1
|
Mu L, Wu L, Wu S, Ye Q, Zhong Z. Progress in chitin/chitosan and their derivatives for biomedical applications: Where we stand. Carbohydr Polym 2024; 343:122233. [PMID: 39174074 DOI: 10.1016/j.carbpol.2024.122233] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/24/2024] [Accepted: 05/02/2024] [Indexed: 08/24/2024]
Abstract
Chitin and its deacetylated form, chitosan, have demonstrated remarkable versatility in the realm of biomaterials. Their exceptional biocompatibility, antibacterial properties, pro- and anticoagulant characteristics, robust antioxidant capacity, and anti-inflammatory potential make them highly sought-after in various applications. This review delves into the mechanisms underlying chitin/chitosan's biological activity and provides a comprehensive overview of their derivatives in fields such as tissue engineering, hemostasis, wound healing, drug delivery, and hemoperfusion. However, despite the wealth of studies on chitin/chitosan, there exists a notable trend of homogeneity in research, which could hinder the comprehensive development of these biomaterials. This review, taking a clinician's perspective, identifies current research gaps and medical challenges yet to be addressed, aiming to pave the way for a more sustainable future in chitin/chitosan research and application.
Collapse
Affiliation(s)
- Lanxin Mu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China; Southwest Hospital of Third Military Medical University (Army Medical University), Department of Plastic Surgery, Chongqing 400038, China
| | - Liqin Wu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China
| | - Shuangquan Wu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China.
| | - Zibiao Zhong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China.
| |
Collapse
|
2
|
Zhang L, Liu G, Xia Q, Deng L. Research progress on blood compatibility of hemoperfusion adsorbent materials. Front Bioeng Biotechnol 2024; 12:1456694. [PMID: 39411060 PMCID: PMC11473396 DOI: 10.3389/fbioe.2024.1456694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
This comprehensive review examines the latest developments in improving the blood compatibility of hemoperfusion adsorbents. By leveraging advanced coating and modification techniques, including albumin-collodion, cellulose, hydrogel, and heparin coatings, notable enhancements in blood compatibility have been achieved across diverse adsorbent types, such as carbon-based, resin-based, and polysaccharide-based materials. Despite promising laboratory results, the intricate manufacturing processes and elevated costs present significant challenges for broad clinical application. Therefore, future endeavors should focus on cost-benefit analysis, large-scale production strategies, in-depth exploration of blood-material interactions, and innovative technologies to propel the development of safer and more effective blood purification therapies.
Collapse
Affiliation(s)
- Liangqing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Guohao Liu
- Department of Medical Imaging, Affiliated Hospital of Jilin Medical University, Jilin, China
| | - Qingping Xia
- Department of Science and Education, Gaozhou People’s Hospital, Gaozhou, Guangdong, China
| | - Li Deng
- Department of Cardiovascular Surgery, Gaozhou People’s Hospital, Gaozhou, Guangdong, China
| |
Collapse
|
3
|
Guo C, Jiang X, Guo X, Ou L. An Evolutionary Review of Hemoperfusion Adsorbents: Materials, Preparation, Functionalization, and Outlook. ACS Biomater Sci Eng 2024; 10:3599-3611. [PMID: 38776416 DOI: 10.1021/acsbiomaterials.4c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Accumulation of pathogenic factors in the blood may cause irreversible damage and may even be life-threatening. Hemoperfusion is an effective technique for eliminating pathogenic factors, which is widely used in the treatment of various diseases including liver failure, renal failure, sepsis, and others. Hemoperfusion adsorbents are crucial in this process as they specifically bind and remove the target pathogenic factors. This review describes the development of hemoperfusion adsorbents, detailing the different properties exhibited by inorganic materials, organic polymers, and new materials. Advances in natural and synthetic polymers and novel materials manufacturing techniques have driven the expansion of hemoperfusion adsorbents in clinical applications. Stimuli-responsive (smart responsive) adsorbents with controllable molecular binding properties have many promising and environmentally friendly biomedical applications. Knowledge gaps, future research directions, and prospects for hemoperfusion adsorbents are discussed.
Collapse
Affiliation(s)
- Chen Guo
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| | - Xinbang Jiang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| | - Xiaofang Guo
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| | - Lailiang Ou
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| |
Collapse
|
4
|
Yan S, Qiu Y. Interfacial Interaction between Functionalization of Polysulfone Membrane Materials and Protein Adsorption. Polymers (Basel) 2024; 16:1637. [PMID: 38931987 PMCID: PMC11207837 DOI: 10.3390/polym16121637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/01/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
This study that modified polysulfone membranes with different end-group chemical functionalities were prepared using chemical synthesis methods and experimentally characterized. The molecular dynamics (MD) method were used to discuss the adsorption mechanism of proteins on functionalized modified polysulfone membrane materials from a molecular perspective, revealing the interactions between different functionalized membrane surfaces and protein adsorption. Theoretical analysis combined with basic experiments and MD simulations were used to explore the orientation and spatial conformational changes of protein adsorption at the molecular level. The results show that BSA exhibits different variability and adsorption characteristics on membranes with different functional group modifications. On hydrophobic membrane surfaces, BSA shows the least stable configuration stability, making it prone to nonspecific structural changes. In addition, surface charge effects lead to electrostatic repulsion for BSA and reduce the protein adsorption sites. These MD simulation results are consistent with experimental findings, providing new design ideas and support for modifying blood-compatible membrane materials.
Collapse
Affiliation(s)
| | - Yunren Qiu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China;
| |
Collapse
|
5
|
Lu T, Huang H, Lv G, Li F, Song RJ, Cai Y. Adsorption Behavior and Kinetics of 1,4-Dioxane by Carbon Aerogel. TOXICS 2024; 12:145. [PMID: 38393240 PMCID: PMC10893410 DOI: 10.3390/toxics12020145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/27/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
1,4-dioxane is a potential carcinogen in water and is difficult to deal with due to its robust cycloether bond and complete miscibility with water. To remove 1,4-dioxane in an economically viable and environmentally friendly way, a series of carbon aerogels were synthesized as adsorbents for 1,4-dioxane. The experiment results showed that adsorption performances were closely related to the preparation conditions of carbon aerogels, such as the molar ratio, heating rate, pyrolysis temperature and residence time, which were carefully controlled. Scanning electron microscope analysis revealed the presence of a three-dimensional porous network structure in carbon aerogels. Brunauer-Emmett-Teller analysis results demonstrated an increase in specific surface area (673.89 m2/g) and total pore volume after carbonization, with an increase in mesoporous porosity and a decrease in microporosity. When considering each variable individually, the highest specific surface area of prepared carbon aerogels was achieved at a pyrolysis temperature of 800 °C, a holding time of 1 h, and a heating rate of 2 °C/min. Under optimal experimental conditions, the adsorption removal of 1,4-dioxane by carbon aerogels exceeded 95%, following quasi-second-order kinetics and Langmuir isothermal adsorption isotherms, indicating that monolayer adsorption on the surface of carbon aerogels occurred. The maximum adsorption capacity obtained was 67.28 mg/g at a temperature of 318 K, which was attributed to the presence of a large proportion of mesopores and abundant micropores simultaneously in carbon aerogels. Furthermore, with the interference of chlorinated solvents such as trichloroethylene (TCE), the removal efficiency of 1,4-dioxane had no obvious inhibition effect. Regeneration experiments showed that after five continuous cycles, the carbon aerogels still kept a comparable adsorption capacity, which illustrates its potential application in 1,4-dioxane-polluted water purification.
Collapse
Affiliation(s)
- Tianyu Lu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China; (T.L.); (H.H.); (Y.C.)
| | - Huihui Huang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China; (T.L.); (H.H.); (Y.C.)
| | - Guifen Lv
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China; (T.L.); (H.H.); (Y.C.)
| | - Fei Li
- Beijing Construction Engineering Group Environmental Remediation Co., Ltd., Beijing 100015, China;
- National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China
| | - Ren-jie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China; (T.L.); (H.H.); (Y.C.)
| | - Yuting Cai
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China; (T.L.); (H.H.); (Y.C.)
| |
Collapse
|
6
|
Zhou W, Hu W, Zhan Q, Zhang M, Liu X, Hussain W, Yu H, Wang S, Zhou L. Novel hemoperfusion adsorbents based on collagen for efficient bilirubin removal - A thought from yellow skin of patients with hyperbilirubinemia. Int J Biol Macromol 2023; 253:127321. [PMID: 37820900 DOI: 10.1016/j.ijbiomac.2023.127321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
Hemoperfusion is a well-developed method for removing bilirubin from patients with hyperbilirubinemia. The performance of adsorbents is crucial during the process. However, most adsorbents used for bilirubin removal are not suitable for clinical applications, because they either have poor adsorption performance or limited biocompatibility. Patients with hyperbilirubinemia usually have distinctive yellow skin, indicating that collagen, a primary component of the skin, may be an effective material for absorbing bilirubin from the blood. Based on this idea, we designed and synthesized collagen (Col) and collagen-polyethyleneimine (Col-PEI) microspheres and employed them as hemoperfusion adsorbents for bilirubin removal. The microspheres have an efficient adsorption rate, higher bilirubin adsorption capacity, and competitive adsorption of bilirubin in the bilirubin/bovine serum albumin (BSA) solution. The maximum adsorption capacities of Col and Col-PEI microspheres for bilirubin are 150.2 mg/g and 258.4 mg/g, respectively, which are higher than those of most traditional polymer microspheres. Additionally, the microspheres exhibit excellent blood compatibility originating from collagen. Our study provides a new collagen-based strategy for the hemoperfusion treatment of hyperbilirubinemia.
Collapse
Affiliation(s)
- Wan Zhou
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wenbin Hu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qiancheng Zhan
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Minjun Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xinjie Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wajid Hussain
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huibin Yu
- Department of Pharmacy, Renmin Hospital, Hubei University of Medicine, Shiyan 442099, China
| | - Shenqi Wang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Lei Zhou
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
7
|
Li Q, Zhu Y, Li Y, Yang J, Bao Z, Tian S, Wang X, Zhang L. Reusable Zwitterionic Porous Organic Polymers for Bilirubin Removal in Serum. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38048490 DOI: 10.1021/acsami.3c11824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Herein, we report a straightforward strategy to construct reusable, hemocompatible, and highly efficient bilirubin adsorbents by installing zwitterionic modules into a porous organic polymer (POP) for hemoperfusion application. Three types of zwitterions with different amounts are used to evaluate their impacts on the characteristics of POPs, including carboxybetaine methacrylate (CB), sulfobetaine methacrylate (SB), and 2-methacryloyloxyethyl phosphorylcholine (MPC). Results show that zwitterions can improve hemocompatibility, hydrophilicity, and bilirubin uptake of the POP. Among all zwitterionic POPs, POP-CB-40% exhibits the best bilirubin uptake, ∼46.5 times enhancement compared with the non-zwitterionic POP in 100% serum. This enhancement can be attributed to the improved hydrophilicity and protein resistance ability in biological solutions. More importantly, the reusability test shows that POP-CB-40% maintains ∼99% of bilirubin uptake capacity at fifth recycling in 100% serum. Findings in this work provide a guideline for the design of biocompatible and efficient POP-based bilirubin adsorbents for hemoperfusion therapy.
Collapse
Affiliation(s)
- Qingsi Li
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Yingnan Zhu
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou 450001, China
| | - Yongjian Li
- Cardiovascular Department, Tianjin Nankai Hospital, No. 122, Sanwei Road, Nankai District, Tianjin 300102, China
| | - Jing Yang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Zhun Bao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Shu Tian
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Xiaodong Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| |
Collapse
|
8
|
Samiraninezhad N, Asadi K, Rezazadeh H, Gholami A. Using chitosan, hyaluronic acid, alginate, and gelatin-based smart biological hydrogels for drug delivery in oral mucosal lesions: A review. Int J Biol Macromol 2023; 252:126573. [PMID: 37648126 DOI: 10.1016/j.ijbiomac.2023.126573] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
AIMS Oral mucosal diseases can lead to pain, difficulty speaking and eating, psychological distress, and cancer. Topical drug delivery using biological macromolecules, specifically hydrogels, is gaining interest due to the drawbacks of conventional treatments for oral mucosal lesions. SCOPE Biological hydrogels made from natural polymers and their derivatives, such as chitosan, hyaluronic acid, alginate, and gelatin, represent promising alternatives to conventional oral medication delivery methods. Topical drug delivery is beneficial for oral mucosal lesions as it can directly target the affected area, especially with the development of smart stimuli-responsive hydrogels, which allow for more controlled drug release. Biological hydrogels have already been used to deliver drugs like lidocaine and nystatin. This review summarizes the current research on applying smart natural polymer-based hydrogels for drug delivery in oral mucosal lesions. CONCLUSION Smart biological hydrogels show great promise as topical drug delivery systems for oral mucosal lesions, offering sustained drug release, increased therapeutic efficacy, and minimized systemic complications. Technological advancement is expected to lead to the development of more effective and safer drug delivery systems. The potential benefits of biological polymer-based hydrogels make them an exciting area of research for oral mucosal lesion treatment.
Collapse
Affiliation(s)
- Nazafarin Samiraninezhad
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Khatereh Asadi
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Nanotechnology, School of Advanced Medical Science and Technology, Shiraz University of Medical Sciences, Shiraz, Iran; Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Hojat Rezazadeh
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Nanotechnology, School of Advanced Medical Science and Technology, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
9
|
Li M, Chen M, Yang F, Qin R, Yang Q, Ren H, Liu H, Yang P. Protein/Polysaccharide Composite toward Multi-in-One Toxin Removal in Blood with Self-Anticoagulation and Biocompatibility. Adv Healthc Mater 2023; 12:e2300999. [PMID: 37334878 DOI: 10.1002/adhm.202300999] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/02/2023] [Indexed: 06/21/2023]
Abstract
Biocompatible adsorbents play an essential role in hemoperfusion. Nevertheless, there are no hemoperfusion adsorbents that can simultaneously remove small and medium toxins, including bilirubin, urea, phosphor, heavy metals, and antibiotics. This bottleneck significantly impedes the miniaturization and portability of hemoperfusion materials and devices. Herein, a biocompatible protein-polysaccharide complex is reported that exhibits "multi-in-one" removal efficacy for liver and kidney metabolism wastes, toxic metal ions, and antibiotics. Through electrostatic interactions and polysaccharide-mediated coacervation, adsorbents can be prepared by simply mixing lysozyme (LZ) and sodium alginate (SA) together in seconds. The LZ/SA absorbent presented high adsorption capacities for bilirubin, urea, and Hg2+ of up to 468, 331, and 497 mg g-1 , respectively, and the excellent anti-protein adsorption endowed LZ/SA with a record-high adsorption capacity for bilirubin in the interference of serum albumin to simulate the physiological environment. The LZ/SA adsorbent also has effective adsorption capacity for heavy metals (Pb2+ , Cu2+ , Cr3+ , and Cd2+ ) and multiple antibiotics (terramycin, tetracycline, enrofloxacin, norfloxacin, roxithromycin, erythromycin, sulfapyrimidine, and sulfamethoxazole). Various adsorption functional groups exposed on the adsorbent surface significantly contribute to the excellent adsorption capacity. This fully bio-derived protein/alginate-based hemoperfusion adsorbent has great application prospects in the treatment of blood-related diseases.
Collapse
Affiliation(s)
- Mengjie Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Mengmeng Chen
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Facui Yang
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710021, China
| | - Rongrong Qin
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Qingmin Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Hao Ren
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Han Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
10
|
Wei F, Qi F, Li Y, Dou W, Zeng T, Wang J, Yao Z, Zhang L, Tang Z. Amino-rich nanofiber membrane with favorable hemocompatibility for highly efficient removal of bilirubin from plasma. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
|
11
|
Han L, Ji J, Zhang C, Sun B, Chao Z, Zhu H, Gao X, Ren J, Ji F, Ma L, Jia L. One-Step Assembly of Versatile Multifunctional Coatings Based on Host-Guest and Polyphenol Chemistry. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206943. [PMID: 36755211 DOI: 10.1002/smll.202206943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/04/2023] [Indexed: 06/02/2023]
Abstract
Developing a facile, efficient, and versatile polyphenol coating strategy and exploring its novel applications are of great significance in the fields of material surfaces and interfaces. Herein, a one-step assembly strategy for constructing novel tannic acid (TA) coatings via a solvent evaporation method is reported using TA and polycyclodextrin (PCD) particles (TPP). TPP with a high phenolic group activity of 88% integrates the advantages of host-guest and polyphenol chemistry. The former can drive TPP dynamically assemble into a large and collective aggregation activated by high temperature or density, and the latter provides excellent adhesion properties to substrates (0.9 mg cm-2 ). TPP can assemble into a coating (TPC) rapidly on various substrates within 1 h at 37 °C while with a high availability of feed TPP (≈90%). The resulting TPC is not only high-temperature steam-sensitive for use as an anti-fake mask but also pH-sensitive for transforming into a free-standing film under physiological conditions. Moreover, various metal ions and functional particles can incorporate into TPC to extend its versatile properties including antibacterial activity, enhanced stability, and conductivity. This work expands the polyphenol coating strategy and builds up a one-step and efficient preparation platform of polyphenol coating for multiapplication prospects in various fields.
Collapse
Affiliation(s)
- Lulu Han
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Jiaxin Ji
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Chong Zhang
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Bingjian Sun
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Zhenhua Chao
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Hua Zhu
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Xiaorong Gao
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Jun Ren
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Fangling Ji
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Liming Ma
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Lingyun Jia
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
12
|
Gao X, Liu K, Liu P, Bai X, Li A, Lyu Z, Li Q. Preparation and properties of cellulose acetate graft copolymer‐coated adsorbent resin for hemoperfusion device. J Appl Polym Sci 2023. [DOI: 10.1002/app.53895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
13
|
Choi H, Kim T. Adsorption and quantitative fluorescence-based measurement of ammonium ions using a chitosan-based hydrogel combined with p-hydroxybenzoic acid. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
14
|
Wang Y, Wei R, Zhao W, Zhao C. Bilirubin Removal by Polymeric Adsorbents for Hyperbilirubinemia Therapy. Macromol Biosci 2023; 23:e2200567. [PMID: 36786125 DOI: 10.1002/mabi.202200567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/02/2023] [Indexed: 02/15/2023]
Abstract
Hyperbilirubinemia, presenting as jaundice, is a life-threatening critical illness in newborn babies and acute severe hepatic failure patients. Over the past few decades, extracorporeal hemoadsorption by adsorbent therapy has been widely applied in the treatment of hyperbilirubinemia. The capability of hemoadsorption depends on the adsorbents. Most of the clinically used bilirubin adsorbents are made up of styrene/divinylbenzene copolymer and quaternary ammonium salt, which usually have poor biocompatibility and weak mechanical strength. To overcome the drawbacks of commercial polymer adsorbents, advanced synthetic and natural polymers with/without nanomaterials have been designed, and novel adsorbent fabrication technologies have also been developed. In this review, the adsorption mechanism of bilirubin adsorbents has been summarized, which is the basic criterion in adsorbent development. Furthermore, the preparation method, adsorption mechanism, relative merits and practicability of the emerging bilirubin adsorbents have been evaluated. Based on the existing studies, this work highlights the future direction of the efforts on how to design and develop bilirubin adsorbents with good overall clinical performance. Perhaps this study can change traditional perspectives and propose new strategies for bilirubin clearance from the aspects of pathogenic mechanisms, metabolic pathways, and material-based innovation.
Collapse
Affiliation(s)
- Yilin Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.,Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| | - Ran Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.,Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.,Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.,Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
15
|
Nocentini A, Bonardi A, Pratesi S, Gratteri P, Dani C, Supuran CT. Pharmaceutical strategies for preventing toxicity and promoting antioxidant and anti-inflammatory actions of bilirubin. J Enzyme Inhib Med Chem 2022; 37:487-501. [PMID: 34986721 PMCID: PMC8741241 DOI: 10.1080/14756366.2021.2020773] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/25/2022] Open
Abstract
Bilirubin (BR) is the final product of haem catabolism. Disruptions along BR metabolic/transport pathways resulting from inherited disorders can increase plasma BR concentration (hyperbilirubinaemia). Unconjugated hyperbilirubinemia may induce BR accumulation in brain, potentially causing irreversible neurological damage, a condition known as BR encephalopathy or kernicterus, to which newborns are especially vulnerable. Numerous pharmaceutical strategies, mostly based on hemoperfusion, have been proposed over the last decades to identify new valid, low-risk alternatives for BR removal from plasma. On the other hand, accumulating evidence indicates that BR produces health benefits due to its potent antioxidant, anti-inflammatory and immunomodulatory action with a significant potential for the treatment of a multitude of diseases. The present manuscript reviews both such aspects of BR pharmacology, gathering literature data on applied pharmaceutical strategies adopted to: (i) reduce the plasma BR concentration for preventing neurotoxicity; (ii) produce a therapeutic effect based on BR efficacy in the treatment of many disorders.
Collapse
Affiliation(s)
- Alessio Nocentini
- Department of Neurosciences, Psychology, Drug Research and Child Health, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Alessandro Bonardi
- Department of Neurosciences, Psychology, Drug Research and Child Health, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Simone Pratesi
- Department of Neurosciences, Psychology, Drug Research and Child Health, Careggi University, Hospital of Florence, Florence, Italy
| | - Paola Gratteri
- Department of Neurosciences, Psychology, Drug Research and Child Health, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modelling Cheminformatics & QSAR, University of Florence, Florence, Italy
| | - Carlo Dani
- Department of Neurosciences, Psychology, Drug Research and Child Health, Careggi University, Hospital of Florence, Florence, Italy
| | - Claudiu T. Supuran
- Department of Neurosciences, Psychology, Drug Research and Child Health, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| |
Collapse
|
16
|
Bao C, Zhang X, Shen J, Li C, Zhang J, Feng X. Freezing-triggered gelation of quaternized chitosan reinforced with microfibrillated cellulose for highly efficient removal of bilirubin. J Mater Chem B 2022; 10:8650-8663. [PMID: 36218039 DOI: 10.1039/d2tb01407f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The highly efficient removal of bilirubin from blood by hemoperfusion for liver failure therapy remains a challenge in the clinical field due to the low adsorption capacity and poor hemocompatibility of currently used carbon-based adsorbents. Polysaccharide-based cryogels seem to be promising candidates for hemoperfusion adsorbents owing to their inherited excellent hemocompatibility. However, the weak mechanical strength and relatively low adsorption capacity of polysaccharide-based cryogels limited their application in bilirubin adsorption. In this work, we presented a freezing-triggered strategy to fabricate QCS/MFC cryogels, which were formed by quaternized chitosan (QCS) crosslinked with divinylsulfonyl methane (BVSM) and reinforced with microfibrillated cellulose (MFC). Ice crystal exclusions triggered the chemical crosslinking to generate the cryogels with dense pore walls. The obtained QCS/MFC cryogels were characterized by FTIR, SEM, stress-strain test, and hemocompatibility assay, which exhibited interconnected macroporous structures, excellent shape-recovery and mechanical performance, and outstanding blood compatibility. Due to the quaternary ammonium functionalization of chitosan, the QCS/MFC showed a high adsorption capacity of 250 mg g-1 and a short adsorption equilibrium time of 3 h. More importantly, the QCS/MFC still exhibited high adsorption efficiency (over 49.7%) in the presence of 40 g L-1 albumin. Furthermore, the QCS/MFC could also maintain high dynamic adsorption efficiency in self-made hemoperfusion devices. This facile approach provides a new avenue to develop high-performance hemoperfusion adsorbents for bilirubin removal, showing great promise for the translational therapy of hyperbilirubinemia.
Collapse
Affiliation(s)
- Chunxiu Bao
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, China.
| | - Xufeng Zhang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, China.
| | - Jing Shen
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, China.
| | - Changjing Li
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, China.
| | - Jinmeng Zhang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, China.
| | - Xiyun Feng
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, China.
| |
Collapse
|
17
|
Freezing-induced chemical crosslinking to fabricate nanocellulose-based cryogels for efficient bilirubin removal. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Liu Y, Wang ZK, Liu CZ, Liu YY, Li Q, Wang H, Cui F, Zhang DW, Li ZT. Supramolecular Organic Frameworks as Adsorbents for Efficient Removal of Excess Bilirubin in Hemoperfusion. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47397-47408. [PMID: 36223402 DOI: 10.1021/acsami.2c11458] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Excess bilirubin accumulates in the bodies of patients suffering from acute liver failure (ALF) to cause much irreversible damage and bring about serious clinical symptoms such as kernicterus, hepatic coma, or even death. Hemoperfusion is a widely used method for removing bilirubin from the blood, but clinically used adsorbents have unsatisfactory adsorption capacity and kinetics. In this study, we prepared four supramolecular organic framework microcrystals SOF-1-4 via slow evaporation of their aqueous solutions under infrared light. SOF-1-4 possess good regularity and excellent stability. We demonstrate that all the four SOFs could serve as adsorbents for bilirubin with fast adsorption kinetics within 20 min and ultrahigh adsorption capacity of 609.1 mg g-1, driven by electrostatic interaction and hydrophobicity. The superior adsorption performance of the SOFs outperformed most of the reported bilirubin adsorbents. Remarkably, SOF-3 could remove about 90% of bilirubin in the presence of 40 g L-1 BSA with a minimal loss of albumin and was thus further processed to a bead-shaped composite with a diameter of 2 mm with poly(ether sulfone) (PES). This PES-loaded SOF could efficiently adsorb bilirubin to the normal level from human plasma with an adsorption equilibrium concentration of 7.8 mg L-1 in 6 h through a dynamic hemoperfusion process. This work provides a new vitality for the development of novel bilirubin adsorbents for hemoperfusion therapy.
Collapse
Affiliation(s)
- Yamin Liu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200438, China
| | - Ze-Kun Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200438, China
| | - Chuan-Zhi Liu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200438, China
| | - Yue-Yang Liu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200438, China
| | - Qian Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200438, China
| | - Hui Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200438, China
| | - Fengchao Cui
- Department of Chemistry, Northeast Normal University, Changchun130024, China
| | - Dan-Wei Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200438, China
| | - Zhan-Ting Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai200438, China
| |
Collapse
|
19
|
Idumah CI, Nwuzor IC, Odera SR, Timothy UJ, Ngenegbo U, Tanjung FA. Recent advances in polymeric hydrogel nanoarchitectures for drug delivery applications. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2120875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Christopher Igwe Idumah
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - I. C. Nwuzor
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - S. R. Odera
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - U. J. Timothy
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - U. Ngenegbo
- Department of Parasitology and Entomology, Faculty of Biosciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - F. A. Tanjung
- Faculty of Science and Technology, Universitas Medan Area, Medan, Indonesia
| |
Collapse
|
20
|
Liu Y, Wang ZK, Gao ZZ, Zong Y, Sun JD, Zhou W, Wang H, Ma D, Li ZT, Zhang DW. Porous organic polymer overcomes the post-treatment phototoxicity of photodynamic agents and maintains their antitumor efficiency. Acta Biomater 2022; 150:254-264. [DOI: 10.1016/j.actbio.2022.07.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/14/2022] [Accepted: 07/25/2022] [Indexed: 11/01/2022]
|
21
|
Yue P, Chen B, Lv X, Zou Y, Cao H, Ma Y, Wang L, Liu Z, Zheng Y, Duan B, Wu S, Ye Q. Biocompatible Composite Microspheres of Chitin/Ordered Mesoporous Carbon CMK3 for Bilirubin Adsorption and Cell Microcarrier Culture. Macromol Biosci 2022; 22:e2100412. [PMID: 35007390 DOI: 10.1002/mabi.202100412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/12/2021] [Indexed: 11/12/2022]
Abstract
Extra bilirubin in the blood can provoke serious illness in patients with severe liver disease. Hemoperfusion is an effective method to remove the extra bilirubin, but its application is limited by the low adsorption efficiency and poor biocompatibility of available adsorbent materials. In this study, chitin/ordered mesoporous carbon CMK3 (Ch/CMK3) microspheres were successfully prepared. Results of characterization experiments indicated that these composite microspheres possess a multilayered porous nanofibrous structure with an extremely large specific surface area (300.19 m2 g-1 ) and large pore size. Notably, the Ch/CMK3 microspheres demonstrated a high bilirubin adsorption capacity (228.19 mg g-1 ) in phosphate buffer solution, and an outstanding bilirubin removal ratio (76.78%±4.40%) in the plasma of rabbits with hyperbilirubinemia without affecting the protein components. More importantly, the Ch/CMK3 microspheres showed no effect on other blood components, no cytotoxicity, and no systemic toxicity to mice. Cell coculture experiments revealed that the microspheres could provide a three-dimensional (3D) space to promote cell adhesion, proliferation, and nutrient exchange. These Ch/CMK3 microspheres featuring a strong ability for bilirubin adsorption and good biocompatibility could be a promising candidate in biomedical applications such as hemoperfusion, cell microcarrier, and 3D tissue engineering. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Pengpeng Yue
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan, 430071, China
| | - Biao Chen
- Department of Transplant surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xiaoyan Lv
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yongkang Zou
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan, 430071, China
| | - Hankun Cao
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan, 430071, China
| | - Yongsheng Ma
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan, 430071, China
| | - Lizhe Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan, 430071, China
| | - Zhongzhong Liu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan, 430071, China
| | - Yiran Zheng
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, 430072, China
| | - Bo Duan
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, 430072, China
| | - Shuangquan Wu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan, 430071, China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan, 430071, China.,The Third Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha, 410013, China
| |
Collapse
|
22
|
Wang L, Chen J, Chai Y, Han W, Shen J, Li N, Lu J, Du Y, Liu Z, Yu Y, Dong J, Ou L. Targeting regulation of the tumour microenvironment induces apoptosis of breast cancer cells by an affinity hemoperfusion adsorbent. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2021; 49:325-334. [PMID: 33754901 DOI: 10.1080/21691401.2021.1902337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/28/2021] [Indexed: 10/25/2022]
Abstract
The cytokine network of tumour microenvironment (TME) plays an important role in cancer growth and progression. The current work aims to provide a new strategy for cancer therapy based on the targeted regulation of cytokines in the TME. Here, heparin-coupled polyvinyl alcohol (PVA-H) microspheres have been developed as an adsorbent for selectively remove tumour-induced immunosuppressive cytokines, such as vascular endothelial growth factor (VEGF) and transforming growth factor-beta (TGF-β), but not tumour necrosis factor-alpha (TNF-α) which has an immune-stimulating effect and can inhibit tumour growth. The proliferation and apoptosis of breast cancer cells after perfusion were tested by cell viability assays, flow cytometry analysis and mRNA microarray assays. Results showed that the PVA-H microspheres efficiently absorbed the majority of VEGF (74.39%) and TGF-β (86.39%), but much less TNF-α (4.16%). The regulation of the cytokines had remarkable anti-proliferative and pro-apoptotic effects on breast cancer cells, which was further confirmed from the change of mRNA expression levels. Thus, targeting regulatory pathways within the TME by an affinity adsorbent that selectively depletes immunosuppressive cytokines is potentially a new and promising strategy for cancer therapy.
Collapse
Affiliation(s)
- Lichun Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Jian Chen
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yamin Chai
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Wenyan Han
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Jie Shen
- Department of Nuclear Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Nan Li
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Jinyan Lu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yunzheng Du
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhuang Liu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yameng Yu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Jingzhe Dong
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Lailiang Ou
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
23
|
Liu N, Wu C, Lyu G, Li M. Efficient adsorptive removal of short-chain perfluoroalkyl acids using reed straw-derived biochar (RESCA). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149191. [PMID: 34333431 DOI: 10.1016/j.scitotenv.2021.149191] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/14/2021] [Accepted: 07/18/2021] [Indexed: 06/13/2023]
Abstract
Drinking water and groundwater treatment of perfluoroalkyl acids (PFAAs) heavily relies on adsorption-based approaches using carbonaceous materials, such as granular activated carbon (GAC). Application of GAC is restricted by its inefficiency to remove short-chain PFAAs that have prevalently emerged as substitutes and/or metabolites of long-chain polyfluoroalkyl and perfluoroalkyl substances (PFAS). Here, we synthesized reed straw-derived biochar (RESCA) exhibiting exceptional removal efficiencies (>92%) toward short-chain PFAAs at environment-relevant concentrations (e.g., 1 μg/L). Pseudo-second-order kinetic constants of RESCA were 1.13 and 1.23 L/(mg h) for perfluorobutanoic acid (PFBA) and perfluorobutanesulfonic acid (PFBS), respectively, over six times greater than GAC. SEM imaging and BET analysis revealed the combination of highly hydrophobic surface and scattered distribution of mesopores (2-10 nm in diameter) was associated with the rapid adsorption of short-chain PFAAs. RESCA-packed filters demonstrated effective removal of the mixture of three short-chain and three long-chain PFAAs in the influent with the flow rate up to 45 mL/min. In contrast, GAC-packed filters were significantly less efficient in the removal of short-chain PFAAs, which were also negatively affected by the increase of the flow rate. Efficacy of RESCA-packed filters was also validated in four PFAA-spiked groundwater samples from different sites. Dissolved organic matter (DOC) of >8 mg/L can negatively affect the removal of short-chain PFAAs by RESCA. Feasibility of scaling up the RESCA adsorption system was investigated using breakthrough simulation. Overall, RESCA represents a green adsorbent alternative for the feasible and scalable treatment of a wide spectrum of PFAAs of different chain lengths and functional moieties.
Collapse
Affiliation(s)
- Na Liu
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, United States; School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Chen Wu
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Guifen Lyu
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, United States; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Mengyan Li
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, United States.
| |
Collapse
|
24
|
VO TS. Progresses and expansions of chitosan-graphene oxide hybrid networks utilizing as adsorbents and their organic dye removal performances: A short review. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2021. [DOI: 10.18596/jotcsa.943623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
25
|
Zhang C, Xie Q, Cha R, Ding L, Jia L, Mou L, Cheng S, Wang N, Li Z, Sun Y, Cui C, Zhang Y, Zhang Y, Zhou F, Jiang X. Anticoagulant Hydrogel Tubes with Poly(ɛ-Caprolactone) Sheaths for Small-Diameter Vascular Grafts. Adv Healthc Mater 2021; 10:e2100839. [PMID: 34218526 DOI: 10.1002/adhm.202100839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/21/2021] [Indexed: 12/17/2022]
Abstract
Small-diameter vascular grafts (inner diameter < 6 mm) are useful in treating cardiovascular diseases. The off-the-shelf small-diameter vascular grafts for clinical applications remain a great limitation owing to their thrombogenicity or intimal hyperplasia. Herein, bilayer anticoagulant hydrogel tubes with poly(ε-caprolactone) (PCL) sheaths are prepared by freeze-thawing and electrospinning, which contain nanofibrillated cellulose (NFC)/poly(vinyl alcohol) (PVA)-heparin/poly-L-lysine nanoparticles tube as an inner layer and PCL sheath as an outer layer. The structure, anticoagulant property, and biocompatibility of the inner layer are studied. The effects of thickness of the outer layer on perfusion performance and mechanical property of hydrogel tubes with PCL sheaths (PCL-NFC/PVA-NPs tubes) are investigated. The effect of compliance of PCL-NFC/PVA-NPs tubes on their blood flow is studied by numerical simulation. The tissue compatibility and the patency of PCL-NFC/PVA-NPs tubes are evaluated by implantation in subcutaneous tissue of rats and carotid artery of rabbits. PCL-NFC/PVA-NPs tubes have prominent anticoagulation, sufficient burst pressure and good compliance similar to native arteries. PCL-NFC/PVA-NPs tubes facilitate infiltration of host cells and achieve active proliferation of recruited cells, which will be a promising candidate for small-diameter vascular grafts.
Collapse
Affiliation(s)
- Chunliang Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials School of Materials Science and Technology China University of Geosciences (Beijing) No. 29 Xueyuan Road, Haidian District Beijing 100083 P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for NanoScience and Technology No. 11 Zhongguancun Beiyitiao, Haidian District Beijing 100190 P. R. China
| | - Qian Xie
- Division of Nephrology Peking University Third Hospital No. 49 Huayuan Road North, Haidian District Beijing 100191 P. R. China
| | - Ruitao Cha
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for NanoScience and Technology No. 11 Zhongguancun Beiyitiao, Haidian District Beijing 100190 P. R. China
| | - Li Ding
- Department of Cardiac Surgery Fuwai Hospital State Key Laboratory of Cardiovascular Disease National Center for Cardiovascular Diseases Chinese Academy of Medical Sciences and Peking Union Medical College No. 167 Beilishi Road, Xicheng District Beijing 100037 P. R. China
| | - Liujun Jia
- Animal Experimental Center Fuwai Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Research and Evaluation for Cardiovascular Implant Materials No. 167 Beilishi Road, Xicheng District Beijing 100037 P. R. China
| | - Lei Mou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for NanoScience and Technology No. 11 Zhongguancun Beiyitiao, Haidian District Beijing 100190 P. R. China
| | - Shiyu Cheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for NanoScience and Technology No. 11 Zhongguancun Beiyitiao, Haidian District Beijing 100190 P. R. China
| | - Nuoxin Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for NanoScience and Technology No. 11 Zhongguancun Beiyitiao, Haidian District Beijing 100190 P. R. China
| | - Zulan Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for NanoScience and Technology No. 11 Zhongguancun Beiyitiao, Haidian District Beijing 100190 P. R. China
| | - Yang Sun
- Department of Pathology Fuwai Hospital State Key Laboratory of Cardiovascular Disease National Center for Cardiovascular Diseases Chinese Academy of Medical Sciences and Peking Union Medical College No. 167 Beilishi Road, Xicheng District Beijing 100037 P. R. China
| | - Chuanjue Cui
- Department of Cardiac Surgery Fuwai Hospital State Key Laboratory of Cardiovascular Disease National Center for Cardiovascular Diseases Chinese Academy of Medical Sciences and Peking Union Medical College No. 167 Beilishi Road, Xicheng District Beijing 100037 P. R. China
| | - Yu Zhang
- Department of Cardiology Beijing Anzhen Hospital Capital Medical University No. 2 Anzhen Road, Chaoyang District Beijing 100029 P. R. China
| | - Yan Zhang
- Department of Cardiac Surgery Fuwai Hospital State Key Laboratory of Cardiovascular Disease National Center for Cardiovascular Diseases Chinese Academy of Medical Sciences and Peking Union Medical College No. 167 Beilishi Road, Xicheng District Beijing 100037 P. R. China
| | - Fengshan Zhou
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials School of Materials Science and Technology China University of Geosciences (Beijing) No. 29 Xueyuan Road, Haidian District Beijing 100083 P. R. China
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering Department of Biomedical Engineering Southern University of Science and Technology No. 1088 Xueyuan Road, Nanshan District Shenzhen Guangdong 518055 P. R. China
| |
Collapse
|
26
|
Structure design and performance study on filtration-adsorption bifunctional blood purification membrane. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Gan N, Sun Q, Zhao L, Zhang S, Suo Z, Wang X, Li H. Hierarchical core-shell nanoplatforms constructed from Fe 3O 4@C and metal-organic frameworks with excellent bilirubin removal performance. J Mater Chem B 2021; 9:5628-5635. [PMID: 34109969 DOI: 10.1039/d1tb00586c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hemoperfusion has become the third-generation treatment strategy for patients suffering from hyperbilirubinemia, but adsorbents used for bilirubin removal mostly face intractable problems, such as unsatisfactory adsorption performance and poor hemocompatibility. Metal-organic frameworks (MOFs) are promising adsorbents for hemoperfusion due to their high specific surface areas and easily modified organic ligands. However, their microporous properties and separation have hampered their application. Here, a novel hierarchical core-shell nanoplatform (named Double-PEG) with tailored binding sites and pore sizes based on Fe3O4@C and Uio66-NH2 was constructed. Notably, Double-PEG showed excellent bilirubin uptake of up to 1738.30 mg g-1 and maintained excellent bilirubin removal efficiency in simulated biological solutions. A study on the adsorption mechanism showed that the adsorption of Double-PEG towards bilirubin tended to be chemical adsorption and in accordance with the Langmuir model. Besides, the good separability, recyclability, cytotoxicity and hemocompatibility of Double-PEG show great potential in hemoperfusion therapy. The finding of this study may provide a novel insight into the application of MOF materials in the field of hemoperfusion.
Collapse
Affiliation(s)
- Na Gan
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Qiaomei Sun
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Ludan Zhao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Shuangshuang Zhang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Zili Suo
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Xinlong Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Hui Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
| |
Collapse
|
28
|
Li Z, Yan X, Wu K, Jiao Y, Zhou C, Yang J. Surface Modification of Reduced Graphene Oxide Beads: Integrating Efficient Endotoxin Adsorption and Improved Blood Compatibility. ACS APPLIED BIO MATERIALS 2021; 4:4896-4906. [PMID: 35007038 DOI: 10.1021/acsabm.0c01666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
As a pathogenic toxin, endotoxins are the culprit for endotoxemia and can be generally removed from the blood by hemoperfusion. Reduced graphene oxide (rGO) is a promising endotoxin sorbent for hemoperfusion owing to its excellent adsorption capacity, but it has the side effect of nonspecific adsorption and low blood compatibility. Polymyxin B (PMB) acts as an organic affinity ligand that can specifically bind endotoxins. As a natural anticoagulant, heparin (Hep) can reduce the risk of coagulation and improve the blood compatibility of materials. Herein, an rGO bead adsorbent was prepared by coupling with PMB and Hep and used for endotoxin adsorption; in this, polydopamine (pDA) served as an active coating for immobilization of PMB and further coupling with Hep. The physicochemical characteristics indicated that PMB and Hep were successfully immobilized on rGO beads with a hierarchical pore structure. PMB endowed rGO beads with higher adsorption capacity (143.84 ± 3.28 EU/mg) and good adsorption selectivity for endotoxins. Hep significantly improved the blood compatibility of rGO beads. These modified rGO beads also achieved good adsorption capacity and adsorption selectivity for endotoxins in plasma, serum, or blood. Therefore, rGO/pDA/PMB/Hep beads are potential adsorbents for endotoxins in hemoperfusion.
Collapse
Affiliation(s)
- Zhentao Li
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Xin Yan
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Keke Wu
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Yanpeng Jiao
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Changren Zhou
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Jingxin Yang
- College of Robotics, Beijing Union University, Beijing 100027, China
| |
Collapse
|
29
|
Chen W, Han Q, Liu Y, Wang Y, Liu F. Targeted perfusion adsorption for hyperphosphatemia using mixed matrix microspheres (MMMs) encapsulated NH 2-MIL-101(Fe). J Mater Chem B 2021; 9:4555-4566. [PMID: 34047320 DOI: 10.1039/d1tb00329a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hyperphosphatemia, a common complication of chronic renal failure patients, is described as an excess amount of serum phosphate >4.5 mg dL-1. Current therapy for hyperphosphatemia is limited by low removal efficiency, secondary hyperparathyroidism, uremic bone disease, and the promotion of vascular and visceral calcifications. Metal organic frameworks (MOFs) have aroused great interest in the field of blood purification because of their strong specific adsorption. Herein, we prepared mixed matrix microspheres (MMMs) encapsulated NH2-MIL-101(Fe) with specific adsorption to blood phosphate. Simultaneously, a heparinoid copolymer poly (acrylic acid-sodium 4-vinylbenzenssulfonate) (P(AA-SSNa)) was incorporated to improve the hemocompatibility. The proposed MMMs exhibited excellent phosphate adsorption capacity both in aqueous and human plasma environments. They also showed comprehensive hemocompatibility e.g. low tendency of protein adsorption, low hemolysis rate and extended blood coagulation time. In general, we envision that the MMMs are potentially suitable as highly efficient hemoperfusion adsorbents for hyperphosphatemia treatment.
Collapse
Affiliation(s)
- Wenhui Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo 315201, China. and Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215000, China
| | - Qiu Han
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo 315201, China.
| | - Yang Liu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo 315201, China. and University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, China
| | - Yiwen Wang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo 315201, China. and University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, China
| | - Fu Liu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo 315201, China. and University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, China
| |
Collapse
|
30
|
da Silva Alves DC, Healy B, Pinto LADA, Cadaval TRS, Breslin CB. Recent Developments in Chitosan-Based Adsorbents for the Removal of Pollutants from Aqueous Environments. Molecules 2021; 26:594. [PMID: 33498661 PMCID: PMC7866017 DOI: 10.3390/molecules26030594] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 12/18/2022] Open
Abstract
The quality of water is continuously under threat as increasing concentrations of pollutants escape into the aquatic environment. However, these issues can be alleviated by adsorbing pollutants onto adsorbents. Chitosan and its composites are attracting considerable interest as environmentally acceptable adsorbents and have the potential to remove many of these contaminants. In this review the development of chitosan-based adsorbents is described and discussed. Following a short introduction to the extraction of chitin from seafood wastes, followed by its conversion to chitosan, the properties of chitosan are described. Then, the emerging chitosan/carbon-based materials, including magnetic chitosan and chitosan combined with graphene oxide, carbon nanotubes, biochar, and activated carbon and also chitosan-silica composites are introduced. The applications of these materials in the removal of various heavy metal ions, including Cr(VI), Pb(II), Cd(II), Cu(II), and different cationic and anionic dyes, phenol and other organic molecules, such as antibiotics, are reviewed, compared and discussed. Adsorption isotherms and adsorption kinetics are then highlighted and followed by details on the mechanisms of adsorption and the role of the chitosan and the carbon or silica supports. Based on the reviewed papers, it is clear, that while some challenges remain, chitosan-based materials are emerging as promising adsorbents.
Collapse
Affiliation(s)
- Daniele C. da Silva Alves
- Department of Chemistry, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland; (D.C.d.S.A.); (B.H.)
- School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS 96203-900, Brazil; (L.A.d.A.P.); (T.R.S.C.J.)
| | - Bronach Healy
- Department of Chemistry, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland; (D.C.d.S.A.); (B.H.)
| | - Luiz A. de Almeida Pinto
- School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS 96203-900, Brazil; (L.A.d.A.P.); (T.R.S.C.J.)
| | - Tito R. Sant’Anna Cadaval
- School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS 96203-900, Brazil; (L.A.d.A.P.); (T.R.S.C.J.)
| | - Carmel B. Breslin
- Department of Chemistry, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland; (D.C.d.S.A.); (B.H.)
| |
Collapse
|
31
|
Qiao L, Li Y, Liu Y, Wang Y, Du K. High-strength, blood-compatible, and high-capacity bilirubin adsorbent based on cellulose-assisted high-quality dispersion of carbon nanotubes. J Chromatogr A 2020; 1634:461659. [PMID: 33166890 DOI: 10.1016/j.chroma.2020.461659] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023]
Abstract
Excess bilirubin can accumulate in body organs and has serious effects on human health. In this work, a simple engineering strategy, based on cellulose-assisted high-quality dispersion of carbon nanotubes (CNTs), is proposed to produce high-performance bilirubin adsorbents. By dispersing cellulose and CNTs in NaOH/thiourea aqueous solution, a homogeneous and stable cellulose/CNTs solution is achieved. The obtained cellulose/CNTs solution is applied for the fabrication of cellulose/CNTs microspheres (CCMs), in which cellulose serves as a base material and guarantees the blood compatibility of the composite material, and CNTs contribute to the improved mechanical strength and high adsorption capacity. To further improve blood compatibility and adsorption capacity, lysine is immobilized on the CCMs. The obtained lysine-modified CCMs (LCCMs) exhibit a large surface area (171.31 m2/g) and hierarchically porous structure. Experimental results demonstrate LCCMs have high bilirubin adsorption capacity (204.12 mg/g) that is significantly higher than most of the reported adsorbents. The combination of high strength, blood compatibility, and high adsorption capacity positions the LCCMs as a promising candidate for bilirubin removal.
Collapse
Affiliation(s)
- Liangzhi Qiao
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610065, PR China
| | - Yaling Li
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610065, PR China
| | - Yi Liu
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610065, PR China
| | - Yinghong Wang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610065, PR China
| | - Kaifeng Du
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610065, PR China.
| |
Collapse
|
32
|
Zhao R, Ma T, Cui F, Tian Y, Zhu G. Porous Aromatic Framework with Tailored Binding Sites and Pore Sizes as a High-Performance Hemoperfusion Adsorbent for Bilirubin Removal. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001899. [PMID: 33304751 PMCID: PMC7709998 DOI: 10.1002/advs.202001899] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/19/2020] [Indexed: 05/13/2023]
Abstract
Highly efficient removal of bilirubin from blood by hemoperfusion for liver failure therapy remains a challenge in the clinical field due to the low adsorption capacity and slow adsorption kinetics of currently used bilirubin adsorbents (e.g., activated carbon and ion-exchange resin). Recently, porous aromatic frameworks (PAFs) with high surface areas, tunable structures, and remarkable stability provide numerous possibilities to obtain satisfying adsorbents. Here, a cationic PAF with more mesopores, named iPAF-6, is successfully constructed via a de novo synthetic strategy for bilirubin removal. The prepared iPAF-6 exhibits a record-high adsorption capacity of 1249 mg g-1 and can adsorb bilirubin from 150 mg L-1 to normal concentration in just 5 min. Moreover, iPAF-6 shows a removal efficiency of 96% toward bilirubin in the presence of 50 g L-1 bovine serum albumin. It is demonstrated that positively charged aromatic frameworks and large pore size make a significant contribution to its excellent adsorption ability. More notably, iPAF-6/polyethersulfone composite fibers or beads are fabricated for practical hemoperfusion adsorption, which also show better removal performance than commercial adsorbents. This work can offer a new possibility for designing PAF-based bilirubin adsorbents with an appealing application prospect.
Collapse
Affiliation(s)
- Rui Zhao
- Faculty of ChemistryNortheast Normal UniversityChangchun130024P. R. China
| | - Tingting Ma
- Faculty of ChemistryNortheast Normal UniversityChangchun130024P. R. China
| | - Fengchao Cui
- Faculty of ChemistryNortheast Normal UniversityChangchun130024P. R. China
| | - Yuyang Tian
- Faculty of ChemistryNortheast Normal UniversityChangchun130024P. R. China
| | - Guangshan Zhu
- Faculty of ChemistryNortheast Normal UniversityChangchun130024P. R. China
| |
Collapse
|
33
|
Wang Y, Li C, Zheng Y, Xie Y, Qiao K, He W, Yang S. Plant protein modified natural cellulose with multiple adsorption effects used for bilirubin removal. Int J Biol Macromol 2020; 166:179-189. [PMID: 33172613 DOI: 10.1016/j.ijbiomac.2020.10.131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/10/2020] [Accepted: 10/15/2020] [Indexed: 11/19/2022]
Abstract
In this study, bacterial cellulose (BC)/soy protein isolate (SPI) composite membranes were prepared by in situ cross-linked polymerization, and used as efficient blood compatible adsorbents to remove bilirubin. The obtained composite membranes were successively characterized by FTIR, SEM, AFM, contact angle test and hemolysis assay, which exhibited unique protein coated 3D fibrous network structures, hydrophobic surfaces and outstanding blood compatibility due to the incorporation of SPI. The BC/SPI membranes with high SPI content showed high adsorption efficiency, short adsorption equilibrium time (2 h) and multiple adsorption effects on bilirubin. The adsorption rate for free bilirubin of BC/SPI5 membrane could reach 78.8% when the bilirubin concentration was 100 mg L-1, while it increased to over 96.5% when the initial bilirubin concentration exceeded 400 mg L-1. More importantly, the BC/SPI5 membrane still exhibited high adsorption rate (over 70%) in presence of albumin. Furthermore, the composite membrane could also maintain high dynamic adsorption efficiency in self-made hemoperfusion devices. This novel naturally-derived membrane is an economical and efficient absorbent for the remove of bilirubin, and will provide new ideas for therapy of hemoperfusion without plasma separation process.
Collapse
Affiliation(s)
- Yansen Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Chenyang Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Yudong Zheng
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China.
| | - Yajie Xie
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Kun Qiao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Wei He
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Siming Yang
- Key Laboratory of Wound Repair and Regeneration of PLA, Chinese PLA General Hospital, Medical College of PLA, Beijing 100853, PR China.
| |
Collapse
|
34
|
Li Q, Guo H, Yang J, Zhao W, Zhu Y, Sui X, Xu T, Zhang J, Zhang L. MOF-Based Antibiofouling Hemoadsorbent for Highly Efficient Removal of Protein-Bound Bilirubin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8753-8763. [PMID: 32551665 DOI: 10.1021/acs.langmuir.0c01047] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A metal-organic framework (MOF)-based antibiofouling hemoadsorbent (PCB-MIL101) was developed through a facile encapsulation of MIL-101(Cr) in zwitterionic poly carboxybetaine (PCB) hydrogel. PCB-MIL101 possessed strong mechanical strength and superior hemocompatibility, ensuring its safety in hemoperfusion applications. In addition, it showed efficient and effective adsorption toward bilirubin (BR), and its maximum adsorption capacity was ∼583 mg g-1. Moreover, due to the protection of antibiofouling PCB hydrogel, PCB-MIL101 showed ability to resist protein adsorption, thus working effectively to remove BR molecules from their binding albumin in biological solutions. The finding in this study provides a novel insight into developing MOF-based hemoadsorbents for the improvement of hemoperfusion therapies.
Collapse
Affiliation(s)
- Qingsi Li
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao 266235, China
| | - Hongshuang Guo
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao 266235, China
| | - Jing Yang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao 266235, China
| | - Weiqiang Zhao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao 266235, China
| | - Yingnan Zhu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao 266235, China
| | - Xiaojie Sui
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao 266235, China
| | - Tong Xu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao 266235, China
| | - Jiamin Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao 266235, China
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao 266235, China
| |
Collapse
|
35
|
Kasoju N, Pátíková A, Wawrzynska E, Vojtíšková A, Sedlačík T, Kumorek M, Pop-Georgievski O, Sticová E, KříŽ J, Kubies D. Bioengineering a pre-vascularized pouch for subsequent islet transplantation using VEGF-loaded polylactide capsules. Biomater Sci 2020; 8:631-647. [PMID: 31729495 DOI: 10.1039/c9bm01280j] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The effectiveness of cell transplantation can be improved by optimization of the transplantation site. For some types of cells that form highly oxygen-demanding tissue, e.g., pancreatic islets, a successful engraftment depends on immediate and sufficient blood supply. This critical point can be avoided when cells are transplanted into a bioengineered pre-vascularized cavity which can be formed using a polymer scaffold. In our study, we tested surface-modified poly(lactide-co-caprolactone) (PLCL) capsular scaffolds containing the pro-angiogenic factor VEGF. After each modification step (i.e., amination and heparinization), the surface properties and morphology of scaffolds were characterized by ATR-FTIR and XPS spectroscopy, and by SEM and AFM. All modifications preserved the gross capsule morphology and maintained the open pore structure. Optimized aminolysis conditions decreased the Mw of PLCL only up to 10% while generating a sufficient number of NH2 groups required for the covalent immobilization of heparin. The heparin layer served as a VEGF reservoir with an in vitro VEGF release for at least four weeks. In vivo studies revealed that to obtain highly vascularized PLCL capsules (a) the optimal VEGF dose for the capsule was 50 μg and (b) the implantation time was four weeks when implanted into the greater omentum of Lewis rats; dense fibrous tissue accompanied by vessels completely infiltrated the scaffold and created sparse granulation tissue within the internal cavity of the capsule. The prepared pre-vascularized pouch enabled the islet graft survival and functioning for at least 50 days after islet transplantation. The proposed construct can be used to create a reliable pre-vascularized pouch for cell transplantation.
Collapse
Affiliation(s)
- Naresh Kasoju
- Institute of Macromolecular Chemistry Czech Academy of Sciences, Heyrovsky sq.2, Prague 162 06, Czech Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Li Q, Zhao W, Guo H, Yang J, Zhang J, Liu M, Xu T, Chen Y, Zhang L. Metal-Organic Framework Traps with Record-High Bilirubin Removal Capacity for Hemoperfusion Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:25546-25556. [PMID: 32393019 DOI: 10.1021/acsami.0c03859] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Adsorption-based hemoperfusion has been widely used to remove toxins from the blood of patients suffering acute liver failure (ALF). However, its detoxification effect has been severely hampered by the unsatisfactory adsorption performance of clinically used porous adsorbents, such as activated carbon (AC) and adsorption resin. Herein, two cage-based metal-organic frameworks (MOFs), PCN-333 (constructed from 4,4,4-s-triazine-2,4,6-triyl-tribenzoic acid (H3TATB) ligands and Al3 metal clusters) and MOF-808 (constructed from 1,3,5-benzenetricarboxylic acid (H3BTC) ligands and Zr6 metal clusters), are introduced for highly efficient hemoperfusion. They possess negligible hemolytic activity and can act as "bilirubin traps" to achieve outstanding adsorption performance toward bilirubin, a typical toxin related to ALF. Notably, PCN-333 shows a record-high adsorption capacity (∼1003.8 mg g-1) among various bilirubin adsorbents previously reported. More importantly, they can efficiently adsorb bilirubin in bovine serum albumin (BSA) solution or even in 100% fetal bovine serum (FBS) due to their high selectivity. Strikingly, the adsorption rate and capacity of PCN-333 in biological solutions are approximately four times faster and 69 times higher than those of clinical AC, respectively. Findings in this work pave a new avenue to overcome the challenge of low adsorption efficiency and capacity in hemoperfusion therapy.
Collapse
Affiliation(s)
- Qingsi Li
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao, Shandong 266235, China
| | - Weiqiang Zhao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao, Shandong 266235, China
| | - Hongshuang Guo
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao, Shandong 266235, China
| | - Jing Yang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao, Shandong 266235, China
| | - Jiamin Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao, Shandong 266235, China
| | - Min Liu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao, Shandong 266235, China
| | - Tong Xu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao, Shandong 266235, China
| | - Yisheng Chen
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao, Shandong 266235, China
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao, Shandong 266235, China
| |
Collapse
|
37
|
Rana C, Mishra M. Interaction between rarefaction wave and viscous fingering in a Langmuir adsorbed solute. Phys Rev E 2020; 101:033101. [PMID: 32289948 DOI: 10.1103/physreve.101.033101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 02/03/2020] [Indexed: 11/07/2022]
Abstract
The evolution of dissolved species in a porous medium is determined by its adsorption on the porous matrix through the classical advection-diffusion processes. The extent to which the adsorption affects the solute propagation in applications related to chromatography and contaminant transport is largely dependent upon the adsorption isotherm. Here, we examine the influence of a nonlinear Langmuir adsorbed solute on its propagation dynamics. Interfacial deformations can also be induced by classical viscous fingering (VF) instability that develops when a less viscous fluid displaces a more viscous one. We present numerical simulations of an initially step-up concentration profile of the solute that capture a rarefaction/diffusive wave solution due to the nonlinearity introduced through Langmuir adsorption and variety of pattern-forming behaviors of the solute dissolved in the displaced fluid. The fluid velocity is governed by Darcy's law, coupled with the advection-diffusion equation that determines the evolution of the solute concentration controlling the viscosity of the fluids. Numerical simulations are performed using the Fourier pseudospectral method to investigate and illustrate the role played by VF and Langmuir adsorption in the development of the patterns of the interface. We show that the solute transport proceeds by the formation of a rarefaction wave results in the enhanced spreading of the solute. Interestingly we obtained a nonmonotonic behavior in the onset of VF, which depends on the adsorption parameters and existence of an optimal value of such adsorption constant is obtained near b=1, for which the most delayed VF is observed. Hence, it can be concluded that the rarefaction wave formation stands out to be an effective tool for controlling the VF dynamics.
Collapse
Affiliation(s)
- Chinar Rana
- Department of Mathematics, Indian Institute of Technology Ropar, 140001 Rupnagar, Punjab, India
| | - Manoranjan Mishra
- Department of Mathematics, Indian Institute of Technology Ropar, 140001 Rupnagar, Punjab, India
| |
Collapse
|
38
|
Savelyev MS, Gerasimenko AY, Vasilevsky PN, Fedorova YO, Groth T, Ten GN, Telyshev DV. Spectral analysis combined with nonlinear optical measurement of laser printed biopolymer composites comprising chitosan/SWCNT. Anal Biochem 2020; 598:113710. [PMID: 32268126 DOI: 10.1016/j.ab.2020.113710] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 03/20/2020] [Accepted: 04/01/2020] [Indexed: 01/14/2023]
Abstract
Biopolymer composites based on two types of chitosan (chitosan succinate and low-molecular weight chitosan) with single-walled carbon nanotubes (SWCNT) were created by laser printing. SWCNT have good dispersibility in chitosan solutions and therefore, can form relatively homogeneous films that was shown in scanning electron microscopy images. For the studies film composites were formed under the action of laser radiation on aqueous dispersion media. Study of the nonlinear optical process during the interaction of laser radiation with a disperse media has shown that low-molecular chitosan has a large nonlinear absorption coefficient of 17 cm/GW, while the addition of SWCNT lead to a significant increase up to 902 cm/GW. The threshold intensity for these samples was 5.5 MW/cm2 with nanotubes. If intensity exceeds the threshold value, nonlinear effects occur, which, in turn, lead to the transformation of a liquid into a solid phase. Characterization of films by FTIR and Raman spectroscopy indicated arising molecular interactions between chitosan and SWCNT detected as a small frequency shift and a change in the shape of radial breathing mode (RBM). The results indicate the possibility using aqueous dispersion media based on chitosan and SWCNT to create three-dimensional films and scaffolds for tissue engineering by laser printing.
Collapse
Affiliation(s)
- Mikhail S Savelyev
- Institute of Biomedical Systems, National Research University of Electronic Technology, 124498, Zelenograd, Moscow, Russian Federation; Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University, 119991, Moscow, Russian Federation.
| | - Alexander Yu Gerasimenko
- Institute of Biomedical Systems, National Research University of Electronic Technology, 124498, Zelenograd, Moscow, Russian Federation; Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University, 119991, Moscow, Russian Federation
| | - Pavel N Vasilevsky
- Institute of Biomedical Systems, National Research University of Electronic Technology, 124498, Zelenograd, Moscow, Russian Federation
| | - Yulia O Fedorova
- Institute of Biomedical Systems, National Research University of Electronic Technology, 124498, Zelenograd, Moscow, Russian Federation
| | - Thomas Groth
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University, 119991, Moscow, Russian Federation; Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120, Halle, Saale, Germany
| | - Galina N Ten
- Department of Radiotechnology and Electrodynamics, Saratov State University, 410012, Saratov, Russian Federation
| | - Dmitry V Telyshev
- Institute of Biomedical Systems, National Research University of Electronic Technology, 124498, Zelenograd, Moscow, Russian Federation; Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University, 119991, Moscow, Russian Federation
| |
Collapse
|
39
|
Yang Y, Yin S, He C, Wu X, Yin J, Zhang J, Ma L, Zhao W, Cheng C, Zhao C. Construction of Kevlar nanofiber/graphene oxide composite beads as safe, self-anticoagulant, and highly efficient hemoperfusion adsorbents. J Mater Chem B 2020; 8:1960-1970. [PMID: 32067017 DOI: 10.1039/c9tb02789k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recently emerged hemoperfusion absorbents, e.g. ion-exchange resin, activated carbon, and other porous materials, provide numerous novel possibilities to cure chronic liver failure (CLF) and renal failure (CRF). However, the limited adsorption performance and unsatisfactory blood compatibility significantly impede the development of the absorbents. Hence, designing safe and self-anticoagulant hemoperfusion absorbents with robust toxin clearance remains a considerable challenge. Here, brand new Kevlar-based composite gel beads for hemoperfusion are prepared by interface assembly based on π-π interaction. First, Kevlar nanofiber-graphene oxide (K-GO) beads are produced by liquid-liquid phase separation. Then, sodium p-styrenesulfonate (SS) is adsorbed onto the K-GO interface by π-π interaction and initiated to achieve the composite gel (K-GO/PSS) beads with an interfacial crosslinked structure. Such composite gel beads possess superior mechanical strength and self-anticoagulation capability, owing to the dual-network structure and heparin-mimicking gel structure, respectively. Furthermore, the K-GO/PSS beads show robust adsorption capacities for different kinds of toxins due to their strong charge and π-π interactions. A simulated hemoperfusion experiment in vitro demonstrates that the concentrations of the toxins in the blood can be restored to normal values within 30 minutes. In general, we envision that such composite gel beads will provide new strategies for future clinical CLF and CRF treatments.
Collapse
Affiliation(s)
- Ye Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Shiqi Yin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Xizheng Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Jiarui Yin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Jue Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Lang Ma
- Laboratory of Ultrasound Imaging Drug, Department of Ultrasound, West China School of Medicine/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
40
|
Song X, Xu T, Yang L, Li Y, Yang Y, Jin L, Zhang J, Zhong R, Sun S, Zhao W, Zhao C. Self-Anticoagulant Nanocomposite Spheres for the Removal of Bilirubin from Whole Blood: A Step toward a Wearable Artificial Liver. Biomacromolecules 2020; 21:1762-1775. [DOI: 10.1021/acs.biomac.9b01686] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xin Song
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Tao Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Li Yang
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Yupei Li
- Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu 610225, People’s Republic of China
| | - Ye Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Lunqiang Jin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Jue Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Rui Zhong
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Peking Union Medical College, Chengdu 610052, People’s Republic of China
| | - Shudong Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, People’s Republic of China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People’s Republic of China
| |
Collapse
|
41
|
Yi R, Song Y, Wu C, Wei G, Yuan R, Chen Y, Ye G, Kowalewski T, Matyjaszewski K. Preparation of Nitrogen-Doped Mesoporous Carbon for the Efficient Removal of Bilirubin in Hemoperfusion. ACS APPLIED BIO MATERIALS 2020; 3:1036-1043. [DOI: 10.1021/acsabm.9b01029] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rong Yi
- School of Material Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yang Song
- Institute of Nuclear and New Energy Technology (INET), Tsinghua University, Beijing 100084, China
| | - Chengling Wu
- City College, Kunming University of Science and Technology, Kunming 650051, China
| | - Guoyu Wei
- Institute of Nuclear and New Energy Technology (INET), Tsinghua University, Beijing 100084, China
| | - Rui Yuan
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Yongming Chen
- School of Material Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Gang Ye
- Institute of Nuclear and New Energy Technology (INET), Tsinghua University, Beijing 100084, China
| | - Tomasz Kowalewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
42
|
Wu K, Liu X, Li Z, Jiao Y, Zhou C. Fabrication of chitosan/graphene oxide composite aerogel microspheres with high bilirubin removal performance. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110162. [DOI: 10.1016/j.msec.2019.110162] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/08/2019] [Accepted: 09/03/2019] [Indexed: 12/19/2022]
|
43
|
Huang S, Zheng J, Zhang Y, Zheng J, Zhuang Z, Yang Q, Wang F, Chen G, Huang S, Ouyang G. Polydopamine decorated ordered mesoporous carbon for efficient removal of bilirubin under albumin-rich conditions. J Mater Chem B 2019; 8:290-297. [PMID: 31803882 DOI: 10.1039/c9tb02147g] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Excess bilirubin in the body will lead to serious health problems; however, its efficient removal remains a challenge in the clinical field because the available sorbent materials still suffer from serious performance issues, performance declining in a high-content albumin environment. Herein, we prepared a novel polydopamine (PDA) decorated ordered mesoporous carbon (OMC) material for the efficient removal of bilirubin in albumin-rich conditions. OMC was used as the supporting material due to its high specific surface area and its good affinity to hydrophobic analytes. PDA was then decorated on the OMC material through a facile self-assembly process to form a surface-imprinted layer. The obtained PDA-coated OMC material (OMC@PDA) exhibited excellent adsorption performance towards bilirubin in albumin-free conditions, in which its theoretical maximum adsorption amount was calculated to be 513.54 mg g-1. The imprinted PDA layer, for which the association constant towards bilirubin reached 4.51 × 104 M-1, endowed OMC@PDA with a competitive affinity compared to albumin. Therefore the materials showed good adsorption capacity and efficiency even in an albumin-rich environment (the adsorption equilibrated at 122.7 mg g-1 in 30 min). In addition, the good biocompatibility of OMC@PDA was demonstrated by hemolysis assay and protein fouling evaluation, which indicated the feasibility of applying this material in clinical situations.
Collapse
Affiliation(s)
- Shuyao Huang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| | - Jiating Zheng
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| | - Yimin Zhang
- Nephrology Department, Sun Yat-sen University Sixth Affiliated Hospital, Guangzhou, Guangdong 510000, China
| | - Juan Zheng
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| | - Zena Zhuang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| | - Qian Yang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| | - Fuxin Wang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| | - Guosheng Chen
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| | - Siming Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong 510120, China
| | - Gangfeng Ouyang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, China. and Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangzhou 510070, China
| |
Collapse
|
44
|
Preparation of magnetic activated carbon-chitosan nanocomposite for crystal violet adsorption. KOREAN J CHEM ENG 2019. [DOI: 10.1007/s11814-019-0377-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
45
|
Li Z, Huang X, Wu K, Jiao Y, Zhou C. Fabrication of regular macro-mesoporous reduced graphene aerogel beads with ultra-high mechanical property for efficient bilirubin adsorption. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 106:110282. [PMID: 31753380 DOI: 10.1016/j.msec.2019.110282] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 09/05/2019] [Accepted: 10/05/2019] [Indexed: 12/17/2022]
Abstract
Three-dimensional graphene materials have been widely studied in many fields for their role as potential absorbent, especially for bilirubin adsorption. In this study, we developed a simple method to prepare reduced graphene aerogel beads as hemoperfusion materials for fast bilirubin adsorption. The graphene oxide (GO) aerogel beads were produced by self-assembly of GO nanosheet that cross-linked by Ca2+ previously in a coagulation bath, then it was reduced by ascorbic acid and lyophilized to yield the reduced graphene aerogel beads. The beads had a regular macroscopic spherical structure with a diameter of about 1.3-2 mm, where the macroporosity was about 10 μm and the mesoporosity was about 12 nm. The macro-mesoporous structure also gave the reduced graphene aerogel beads ultra-high mechanical strengths and high specific surface area, which were both important for hemoperfusion materials. Moreover, the fixed-bed column adsorption revealed that the reduced graphene aerogel beads manifested excellent bilirubin adsorption (649.512 mg/g) with a rapid adsorption equilibrium time (1.5 h) under the optimized conditions. Even in the bilirubin-enriched blood, the adsorption capacity of the beads could reach 367.14 mg/g. Furthermore, the aerogel beads had a low hemolysis ratio and improved anticoagulant property showing good blood compatibility. Hence, the spherical reduced graphene aerogel beads with millimeter-level size presented a good potential for clinical applications in hemoperfusion therapy.
Collapse
Affiliation(s)
- Zhentao Li
- Department of Materials Science and Engineering, Jinan University, Guangzhou, 510632, China
| | - Xiuhong Huang
- Department of Materials Science and Engineering, Jinan University, Guangzhou, 510632, China
| | - Keke Wu
- Department of Materials Science and Engineering, Jinan University, Guangzhou, 510632, China
| | - Yanpeng Jiao
- Department of Materials Science and Engineering, Jinan University, Guangzhou, 510632, China.
| | - Changren Zhou
- Department of Materials Science and Engineering, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
46
|
Miller S, Weiss AA, Heineman WR, Banerjee RK. Electroosmotic flow driven microfluidic device for bacteria isolation using magnetic microbeads. Sci Rep 2019; 9:14228. [PMID: 31578397 PMCID: PMC6775156 DOI: 10.1038/s41598-019-50713-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 07/31/2019] [Indexed: 12/13/2022] Open
Abstract
The presence of bacterial pathogens in water can lead to severe complications such as infection and food poisoning. This research proposes a point-of-care electroosmotic flow driven microfluidic device for rapid isolation and detection of E. coli in buffered solution (phosphate buffered saline solution). Fluorescent E. coli bound to magnetic microbeads were driven through the microfluidic device using both constant forward flow and periodic flow switching at concentrations ranging from 2 × 105 to 4 × 107 bacteria/mL. A calibration curve of fluorescent intensity as a function of bacteria concentration was created using both constant and switching flow, showing an increase in captured fluorescent pixel count as concentration increases. In addition, the use of the flow switching resulted in a significant increase in the capture efficiency of E. coli, with capture efficiencies up to 83% ± 8% as compared to the constant flow capture efficiencies (up to 39% ± 11%), with a sample size of 3 µL. These results demonstrate the improved performance associated with the use of the electroosmotic flow switching system in a point-of-care bacterial detection assay.
Collapse
Affiliation(s)
- Samuel Miller
- Department of Mechanical and Materials Engineering, University of Cincinnati, 598 Rhodes Hall, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Alison A Weiss
- Department of Molecular Genetics, Biochemistry & Microbiology, University of Cincinnati, 2254 Medical Sciences Building, 231 Albert Sabin Way, Cincinnati, OH, 45267, USA
| | - William R Heineman
- Department of Chemistry, University of Cincinnati, 120 Crosley Tower, PO Box 210172, Cincinnati, OH, 45221, USA
| | - Rupak K Banerjee
- Department of Mechanical and Materials Engineering, University of Cincinnati, 593 Rhodes Hall, ML 0072, University of Cincinnati, Cincinnati, OH, 45221, USA.
| |
Collapse
|
47
|
Li Q, Yang J, Cai N, Zhang J, Xu T, Zhao W, Guo H, Zhu Y, Zhang L. Hemocompatible hemoadsorbent for effective removal of protein-bound toxin in serum. J Colloid Interface Sci 2019; 555:145-156. [PMID: 31377640 DOI: 10.1016/j.jcis.2019.07.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/13/2019] [Accepted: 07/16/2019] [Indexed: 12/27/2022]
Abstract
Resin hemoperfusion is a life-saving treatment for drug intoxication or hepatic failure of patients. However, current resin adsorbents exhibit a limited hemocompatibility or low adsorption efficiency, representing a major roadblock to successful clinical applications. In this work, we developed a hemocompatible and effective hemoadsorbent based on polystyrene resin (H103) microparticles encapsulated in anti-biofouling zwitterionic poly(carboxybetaine) (PCB) hydrogels. Apart from a strong mechanical stability, this PCB-based adsorbent (PCB-H103) exhibited excellent hemocompatibility (hemolysis ratio was ∼0.64%), which was attributed to the anti-biofouling property of PCB hydrogel. In addition, it can efficiently adsorb both small and middle molecular weight molecules in phosphate-buffered saline, and the efficiencies were significantly higher than poly(ethylene glycol) methacrylate-based and poly(2-hydroxyethyl methacrylate)-based adsorbent counterparts, indicating the favorable permeability of PCB hydrogel coating. More importantly, PCB-H103 could effectively remove protein-bound toxins including phenol red and bilirubin in bovine serum albumin solution or even in 100% fetal bovine serum (FBS). In 100% FBS, the adsorption capacity of PCB-H103 towards bilirubin was 8.3 times higher than that of pristine clinical-scale resin beads. Findings in this work may provide a new strategy for the development of modern resin hemoperfusion technology.
Collapse
Affiliation(s)
- Qingsi Li
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China; Qingdao Institute for Marine Technology of Tianjin University, Qingdao 266235, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Jing Yang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China; Qingdao Institute for Marine Technology of Tianjin University, Qingdao 266235, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Nana Cai
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China; Qingdao Institute for Marine Technology of Tianjin University, Qingdao 266235, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Jiamin Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China; Qingdao Institute for Marine Technology of Tianjin University, Qingdao 266235, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Tong Xu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China; Qingdao Institute for Marine Technology of Tianjin University, Qingdao 266235, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Weiqiang Zhao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China; Qingdao Institute for Marine Technology of Tianjin University, Qingdao 266235, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Hongshuang Guo
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China; Qingdao Institute for Marine Technology of Tianjin University, Qingdao 266235, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Yingnan Zhu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China; Qingdao Institute for Marine Technology of Tianjin University, Qingdao 266235, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China; Qingdao Institute for Marine Technology of Tianjin University, Qingdao 266235, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
48
|
Qian D, Bai L, Wang YS, Song F, Wang XL, Wang YZ. A Bifunctional Alginate-Based Composite Hydrogel with Synergistic Pollutant Adsorption and Photocatalytic Degradation Performance. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01709] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Dan Qian
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Lan Bai
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yi-Sha Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Fei Song
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiu-Li Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
49
|
Ma Y, Chen J, Li J, Han W, Chai Y, Wang T, Zhang Q, Wang L, Wang W, Wang Z, Ou L. Selective adsorption of bilirubin against albumin to alkylamine functionalized PVA microspheres. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:337-354. [PMID: 30486758 DOI: 10.1080/09205063.2018.1553104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Adsorbents are widely used in hemoperfusion for bilirubin removal. However, their performance is often compromised by the presence of plasma proteins. In this study, the bilirubin adsorption capacity of polyvinyl alcohol microspheres (PVAm) functionalized with different amino-alkane ligands has been investigated, with the aim of gaining binding selectivity over albumin. Octylamine-functionalized PVA microspheres (PVAm-8) exhibited an excellent adsorption capacity for bilirubin (75% and 3.95 mg/mL in PBS vs 72% and 3.84 mg/mL in albumin solution) when compared to the clinical adsorbent BPR (92% and 4.84 mg/mL in PBS vs 71%, and 3.80 mg/mL in albumin solution). The bilirubin adsorption capacities of PVAm-8 were largely unaffected by the presence of albumin. Adsorption of bilirubin to PVAm-8 occurs mainly through hydrophobic effects, with adsorption consistent with the monolayer model and the pseudo-first-order model operating in both PBS and albumin solution. The effects of PVAm-8 on hemolytic activity, blood component stability and coagulant activity were negligible, indicating that PVAm-8 has good potential as a high-affinity bilirubin adsorbent for hemoperfusion applications.
Collapse
Affiliation(s)
- Yingda Ma
- a Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences , Nankai University , Tianjin , China
| | - Jian Chen
- a Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences , Nankai University , Tianjin , China
| | - Jian Li
- a Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences , Nankai University , Tianjin , China
| | - Wenyan Han
- a Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences , Nankai University , Tianjin , China
| | - Yamin Chai
- a Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences , Nankai University , Tianjin , China
| | - Tingting Wang
- a Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences , Nankai University , Tianjin , China
| | - Qian Zhang
- a Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences , Nankai University , Tianjin , China
| | - Lichun Wang
- a Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences , Nankai University , Tianjin , China
| | - Weichao Wang
- a Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences , Nankai University , Tianjin , China
| | - Zhexiang Wang
- a Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences , Nankai University , Tianjin , China
| | - Lailiang Ou
- a Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences , Nankai University , Tianjin , China
| |
Collapse
|
50
|
Li C, Zhang W, Yang N, Zhang QS. Fabrication of Organic Hec Nanocomposites Modified with Lysine as a Potential Adsorbent for Bilirubin Removal. Appl Biochem Biotechnol 2019; 188:769-786. [PMID: 30684241 DOI: 10.1007/s12010-019-02959-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/11/2019] [Indexed: 10/27/2022]
Abstract
As one of the typical phyllosilicate clays, hectorite (Hec) has some excellent characteristics and has been greatly applied in adsorption field for the removal of dye, endotoxin, etc. In this study, organic Hec nanocomposites modified with L-Lysine (Lys/Hec NCs) were prepared via solution intercalation method for BR removal. The effects of ionic strength, pH values, initial concentration of BR, and BSA concentration on the adsorption capacity for BR of Lys/Hec NCs were investigated. Results indicated that the adsorption capacity for BR of nanocomposites could reach 40 mg/g when the initial bilirubin concentration was 200 mg/L. However, the adsorption amount of Lys/Hec NCs decreased with increasing the concentration of BSA, but Lys/Hec NCs could still maintain a higher adsorption rate. The adsorption kinetics and adsorption isotherms indicated that the adsorption process of Lys/Hec NCs agreed well with the pseudo-second-order model and the Langmuir isotherm, respectively. Moreover, Lys/Hec NCs also exhibited excellent cytocompatibility. These obtained results demonstrate that Lys/Hec NCs prepared in this study had great potential to be used in hemoperfusion.
Collapse
Affiliation(s)
- Chan Li
- Tianjin Municipal Key Lab of Advanced Fiber and Energy Storage, School of Material Science and Engineering, Tianjin Polytechnic University, Tianjin, China
| | - Wen Zhang
- Tianjin Municipal Key Lab of Advanced Fiber and Energy Storage, School of Material Science and Engineering, Tianjin Polytechnic University, Tianjin, China.
| | - Ning Yang
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Logistics University of PAPF, Tianjin, 300162, China
| | - Qing Song Zhang
- Tianjin Municipal Key Lab of Advanced Fiber and Energy Storage, School of Material Science and Engineering, Tianjin Polytechnic University, Tianjin, China
| |
Collapse
|