1
|
Martin P, Zussman E. Charge transport in electrospinning of polyelectrolyte solutions. SOFT MATTER 2024; 20:5572-5582. [PMID: 38966871 DOI: 10.1039/d4sm00605d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
This study elucidates the electrical charge transport during electrospinning of weak polyelectrolyte (poly(acrylic acid) (PAA)) solutions by employing current emission measurements. With pH variation, the PAA ionization degree could be controlled from uncharged at low pH to weakly charged at intermediate solution pH. Electrospinning neutral poly(vinylpyrrolidone) (PVP) as a reference polymer solution confirmed established current-flow rate scaling relationships as shown by De La Mora and Loscertales (1994), I ∼ (γKQ)ν, independent of the applied electric field polarity, where ν = 0.5, K is the conductivity, γ is the surface tension, Q is the flow rate, and I is the current. Similarly, the uncharged PAA did not display any polarity dependence, yet ν ≈ 0.8. Negatively charged PAA, however, showed a marked deviation in the current-flow rate behavior, which was affected by the applied electric field polarity. In the case of negative polarity, ν = 0.99, whereas for a positive polarity ν = 0.68. Similarly, the voltage required for stable cone-jet electrospinning of charged PAA was significantly higher in the negative polarity configuration for all tested flow rates (300-1600 μL h-1). As opposed to merely surface charges typically considered when electrospinning leaky dielectric fluids, as suggested by Melcher and Taylor (1969), our results suggest that the measured current is also affected by volumetric charges from charged PAA in the bulk of the jet. The proposed additional charge transport might affect the orientational order within PE-based nanofibers and their diameter.
Collapse
Affiliation(s)
- Patrick Martin
- NanoEngineering Group, Faculty of Mechanical Engineering Technion - Israel Institute of Technology, Haifa, Israel.
| | - Eyal Zussman
- NanoEngineering Group, Faculty of Mechanical Engineering Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
2
|
Heo TY, Audus DJ, Choi SH. Scaling Relationship of Complex Coacervate Core Micelles: Role of Core Block Stretching. ACS Macro Lett 2023; 12:1396-1402. [PMID: 37782013 DOI: 10.1021/acsmacrolett.3c00347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The scaling relationship of complex coacervate core micelles (C3Ms) has been investigated experimentally and theoretically. The C3Ms are formed by mixing two oppositely charged block copolyelectrolyte solutions (i.e., AB + AC system) and are characterized by small-angle neutron (SANS) and X-ray scattering (SAXS). Scaling relationships for micellar structure parameters, including core radius, total radius, corona thickness, and aggregation number, all with respect to the core block length, are determined. A scaling theory is also proposed by minimizing the free energy per chain, leading to four regimes depending on the core and corona chain conformations. Although the corona block is significantly longer than the core block, the structure of our C3Ms is consistent with that of the crew-cut I regime. A highly swollen core by water enables the core blocks to be stretched significantly and corona chains to be minimally overlapped.
Collapse
Affiliation(s)
- Tae-Young Heo
- Department of Chemical Engineering, Hongik University, Seoul, 04066, Republic of Korea
| | - Debra J Audus
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Soo-Hyung Choi
- Department of Chemical Engineering, Hongik University, Seoul, 04066, Republic of Korea
| |
Collapse
|
3
|
Velasco-Bolom PM, Camas-Anzueto JL, Lopez-Cortes D, Avendaño-Roque AJ, Ruiz-Perez VI. Optical fiber pH sensor based on a multimode interference device with polymer overlay. APPLIED OPTICS 2023; 62:3637-3642. [PMID: 37706980 DOI: 10.1364/ao.485139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/10/2023] [Indexed: 09/15/2023]
Abstract
An optical fiber pH sensor based on a multimode interference structure is presented. The sensitive element is a piece of no-core fiber (NCF) coated with a mixture of polyallylamine hydrochloride and polyacrylic acid by a modified layer-by-layer (LbL) self-assembly method. It is experimentally shown that by reducing the diameter of the NCF by chemical etching, the sensitivity is increased from -0.31n m/p H to -2n m/p H. The sensor exhibits a high linear response of 0.997 over a pH range from 5 to 11.3 with a rapid response time lower than 1 s.
Collapse
|
4
|
Huang H, Trentle M, Liu Z, Xiang K, Higgins W, Wang Y, Xue B, Yang S. Polymer Complex Fiber: Property, Functionality, and Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7639-7662. [PMID: 36719982 DOI: 10.1021/acsami.2c19583] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Polymer complex fibers (PCFs) are a novel kind of fiber material processed from polymer complexes that are assembled through noncovalent interactions. These can realize the synergy of functional components and miscibility on the molecular level. The dynamic character of noncovalent interactions endows PCFs with remarkable properties, such as reversibility, stimuli responsiveness, self-healing, and recyclability, enabling them to be applied in multidisciplinary fields. The objective of this article is to provide a review of recent progress in the field of PCFs. The classification based on chain interactions will be first introduced followed by highlights of the fabrication technologies and properties of PCFs. The effects of composition and preparation method on fiber properties are also discussed, with some emphasis on utilizing these for rational design. Finally, we carefully summarize recent advanced applications of PCFs in the fields of energy storage and sensors, water treatment, biomedical materials, artificial actuators, and biomimetic platforms. This review is expected to deepen the comprehension of PCF materials and open new avenues for developing PCFs with tailor-made properties for advanced application.
Collapse
Affiliation(s)
- Hao Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, P. R. China
| | - Miranda Trentle
- Department of Chemistry, The University of Alabama at Birmingham, Birmingham, Alabama35294, United States
| | - Zexin Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, P. R. China
| | - Kehui Xiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, P. R. China
| | - William Higgins
- Department of Chemistry, The University of Alabama at Birmingham, Birmingham, Alabama35294, United States
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, Chengdu610064, P. R. China
| | - Bing Xue
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, P. R. China
| | - Shuguang Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, P. R. China
| |
Collapse
|
5
|
Al-Abduljabbar A, Farooq I. Electrospun Polymer Nanofibers: Processing, Properties, and Applications. Polymers (Basel) 2022; 15:polym15010065. [PMID: 36616414 PMCID: PMC9823865 DOI: 10.3390/polym15010065] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
Electrospun polymer nanofibers (EPNF) constitute one of the most important nanomaterials with diverse applications. An overall review of EPNF is presented here, starting with an introduction to the most attractive features of these materials, which include the high aspect ratio and area to volume ratio as well as excellent processability through various production techniques. A review of these techniques is featured with a focus on electrospinning, which is the most widely used, with a detailed description and different types of the process. Polymers used in electrospinning are also reviewed with the solvent effect highlighted, followed by a discussion of the parameters of the electrospinning process. The mechanical properties of EPNF are discussed in detail with a focus on tests and techniques used for determining them, followed by a section for other properties including electrical, chemical, and optical properties. The final section is dedicated to the most important applications for EPNF, which constitute the driver for the relentless pursuit of their continuous development and improvement. These applications include biomedical application such as tissue engineering, wound healing and dressing, and drug delivery systems. In addition, sensors and biosensors applications, air filtration, defense applications, and energy devices are reviewed. A brief conclusion is presented at the end with the most important findings and directions for future research.
Collapse
|
6
|
Warwar Damouny C, Martin P, Vasilyev G, Vilensky R, Fadul R, Redenski I, Srouji S, Zussman E. Injectable Hydrogels Based on Inter-Polyelectrolyte Interactions between Hyaluronic Acid, Gelatin, and Cationic Cellulose Nanocrystals. Biomacromolecules 2022; 23:3222-3234. [PMID: 35771870 DOI: 10.1021/acs.biomac.2c00316] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The present work dealt with the development of physically cross-linked injectable hydrogels with potential applications in tissue engineering. The hydrogels were composed of a ternary mixture of a polyanion and a polyampholyte, hyaluronic acid (HA) and gelatin, respectively, bridged by cationic cellulose nanocrystals (cCNCs). A 3D network is formed by employing attractive electrostatic interactions and hydrogen bonding between these components under physiological conditions. The hydrogels demonstrated low viscosity at high stresses, enabling easy injection, structural stability at low stresses (<15 Pa), and nearly complete structure recovery within several minutes. Increasing the cCNC content (>3%) reduced hydrogel swelling and decelerated the degradation in phosphate-buffered saline as compared to that in pure HA and HA-gelatin samples. Biological evaluation of the hydrogel elutions showed excellent cell viability. The proliferation of fibroblasts exposed to elutions of hydrogels with 5% cCNCs reached ∼200% compared to that in the positive control after 11 days. Considering these results, the prepared hydrogels hold great potential in biomedical applications, such as injectable dermal fillers, 3D bioprintable inks, or 3D scaffolds to support and promote soft tissue regeneration.
Collapse
Affiliation(s)
- Christine Warwar Damouny
- NanoEngineering Group, Faculty of Mechanical Engineering, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| | - Patrick Martin
- NanoEngineering Group, Faculty of Mechanical Engineering, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| | - Gleb Vasilyev
- NanoEngineering Group, Faculty of Mechanical Engineering, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| | - Rita Vilensky
- NanoEngineering Group, Faculty of Mechanical Engineering, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| | - Reema Fadul
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel.,Oral and Maxillofacial Department, Galilee Medical Center, Nahariya 22100, Israel
| | - Idan Redenski
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel.,Oral and Maxillofacial Department, Galilee Medical Center, Nahariya 22100, Israel
| | - Samer Srouji
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel.,Oral and Maxillofacial Department, Galilee Medical Center, Nahariya 22100, Israel
| | - Eyal Zussman
- NanoEngineering Group, Faculty of Mechanical Engineering, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
7
|
Boas M, Martin P, Vasilyev G, Lee JG, Vilensky R, Xu C, Greiner A, Zussman E. Electrostatically crosslinked cellulose nanocrystal and polyelectrolyte complex sponges with pH responsiveness. Carbohydr Polym 2021; 266:118131. [PMID: 34044947 DOI: 10.1016/j.carbpol.2021.118131] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/11/2021] [Accepted: 04/24/2021] [Indexed: 11/25/2022]
Abstract
This work focuses on the development of a responsive sponge made of an anionic cellulose nanocrystal (CNC) skeleton that is electrostatically crosslinked by a pH-responsive poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA) polyelectrolyte complex (PEC). The results prove the formation of a global percolated network comprised of disordered CNC rods crosslinked by PEC clusters. The bulk density of the freeze-dried CNC-PEC sponges increases from 35 to 93 mg/cm3 with PEC concentration, while the compression modulus of dry specimens increases from 7 up to 62 kPa. At the lowest PEC concentration of 1 wt%, at pH 2.0, the compression modulus decreases to 0.9 kPa, whereas at pH 5.5, it increases to 42 kPa. The intensive complexation between sponge constituents is also reflected in a reduced ability to bind charged dyes at neutral pH values. Decreasing the pH results in an increased adsorption efficiency for anionic dyes, while raising the pH improves the cationic dye adsorption.
Collapse
Affiliation(s)
- Mor Boas
- NanoEngineering Group, Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Patrick Martin
- NanoEngineering Group, Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Gleb Vasilyev
- NanoEngineering Group, Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Jong-Gun Lee
- NanoEngineering Group, Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Rita Vilensky
- NanoEngineering Group, Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Chengzhang Xu
- Bavarian Polymer Institute, Macromolecular Chemistry, University of Bayreuth, Bayreuth 95440, Germany
| | - Andreas Greiner
- Bavarian Polymer Institute, Macromolecular Chemistry, University of Bayreuth, Bayreuth 95440, Germany
| | - Eyal Zussman
- NanoEngineering Group, Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|
8
|
Schoeller J, Itel F, Wuertz-Kozak K, Fortunato G, Rossi RM. pH-Responsive Electrospun Nanofibers and Their Applications. POLYM REV 2021. [DOI: 10.1080/15583724.2021.1939372] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jean Schoeller
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St.Gallen, Switzerland
- Department of Health Science and Technology, ETH Zürich, Zürich, Switzerland
| | - Fabian Itel
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St.Gallen, Switzerland
| | - Karin Wuertz-Kozak
- Department of Health Science and Technology, ETH Zürich, Zürich, Switzerland
- Department of Biomedical Engineering, Rochester Institute of Technology (RIT), Rochester, New York, USA
| | - Giuseppino Fortunato
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St.Gallen, Switzerland
| | - René M. Rossi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St.Gallen, Switzerland
- Department of Health Science and Technology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
9
|
Bandeira M, Chee BS, Frassini R, Nugent M, Giovanela M, Roesch-Ely M, Crespo JDS, Devine DM. Antimicrobial PAA/PAH Electrospun Fiber Containing Green Synthesized Zinc Oxide Nanoparticles for Wound Healing. MATERIALS 2021; 14:ma14112889. [PMID: 34072271 PMCID: PMC8198200 DOI: 10.3390/ma14112889] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022]
Abstract
Wound infections are the main complication when treating skin wounds. This work reports a novel antimicrobial material using green synthesized zinc oxide nanoparticles (ZnONPs) incorporated in polymeric fibers for wound healing purposes. ZnONPs are a promising antimicrobial nanomaterial with high activity against a range of microorganisms, including drug-resistant bacteria. The electrospun fibers were obtained using polyacrylic acid (PAA) and polyallylamine hydrochloride (PAH) and were loaded with ZnONPs green synthesized from Ilex paraguariensis leaves with a spherical shape and ~18 nm diameter size. The fibers were produced using the electrospinning technique and SEM images showed a uniform morphology with a diameter of ~230 nm. EDS analysis proved a consistent dispersion of Zn in the fiber mat, however, particle agglomerates with varying sizes were observed. FTIR spectra confirmed the interaction of PAA carboxylic groups with the amine of PAH molecules. Although ZnONPs presented higher antimicrobial activity against S. aureus than E. coli, resazurin viability assay revealed that the PAA/PAH/ZnONPs composite successfully inhibited both bacteria strains growth. Photomicrographs support these results where bacteria clusters were observed only in the control samples. The PAA/PAH/ZnONPs composite developed presents antimicrobial activity and mimics the extracellular matrix morphology of skin tissue, showing potential for wound healing treatments.
Collapse
Affiliation(s)
- Marina Bandeira
- Materials Research Institute, Athlone Institute of Technology, N37 HD68 Athlone, Ireland; (B.S.C.); (M.N.)
- Área do Conhecimento de Ciências Exatas e Engenharias, Universidade de Caxias do Sul, Rua Francisco Getúlio Vargas, 1130, Caxias do Sul 95070-560, RS, Brazil; (M.G.); (J.d.S.C.)
- Correspondence: (M.B.); (D.M.D.)
| | - Bor Shin Chee
- Materials Research Institute, Athlone Institute of Technology, N37 HD68 Athlone, Ireland; (B.S.C.); (M.N.)
| | - Rafaele Frassini
- Instituto de Biotecnologia, Universidade de Caxias do Sul, Rua Francisco Getúlio Vargas, 1130, Caxias do Sul 95070-560, RS, Brazil; (R.F.); (M.R.-E.)
| | - Michael Nugent
- Materials Research Institute, Athlone Institute of Technology, N37 HD68 Athlone, Ireland; (B.S.C.); (M.N.)
| | - Marcelo Giovanela
- Área do Conhecimento de Ciências Exatas e Engenharias, Universidade de Caxias do Sul, Rua Francisco Getúlio Vargas, 1130, Caxias do Sul 95070-560, RS, Brazil; (M.G.); (J.d.S.C.)
| | - Mariana Roesch-Ely
- Instituto de Biotecnologia, Universidade de Caxias do Sul, Rua Francisco Getúlio Vargas, 1130, Caxias do Sul 95070-560, RS, Brazil; (R.F.); (M.R.-E.)
| | - Janaina da Silva Crespo
- Área do Conhecimento de Ciências Exatas e Engenharias, Universidade de Caxias do Sul, Rua Francisco Getúlio Vargas, 1130, Caxias do Sul 95070-560, RS, Brazil; (M.G.); (J.d.S.C.)
| | - Declan M. Devine
- Materials Research Institute, Athlone Institute of Technology, N37 HD68 Athlone, Ireland; (B.S.C.); (M.N.)
- Correspondence: (M.B.); (D.M.D.)
| |
Collapse
|
10
|
Chen M, Li L, Xia L, Jiang S, Kong Y, Chen X, Wang H. The kinetics and release behaviour of curcumin loaded pH-responsive PLGA/chitosan fibers with antitumor activity against HT-29 cells. Carbohydr Polym 2021; 265:118077. [PMID: 33966841 DOI: 10.1016/j.carbpol.2021.118077] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/10/2021] [Accepted: 04/11/2021] [Indexed: 12/27/2022]
Abstract
The bioavailability and clinical effect of curcumin (Cur) are greatly restricted due to its physicochemical instability and high hydrophobicity. To overcome the disadvantages, the nanofibers of poly(lactide-glycolide)/chitosan loaded with Cur (PLGA/CS/Cur) was developed here by electrospinning technique for controlled Cur delivery. The incorporated Cur was well-dispersed and maintained crystalline form in PLGA/CS fiber matrix by hydrogen bonding. The incorporation of Cur had no obvious influence on the fiber size and morphology but exerted impacts on thermal stability. At pH 7.4, the release followed Fickian diffusion mechanism; while at pH 2.0, the release followed the coexistence of diffusion and erosion mechanisms. In addition, the amount of Cur released at pH 2.0 was much higher than that at pH 7.4. As a result, the nanofibers demonstrated higher anticancer activity at acidic environment. Therefore, the PLGA/CS/Cur nanofibers may be served as a potential pH responsive vehicle for the controlled drug delivery.
Collapse
Affiliation(s)
- Minmin Chen
- School of Chemistry and Material Engineering, Chaohu University, 238000, Hefei, Anhui, PR China; School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009, Hefei, Anhui, PR China
| | - Linin Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009, Hefei, Anhui, PR China
| | - Li Xia
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009, Hefei, Anhui, PR China
| | - Suwei Jiang
- Department of Biological and Environmental Engineering, Hefei University, 230601, Hefei, Anhui, PR China
| | - Yaqiong Kong
- School of Chemistry and Material Engineering, Chaohu University, 238000, Hefei, Anhui, PR China
| | - Xiaoju Chen
- School of Chemistry and Material Engineering, Chaohu University, 238000, Hefei, Anhui, PR China.
| | - Hualin Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009, Hefei, Anhui, PR China; Anhui Institute of Agro-Products Intensive Processing Technology, 230009, Hefei, Anhui, PR China.
| |
Collapse
|
11
|
Dodero A, Schlatter G, Hébraud A, Vicini S, Castellano M. Polymer-free cyclodextrin and natural polymer-cyclodextrin electrospun nanofibers: A comprehensive review on current applications and future perspectives. Carbohydr Polym 2021; 264:118042. [PMID: 33910745 DOI: 10.1016/j.carbpol.2021.118042] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 02/07/2023]
Abstract
The present review discusses the use of cyclodextrins and their derivatives to prepare electrospun nanofibers with specific features. Cyclodextrins, owing to their unique capability to form inclusion complexes with hydrophobic and volatile molecules, can indeed facilitate the encapsulation of bioactive compounds in electrospun nanofibers allowing fast-dissolving products for food, biomedical, and pharmaceutical purposes, filtering materials for wastewater and air purification, as well as a variety of other technological applications. Additionally, cyclodextrins can improve the processability of naturally occurring biopolymers helping the fabrication of "green" materials with a strong industrial relevance. Hence, this review provides a comprehensive state-of-the-art of different cyclodextrins-based nanofibers including those made of pure cyclodextrins, of polycyclodextrins, and those made of natural biopolymer functionalized with cyclodextrins. To this end, the advantages and disadvantages of such approaches and their possible applications are investigated along with the current limitations in the exploitation of electrospinning at the industrial level.
Collapse
Affiliation(s)
- Andrea Dodero
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, Genoa, 16146, Italy
| | - Guy Schlatter
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), CNRS UMR 7515, ECPM - University of Strasbourg, 25 Rue Becquerel, Strasbourg, 67087, France.
| | - Anne Hébraud
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), CNRS UMR 7515, ECPM - University of Strasbourg, 25 Rue Becquerel, Strasbourg, 67087, France
| | - Silvia Vicini
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, Genoa, 16146, Italy
| | - Maila Castellano
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, Genoa, 16146, Italy.
| |
Collapse
|
12
|
Gowri M, Latha N, Suganya K, Murugan M, Rajan M. Calcium alginate nanoparticle crosslinked phosphorylated polyallylamine to the controlled release of clindamycin for osteomyelitis treatment. Drug Dev Ind Pharm 2021; 47:280-291. [PMID: 33493022 DOI: 10.1080/03639045.2021.1879835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Osteomyelitis is one of the infections of the bone, and the treatment needs to the infection problems. Here, a local therapeutic approach for efficient drug delivery systems was designed to enhance the antibiotic drug's therapeutic activity. Calcium-Alginate nanoparticle (Ca-Alg) crosslinked phosphorylated polyallylamine (PPAA) was prepared through the salting-out technique, and it achieved 82.55% encapsulation of Clindamycin drug. The physicochemical characterizations of FTIR, SEM/EDX, TEM, and XRD were investigated to confirm the materials nature and formation. Clindamycin loaded Ca-Alg/PPAA system showed sustained Clindamycin release from the carrier. Cell viability was assessed in bone-related cells by Trypan blue assay and MTT assay analysis method. Both assay results exhibited better cell viability of synthesized materials against MG63 cells. MIC value of Ca-Alg/PPAA/Clindamycin in the Methicillin-resistant Staphylococcus aureus (MRSA) pathogen was 275 µg/mL, and it was 120 µg/mL for Enterobacter cloacae pathogen. The materials promising material for Osteomyelitis affected bone regeneration without any destructive effect and speedy recovery of infected parts from these investigations.
Collapse
Affiliation(s)
- Murugesan Gowri
- Department of Chemistry, Kandaswami Kandar's College, Namakkal, Tamil Nadu, India
| | - Nachimuthu Latha
- Department of Chemistry, Kandaswami Kandar's College, Namakkal, Tamil Nadu, India
| | - Kannan Suganya
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Marudhamuthu Murugan
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Mariappan Rajan
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| |
Collapse
|
13
|
Li L, Rumyantsev AM, Srivastava S, Meng S, de Pablo JJ, Tirrell MV. Effect of Solvent Quality on the Phase Behavior of Polyelectrolyte Complexes. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01000] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Lu Li
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Artem M. Rumyantsev
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Samanvaya Srivastava
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Siqi Meng
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Juan J. de Pablo
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Matthew V. Tirrell
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
14
|
A review of smart electrospun fibers toward textiles. COMPOSITES COMMUNICATIONS 2020; 22:100506. [PMCID: PMC7497400 DOI: 10.1016/j.coco.2020.100506] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 05/24/2023]
Abstract
Electrospinning as a versatile technology has attracted a large amount of attention in the past few decades due to the facile way to produce micro- and nano-scale fibers featuring flexibility, large specific surface area and high porosity. Stimuli-responsive polymers are a class of smart materials that are capable of sensing surround environment and interacting with them. Therefore, the combination of electrospinning and smart materials could have a great deal of benefits over the development of smart fibers. In this review, it offers a comprehensive understanding of smart electrospun fibers toward textile applications. Firstly, the definition of smart fibers and the differences between interactive fibers and passive interactive fibers are briefly introduced. Then some interactive fibers made from temperature-, pH-, light-, electric field/electricity-, magnetic field-, multi-responsive polymers, as well as some polymers featuring piezoelectric and triboelectric effect which are suitable flexible electrics, are emphasized with their applications in the form of electrospun fibers. Afterwards, some passive and hybrid smart electrospun fibers are introduced. Finally, associated challenges and perspectives are summarized and discussed. Understanding of passive smart electrospun fibers and interactive smart electrospun fibers. The recent progress in flexible electronics from electrospun fibers. The recent progress in stimuli-responsive polymers applied in interactive smart electrospun fibers.
Collapse
|
15
|
Saha B, Gordievskaya YD, De P, Kramarenko EY. Unusual Nanostructured Morphologies Enabled by Interpolyelectrolyte Complexation of Polyions Bearing Incompatible Nonionic Segments. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Biswajit Saha
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur 741246, West Bengal, India
| | - Yulia D. Gordievskaya
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
- A. N. Nesmeyanov Institute of Organoelement Compounds RAS, Moscow 119991, Russia
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur 741246, West Bengal, India
| | - Elena Yu. Kramarenko
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
- A. N. Nesmeyanov Institute of Organoelement Compounds RAS, Moscow 119991, Russia
| |
Collapse
|
16
|
Wang J, Xue Y, Chen X, Hu M, Ren K, Ji J. Humidity-Triggered Relaxation of Polyelectrolyte Complexes as a Robust Approach to Generate Extracellular Matrix Biomimetic Films. Adv Healthc Mater 2020; 9:e2000381. [PMID: 32548925 DOI: 10.1002/adhm.202000381] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/29/2020] [Indexed: 12/15/2022]
Abstract
Generating a biofunctional film that can mimic the extracellular matrix (ECM) in an efficient and robust technique that may have great potential for medical devices, tissue engineering, and regenerative medicines. Herein, a facile approach to generate ECM biomimetic films based on the humidity-triggered relaxation of polyelectrolyte complex (PEC) nanoparticles is reported. The poly(l-lysine) and hyaluronan are precomplexed and sprayed onto a substrate, which, via a trigger of vaporous water, can be transformed into an even and stable film. The spontaneous polymer chain interfusion (diffusion coefficient ≈1.01 × 10-9 cm2 s-1 ) under saturated humidity, allowing for the rapid reorganization (within 30 min) of film morphology and structure is demonstrated. A controllable and scalable way for the loading of diversified bioactive agents, as well as on-demand modulation of stiffness is further presented. Moreover, the high-throughput arrays and programmed patterns can be easily completed, suggesting huge potentials that surpass those of state-of-the-art methods. Combined with high efficiency and flexible functionalization, it is believed that this approach should be beneficial for extending the practical applications of PEC films, such as medical implants, chip detectors, and so on.
Collapse
Affiliation(s)
- Jing Wang
- MOE Key Laboratory of Macromolecule Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University Hangzhou 310027 P. R. China
| | - Yun‐Fan Xue
- MOE Key Laboratory of Macromolecule Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University Hangzhou 310027 P. R. China
| | - Xia‐Chao Chen
- MOE Key Laboratory of Macromolecule Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University Hangzhou 310027 P. R. China
| | - Mi Hu
- MOE Key Laboratory of Macromolecule Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University Hangzhou 310027 P. R. China
| | - Ke‐Feng Ren
- MOE Key Laboratory of Macromolecule Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University Hangzhou 310027 P. R. China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University Hangzhou 310027 P. R. China
| |
Collapse
|
17
|
Gaikwad A, Hlushko H, Karimineghlani P, Selin V, Sukhishvili SA. Hydrogen-Bonded, Mechanically Strong Nanofibers with Tunable Antioxidant Activity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:11026-11035. [PMID: 32048504 DOI: 10.1021/acsami.9b23212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report on mechanically strong, water-insoluble hydrogen-bonded nanofiber mats composed of a hydrophilic polymer and a natural polyphenol that exhibit prolonged antioxidant activity. The high performance of fibrous mats resulted from the formation of a network of hydrogen bonds between a low-molecular-weight polyphenol (tannic acid, TA) and a water-soluble polymer (polyvinylpyrrolidone, PVP) and could be precisely controlled by the TA-to-PVP ratio. Dramatic enhancement (5- to 10-fold) in tensile strength, toughness, and Young's moduli of the PVP/TA fiber mats (as compared to those of pristine PVP fibers) was achieved at the maximum density of hydrogen bonds, which occurred at ∼0.2-0.4 molar fractions of TA. The formation of hydrogen bonds was confirmed by an increase in the glass-transition temperature of the polymer after binding with TA. When exposed to water, the fibers exhibited composition- and pH-dependent stabilities, with the TA-enriched fibers fully preserving their integrity in acidic and neutral media. Importantly, the fiber mats exhibited strong antioxidant activity with dual (burst and prolonged) activity profiles, which could be controlled via fiber composition, a feature useful for controlling radical-scavenging rates in environmental and biological applications.
Collapse
Affiliation(s)
- Adwait Gaikwad
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Hanna Hlushko
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Parvin Karimineghlani
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Victor Selin
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Svetlana A Sukhishvili
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
18
|
Highly efficient self-cleaning of heavy polyelectrolyte coated electrospun polyacrylonitrile nanofibrous membrane for separation of oil/water emulsions with intermittent pressure. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116106] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
19
|
Sun J, Perry SL, Schiffman JD. Electrospinning Nanofibers from Chitosan/Hyaluronic Acid Complex Coacervates. Biomacromolecules 2019; 20:4191-4198. [DOI: 10.1021/acs.biomac.9b01072] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Juanfeng Sun
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Sarah L. Perry
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Jessica D. Schiffman
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
20
|
Boas M, Vasilyev G, Vilensky R, Cohen Y, Zussman E. Structure and Rheology of Polyelectrolyte Complexes in the Presence of a Hydrogen-Bonded Co-Solvent. Polymers (Basel) 2019; 11:polym11061053. [PMID: 31212925 PMCID: PMC6630629 DOI: 10.3390/polym11061053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 11/25/2022] Open
Abstract
Intermolecular interactions as well as macromolecular conformation affect the rheological and microstructural properties of polyelectrolyte complexes (PECs) solutions. The properties of semi-dilute solutions of weakly charged PECs can be controlled by the degree of ionization and solvent composition. In this work, we examined the effect of ethanol as a co-solvent on PECs composed of poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA) at low pH. The aqueous PECs solution was turbid, indicating formation of large aggregates, whereas PECs solution in water/ethanol (60:40 w/w) was transparent, implying no aggregation, and demonstrated higher relative viscosity than the aqueous solution, implying pronounced network formation. Imaging PECs solution by transmission electron microscopy (TEM) demonstrated aggregation, whereas the solution prepared with the mixed solvent revealed almost no phase contrast. Small-angle X-ray scattering (SAXS) of PECs in the aqueous solution indicated the presence of aggregates, while PECs in mixed solvent demonstrated a swelled macromolecular conformation with diminished aggregation. PECs with no ionic interactions in the mixed solvent assumes a homogenous network structure, which enables PECs solution processing by electrospinning.
Collapse
Affiliation(s)
- Mor Boas
- NanoEngineering Group, Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| | - Gleb Vasilyev
- NanoEngineering Group, Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| | - Rita Vilensky
- NanoEngineering Group, Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| | - Yachin Cohen
- Faculty of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| | - Eyal Zussman
- NanoEngineering Group, Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|
21
|
Ma X, Wang L, Li L, Bian L, Yang W, Meng Q. The novel thermochromic and energy-storage microcapsules with significant extension of color change range to different tones. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2019. [DOI: 10.1080/10601325.2019.1590125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- XiaoGuang Ma
- School of Textile, Tianjin Polytechnic University, Tianjin, China
- Tianjin Key Laboratory of Fiber Modification and Functional Fiber, Tianjin Polytechnic University, Tianjin, China
| | - Liang Wang
- School of Textile, Tianjin Polytechnic University, Tianjin, China
- Tianjin Key Laboratory of Fiber Modification and Functional Fiber, Tianjin Polytechnic University, Tianjin, China
| | - Lei Li
- School of Textile, Tianjin Polytechnic University, Tianjin, China
- Tianjin Key Laboratory of Fiber Modification and Functional Fiber, Tianjin Polytechnic University, Tianjin, China
| | - LiRan Bian
- School of Textile, Tianjin Polytechnic University, Tianjin, China
- Tianjin Key Laboratory of Fiber Modification and Functional Fiber, Tianjin Polytechnic University, Tianjin, China
| | - WenFang Yang
- School of Textile, Tianjin Polytechnic University, Tianjin, China
- Tianjin Key Laboratory of Fiber Modification and Functional Fiber, Tianjin Polytechnic University, Tianjin, China
| | - QingTao Meng
- School of Textile, Tianjin Polytechnic University, Tianjin, China
- Tianjin Key Laboratory of Fiber Modification and Functional Fiber, Tianjin Polytechnic University, Tianjin, China
| |
Collapse
|
22
|
Ding J, Zhang J, Li J, Li D, Xiao C, Xiao H, Yang H, Zhuang X, Chen X. Electrospun polymer biomaterials. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.01.002] [Citation(s) in RCA: 217] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
23
|
Kurečič M, Mohan T, Virant N, Maver U, Stergar J, Gradišnik L, Kleinschek KS, Hribernik S. A green approach to obtain stable and hydrophilic cellulose-based electrospun nanofibrous substrates for sustained release of therapeutic molecules. RSC Adv 2019; 9:21288-21301. [PMID: 35521346 PMCID: PMC9066020 DOI: 10.1039/c9ra03399h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/04/2019] [Indexed: 11/21/2022] Open
Abstract
Stable and (bio)-compatible nanofibrous matrices showing effective incorporation and release of nonsteroidal anti-inflammatory drugs (NSAIDs) hold a huge potential in tissue regeneration and wound healing.
Collapse
Affiliation(s)
- Manja Kurečič
- Laboratory for Characterization and Processing of Polymers
- Faculty of Mechanical Engineering
- University of Maribor
- 2000 Maribor
- Slovenia
| | - Tamilselvan Mohan
- Laboratory for Characterization and Processing of Polymers
- Faculty of Mechanical Engineering
- University of Maribor
- 2000 Maribor
- Slovenia
| | - Natalija Virant
- Laboratory for Characterization and Processing of Polymers
- Faculty of Mechanical Engineering
- University of Maribor
- 2000 Maribor
- Slovenia
| | - Uroš Maver
- Institute of Biomedical Sciences
- Faculty of Medicine
- University of Maribor
- 2000 Maribor
- Slovenia
| | - Janja Stergar
- Institute of Biomedical Sciences
- Faculty of Medicine
- University of Maribor
- 2000 Maribor
- Slovenia
| | - Lidija Gradišnik
- Institute of Biomedical Sciences
- Faculty of Medicine
- University of Maribor
- 2000 Maribor
- Slovenia
| | - Karin Stana Kleinschek
- Laboratory for Characterization and Processing of Polymers
- Faculty of Mechanical Engineering
- University of Maribor
- 2000 Maribor
- Slovenia
| | - Silvo Hribernik
- Laboratory for Characterization and Processing of Polymers
- Faculty of Mechanical Engineering
- University of Maribor
- 2000 Maribor
- Slovenia
| |
Collapse
|
24
|
Boas M, Burman M, Yarin AL, Zussman E. Electrically-responsive deformation of polyelectrolyte complex (PEC) fibrous membrane. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.10.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
Meng X, Schiffman JD, Perry SL. Electrospinning Cargo-Containing Polyelectrolyte Complex Fibers: Correlating Molecular Interactions to Complex Coacervate Phase Behavior and Fiber Formation. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01709] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Xiangxi Meng
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Jessica D. Schiffman
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Sarah L. Perry
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
26
|
Kim HC, Kim MH, Park WH. Polyelectrolyte complex nanofibers from poly(γ-glutamic acid) and fluorescent chitosan oligomer. Int J Biol Macromol 2018; 118:238-243. [DOI: 10.1016/j.ijbiomac.2018.06.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/29/2018] [Accepted: 06/07/2018] [Indexed: 11/24/2022]
|
27
|
Zhang RY, Zaslavski E, Vasilyev G, Boas M, Zussman E. Tunable pH-Responsive Chitosan-Poly(acrylic acid) Electrospun Fibers. Biomacromolecules 2018; 19:588-595. [DOI: 10.1021/acs.biomac.7b01672] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Rui-Yan Zhang
- NanoEngineering Group, Faculty
of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Ekaterina Zaslavski
- NanoEngineering Group, Faculty
of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Gleb Vasilyev
- NanoEngineering Group, Faculty
of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Mor Boas
- NanoEngineering Group, Faculty
of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Eyal Zussman
- NanoEngineering Group, Faculty
of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
28
|
Electrospun Fibers of Cyclodextrins and Poly(cyclodextrins). Molecules 2017; 22:molecules22020230. [PMID: 28165381 PMCID: PMC6155744 DOI: 10.3390/molecules22020230] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/21/2017] [Accepted: 01/30/2017] [Indexed: 11/28/2022] Open
Abstract
Cyclodextrins (CDs) can endow electrospun fibers with outstanding performance characteristics that rely on their ability to form inclusion complexes. The inclusion complexes can be blended with electrospinnable polymers or used themselves as main components of electrospun nanofibers. In general, the presence of CDs promotes drug release in aqueous media, but they may also play other roles such as protection of the drug against adverse agents during and after electrospinning, and retention of volatile fragrances or therapeutic agents to be slowly released to the environment. Moreover, fibers prepared with empty CDs appear particularly suitable for affinity separation. The interest for CD-containing nanofibers is exponentially increasing as the scope of applications is widening. The aim of this review is to provide an overview of the state-of-the-art on CD-containing electrospun mats. The information has been classified into three main sections: (i) fibers of mixtures of CDs and polymers, including polypseudorotaxanes and post-functionalization; (ii) fibers of polymer-free CDs; and (iii) fibers of CD-based polymers (namely, polycyclodextrins). Processing conditions and applications are analyzed, including possibilities of development of stimuli-responsive fibers.
Collapse
|
29
|
Li X, Li Z, Wang L, Ma G, Meng F, Pritchard RH, Gill EL, Liu Y, Huang YYS. Low-Voltage Continuous Electrospinning Patterning. ACS APPLIED MATERIALS & INTERFACES 2016; 8:32120-32131. [PMID: 27807979 DOI: 10.1021/acsami.6b07797] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Electrospinning is a versatile technique for the construction of microfibrous and nanofibrous structures with considerable potential in applications ranging from textile manufacturing to tissue engineering scaffolds. In the simplest form, electrospinning uses a high voltage of tens of thousands volts to draw out ultrafine polymer fibers over a large distance. However, the high voltage limits the flexible combination of material selection, deposition substrate, and control of patterns. Prior studies show that by performing electrospinning with a well-defined "near-field" condition, the operation voltage can be decreased to the kilovolt range, and further enable more precise patterning of fibril structures on a planar surface. In this work, by using solution dependent "initiators", we demonstrate a further lowering of voltage with an ultralow voltage continuous electrospinning patterning (LEP) technique, which reduces the applied voltage threshold to as low as 50 V, simultaneously permitting direct fiber patterning. The versatility of LEP is shown using a wide range of combination of polymer and solvent systems for thermoplastics and biopolymers. Novel functionalities are also incorporated when a low voltage mode is used in place of a high voltage mode, such as direct printing of living bacteria; the construction of suspended single fibers and membrane networks. The LEP technique reported here should open up new avenues in the patterning of bioelements and free-form nano- to microscale fibrous structures.
Collapse
Affiliation(s)
- Xia Li
- Cavendish Laboratory, University of Cambridge , JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Zhaoying Li
- Department of Engineering, University of Cambridge , Trumpington Street, Cambridge, CB2 1PZ, United Kingdom
| | - Liyun Wang
- Department of Food Science and Technology, Jiangnan University , Wuxi 214122, China
| | - Guokun Ma
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China , Chengdu 610054, China
| | - Fanlong Meng
- Cavendish Laboratory, University of Cambridge , JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Robyn H Pritchard
- Cavendish Laboratory, University of Cambridge , JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Elisabeth L Gill
- Department of Engineering, University of Cambridge , Trumpington Street, Cambridge, CB2 1PZ, United Kingdom
| | - Ye Liu
- Department of Engineering, University of Cambridge , Trumpington Street, Cambridge, CB2 1PZ, United Kingdom
| | - Yan Yan Shery Huang
- Department of Engineering, University of Cambridge , Trumpington Street, Cambridge, CB2 1PZ, United Kingdom
| |
Collapse
|
30
|
Zhang Y, Li F, Valenzuela LD, Sammalkorpi M, Lutkenhaus JL. Effect of Water on the Thermal Transition Observed in Poly(allylamine hydrochloride)–Poly(acrylic acid) Complexes. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00742] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | | | | | - Maria Sammalkorpi
- Department
of Chemistry, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | | |
Collapse
|
31
|
Affiliation(s)
| | - Matthew V. Tirrell
- Institute for Molecular Engineering; The University of Chicago; Chicago IL USA
| |
Collapse
|
32
|
Bou S, Ellis AV, Ebara M. Synthetic stimuli-responsive 'smart' fibers. Curr Opin Biotechnol 2016; 39:113-119. [PMID: 27017142 DOI: 10.1016/j.copbio.2016.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 03/08/2016] [Accepted: 03/10/2016] [Indexed: 11/19/2022]
Affiliation(s)
- Simon Bou
- Flinders Centre for Nanoscale Science and Technology, Flinders University, Sturt Road, Bedford Park, SA 5042, Australia; Biomaterials Unit, International Centre for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, Japan
| | - Amanda V Ellis
- Flinders Centre for Nanoscale Science and Technology, Flinders University, Sturt Road, Bedford Park, SA 5042, Australia
| | - Mitsuhiro Ebara
- Biomaterials Unit, International Centre for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, Japan; Graduate School of Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| |
Collapse
|
33
|
del Mercato LL, Moffa M, Rinaldi R, Pisignano D. Ratiometric Organic Fibers for Localized and Reversible Ion Sensing with Micrometer-Scale Spatial Resolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:6417-24. [PMID: 26539625 PMCID: PMC4738409 DOI: 10.1002/smll.201502171] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/09/2015] [Indexed: 05/21/2023]
Abstract
A fundamental issue in biomedical and environmental sciences is the development of sensitive and robust sensors able to probe the analyte of interest, under physiological and pathological conditions or in environmental samples, and with very high spatial resolution. In this work, novel hybrid organic fibers that can effectively report the analyte concentration within the local microenvironment are reported. The nanostructured and flexible wires are prepared by embedding fluorescent pH sensors based on seminaphtho-rhodafluor-1-dextran conjugate. By adjusting capsule/polymer ratio and spinning conditions, the diameter of the fibers and the alignment of the reporting capsules are both tuned. The hybrid wires display excellent stability, high sensitivity, as well as reversible response, and their operation relies on effective diffusional kinetic coupling of the sensing regions and the embedding polymer matrix. These devices are believed to be a powerful new sensing platform for clinical diagnostics, bioassays and environmental monitoring.
Collapse
Affiliation(s)
- Loretta L del Mercato
- CNR NANOTEC-Istitute of Nanotechnology, c/o Campus Ecotekne, Università del Salento, via Monteroni, 73100, Lecce, Italy
| | - Maria Moffa
- Istituto Nanoscienze-CNR, Euromediterranean Center for Nanomaterial Modelling and Technology (ECMT), via Arnesano, 73100, Lecce, Italy
| | - Rosaria Rinaldi
- Istituto Nanoscienze-CNR, Euromediterranean Center for Nanomaterial Modelling and Technology (ECMT), via Arnesano, 73100, Lecce, Italy
- Dipartimento di Matematica e Fisica "Ennio De Giorgi", Università del Salento, via Arnesano, 73100, Lecce, Italy
| | - Dario Pisignano
- Istituto Nanoscienze-CNR, Euromediterranean Center for Nanomaterial Modelling and Technology (ECMT), via Arnesano, 73100, Lecce, Italy
- Dipartimento di Matematica e Fisica "Ennio De Giorgi", Università del Salento, via Arnesano, 73100, Lecce, Italy
| |
Collapse
|
34
|
Thermo-sensitive drug controlled release PLA core/PNIPAM shell fibers fabricated using a combination of electrospinning and UV photo-polymerization. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.08.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|