Inmaculada Varó
- Institute
of Aquaculture Torre de la Sal (IATS-CSIC), Ribera de Cabanes, 12595Castellón, Spain
| | - María Queralt-Martín
- Laboratory
of Molecular Biophysics, Department of Physics, Universitat Jaume I, 12071Castellón, Spain
| | - Martin Malmsten
- Department
of Pharmacy, University of Copenhagen, DK-2100Copenhagen, Denmark
- Department
of Physical Chemistry 1, University of Lund, SE-22100Lund, Sweden
| | - Antonio Alcaraz
- Laboratory
of Molecular Biophysics, Department of Physics, Universitat Jaume I, 12071Castellón, Spain
- . Tel.: +34 964 72 8044
| |
Collapse
|
15
|
Wu H, Li Z. Nano-enabled agriculture: How do nanoparticles cross barriers in plants? PLANT COMMUNICATIONS 2022; 3:100346. [PMID: 35689377 PMCID: PMC9700125 DOI: 10.1016/j.xplc.2022.100346] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/12/2022] [Accepted: 06/06/2022] [Indexed: 05/15/2023]
Abstract
Nano-enabled agriculture is a topic of intense research interest. However, our knowledge of how nanoparticles enter plants, plant cells, and organelles is still insufficient. Here, we discuss the barriers that limit the efficient delivery of nanoparticles at the whole-plant and single-cell levels. Some commonly overlooked factors, such as light conditions and surface tension of applied nano-formulations, are discussed. Knowledge gaps regarding plant cell uptake of nanoparticles, such as the effect of electrochemical gradients across organelle membranes on nanoparticle delivery, are analyzed and discussed. The importance of controlling factors such as size, charge, stability, and dispersibility when properly designing nanomaterials for plants is outlined. We mainly focus on understanding how nanoparticles travel across barriers in plants and plant cells and the major factors that limit the efficient delivery of nanoparticles, promoting a better understanding of nanoparticle-plant interactions. We also provide suggestions on the design of nanomaterials for nano-enabled agriculture.
Collapse
Affiliation(s)
- Honghong Wu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; College of Agronomy and Biotechnology, China Agricultural University, Beijing 100083, China.
| | - Zhaohu Li
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; College of Agronomy and Biotechnology, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
16
|
Doolan JA, Williams GT, Hilton KLF, Chaudhari R, Fossey JS, Goult BT, Hiscock JR. Advancements in antimicrobial nanoscale materials and self-assembling systems. Chem Soc Rev 2022; 51:8696-8755. [PMID: 36190355 PMCID: PMC9575517 DOI: 10.1039/d1cs00915j] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Indexed: 11/21/2022]
Abstract
Antimicrobial resistance is directly responsible for more deaths per year than either HIV/AIDS or malaria and is predicted to incur a cumulative societal financial burden of at least $100 trillion between 2014 and 2050. Already heralded as one of the greatest threats to human health, the onset of the coronavirus pandemic has accelerated the prevalence of antimicrobial resistant bacterial infections due to factors including increased global antibiotic/antimicrobial use. Thus an urgent need for novel therapeutics to combat what some have termed the 'silent pandemic' is evident. This review acts as a repository of research and an overview of the novel therapeutic strategies being developed to overcome antimicrobial resistance, with a focus on self-assembling systems and nanoscale materials. The fundamental mechanisms of action, as well as the key advantages and disadvantages of each system are discussed, and attention is drawn to key examples within each field. As a result, this review provides a guide to the further design and development of antimicrobial systems, and outlines the interdisciplinary techniques required to translate this fundamental research towards the clinic.
Collapse
Affiliation(s)
- Jack A Doolan
- School of Chemistry and Forensic Science, University of Kent, Canterbury, Kent CT2 7NH, UK.
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | - George T Williams
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Kira L F Hilton
- School of Chemistry and Forensic Science, University of Kent, Canterbury, Kent CT2 7NH, UK.
| | - Rajas Chaudhari
- School of Chemistry and Forensic Science, University of Kent, Canterbury, Kent CT2 7NH, UK.
| | - John S Fossey
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Benjamin T Goult
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | - Jennifer R Hiscock
- School of Chemistry and Forensic Science, University of Kent, Canterbury, Kent CT2 7NH, UK.
| |
Collapse
|
17
|
Sheth M, Esfandiari L. Bioelectric Dysregulation in Cancer Initiation, Promotion, and Progression. Front Oncol 2022; 12:846917. [PMID: 35359398 PMCID: PMC8964134 DOI: 10.3389/fonc.2022.846917] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is primarily a disease of dysregulation – both at the genetic level and at the tissue organization level. One way that tissue organization is dysregulated is by changes in the bioelectric regulation of cell signaling pathways. At the basis of bioelectricity lies the cellular membrane potential or Vmem, an intrinsic property associated with any cell. The bioelectric state of cancer cells is different from that of healthy cells, causing a disruption in the cellular signaling pathways. This disruption or dysregulation affects all three processes of carcinogenesis – initiation, promotion, and progression. Another mechanism that facilitates the homeostasis of cell signaling pathways is the production of extracellular vesicles (EVs) by cells. EVs also play a role in carcinogenesis by mediating cellular communication within the tumor microenvironment (TME). Furthermore, the production and release of EVs is altered in cancer. To this end, the change in cell electrical state and in EV production are responsible for the bioelectric dysregulation which occurs during cancer. This paper reviews the bioelectric dysregulation associated with carcinogenesis, including the TME and metastasis. We also look at the major ion channels associated with cancer and current technologies and tools used to detect and manipulate bioelectric properties of cells.
Collapse
Affiliation(s)
- Maulee Sheth
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States
| | - Leyla Esfandiari
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, United States
- *Correspondence: Leyla Esfandiari,
| |
Collapse
|
18
|
Meador JP. The fish early-life stage sublethal toxicity syndrome - A high-dose baseline toxicity response. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118201. [PMID: 34740289 DOI: 10.1016/j.envpol.2021.118201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/31/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
A large number of toxicity studies report abnormalities in early life-stage (ELS) fish that are described here as a sublethal toxicity syndrome (TxSnFELS) and generally include a reduced heart rate, edemas (yolk sac and cardiac), and a variety of morphological abnormalities. The TxSnFELS is very common and not diagnostic for any chemical or class of chemicals. This sublethal toxicity syndrome is mostly observed at high exposure concentrations and appears to be a baseline, non-specific toxicity response; however, it can also occur at low doses by specific action. Toxicity metrics for this syndrome generally occur at concentrations just below those causing mortality and have been reported for a large number of diverse chemicals. Predictions based on tissue concentrations or quantitative-structure activity relationship (QSAR) models support the designation of baseline toxicity for many of the tested chemicals, which is confirmed by observed values. Given the sheer number of disparate chemicals causing the TxSnFELS and correlation with QSAR derived partitioning; the only logical conclusion for these high-dose responses is baseline toxicity by nonspecific action and not a lock and key type receptor response. It is important to recognize that many chemicals can act both as baseline toxicants and specific acting toxicants likely via receptor interaction and it is not possible to predict those threshold doses from baseline toxicity. We should search out these specific low-dose responses for ecological risk assessment and not rely on high-concentration toxicity responses to guide environmental protection. The goal for toxicity assessment should not be to characterize toxic responses at baseline toxicity concentrations, but to evaluate chemicals for their most toxic potential. Additional aspects of this review evaluated the fish ELS teratogenic responses in relation to mammalian oral LD50s and explored potential key events responsible for baseline toxicity.
Collapse
Affiliation(s)
- James P Meador
- Ecotoxicology Program, Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA, 98112, USA.
| |
Collapse
|
19
|
Dunkers JP, Iyer H, Jones B, Camp CH, Stranick SJ, Lin NJ. Toward absolute viability measurements for bacteria. JOURNAL OF BIOPHOTONICS 2021; 14:e202100175. [PMID: 34510771 DOI: 10.1002/jbio.202100175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/13/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
We aim to develop a quantitative viability method that distinguishes individual quiescent from dead cells and is measured in time (ns) as a referenceable, comparable quantity. We demonstrate that fluorescence lifetime imaging of an anionic, fluorescent membrane voltage probe fulfills these requirements for Streptococcus mutans. A random forest machine-learning model assesses whether individual S. mutans can be correctly classified into their original populations: stationary phase (quiescent), heat killed and inactivated via chemical fixation. We compare the results to intensity using three models: lifetime variables (τ1 , τ2 and p1 ), phasor variables (G, S) or all five variables, with the five variable models having the most accurate classification. This initial work affirms the potential for using fluorescence lifetime of a membrane voltage probe as a viability marker for quiescent bacteria, and future efforts on other bacterial species and fluorophores will help refine this approach.
Collapse
Affiliation(s)
- Joy P Dunkers
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Hariharan Iyer
- Statistical Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Brynna Jones
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
- Department of Chemistry, University of North Florida, Jacksonville, Florida, USA
| | - Charles H Camp
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Stephan J Stranick
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Nancy J Lin
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| |
Collapse
|
20
|
Molina-Hernandez JB, Aceto A, Bucciarelli T, Paludi D, Valbonetti L, Zilli K, Scotti L, Chaves-López C. The membrane depolarization and increase intracellular calcium level produced by silver nanoclusters are responsible for bacterial death. Sci Rep 2021; 11:21557. [PMID: 34732754 PMCID: PMC8566483 DOI: 10.1038/s41598-021-00545-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/13/2021] [Indexed: 02/08/2023] Open
Abstract
This work highlights how our silver ultra nanoclusters (ARGIRIUM-SUNc) hand-made synthesized, are very useful as a bactericide and anti-biofilm agent. The Argirium-SUNc effective antibacterial concentrations are very low (< 1 ppm) as compared to the corresponding values reported in the literature. Different bacterial defense mechanisms are observed dependent on ARGIRIUM-SUNc concentrations. Biochemical investigations (volatilome) have been performed to understand the pathways involved in cell death. By using fluorescence techniques and cell viability measurements we show, for the first time, that membrane depolarization and calcium intracellular level are both primary events in bacteria death. The ARGIRIUM-SUNc determined eradication of different biofilm at a concentration as low as 0.6 ppm. This suggests that the effect of the nanoparticles follows a common mechanism in different bacteria. It is highly probable that the chemical constitution of the crosslinks could be a key target in the disrupting mechanism of our nanoparticles. Since the biofilms and their constituents are essential for bacterial survival in contact with humans, the silver nanoparticles represent a logical target for new antibacterial treatments.
Collapse
Affiliation(s)
| | - Antonio Aceto
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Tonino Bucciarelli
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Domenico Paludi
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Luca Valbonetti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Katiuscia Zilli
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise Giuseppe Caporale, Teramo, Italy
| | - Luca Scotti
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
| | - Clemencia Chaves-López
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
21
|
Teunissen AJP, Burnett ME, Prévot G, Klein ED, Bivona D, Mulder WJM. Embracing nanomaterials' interactions with the innate immune system. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1719. [PMID: 33847441 PMCID: PMC8511354 DOI: 10.1002/wnan.1719] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/12/2021] [Accepted: 03/21/2021] [Indexed: 12/17/2022]
Abstract
Immunotherapy has firmly established itself as a compelling avenue for treating disease. Although many clinically approved immunotherapeutics engage the adaptive immune system, therapeutically targeting the innate immune system remains much less explored. Nanomedicine offers a compelling opportunity for innate immune system engagement, as many nanomaterials inherently interact with myeloid cells (e.g., monocytes, macrophages, neutrophils, and dendritic cells) or can be functionalized to target their cell-surface receptors. Here, we provide a perspective on exploiting nanomaterials for innate immune system regulation. We focus on specific nanomaterial design parameters, including size, form, rigidity, charge, and surface decoration. Furthermore, we examine the potential of high-throughput screening and machine learning, while also providing recommendations for advancing the field. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Abraham J. P. Teunissen
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Marianne E. Burnett
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Geoffrey Prévot
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Emma D. Klein
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Daniel Bivona
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Willem J. M. Mulder
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
- Laboratory of Chemical Biology, Department of Biochemical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
22
|
Bioelectric signaling: Reprogrammable circuits underlying embryogenesis, regeneration, and cancer. Cell 2021; 184:1971-1989. [PMID: 33826908 DOI: 10.1016/j.cell.2021.02.034] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/08/2021] [Accepted: 02/16/2021] [Indexed: 12/16/2022]
Abstract
How are individual cell behaviors coordinated toward invariant large-scale anatomical outcomes in development and regeneration despite unpredictable perturbations? Endogenous distributions of membrane potentials, produced by ion channels and gap junctions, are present across all tissues. These bioelectrical networks process morphogenetic information that controls gene expression, enabling cell collectives to make decisions about large-scale growth and form. Recent progress in the analysis and computational modeling of developmental bioelectric circuits and channelopathies reveals how cellular collectives cooperate toward organ-level structural order. These advances suggest a roadmap for exploiting bioelectric signaling for interventions addressing developmental disorders, regenerative medicine, cancer reprogramming, and synthetic bioengineering.
Collapse
|
23
|
Ziglari T, Wang Z, Holian A. Contribution of Particle-Induced Lysosomal Membrane Hyperpolarization to Lysosomal Membrane Permeabilization. Int J Mol Sci 2021; 22:2277. [PMID: 33668885 PMCID: PMC7956429 DOI: 10.3390/ijms22052277] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 12/25/2022] Open
Abstract
Lysosomal membrane permeabilization (LMP) has been proposed to precede nanoparticle-induced macrophage injury and NLRP3 inflammasome activation; however, the underlying mechanism(s) of LMP is unknown. We propose that nanoparticle-induced lysosomal hyperpolarization triggers LMP. In this study, a rapid non-invasive method was used to measure changes in lysosomal membrane potential of murine alveolar macrophages (AM) in response to a series of nanoparticles (ZnO, TiO2, and CeO2). Crystalline SiO2 (micron-sized) was used as a positive control. Changes in cytosolic potassium were measured using Asante potassium green 2. The results demonstrated that ZnO or SiO2 hyperpolarized the lysosomal membrane and decreased cytosolic potassium, suggesting increased lysosome permeability to potassium. Time-course experiments revealed that lysosomal hyperpolarization was an early event leading to LMP, NLRP3 activation, and cell death. In contrast, TiO2- or valinomycin-treated AM did not cause LMP unless high doses led to lysosomal hyperpolarization. Neither lysosomal hyperpolarization nor LMP was observed in CeO2-treated AM. These results suggested that a threshold of lysosomal membrane potential must be exceeded to cause LMP. Furthermore, inhibition of lysosomal hyperpolarization with Bafilomycin A1 blocked LMP and NLRP3 activation, suggesting a causal relation between lysosomal hyperpolarization and LMP.
Collapse
Affiliation(s)
- Tahereh Ziglari
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, Missoula, MT 59812, USA;
| | - Zifan Wang
- Division of Chemistry and Biochemistry, College of Humanities and Sciences, University of Montana, Missoula, MT 59812, USA;
| | - Andrij Holian
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, Missoula, MT 59812, USA;
| |
Collapse
|
24
|
Foreman-Ortiz IU, Liang D, Laudadio ED, Calderin JD, Wu M, Keshri P, Zhang X, Schwartz MP, Hamers RJ, Rotello VM, Murphy CJ, Cui Q, Pedersen JA. Anionic nanoparticle-induced perturbation to phospholipid membranes affects ion channel function. Proc Natl Acad Sci U S A 2020; 117:27854-27861. [PMID: 33106430 PMCID: PMC7668003 DOI: 10.1073/pnas.2004736117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding the mechanisms of nanoparticle interaction with cell membranes is essential for designing materials for applications such as bioimaging and drug delivery, as well as for assessing engineered nanomaterial safety. Much attention has focused on nanoparticles that bind strongly to biological membranes or induce membrane damage, leading to adverse impacts on cells. More subtle effects on membrane function mediated via changes in biophysical properties of the phospholipid bilayer have received little study. Here, we combine electrophysiology measurements, infrared spectroscopy, and molecular dynamics simulations to obtain insight into a mode of nanoparticle-mediated modulation of membrane protein function that was previously only hinted at in prior work. Electrophysiology measurements on gramicidin A (gA) ion channels embedded in planar suspended lipid bilayers demonstrate that anionic gold nanoparticles (AuNPs) reduce channel activity and extend channel lifetimes without disrupting membrane integrity, in a manner consistent with changes in membrane mechanical properties. Vibrational spectroscopy indicates that AuNP interaction with the bilayer does not perturb the conformation of membrane-embedded gA. Molecular dynamics simulations reinforce the experimental findings, showing that anionic AuNPs do not directly interact with embedded gA channels but perturb the local properties of lipid bilayers. Our results are most consistent with a mechanism in which anionic AuNPs disrupt ion channel function in an indirect manner by altering the mechanical properties of the surrounding bilayer. Alteration of membrane mechanical properties represents a potentially important mechanism by which nanoparticles induce biological effects, as the function of many embedded membrane proteins depends on phospholipid bilayer biophysical properties.
Collapse
Affiliation(s)
| | - Dongyue Liang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
- Department of Chemistry, Boston University, Boston, MA 02215
| | | | - Jorge D Calderin
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Meng Wu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Puspam Keshri
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003
| | - Xianzhi Zhang
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003
| | - Michael P Schwartz
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Robert J Hamers
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003
| | - Catherine J Murphy
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Qiang Cui
- Department of Chemistry, Boston University, Boston, MA 02215
- Department of Physics, Boston University, Boston, MA 02215
- Department of Biomedical Engineering, Boston University, Boston, MA 02215
| | - Joel A Pedersen
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706;
- Department of Soil Science, University of Wisconsin-Madison, Madison, WI 53706
- Department of Civil & Environmental Engineering, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
25
|
Toy R, Keenum MC, Pradhan P, Phang K, Chen P, Chukwu C, Nguyen LAH, Liu J, Jain S, Kozlowski G, Hosten J, Suthar MS, Roy K. TLR7 and RIG-I dual-adjuvant loaded nanoparticles drive broadened and synergistic responses in dendritic cells in vitro and generate unique cellular immune responses in influenza vaccination. J Control Release 2020; 330:866-877. [PMID: 33160004 DOI: 10.1016/j.jconrel.2020.10.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 10/24/2020] [Accepted: 10/29/2020] [Indexed: 01/08/2023]
Abstract
Although the existing flu vaccines elicit strong antigen-specific antibody responses, they fail to provide effective, long term protection - partly due to the absence of robust cellular memory immunity. We hypothesized that co-administration of combination adjuvants, mirroring the flu-virus related innate signaling pathways, could elicit strong cellular immunity. Here, we show that the small molecule adjuvant R848 and the RNA adjuvant PUUC, targeting endosomal TLR7s and cytoplasmic RLRs respectively, when delivered together in polymer nanoparticles (NP), elicits a broadened immune responses in mouse bone marrow-derived dendritic cells (mBMDCs) and a synergistic response in both mouse and human plasmacytoid dendritic cells (pDCs). In mBMDCs, NP-R848-PUUC induced both NF-κB and interferon signaling. Interferon responses to co-delivered R848 and PUUC were additive in human peripheral blood mononuclear cells (PBMCs) and synergistic in human FLT3-differentiated mBMDCs and CAL-1 pDCs. Vaccination with NPs loaded with H1N1 Flu antigen, R848, and PUUC increased percentage of CD8+ T-cells in the lungs, percentage of antigen-specific CD4-T-cells in the spleen, and enhanced overall cytokine-secreting T cell percentages upon antigen restimulation. Also, in the spleen, T lymphopenia, especially after in vitro restimulation with dual adjuvants, was observed, indicating highly antigen-reactive T cells. Our results demonstrate that simultaneous engagement of TLR7 and RIG-I pathways using particulate carriers is a potential approach to improve cellular immunity in flu vaccination.
Collapse
Affiliation(s)
- Randall Toy
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - M Cole Keenum
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Pallab Pradhan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Katelynn Phang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Patrick Chen
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Chinwendu Chukwu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Lily Anh H Nguyen
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Jiaying Liu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Sambhav Jain
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Gabrielle Kozlowski
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Justin Hosten
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Mehul S Suthar
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Krishnendu Roy
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
26
|
Al-Ani LA, Kadir FA, Hashim NM, Julkapli NM, Seyfoddin A, Lu J, AlSaadi MA, Yehye WA. The impact of curcumin-graphene based nanoformulation on cellular interaction and redox-activated apoptosis: An in vitro colon cancer study. Heliyon 2020; 6:e05360. [PMID: 33163675 PMCID: PMC7609448 DOI: 10.1016/j.heliyon.2020.e05360] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/03/2020] [Accepted: 10/23/2020] [Indexed: 12/21/2022] Open
Abstract
Natural plants derivatives have gained enormous merits in cancer therapy applications upon formulation with nanomaterials. Curcumin, as a popular research focus has acquired such improvements surpassing its disadvantageous low bioavailability. To this point, the available research data had confirmed the importance of nanomaterial type in orienting cellular response and provoking different toxicological and death mechanisms that may range from physical membrane damage to intracellular changes. This in turn underlines the poorly studied field of nanoformulation interaction with cells as the key determinant in toxicology outcomes. In this work, curcumin-AuNPs-reduced graphene oxide nanocomposite (CAG) was implemented as a model, to study the impact on cellular membrane integrity and the possible redox changes using colon cancer in vitro cell lines (HT-29 and SW-948), representing drug-responsive and resistant subtypes. Morphological and biochemical methods of transmission electron microscopy (TEM), apoptosis assay, reactive oxygen species (ROS) and antioxidants glutathione and superoxide dismutase (GSH and SOD) levels were examined with consideration to suitable protocols and vital optimizations. TEM micrographs proved endocytic uptake with succeeding cytoplasm deposition, which unlike other nanomaterials studied previously, conserved membrane integrity allowing intracellular cytotoxic mechanism. Apoptosis was confirmed with gold-standard morphological features observed in micrographs, while redox parameters revealed a time-dependent increase in ROS accompanied with regressive GSH and SOD levels. Collectively, this work demonstrates the success of graphene as a platform for curcumin intracellular delivery and cytotoxicity, and further highlights the importance of suitable in vitro methods to be used for nanomaterial validation.
Collapse
Affiliation(s)
- Lina A. Al-Ani
- Institute of Advanced Studies, Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
| | - Farkaad A. Kadir
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Najihah M. Hashim
- Department of Pharmaceutical Chemicals, Faculty of Pharmacy, University of Malaya, Kuala Lumpur, Malaysia
- Centre for Natural Products and Drug Discovery (CENAR), University of Malaya, Kuala Lumpur, Malaysia
| | - Nurhidayatullaili M. Julkapli
- Institute of Advanced Studies, Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
| | - Ali Seyfoddin
- Drug Delivery Research Group, Auckland University of Technology, School of Science, Auckland, New Zealand
| | - Jun Lu
- School of Science, Faculty of Health & Environmental Sciences, Auckland University of Technology. Auckland, New Zealand
- College of Perfume and Aroma, Shanghai Institute of Technology, Shanghai, China
| | - Mohammed A. AlSaadi
- Institute of Advanced Studies, Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
- University of Malaya Centre for Ionic Liquids (UMCiL), University of Malaya, Kuala Lumpur, Malaysia
- National Chair of Materials Sciences and Metallurgy, University of Nizwa, Nizwa, Sultanate of Oman
| | - Wageeh A. Yehye
- Institute of Advanced Studies, Nanotechnology & Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
27
|
Li Y, Yang Y, Qing Y, Li R, Tang X, Guo D, Qin Y. Enhancing ZnO-NP Antibacterial and Osteogenesis Properties in Orthopedic Applications: A Review. Int J Nanomedicine 2020; 15:6247-6262. [PMID: 32903812 PMCID: PMC7445529 DOI: 10.2147/ijn.s262876] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/30/2020] [Indexed: 12/29/2022] Open
Abstract
Prosthesis-associated infections and aseptic loosening are major causes of implant failure. There is an urgent need to improve the antibacterial ability and osseointegration of orthopedic implants. Zinc oxide nanoparticles (ZnO-NPs) are a common type of zinc-containing metal oxide nanoparticles that have been widely studied in many fields, such as food packaging, pollution treatment, and biomedicine. The ZnO-NPs have low toxicity and good biological functions, as well as antibacterial, anticancer, and osteogenic capabilities. Furthermore, ZnO-NPs can be easily obtained through various methods. Among them, green preparation methods can improve the bioactivity of ZnO-NPs and strengthen their potential application in the biological field. This review discusses the antibacterial abilities of ZnO-NPs, including mechanisms and influencing factors. The toxicity and shortcomings of anticancer applications are summarized. Furthermore, osteogenic mechanisms and synergy with other materials are introduced. Green preparation methods are also briefly reviewed.
Collapse
Affiliation(s)
- Yuehong Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yue Yang
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yun’an Qing
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Ruiyan Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Xiongfeng Tang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Deming Guo
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yanguo Qin
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
28
|
Rodríguez-Hernández AG, Vazquez-Duhalt R, Huerta-Saquero A. Nanoparticle-plasma Membrane Interactions: Thermodynamics, Toxicity and Cellular Response. Curr Med Chem 2020; 27:3330-3345. [DOI: 10.2174/0929867325666181112090648] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/25/2018] [Accepted: 11/02/2018] [Indexed: 12/23/2022]
Abstract
Nanomaterials have become part of our daily lives, particularly nanoparticles contained
in food, water, cosmetics, additives and textiles. Nanoparticles interact with organisms
at the cellular level. The cell membrane is the first protective barrier against the potential toxic
effect of nanoparticles. This first contact, including the interaction between the cell membranes
-and associated proteins- and the nanoparticles is critically reviewed here. Nanoparticles, depending
on their toxicity, can cause cellular physiology alterations, such as a disruption in cell
signaling or changes in gene expression and they can trigger immune responses and even apoptosis.
Additionally, the fundamental thermodynamics behind the nanoparticle-membrane and
nanoparticle-proteins-membrane interactions are discussed. The analysis is intended to increase
our insight into the mechanisms involved in these interactions. Finally, consequences are reviewed
and discussed.
Collapse
Affiliation(s)
- Ana G. Rodríguez-Hernández
- CONACyT Research Fellow at Centro de Nanociencias y Nanotecnologia, Universidad Nacional Autonoma de Mexico. Km 107, Carretera Tijuana-Ensenada, Pedregal Playitas, Ensenada 22860, B.C, Mexico
| | - Rafael Vazquez-Duhalt
- Centro de Nanociencias y Nanotecnologia, Universidad Nacional Autonoma de Mexico, Km 107 Carretera Tijuana- Ensenada, Pedregal Playitas, Ensenada 22860, B.C, Mexico
| | - Alejandro Huerta-Saquero
- Centro de Nanociencias y Nanotecnologia, Universidad Nacional Autonoma de Mexico, Km 107 Carretera Tijuana- Ensenada, Pedregal Playitas, Ensenada 22860, B.C, Mexico
| |
Collapse
|
29
|
Nazemidashtarjandi S, Vahedi A, Farnoud AM. Lipid Chemical Structure Modulates the Disruptive Effects of Nanomaterials on Membrane Models. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4923-4932. [PMID: 32312045 PMCID: PMC8725912 DOI: 10.1021/acs.langmuir.0c00295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Understanding the mechanisms by which engineered nanomaterials disrupt the cell plasma membrane is crucial in advancing the industrial and biomedical applications of nanotechnology. While the role of nanoparticle properties in inducing membrane damage has received significant attention, the role of the lipid chemical structure in regulating such interactions is less explored. Here, we investigated the role of the lipid chemical structure in the disruption of lipid vesicles by unmodified silica, carboxyl-modified silica, and unmodified polystyrene nanoparticles (50 nm). The role of the lipid headgroup was examined by comparing nanoparticle effects on vesicles composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) vs an inverse phosphocholine (PC) with the same acyl chain structure. The role of acyl chain saturation was examined by comparing nanoparticle effects on saturated vs unsaturated PCs and sphingomyelins. Nanoparticle effects on PCs (glycerol backbone) vs sphingomyelins (sphingosine backbone) were also examined. Results showed that the lipid headgroup, backbone, and acyl chain saturation affect nanoparticle binding to and disruption of the membranes. A low headgroup tilt angle and the presence of a trimethylammonium moiety at the vesicle surface are required for unmodified nanoparticles to induce membrane disruption. Lipid backbone structure significantly affects nanoparticle-membrane interactions, with carboxyl-modified particles only disrupting lipids containing cis unsaturation and a sphingosine backbone. Acyl chain saturation makes vesicles more resistant to particles by increasing lipid packing in vesicles, impeding molecular interactions. Finally, nanoparticles were capable of changing the lipid packing, resulting in pore formation in the process. These observations are important in interpreting nanoparticle toxicity to biological membranes.
Collapse
|
30
|
Nag OK, Muroski ME, Hastman DA, Almeida B, Medintz IL, Huston AL, Delehanty JB. Nanoparticle-Mediated Visualization and Control of Cellular Membrane Potential: Strategies, Progress, and Remaining Issues. ACS NANO 2020; 14:2659-2677. [PMID: 32078291 DOI: 10.1021/acsnano.9b10163] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The interfacing of nanoparticle (NP) materials with cells, tissues, and organisms for a range of applications including imaging, sensing, and drug delivery continues at a rampant pace. An emerging theme in this area is the use of NPs and nanostructured surfaces for the imaging and/or control of cellular membrane potential (MP). Given the important role that MP plays in cellular biology, both in normal physiology and in disease, new materials and methods are continually being developed to probe the activity of electrically excitable cells such as neurons and muscle cells. In this Review, we highlight the current state of the art for both the visualization and control of MP using traditional materials and techniques, discuss the advantageous features of NPs for performing these functions, and present recent examples from the literature of how NP materials have been implemented for the visualization and control of the activity of electrically excitable cells. We conclude with a forward-looking perspective of how we expect to see this field progress in the near term and further into the future.
Collapse
Affiliation(s)
- Okhil K Nag
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, United States
| | - Megan E Muroski
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, United States
- American Society for Engineering Education, Washington, D.C. 20036, United States
| | - David A Hastman
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, United States
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Bethany Almeida
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, United States
- American Society for Engineering Education, Washington, D.C. 20036, United States
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, United States
| | - Alan L Huston
- Division of Optical Sciences, Code 5600, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - James B Delehanty
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, United States
| |
Collapse
|
31
|
Neurotoxicity of silver nanoparticles stabilized with different coating agents: In vitro response of neuronal precursor cells. Food Chem Toxicol 2020; 136:110935. [DOI: 10.1016/j.fct.2019.110935] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/18/2019] [Accepted: 10/29/2019] [Indexed: 12/31/2022]
|
32
|
da Costa Araújo AP, de Melo NFS, de Oliveira Junior AG, Rodrigues FP, Fernandes T, de Andrade Vieira JE, Rocha TL, Malafaia G. How much are microplastics harmful to the health of amphibians? A study with pristine polyethylene microplastics and Physalaemus cuvieri. JOURNAL OF HAZARDOUS MATERIALS 2020; 382:121066. [PMID: 31473515 DOI: 10.1016/j.jhazmat.2019.121066] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 05/20/2023]
Abstract
Microplastics (MPs) are critical emerging pollutants found in the environment worldwide; however, its toxicity in aquatic in amphibians, is poorly known. Thus, the aim of the present study is to assess the toxicological potential of polyethylene microplastics (PE MPs) in Physalaemus cuvieri tadpoles. According to the results, tadpoles' exposure to MP PE at concentration 60 mg/L for 7 days led to mutagenic effects, which were evidenced by the increased number of abnormalities observed in nuclear erythrocytes. The small size of erythrocytes and their nuclei area, perimeter, width, length, and radius, as well as the lower nucleus/cytoplasm ratio observed in tadpoles exposed to PE MPs confirmed its cytotoxicity. External morphological changes observed in the animal models included reduced ratio between total length and mouth-cloaca distance, caudal length, ocular area, mouth area, among others. PE MPs increased the number of melanophores in the skin and pigmentation rate in the assessed areas. Finally, PE MPs were found in gills, gastrointestinal tract, liver, muscle tissues of the tail and in the blood, a fact that confirmed MP accumulation by tadpoles. Therefore, the present study pioneering evidenced how MPs can affect the health of amphibians.
Collapse
Affiliation(s)
- Amanda Pereira da Costa Araújo
- Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil
| | | | | | - Fernando Postalli Rodrigues
- Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil
| | - Thiago Fernandes
- Laboratory of Electron Microscopy and Microanalysis, State University of Londrina, Londrina, PR, Brazil
| | - Julya Emmanuela de Andrade Vieira
- Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil; Post-Graduation Program in Genetics and Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Guilherme Malafaia
- Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil; Post-Graduation Program in Genetics and Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
33
|
Levin M, Selberg J, Rolandi M. Endogenous Bioelectrics in Development, Cancer, and Regeneration: Drugs and Bioelectronic Devices as Electroceuticals for Regenerative Medicine. iScience 2019; 22:519-533. [PMID: 31837520 PMCID: PMC6920204 DOI: 10.1016/j.isci.2019.11.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/15/2019] [Accepted: 11/12/2019] [Indexed: 12/21/2022] Open
Abstract
A major frontier in the post-genomic era is the investigation of the control of coordinated growth and three-dimensional form. Dynamic remodeling of complex organs in regulative embryogenesis, regeneration, and cancer reveals that cells and tissues make decisions that implement complex anatomical outcomes. It is now essential to understand not only the genetics that specifies cellular hardware but also the physiological software that implements tissue-level plasticity and robust morphogenesis. Here, we review recent discoveries about the endogenous mechanisms of bioelectrical communication among non-neural cells that enables them to cooperate in vivo. We discuss important advances in bioelectronics, as well as computational and pharmacological tools that are enabling the taming of biophysical controls toward applications in regenerative medicine and synthetic bioengineering.
Collapse
Affiliation(s)
- Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA.
| | - John Selberg
- Electrical and Computer Engineering Department, University of California, Santa Cruz, CA 95064, USA
| | - Marco Rolandi
- Electrical and Computer Engineering Department, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
34
|
Comparative study of different forms of Jellein antimicrobial peptide on Leishmania parasite. Exp Parasitol 2019; 209:107823. [PMID: 31862270 DOI: 10.1016/j.exppara.2019.107823] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 09/23/2019] [Accepted: 12/12/2019] [Indexed: 01/16/2023]
Abstract
Typically, antimicrobial peptides (AMPs) are short positive charged peptides serving a key role in innate immunity as well as antimicrobial activity. Discovering novel therapeutic agents is considered as an undeniable demand due to increasing microbial species with antibiotic resistance. In this direction, the unique ability of AMPs to modulate immune responses highlighted them as novel drug candidates in the field of microbiology. Patients affected by leishmaniasis; a neglected tropical disease, confront serious problems for their treatment including resistance to common drugs as well as toxicity and high cost of therapy. So, there is a need for development of new drug candidates to control the diseases. Jellein, a peptide derived from royal jelly of honeybee has been shown to have promising effect against several bacterial and fungal species. In current study, anti-leishmanial effect of Jellein and its lauric acid conjugated form was investigated against two forms of Leishmania major (L. major) parasite. Moreover, cytotoxic effect of these peptides was studied in THP1 cell line and human Red Blood Cells (RBCs). Furthermore, the mechanism of action of peptides on L. major promastigotes was assessed through different methods. The results demonstrated that, conjugation of lauric acid to Jellein not only had no effect on the elevation of antimicrobial activity but also halted it completely. Moreover, Jellein caused a limitation in the number of L. major promastigotes by pore formation as well as changing the membrane potential rather than induction of apoptosis or activation of caspases.
Collapse
|
35
|
Meador JP, Nahrgang J. Characterizing Crude Oil Toxicity to Early-Life Stage Fish Based On a Complex Mixture: Are We Making Unsupported Assumptions? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11080-11092. [PMID: 31503459 DOI: 10.1021/acs.est.9b02889] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Numerous studies of the water-soluble fraction (WSF) from crude oil have concluded that polycyclic aromatic hydrocarbons (PAHs) are the primary causative agents for early life stage (ELS) fish toxicity. Noteworthy is the lack of studies demonstrating that the sum of PAHs are capable of causing toxic effects in ELS fish at the low levels claimed (0.1-5 μg/L) without being part of a complex crude oil mixture. Crude oil and the WSF are composed of thousands of other compounds that co-occur and likely contribute to crude oil toxicity. Based on the available data, it appears that the syndrome of effects (lower heart rate, edemas, and morphological abnormalities) for ELS fish exposed to the aqueous fraction of a crude oil mixture is commonly observed in studies exposing fish embryos to high concentrations of a variety of compounds and may be a nonspecific response. We conclude that the available data support the hypothesis that this syndrome of effects is likely the result of baseline toxicity (not receptor based) due to membrane disruption and resulting alteration in ion (e.g., calcium and potassium) homeostasis. We acknowledge the possibility of some compounds in the WSF capable of causing a specific receptor based toxicity response to ELS fish; however, such compounds have not been identified nor their receptor characterized. Concluding that PAHs are the main toxic compounds for crude oil exposure is misleading and does not result in guideline values that can be useful for environmental protection. Water quality guidelines for any single chemical or suite of chemicals must be based on a complete understanding of exposure concentrations, mechanism of action, potency, and resulting response. This review focuses on the toxic effects reported for fish embryos and the purported toxic concentrations observed in the aqueous phase of an oil/water mixture, the known levels of toxicity for individual PAHs, a toxic unit approach for characterizing mixtures, and the potential molecular initiating event for ELS toxicity in fish. This review also has implications for a large number of studies exposing ELS fish to a variety of compounds at high concentrations that result in a common baseline toxic response.
Collapse
Affiliation(s)
- James P Meador
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service , National Oceanic and Atmospheric Administration , 2725 Montlake Boulevard East , Seattle , Washington 98112 , United States
| | - Jasmine Nahrgang
- Faculty of Biosciences, Fisheries and Economics, Department of Arctic and Marine Biology , UiT The Arctic University of Norway , N-9037 Tromsø , Norway
| |
Collapse
|
36
|
Chen CC, Chen CL, Li JJ, Chen YY, Wang CY, Wang YS, Chi KH, Wang HE. Presence of Gold Nanoparticles in Cells Associated with the Cell-Killing Effect of Modulated Electro-Hyperthermia. ACS APPLIED BIO MATERIALS 2019; 2:3573-3581. [PMID: 35030743 DOI: 10.1021/acsabm.9b00453] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The efficacy of gold nanoparticle (AuNP)-assisted radiofrequency (RF)-induced hyperthermia employing the Kanzius device remains controversial. Different from the Kanzius device, modulated electro-hyperthermia (mEHT) utilizes the capacitive-impedance coupled 13.56 MHz radiofrequency (RF) current and has been approved for clinical cancer treatment. In this study, we investigated the heating characteristics of spherical-, urchin-, and rod-like AuNPs of a similar 50 nm size upon exposure to a 13.56 MHz radiofrequency using the LabEHY-105CL, an in vivo mEHT device. We found that, regardless of the AuNPs' sphere-, urchin- or rod-like shape, purified gold nanoparticle solution would not promote heat generation. The temperature elevation during radiofrequency irradiation was solely attributed to the ionic background of the solution. The AuNPs present in the medium (≤25 ppm) showed no effect on selective cell killing of malignant cells, whereas the AuNPs incorporated in the cells diminished the cell selectivity as well as cell death and acted as protectors in mEHT cancer treatment. Our study suggested that (1) the temperature elevation induced by 50 nm AuNPs in the 13.56 MHz radiofrequency field was negligible and was shape-independent, and (2) the presence of AuNPs would alter the cell-killing effect of modulated electro-hyperthermia.
Collapse
Affiliation(s)
- Chao-Cheng Chen
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | - Chuan-Lin Chen
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | - Jia-Je Li
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | - Ya-Yun Chen
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | - Chung-Yih Wang
- Department of Radiotherapy, Cheng Hsin General Hospital, Taipei 112, Taiwan
| | - Yu-Shan Wang
- Department of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan.,Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu 112, Taiwan
| | - Kwan-Hwa Chi
- Department of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan
| | - Hsin-Ell Wang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan
| |
Collapse
|
37
|
Zanella D, Bossi E, Gornati R, Faria N, Powell J, Bernardini G. The direct permeation of nanoparticles through the plasma membrane transiently modifies its properties. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:182997. [PMID: 31150635 DOI: 10.1016/j.bbamem.2019.05.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/07/2019] [Accepted: 05/24/2019] [Indexed: 12/20/2022]
Abstract
The exposure to metal nanoparticles (NPs) has increased with their widespread use in industry, research and medicine. It is well known that NPs may enter cells and that this mechanism is crucial to exert both the therapeutic and toxicity effects. The main cellular entrance route is endocytosis-based, however, recent experimental studies, have reported that NPs can also enter the cell crossing directly the plasma membrane, it is thus important to investigate this alternative internalization mechanism. Size, surface chemistry, solubility and shape play a role in NP ability of entering the cell, but it is still to be elucidated how these properties act on cell membrane. We have demonstrated that a direct permeation of metal oxide NPs through the lipid bilayer of the cell membrane can occur, giving direct access to the cytoplasm. In this paper, using the powerful tool of Xenopus laevis oocytes and two electrode Voltage Clamp, we have investigated several parameters that can influence the direct crossing. The most significant of them is the NP hydrodynamic size as clearly shown by the comparison of the behaviour between Co3O4 and NiO NPs. By collecting biophysical membrane parameters in different conditions, we have shown that NPs that are able to cross the membrane share the ability to maintain a hydrodynamic size lower than 200 nm. The presence of this route of entrance must be considered for a better comprehension of the effect at intracellular level considering possible mechanism in order to a safer design of engineered NPs.
Collapse
Affiliation(s)
- Daniele Zanella
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, I-21100 Varese, Italy
| | - Elena Bossi
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, I-21100 Varese, Italy.
| | - Rosalba Gornati
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, I-21100 Varese, Italy
| | - Nuno Faria
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 OES, UK
| | - Jonathan Powell
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 OES, UK
| | - Giovanni Bernardini
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, I-21100 Varese, Italy.
| |
Collapse
|
38
|
Cervera J, Manzanares JA, Mafe S, Levin M. Synchronization of Bioelectric Oscillations in Networks of Nonexcitable Cells: From Single-Cell to Multicellular States. J Phys Chem B 2019; 123:3924-3934. [PMID: 31003574 DOI: 10.1021/acs.jpcb.9b01717] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biological networks use collective oscillations for information processing tasks. In particular, oscillatory membrane potentials have been observed in nonexcitable cells and bacterial communities where specific ion channel proteins contribute to the bioelectric coordination of large populations. We aim at describing theoretically the oscillatory spatiotemporal patterns that emerge at the multicellular level from the single-cell bioelectric dynamics. To this end, we focus on two key questions: (i) What single-cell properties are relevant to multicellular behavior? (ii) What properties defined at the multicellular level can allow an external control of the bioelectric dynamics? In particular, we explore the interplay between transcriptional and translational dynamics and membrane potential dynamics in a model multicellular ensemble, describe the spatiotemporal patterns that arise when the average electric potential allows groups of cells to act as a coordinated multicellular patch, and characterize the resulting synchronization phenomena. The simulations concern bioelectric networks and collective communication across different scales based on oscillatory and synchronization phenomena, thus shedding light on the physiological dynamics of a wide range of endogenous contexts across embryogenesis and regeneration.
Collapse
Affiliation(s)
- Javier Cervera
- Departament de Termodinàmica, Facultat de Física , Universitat de València , E-46100 Burjassot , Spain
| | - José Antonio Manzanares
- Departament de Termodinàmica, Facultat de Física , Universitat de València , E-46100 Burjassot , Spain
| | - Salvador Mafe
- Departament de Termodinàmica, Facultat de Física , Universitat de València , E-46100 Burjassot , Spain
| | - Michael Levin
- Allen Discovery Center at Tufts University, Department of Biology , Tufts University Medford , Massachusetts 02155-4243 , United States
| |
Collapse
|
39
|
Sun H, Wang J, Jiang Y, Shen W, Jia F, Wang S, Liao X, Zhang L. Rapid Aerobic Inactivation and Facile Removal of Escherichia coli with Amorphous Zero-Valent Iron Microspheres: Indispensable Roles of Reactive Oxygen Species and Iron Corrosion Products. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3707-3717. [PMID: 30817131 DOI: 10.1021/acs.est.8b06499] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Zero valent iron (ZVI) is recently regarded as a promising alternative for water disinfection, but still suffers from low efficiency. Herein we demonstrate that amorphous zerovalent iron microspheres (A-mZVI) exhibit both higher inactivation rate and physical removal efficiency for the disinfection of Escherichia coli than conventional crystalline nanoscale ZVI (C-nZVI) under aerobic condition. The enhanced E. coli inactivation performance of A-mZVI was mainly attributed to more reactive oxygen species (ROSs), especially free •OH, generated by the accelerated iron dissolution and molecular oxygen activation in bulk solution. In contrast, C-nZVI preferred to produce surface bound •OH, and its bactericidal ability was thus hampered by the limited physical contact between C-nZVI and E. coli. More importantly, hydrolysis of dissolved iron released from A-mZVI produced plenty of loose FeOOH to wrap E. coli, increasing the dysfunction of E. coli membrane. Meanwhile, this hydrolysis process lowered the stability of E. coli colloid and caused its rapid coagulation and sedimentation, favoring its physical removal. These findings clarify the indispensable roles of ROSs and iron corrosion products during the ZVI disinfection, and also provide a promising disinfection material for water treatment.
Collapse
Affiliation(s)
- Hongwei Sun
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| | - Jian Wang
- Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences , Central China Normal University , Wuhan 430079 , P. R. China
| | - Yao Jiang
- Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences , Central China Normal University , Wuhan 430079 , P. R. China
| | - Wenjuan Shen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| | - Falong Jia
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| | - Shaohui Wang
- Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences , Central China Normal University , Wuhan 430079 , P. R. China
| | - Xiaomei Liao
- Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences , Central China Normal University , Wuhan 430079 , P. R. China
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| |
Collapse
|
40
|
Cervera J, Manzanares JA, Mafe S. Cell-cell bioelectrical interactions and local heterogeneities in genetic networks: a model for the stabilization of single-cell states and multicellular oscillations. Phys Chem Chem Phys 2019; 20:9343-9354. [PMID: 29564429 DOI: 10.1039/c8cp00648b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Genetic networks operate in the presence of local heterogeneities in single-cell transcription and translation rates. Bioelectrical networks and spatio-temporal maps of cell electric potentials can influence multicellular ensembles. Could cell-cell bioelectrical interactions mediated by intercellular gap junctions contribute to the stabilization of multicellular states against local genetic heterogeneities? We theoretically analyze this question on the basis of two well-established experimental facts: (i) the membrane potential is a reliable read-out of the single-cell electrical state and (ii) when the cells are coupled together, their individual cell potentials can be influenced by ensemble-averaged electrical potentials. We propose a minimal biophysical model for the coupling between genetic and bioelectrical networks that associates the local changes occurring in the transcription and translation rates of an ion channel protein with abnormally low (depolarized) cell potentials. We then analyze the conditions under which the depolarization of a small region (patch) in a multicellular ensemble can be reverted by its bioelectrical coupling with the (normally polarized) neighboring cells. We show also that the coupling between genetic and bioelectric networks of non-excitable cells, modulated by average electric potentials at the multicellular ensemble level, can produce oscillatory phenomena. The simulations show the importance of single-cell potentials characteristic of polarized and depolarized states, the relative sizes of the abnormally polarized patch and the rest of the normally polarized ensemble, and intercellular coupling.
Collapse
Affiliation(s)
- Javier Cervera
- Dept. Termodinàmica, Fac. Física, Universitat de València, 46100 Burjassot, Spain.
| | - José A Manzanares
- Dept. Termodinàmica, Fac. Física, Universitat de València, 46100 Burjassot, Spain.
| | - Salvador Mafe
- Dept. Termodinàmica, Fac. Física, Universitat de València, 46100 Burjassot, Spain.
| |
Collapse
|
41
|
Assessing the Potential of Chitosan/Polylactide Nanoparticles for Delivery of Therapeutics for Triple-Negative Breast Cancer Treatment. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019. [DOI: 10.1007/s40883-018-0089-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
42
|
Cervera J, Meseguer S, Mafe S. Intercellular Connectivity and Multicellular Bioelectric Oscillations in Nonexcitable Cells: A Biophysical Model. ACS OMEGA 2018; 3:13567-13575. [PMID: 30411043 PMCID: PMC6217649 DOI: 10.1021/acsomega.8b01514] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/08/2018] [Indexed: 05/28/2023]
Abstract
Bioelectricity is emerging as a crucial mechanism for signal transmission and processing from the single-cell level to multicellular domains. We explore theoretically the oscillatory dynamics that result from the coupling between the genetic and bioelectric descriptions of nonexcitable cells in multicellular ensembles, connecting the genetic prepatterns defined over the ensemble with the resulting spatio-temporal map of cell potentials. These prepatterns assume the existence of a small patch in the ensemble with locally low values of the genetic rate constants that produce a specific ion channel protein whose conductance promotes the cell-polarized state (inward-rectifying channel). In this way, the short-range interactions of the cells within the patch favor the depolarized membrane potential state, whereas the long-range interaction of the patch with the rest of the ensemble promotes the polarized state. The coupling between the local and long-range bioelectric signals allows a binary control of the patch membrane potentials, and alternating cell polarization and depolarization states can be maintained for optimal windows of the number of cells and the intercellular connectivity in the patch. The oscillatory phenomena emerge when the feedback between the single-cell bioelectric and genetic dynamics is coupled at the multicellular level. In this way, the intercellular connectivity acts as a regulatory mechanism for the bioelectrical oscillations. The simulation results are qualitatively discussed in the context of recent experimental studies.
Collapse
Affiliation(s)
- Javier Cervera
- Departamento
de Termodinàmica, Facultat de Física,
Universitat de València, E-46100 Burjassot, Spain
| | - Salvador Meseguer
- Laboratory
of RNA Modification and Mitochondrial Diseases, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Salvador Mafe
- Departamento
de Termodinàmica, Facultat de Física,
Universitat de València, E-46100 Burjassot, Spain
| |
Collapse
|
43
|
Bioelectrical coupling in multicellular domains regulated by gap junctions: A conceptual approach. Bioelectrochemistry 2018; 123:45-61. [DOI: 10.1016/j.bioelechem.2018.04.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 12/16/2022]
|
44
|
Lerner MI, Mikhaylov G, Tsukanov AA, Lozhkomoev AS, Gutmanas E, Gotman I, Bratovs A, Turk V, Turk B, Psakhye SG, Vasiljeva O. Crumpled Aluminum Hydroxide Nanostructures as a Microenvironment Dysregulation Agent for Cancer Treatment. NANO LETTERS 2018; 18:5401-5410. [PMID: 30070485 DOI: 10.1021/acs.nanolett.8b01592] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Owing to their unique physicochemical properties, nanomaterials have become a focus of multidisciplinary research efforts including investigations of their interactions with tumor cells and stromal compartment of tumor microenvironment (TME) toward the development of next-generation anticancer therapies. Here, we report that agglomerates of radially assembled Al hydroxide crumpled nanosheets exhibit anticancer activity due to their selective adsorption properties and positive charge. This effect was demonstrated in vitro by decreased proliferation and viability of tumor cells, and further confirmed in two murine cancer models. Moreover, Al hydroxide nanosheets almost completely inhibited the growth of murine melanoma in vivo in combination with a minimally effective dose of doxorubicin. Our direct molecular dynamics simulation demonstrated that Al hydroxide nanosheets can cause significant ion imbalance in the living cell perimembranous space through the selective adsorption of extracellular anionic species. This approach to TME dysregulation could lay the foundation for development of novel anticancer therapy strategies.
Collapse
Affiliation(s)
- Marat I Lerner
- Institute of Strength Physics and Materials Science , Tomsk 634055 , Russia
| | - Georgy Mikhaylov
- Department of Biochemistry and Molecular and Structural Biology , Jozef Stefan Institute , Ljubljana SI-1000 , Slovenia
| | - Alexey A Tsukanov
- Institute of Strength Physics and Materials Science , Tomsk 634055 , Russia
| | | | - Elazar Gutmanas
- Technion-Israel Institute of Technology , Haifa 3200 , Israel
| | - Irena Gotman
- Department of Mechanical Engineering , ORT Braude College , Karmiel 2161002 , Israel
| | - Andreja Bratovs
- Department of Biochemistry and Molecular and Structural Biology , Jozef Stefan Institute , Ljubljana SI-1000 , Slovenia
| | - Vito Turk
- Department of Biochemistry and Molecular and Structural Biology , Jozef Stefan Institute , Ljubljana SI-1000 , Slovenia
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology , Jozef Stefan Institute , Ljubljana SI-1000 , Slovenia
- Faculty of Chemistry and Chemical Technology , University of Ljubljana , Ljubljana SI-1000 , Slovenia
- Center of Excellence for Integrated Approaches in Chemistry and Biology of Proteins , SI-1000 Ljubljana , Slovenia
| | - Sergey G Psakhye
- Institute of Strength Physics and Materials Science , Tomsk 634055 , Russia
| | - Olga Vasiljeva
- Department of Biochemistry and Molecular and Structural Biology , Jozef Stefan Institute , Ljubljana SI-1000 , Slovenia
| |
Collapse
|
45
|
Biological Effect of Organically Coated Grias neuberthii and Persea americana Silver Nanoparticles on HeLa and MCF-7 Cancer Cell Lines. JOURNAL OF NANOTECHNOLOGY 2018. [DOI: 10.1155/2018/9689131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to assess the biological effect of organically coated Grias neuberthii (piton) fruit and Persea americana (avocado) leaves nanoparticles (NPs) on cervical cancer (HeLa) and breast adenocarcinoma (MCF-7) cells with an emphasis on gene expression (p53 transcription factor and glutathione-S-transferase GST) and cell viability. UV-Vis spectroscopy analysis showed that synthesized AgNPs remained partially stable under cell culture conditions. HeLa cells remained viable when exposed to piton and avocado AgNPs. A statistically significant, dose-dependent cytotoxic response to both AgNPs was found on the breast cancer (MCF-7) cell line at concentrations above 50 µM. While expression levels of transcription factor p53 showed downregulation in treated MCF-7 and HeLa cells, GST expression was not affected in both cell lines treated. Cell viability assays along with gene expression levels in treated MCF-7 cells support a cancer cell population undergoing cell cycle arrest. The selective toxicity of biosynthesized piton/avocado AgNPs on MCF-7 cells might be of value for novel therapeutics.
Collapse
|
46
|
Binda A, Panariti A, Barbuti A, Murano C, Dal Magro R, Masserini M, Re F, Rivolta I. Modulation of the intrinsic neuronal excitability by multifunctional liposomes tailored for the treatment of Alzheimer's disease. Int J Nanomedicine 2018; 13:4059-4071. [PMID: 30034232 PMCID: PMC6047604 DOI: 10.2147/ijn.s161563] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose Nanotechnologies turned out to be promising in the development of diagnostic and therapeutic approaches toward neurodegenerative disorders. However, only a very scant number of nanodevices until now proved to be effective on preclinical animal models. Although specific tests in vivo are available to assess the potential toxicity of these nanodevices on cognitive functions, those to evaluate their biosafety in vitro on neurons are still to be improved. Materials and methods We utilized the patch-clamp technique on primary cultures of cortical neural cells isolated from neonatal rats, aiming to evaluate their electrical properties after the incubation with liposomes (mApoE-PA-LIPs), previously proved able to cross the blood–brain barrier and to be effective on mouse models of Alzheimer’s disease (AD), both in the absence and in the presence of β-amyloid peptide oligomers. Results Data show a high degree of biocompatibility, evaluated by lactate dehydrogenase (LDH) release and MTT assay, and the lack of cellular internalization. After the incubation with mApoE-PA-LIPs, neuronal membranes show an increase in the input resistance (from 724.14±76 MΩ in untreated population to 886.06±86 MΩ in the treated one), a reduction in the rheobase current (from 29.6±3 to 24.2±3 pA in untreated and treated, respectively), and an increase of the firing frequency, consistent with an ultimate increase in intrinsic excitability. Data obtained after co-incubation of mApoE-PA-LIPs with β-amyloid peptide oligomers suggest a retention of liposome efficacy. Conclusion These data suggest the ability of liposomes to modulate neuronal electrical properties and are compatible with the previously demonstrated amelioration of cognitive functions induced by treatment of AD mice with liposomes. We conclude that this electrophysiological approach could represent a useful tool for nanomedicine to evaluate the effect of nanoparticles on intrinsic neuronal excitability.
Collapse
Affiliation(s)
- Anna Binda
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy,
| | - Alice Panariti
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy,
| | - Andrea Barbuti
- Department of Biosciences, The PaceLab and Interuniversity Center of Molecular Medicine and Applied Biophysics (CIMMBA), University of Milan, Milano, Italy
| | - Carmen Murano
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy,
| | - Roberta Dal Magro
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy,
| | - Massimo Masserini
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy, .,Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Monza, Italy, .,Nanomedicine Center NANOMIB, University of Milano-Bicocca, Milano, Italy,
| | - Francesca Re
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy, .,Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Monza, Italy, .,Nanomedicine Center NANOMIB, University of Milano-Bicocca, Milano, Italy,
| | - Ilaria Rivolta
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy, .,Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Monza, Italy, .,Nanomedicine Center NANOMIB, University of Milano-Bicocca, Milano, Italy,
| |
Collapse
|
47
|
Happy Agarwal, Soumya Menon, Venkat Kumar S, Rajeshkumar S. Mechanistic study on antibacterial action of zinc oxide nanoparticles synthesized using green route. Chem Biol Interact 2018; 286:60-70. [DOI: 10.1016/j.cbi.2018.03.008] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/16/2018] [Accepted: 03/14/2018] [Indexed: 10/17/2022]
|
48
|
Fields C, Levin M. Multiscale memory and bioelectric error correction in the cytoplasm-cytoskeleton-membrane system. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2017; 10. [DOI: 10.1002/wsbm.1410] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/19/2017] [Accepted: 10/04/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Chris Fields
- 21 Rue des Lavandiéres, 11160 Caunes Minervois; France
| | - Michael Levin
- Allen Discovery Center at Tufts University; Medford MA USA
| |
Collapse
|
49
|
Ke L, Wang H, Gao G, Rao P, He L, Zhou J. Direct interaction of food derived colloidal micro/nano-particles with oral macrophages. NPJ Sci Food 2017; 1:3. [PMID: 31304245 PMCID: PMC6548417 DOI: 10.1038/s41538-017-0003-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/24/2017] [Accepted: 08/15/2017] [Indexed: 12/31/2022] Open
Abstract
Like any typical food system, bone soup (or broth), a traditional nourishing food in many cultures, contains a colloid dispersion of self-assembled micro/nano-particles. Food ingestion results in the direct contact of food colloidal MNPs with immune cells. Will they ever interact with each other? To answer the question, MNPs and NPs were separated from porcine bone soup and labeled with Nile Red, and their uptake by murine oral macrophages and its consequent effects were investigated. Colloidal particle samples of UF-MNPs and SEC-NP were prepared from porcine bone soup by ultrafiltration (UF) and size-exclusion chromatography, respectively. Their mean hydrodynamic diameters were 248 ± 10 nm and 170 ± 1 nm with dominant composition of protein and lipid. Particles in both samples were found to be internalized by oral macrophages upon co-incubation at particle/cell ratios of 14,000/1. In normal oral macrophages, the particle uptake exerted influence neither on the cellular cytosolic membrane potential (V mem) nor mitochondrial superoxide level, as were indicated with fluorescent dyes of DiBAC4(3) and MitoSOX Red, respectively. However, when oral macrophages were challenged by peroxyl radical inducer AAPH, the engulfment of UF-MNPs and SEC-NPs mitigated the peroxyl radical induced membrane hyperpolarization effect by up to 70%, and the suppression on the oxygen respiration in mitochondria by up to 100%. Those results provide evidence of the direct interaction between food colloidal particles with immune cells, implying a possible new mode of food-body interaction.
Collapse
Affiliation(s)
- Lijing Ke
- Food Nutrition Sciences Centre, Zhejiang Gongshang University, Hangzhou, China
| | - Huiqin Wang
- Food Nutrition Sciences Centre, Zhejiang Gongshang University, Hangzhou, China
| | - Guanzhen Gao
- Food Nutrition Sciences Centre, Zhejiang Gongshang University, Hangzhou, China
| | - Pingfan Rao
- Food Nutrition Sciences Centre, Zhejiang Gongshang University, Hangzhou, China
| | - Lei He
- Food Nutrition Sciences Centre, Zhejiang Gongshang University, Hangzhou, China
| | - Jianwu Zhou
- Food Nutrition Sciences Centre, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
50
|
Cervera J, Meseguer S, Mafe S. MicroRNA Intercellular Transfer and Bioelectrical Regulation of Model Multicellular Ensembles by the Gap Junction Connectivity. J Phys Chem B 2017; 121:7602-7613. [DOI: 10.1021/acs.jpcb.7b04774] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Javier Cervera
- Dept.
de Termodinàmica, Facultat de Física, Universitat de València, E-46100 Burjassot, Spain
| | - Salvador Meseguer
- Laboratory
of RNA Modification and Mitochondrial Diseases, Centro de Investigación Príncipe Felipe, Valencia 46012, Spain
| | - Salvador Mafe
- Dept.
de Termodinàmica, Facultat de Física, Universitat de València, E-46100 Burjassot, Spain
| |
Collapse
|