1
|
Schulte AM, Vivien Q, Leene JH, Alachouzos G, Feringa BL, Szymanski W. Photocleavable Protecting Groups Using a Sulfite Self-Immolative Linker for High Uncaging Quantum Yield and Aqueous Solubility. Angew Chem Int Ed Engl 2024; 63:e202411380. [PMID: 39140843 DOI: 10.1002/anie.202411380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/26/2024] [Accepted: 08/11/2024] [Indexed: 08/15/2024]
Abstract
Using light as an external stimulus to control (bio)chemical processes offers many distinct advantages. Most importantly, it allows for spatiotemporal control simply through operating the light source. Photocleavable protecting groups (PPGs) are a cornerstone class of compounds that are used to achieve photocontrol over (bio)chemical processes. PPGs are able to release a payload of interest upon light irradiation. The successful application of PPGs hinges on their efficiency of payload release, captured in the uncaging Quantum Yield (QY). Heterolytic PPGs efficiently release low pKa payloads, but their efficiency drops significantly for payloads with higher pKa values, such as alcohols. For this reason, alcohols are usually attached to PPGs via a carbonate linker. The self-immolative nature of the carbonate linker results in concurrent release of CO2 with the alcohol payload upon irradiation. We introduce herein novel PPGs containing sulfites as self-immolative linkers for photocaged alcohol payloads, for which we discovered that the release of the alcohol proceeds with higher uncaging QY than an identical payload released from a carbonate-linked PPG. Furthermore, we demonstrate that uncaging of the sulfite-linked PPGs results in the release of SO2 and show that the sulfite linker improves water solubility as compared to the carbonate-based systems.
Collapse
Affiliation(s)
- Albert Marten Schulte
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
- Department of Medicinal Chemistry, Photopharmacology and Imaging, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Quentin Vivien
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
- Department of Medicinal Chemistry, Photopharmacology and Imaging, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Julia H Leene
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Georgios Alachouzos
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Wiktor Szymanski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
- Department of Medicinal Chemistry, Photopharmacology and Imaging, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- Department of Radiology, Medical Imaging Center, University Medical Center, Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| |
Collapse
|
2
|
Kuznetsov KM, Cariou K, Gasser G. Two in one: merging photoactivated chemotherapy and photodynamic therapy to fight cancer. Chem Sci 2024:d4sc04608k. [PMID: 39464604 PMCID: PMC11499979 DOI: 10.1039/d4sc04608k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024] Open
Abstract
The growing number of cancer cases requires the development of new approaches for treatment. A therapy that has attracted the special attention of scientists is photodynamic therapy (PDT) due to its spatial and temporal resolution. However, it is accepted that this treatment methodology has limited application in cases of low cellular oxygenation, which is typical of cancerous tissues. Therefore, a strategy to overcome this drawback has been to combine this therapy with photoactivated chemotherapy (PACT), which works independently of the presence of oxygen. In this perspective, we examine compounds that act as both PDT and PACT agents and summarize their photophysical and biological characteristics.
Collapse
Affiliation(s)
- Kirill M Kuznetsov
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology 75005 Paris France http://www.gassergroup.com/ +33 1 85 78 41 51
| | - Kevin Cariou
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology 75005 Paris France http://www.gassergroup.com/ +33 1 85 78 41 51
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology 75005 Paris France http://www.gassergroup.com/ +33 1 85 78 41 51
| |
Collapse
|
3
|
Clotworthy MR, Dawson JJM, Johnstone MD, Fleming CL. Coumarin-Derived Caging Groups in the Spotlight: Tailoring Physiochemical and Photophysical Properties. Chempluschem 2024; 89:e202400377. [PMID: 38960871 DOI: 10.1002/cplu.202400377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/05/2024]
Abstract
The development of light-responsive molecular tools enables spatiotemporal control of biochemical processes with superior precision. Amongst these molecular tools, photolabile caging groups are employed to prevent critical binding interactions between a bioactive molecule and its corresponding target. Only upon irradiation with light, the bioactive is released in its 'active' form and is now readily available to bind to its target. Coumarin-derived caging groups constitute one of the most popular classes of photolabile protecting groups, due to their facile synthetic accessibility, ease of tuning photophysical properties via structural modification and rapid photolysis reactions. Herein, we highlight the recent progress made on the development of coumarin-derived caging groups, in which the red-shifting of absorption spectra, improving aqueous solubility and tailoring sub-cellular localisation has been of particular interest.
Collapse
Affiliation(s)
- Megan R Clotworthy
- Centre of Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Joseph J M Dawson
- Centre of Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Mark D Johnstone
- Centre of Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Cassandra L Fleming
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Centre of Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| |
Collapse
|
4
|
Klimezak M, Chaud J, Brion A, Bolze F, Frisch B, Heurtault B, Kichler A, Specht A. Triplet-Triplet Annihilation Upconversion-Based Photolysis: Applications in Photopharmacology. Adv Healthc Mater 2024; 13:e2400354. [PMID: 38613491 DOI: 10.1002/adhm.202400354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/04/2024] [Indexed: 04/15/2024]
Abstract
The emerging field of photopharmacology is a promising chemobiological methodology for optical control of drug activities that could ultimately solve the off-target toxicity outside the disease location of many drugs for the treatment of a given pathology. The use of photolytic reactions looks very attractive for a light-activated drug release but requires to develop photolytic reactions sensitive to red or near-infrared light excitation for better tissue penetration. This review will present the concepts of triplet-triplet annihilation upconversion-based photolysis and their recent in vivo applications for light-induced drug delivery using photoactivatable nanoparticles.
Collapse
Affiliation(s)
- Maxime Klimezak
- Laboratoire de Chémo-Biologie Synthétique et Thérapeutique (CBST), Équipe Nanoparticules Intelligentes, Université de Strasbourg, CNRS, CBST UMR 7199, Illkirch Cedex, F-67401, France
| | - Juliane Chaud
- Laboratoire de Chémo-Biologie Synthétique et Thérapeutique (CBST), Équipe Nanoparticules Intelligentes, Université de Strasbourg, CNRS, CBST UMR 7199, Illkirch Cedex, F-67401, France
- Inserm UMR_S 1121, EMR 7003 CNRS, Université de Strasbourg, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 1 rue Eugène Boeckel, Strasbourg, F-67000, France
| | - Anaïs Brion
- Inserm UMR_S 1121, EMR 7003 CNRS, Université de Strasbourg, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 1 rue Eugène Boeckel, Strasbourg, F-67000, France
| | - Frédéric Bolze
- Laboratoire de Chémo-Biologie Synthétique et Thérapeutique (CBST), Équipe Nanoparticules Intelligentes, Université de Strasbourg, CNRS, CBST UMR 7199, Illkirch Cedex, F-67401, France
| | - Benoit Frisch
- Inserm UMR_S 1121, EMR 7003 CNRS, Université de Strasbourg, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 1 rue Eugène Boeckel, Strasbourg, F-67000, France
| | - Béatrice Heurtault
- Inserm UMR_S 1121, EMR 7003 CNRS, Université de Strasbourg, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 1 rue Eugène Boeckel, Strasbourg, F-67000, France
| | - Antoine Kichler
- Inserm UMR_S 1121, EMR 7003 CNRS, Université de Strasbourg, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 1 rue Eugène Boeckel, Strasbourg, F-67000, France
| | - Alexandre Specht
- Laboratoire de Chémo-Biologie Synthétique et Thérapeutique (CBST), Équipe Nanoparticules Intelligentes, Université de Strasbourg, CNRS, CBST UMR 7199, Illkirch Cedex, F-67401, France
| |
Collapse
|
5
|
Li H, Wang J, Jiao L, Hao E. BODIPY-based photocages: rational design and their biomedical application. Chem Commun (Camb) 2024; 60:5770-5789. [PMID: 38752310 DOI: 10.1039/d4cc01412j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Photocages, also known as photoactivated protective groups (PPGs), have been utilized to achieve controlled release of target molecules in a non-invasive and spatiotemporal manner. In the past decade, BODIPY fluorophores, a well-established class of fluorescent dyes, have emerged as a novel type of photoactivated protective group capable of efficiently releasing cargo species upon irradiation. This is due to their exceptional properties, including high molar absorption coefficients, resistance to photochemical and thermal degradation, multiple modification sites, favorable uncaging quantum yields, and highly adjustable spectral properties. Compared to traditional photocages that mainly absorb UV light, BODIPY-based photocages that absorb visible/near-infrared (Vis/NIR) light offer advantages such as deeper tissue penetration and reduced bio-autofluorescence, making them highly suitable for various biomedical applications. Consequently, different types of photoactivated protective groups based on the BODIPY skeleton have been established. This highlight provides a comprehensive overview of the strategies employed to construct BODIPY photocages by substituting leaving groups at different positions within the BODIPY fluorophore, including the meso-methyl position, boron position, 2,6-position, and 3,5-position. Furthermore, the application of these BODIPY photocages in biomedical fields, such as fluorescence imaging and controlled release of active species, is discussed.
Collapse
Affiliation(s)
- Heng Li
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Jun Wang
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Department of Chemistry and Pharmaceutical Engineering, Hefei Normal University, Hefei, 230601, China.
| | - Lijuan Jiao
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Erhong Hao
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| |
Collapse
|
6
|
Dissanayake KC, Yuan D, Winter AH. Structure-Photoreactivity Studies of BODIPY Photocages: Limitations of the Activation Barrier for Optimizing Photoreactions. J Org Chem 2024; 89:6740-6748. [PMID: 38695507 PMCID: PMC11198865 DOI: 10.1021/acs.joc.3c02980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
BODIPY photocages are photoreactive chromophores that release covalently linked cargo upon absorption of visible light. Here, we used computations of the T1 photoheterolysis barrier to ascertain whether a computational approach could assist in a priori structure design by identifying new structures with higher quantum yields of photorelease. The electronic structure-photoreactivity relationships were elucidated for boron-substituted and core-functionalized 2-substituted BODIPY photocages as well as aryl substitutions at the meso-methyl position. Although there is a clear trend for the 2-substituted derivatives, with donor-substituted derivatives featuring both lower computed barriers and higher experimental quantum yields, no trend in the quantum yield with the computed activation barrier is found for the meso-methyl-substituted or boron-substituted derivatives. The lack of a correlation between the experimental quantum yield with the computed barrier in the latter two substitution cases is attributed to the substituents having larger effects on the rates of competing channels (internal conversion and competitive photoreactions) than on the rate of the photoheterolysis channel. Thus, although in some cases computed photoreaction barriers can aid in identifying structures with higher quantum yields, the ignored impacts of how changing the structure affects the rates of competing photophysical/photochemical channels limit the effectiveness of this single-parameter approach.
Collapse
Affiliation(s)
- Komadhie C Dissanayake
- Department of Chemistry, Iowa State University, 1608 Gilman Hall, Ames, Iowa 50010, United States
| | - Ding Yuan
- Department of Chemistry, Iowa State University, 1608 Gilman Hall, Ames, Iowa 50010, United States
| | - Arthur H Winter
- Department of Chemistry, Iowa State University, 1608 Gilman Hall, Ames, Iowa 50010, United States
| |
Collapse
|
7
|
Zheng Y, Gao M, Wijtmans M, Vischer HF, Leurs R. Synthesis and Pharmacological Characterization of New Photocaged Agonists for Histamine H 3 and H 4 Receptors. Pharmaceuticals (Basel) 2024; 17:536. [PMID: 38675496 PMCID: PMC11053687 DOI: 10.3390/ph17040536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
The modulation of biological processes with light-sensitive chemical probes promises precise temporal and spatial control. Yet, the design and synthesis of suitable probes is a challenge for medicinal chemists. This article introduces a photocaging strategy designed to modulate the pharmacology of histamine H3 receptors (H3R) and H4 receptors (H4R). Employing the photoremovable group BODIPY as the caging entity for two agonist scaffolds-immepip and 4-methylhistamine-for H3R and H4R, respectively, we synthesized two BODIPY-caged compounds, 5 (VUF25657) and 6 (VUF25678), demonstrating 10-100-fold reduction in affinity for their respective receptors. Notably, the caged H3R agonist, VUF25657, exhibits approximately a 100-fold reduction in functional activity. The photo-uncaging of VUF25657 at 560 nm resulted in the release of immepip, thereby restoring binding affinity and potency in functional assays. This approach presents a promising method to achieve optical control of H3R receptor pharmacology.
Collapse
Affiliation(s)
| | | | | | | | - Rob Leurs
- Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (Y.Z.); (M.G.); (M.W.); (H.F.V.)
| |
Collapse
|
8
|
Russo M, Janeková H, Meier D, Generali M, Štacko P. Light in a Heartbeat: Bond Scission by a Single Photon above 800 nm. J Am Chem Soc 2024; 146:8417-8424. [PMID: 38499198 PMCID: PMC10979397 DOI: 10.1021/jacs.3c14197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 03/20/2024]
Abstract
Photocages enable scientists to take full control over the activity of molecules using light as a biocompatible stimulus. Their emerging applications in photoactivated therapies call for efficient uncaging in the near-infrared (NIR) window, which represents a fundamental challenge. Here, we report synthetically accessible cyanine photocages that liberate alcohol, phenol, amine, and thiol payloads upon irradiation with NIR light up to 820 nm in aqueous media. The photocages display a unique chameleon-like behavior and operate via two distinct uncaging mechanisms: photooxidation and heterolytic bond cleavage. The latter process constitutes the first example of a direct bond scission by a single photon ever observed in cyanine dyes or at wavelengths exceeding 800 nm. Modulation of the beating rates of human cardiomyocytes that we achieved by light-actuated release of adrenergic agonist etilefrine at submicromolar concentrations and low NIR light doses (∼12 J cm-2) highlights the potential of these photocages in biology and medicine.
Collapse
Affiliation(s)
- Marina Russo
- Department
of Chemistry, University of Zurich, Wintherthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Hana Janeková
- Department
of Chemistry, University of Zurich, Wintherthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Debora Meier
- Institute
for Regenerative Medicine (IREM), University
of Zurich, Wagistrasse 12, Zurich CH-8952, Switzerland
| | - Melanie Generali
- Institute
for Regenerative Medicine (IREM), University
of Zurich, Wagistrasse 12, Zurich CH-8952, Switzerland
| | - Peter Štacko
- Department
of Chemistry, University of Zurich, Wintherthurerstrasse 190, Zurich CH-8057, Switzerland
| |
Collapse
|
9
|
Wei H, Xie M, Chen M, Jiang Q, Wang T, Xing P. Shedding light on cellular dynamics: the progress in developing photoactivated fluorophores. Analyst 2024; 149:689-699. [PMID: 38180167 DOI: 10.1039/d3an01994b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Photoactivated fluorophores (PAFs) are highly effective imaging tools that exhibit a removal of caging groups upon light excitation, resulting in the restoration of their bright fluorescence. This unique property allows for precise control over the spatiotemporal aspects of small molecule substances, making them indispensable for studying protein labeling and small molecule signaling within live cells. In this comprehensive review, we explore the historical background of this field and emphasize recent advancements based on various reaction mechanisms. Additionally, we discuss the structures and applications of the PAFs. We firmly believe that the development of more novel PAFs will provide powerful tools to dynamically investigate cells and expand the applications of these techniques into new domains.
Collapse
Affiliation(s)
- Huihui Wei
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| | - Mingli Xie
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| | - Min Chen
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| | - Qinhong Jiang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| | - Tenghui Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| | - Panfei Xing
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
10
|
Doležel J, Poryvai A, Slanina T, Filgas J, Slavíček P. Spin-Vibronic Coupling Controls the Intersystem Crossing of Iodine-Substituted BODIPY Triplet Chromophores. Chemistry 2024; 30:e202303154. [PMID: 37905588 DOI: 10.1002/chem.202303154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/02/2023]
Abstract
4,4-Difluoro-4-borata-3a-azonia-4a-aza-s-indacene (BODIPY) dyes are extensively used in various applications of their triplet states, ranging from photoredox catalysis, through triplet sensitization to photodynamic therapy. However, the rational design of BODIPY triplet chromophores by ab initio modelling is limited by their strong interactions of spin, electronic and vibrational dynamics. In particular, spin-vibronic coupling is often overlooked when estimating intersystem crossing (ISC) rates. In this study, a combined experimental and theoretical approach using spin-vibronic coupling to correctly describe ISC in BODIPY dyes was developed. For this purpose, seven π-extended BODIPY derivatives with iodine atoms in different positions were examined. It was found that the heavy-atom effect of iodine atoms is site specific, causing high triplet yields in only some positions. This site-specific ISC was explained by El-Sayed rules, so both the contribution and character of the molecular orbitals involved in the excitation must be considered when predicting the ISC rates. Overall, the rational design of BODIPY triplet chromophores requires using (i) the high-quality electronic structure theory, including both static and dynamical correlations; and (ii) the two-component wave function Hamiltonian, and rationalizing; and (iii) ISC based on the character of the molecular orbitals of heavy atoms involved in the excitation, expanding El-Sayed rules beyond their traditional applications.
Collapse
Affiliation(s)
- Jiří Doležel
- Institute of Organic Chemistry and Biochemistry of the Czech Academy, Flemingovo nám. 542/2, Prague 6, 160 00, Czech Republic
| | - Anna Poryvai
- Institute of Organic Chemistry and Biochemistry of the Czech Academy, Flemingovo nám. 542/2, Prague 6, 160 00, Czech Republic
| | - Tomáš Slanina
- Institute of Organic Chemistry and Biochemistry of the Czech Academy, Flemingovo nám. 542/2, Prague 6, 160 00, Czech Republic
| | - Josef Filgas
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Petr Slavíček
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague 6, Czech Republic
| |
Collapse
|
11
|
Zlatić K, Popović M, Uzelac L, Kralj M, Basarić N. Antiproliferative activity of meso-substituted BODIPY photocages: Effect of electrophiles vs singlet oxygen. Eur J Med Chem 2023; 259:115705. [PMID: 37544182 DOI: 10.1016/j.ejmech.2023.115705] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
A series of BODIPY compounds with a methylphenol substituent at the meso-position and halogen atoms on the BODIPY core, or OCH3 or OAc substituents at the phenolic moiety was synthesized. Their spectral and photophysical properties and the photochemical reactivity upon irradiation in CH3OH were investigated. The molecules with the phenolic substituent at the meso-position undergo more efficient photo-methanolysis at the boron atom, while the introduction of the OCH3 group at the phenolic moiety changes the reaction selectivity towards the cleavage at the meso-position. The introduction of the halogen atoms into the BODIPY increases the photo-cleavage reaction efficiency, as well as the ability of the molecules to sensitize oxygen and form reactive oxygen species (ROS). The efficiency of the ROS formation was measured in comparison with that of tetraphenylporphyrin. The antiproliferative effect of BODIPY molecules was investigated against three human cancer cell lines MCF-7 (breast carcinoma), H460 (lung carcinoma), HCT116 (colon carcinoma), and two non-cancer cell lines, HEK293T (embryonic kindey) and HaCaT (keratinocytes), with the cells kept in the dark or irradiated with visible light. For most of the compounds a modest or no antiproliferative activity was observed for cells in the dark. However, when cells were irradiated, a dramatic increase in cytotoxicity was observed (more than 100-fold), with IC50 values in the submicromolar concentration range. The enhancement of the cytotoxic effect was explained by the formation of ROS, which was studied for cells in vitro. However, for some BODIPY compounds, the effects due to the formation of electrophilic species (carbocations and quinone methides, which react with biomolecules) cannot be disregarded. Confocal fluorescence microscopy images of H460 cells and HEK293T show that the compounds enter the cells and are retained in the cytoplasm and membranes of the various organelles. When the cells treated with the compounds are irradiated, photo-processes lead to cell death by apoptosis. The study performed is important because it provides bases for the development of novel photo-therapeutics capable of exerting photo-cytotoxic effects in both oxygenated and hypoxic cells.
Collapse
Affiliation(s)
- Katarina Zlatić
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10 000, Zagreb, Croatia; Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10 000, Zagreb, Croatia; Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, 10000, Zagreb, Croatia.
| | - Matija Popović
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10 000, Zagreb, Croatia
| | - Lidija Uzelac
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10 000, Zagreb, Croatia
| | - Marijeta Kralj
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10 000, Zagreb, Croatia.
| | - Nikola Basarić
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10 000, Zagreb, Croatia.
| |
Collapse
|
12
|
Hua Y, Strauss M, Fisher S, Mauser MFX, Manchet P, Smacchia M, Geyer P, Shayeghi A, Pfeffer M, Eggenweiler TH, Daly S, Commandeur J, Mayor M, Arndt M, Šolomek T, Köhler V. Giving the Green Light to Photochemical Uncaging of Large Biomolecules in High Vacuum. JACS AU 2023; 3:2790-2799. [PMID: 37885583 PMCID: PMC10598566 DOI: 10.1021/jacsau.3c00351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023]
Abstract
The isolation of biomolecules in a high vacuum enables experiments on fragile species in the absence of a perturbing environment. Since many molecular properties are influenced by local electric fields, here we seek to gain control over the number of charges on a biopolymer by photochemical uncaging. We present the design, modeling, and synthesis of photoactive molecular tags, their labeling to peptides and proteins as well as their photochemical validation in solution and in the gas phase. The tailored tags can be selectively cleaved off at a well-defined time and without the need for any external charge-transferring agents. The energy of a single or two green photons can already trigger the process, and it is soft enough to ensure the integrity of the released biomolecular cargo. We exploit differences in the cleavage pathways in solution and in vacuum and observe a surprising robustness in upscaling the approach from a model system to genuine proteins. The interaction wavelength of 532 nm is compatible with various biomolecular entities, such as oligonucleotides or oligosaccharides.
Collapse
Affiliation(s)
- Yong Hua
- Department
of Chemistry, University of Basel, St. Johannsring 19, CH-4056 Basel, Switzerland
| | - Marcel Strauss
- Vienna
Faculty of Physics, University of Vienna,
VDSP & VCQ, Boltzmanngasse 5, A-1090 Vienna, Austria
| | - Sergey Fisher
- Van’t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, PO Box 94157, 1090 GD Amsterdam, The Netherlands
| | - Martin F. X. Mauser
- Vienna
Faculty of Physics, University of Vienna,
VDSP & VCQ, Boltzmanngasse 5, A-1090 Vienna, Austria
| | - Pierre Manchet
- Vienna
Faculty of Physics, University of Vienna,
VDSP & VCQ, Boltzmanngasse 5, A-1090 Vienna, Austria
| | - Martina Smacchia
- Vienna
Faculty of Physics, University of Vienna,
VDSP & VCQ, Boltzmanngasse 5, A-1090 Vienna, Austria
| | - Philipp Geyer
- Vienna
Faculty of Physics, University of Vienna,
VDSP & VCQ, Boltzmanngasse 5, A-1090 Vienna, Austria
| | - Armin Shayeghi
- Vienna
Faculty of Physics, University of Vienna,
VDSP & VCQ, Boltzmanngasse 5, A-1090 Vienna, Austria
| | - Michael Pfeffer
- Department
of Chemistry, University of Basel, St. Johannsring 19, CH-4056 Basel, Switzerland
| | - Tim Henri Eggenweiler
- Department
of Chemistry, University of Basel, St. Johannsring 19, CH-4056 Basel, Switzerland
| | - Steven Daly
- MS
Vision, Televisieweg
40, 1322 AM Almere, The Netherlands
| | - Jan Commandeur
- MS
Vision, Televisieweg
40, 1322 AM Almere, The Netherlands
| | - Marcel Mayor
- Department
of Chemistry, University of Basel, St. Johannsring 19, CH-4056 Basel, Switzerland
- Institute
for Nanotechnology (INT), Karlsruhe Institute
of Technology (KIT), P.O. Box 3640, DE-76021 Karlsruhe Eggenstein-Leopoldshafen, Germany
- Lehn Institute
of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510274, P. R. China
| | - Markus Arndt
- Vienna
Faculty of Physics, University of Vienna,
VDSP & VCQ, Boltzmanngasse 5, A-1090 Vienna, Austria
| | - Tomáš Šolomek
- Van’t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, PO Box 94157, 1090 GD Amsterdam, The Netherlands
| | - Valentin Köhler
- Department
of Chemistry, University of Basel, St. Johannsring 19, CH-4056 Basel, Switzerland
| |
Collapse
|
13
|
Wohlrábová L, Okoročenkova J, Palao E, Kužmová E, Chalupský K, Klán P, Slanina T. Sulfonothioated meso-Methyl BODIPY Shows Enhanced Uncaging Efficiency and Releases H 2S n. Org Lett 2023; 25:6705-6709. [PMID: 37668439 PMCID: PMC10510718 DOI: 10.1021/acs.orglett.3c02511] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Indexed: 09/06/2023]
Abstract
meso-Methyl BODIPY photocages stand out for their absorption properties and easy chromophore derivatization. However, their low uncaging efficiencies often hinder applications requiring release of protected substrates in high amounts. In this study, we demonstrate that the sulfonothioated BODIPY group photocleaves a sulfonylthio group from the meso-methyl position with a 10-fold higher quantum yield than the most efficient leaving groups studied to date. Photocleavage, observed in solution and in cells, is accompanied by the spatiotemporally controlled photorelease of H2Sn. For this reason, sulfonothioated BODIPY may be applied in cell signaling, redox homeostasis, and metabolic regulation studies.
Collapse
Affiliation(s)
- Lucie Wohlrábová
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 542/2, 160 00 Praha 6, Czech Republic
| | - Jana Okoročenkova
- Department
of Chemistry, Masaryk University, Kamenice 5, 625 00 Brno, Czech
Republic
- RECETOX, Masaryk University, Kamenice 5, 625 00 Brno, Czech
Republic
| | - Eduardo Palao
- Department
of Chemistry, Masaryk University, Kamenice 5, 625 00 Brno, Czech
Republic
- RECETOX, Masaryk University, Kamenice 5, 625 00 Brno, Czech
Republic
| | - Erika Kužmová
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 542/2, 160 00 Praha 6, Czech Republic
| | - Karel Chalupský
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 542/2, 160 00 Praha 6, Czech Republic
| | - Petr Klán
- Department
of Chemistry, Masaryk University, Kamenice 5, 625 00 Brno, Czech
Republic
- RECETOX, Masaryk University, Kamenice 5, 625 00 Brno, Czech
Republic
| | - Tomáš Slanina
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 542/2, 160 00 Praha 6, Czech Republic
- Institute
of Organic Chemistry and Chemical Biology, Goethe University, Max-von-Laue-Str.
7, 60438 Frankfurt
am Main, Germany
| |
Collapse
|
14
|
Shrestha P, Kand D, Weinstain R, Winter AH. meso-Methyl BODIPY Photocages: Mechanisms, Photochemical Properties, and Applications. J Am Chem Soc 2023; 145:17497-17514. [PMID: 37535757 DOI: 10.1021/jacs.3c01682] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
meso-methyl BODIPY photocages have recently emerged as an exciting new class of photoremovable protecting groups (PPGs) that release leaving groups upon absorption of visible to near-infrared light. In this Perspective, we summarize the development of these PPGs and highlight their critical photochemical properties and applications. We discuss the absorption properties of the BODIPY PPGs, structure-photoreactivity studies, insights into the photoreaction mechanism, the scope of functional groups that can be caged, the chemical synthesis of these structures, and how substituents can alter the water solubility of the PPG and direct the PPG into specific subcellular compartments. Applications that exploit the unique optical and photochemical properties of BODIPY PPGs are also discussed, from wavelength-selective photoactivation to biological studies to photoresponsive organic materials and photomedicine.
Collapse
Affiliation(s)
- Pradeep Shrestha
- Department of Chemistry, Iowa State University, Ames, Iowa 50010, United States
| | - Dnyaneshwar Kand
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Roy Weinstain
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Arthur H Winter
- Department of Chemistry, Iowa State University, Ames, Iowa 50010, United States
| |
Collapse
|
15
|
Zhang P, Zhu Y, Xiao C, Chen X. Activatable dual-functional molecular agents for imaging-guided cancer therapy. Adv Drug Deliv Rev 2023; 195:114725. [PMID: 36754284 DOI: 10.1016/j.addr.2023.114725] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 01/16/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023]
Abstract
Theranostics has attracted great attention due to its ability to combine the real-time diagnosis of cancers with efficient treatment modalities. Activatable dual-functional molecular agents could be synthesized by covalently conjugating imaging agents, therapeutic agents, stimuli-responsive linkers and/or targeting molecules together. They could be selectively activated by overexpressed physiological stimuli or external triggers at the tumor sites to release imaging agents and cytotoxic drugs, thus offering many advantages for tumor imaging and therapy, such as a high signal-to-noise ratio, low systemic toxicity, and improved therapeutic effects. This review summarizes the recent advances of dual-functional molecular agents that respond to various physiological or external stimuli for cancer theranostics. The molecular designs, synthetic strategies, activatable mechanisms, and biomedical applications of these molecular agents are elaborated, followed by a brief discussion of the challenges and opportunities in this field.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, PR China; State Key Laboratory of Molecular Engineering of Polymers (Fudan University), Shanghai 200433, PR China
| | - Yaowei Zhu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; Department of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, PR China.
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, PR China.
| |
Collapse
|
16
|
Egyed A, Németh K, Molnár TÁ, Kállay M, Kele P, Bojtár M. Turning Red without Feeling Embarrassed─Xanthenium-Based Photocages for Red-Light-Activated Phototherapeutics. J Am Chem Soc 2023; 145:4026-4034. [PMID: 36752773 PMCID: PMC9951246 DOI: 10.1021/jacs.2c11499] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Indexed: 02/09/2023]
Abstract
Herein, we present high-yielding, concise access to a set of xanthenium-derived, water-soluble, low-molecular-weight photocages allowing light-controlled cargo release in the green to red region. Very importantly, these new photocages allow installation of various payloads through ester, carbamate, or carbonate linkages even at the last stage of the synthesis. Payloads were uncaged with high efficiency upon green, orange, or red light irradiation, leading to the release of carboxylic acids, phenols, and amines. The near-ideal properties of a carboxanthenium derivative were further evaluated in the context of light-controlled drug release using a camptothecin-derived chemotherapeutic drug, SN38. Notably, the caged drug showed orders of magnitude lower efficiency in cellulo, which was reinstated after red light irradiation. The presented photocages offer properties that facilitate the translation of photoactivated chemotherapy toward clinical applications.
Collapse
Affiliation(s)
- Alexandra Egyed
- Chemical
Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok krt. 2., H-1117 Budapest, Hungary
- Hevesy
György PhD School of Chemistry, Eötvös
Loránd University, Pázmány Péter sétány 1/a., H-1117 Budapest, Hungary
| | - Krisztina Németh
- Chemical
Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok krt. 2., H-1117 Budapest, Hungary
| | - Tibor Á. Molnár
- Chemical
Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok krt. 2., H-1117 Budapest, Hungary
| | - Mihály Kállay
- Department
of Physical Chemistry and Materials Science, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
- ELKH-BME
Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary
- MTA-BME
Lendület Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Péter Kele
- Chemical
Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok krt. 2., H-1117 Budapest, Hungary
| | - Márton Bojtár
- Chemical
Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok krt. 2., H-1117 Budapest, Hungary
| |
Collapse
|
17
|
Jia S, Sletten EM. Spatiotemporal Control of Biology: Synthetic Photochemistry Toolbox with Far-Red and Near-Infrared Light. ACS Chem Biol 2022; 17:3255-3269. [PMID: 34516095 PMCID: PMC8918031 DOI: 10.1021/acschembio.1c00518] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The complex network of naturally occurring biological pathways motivates the development of new synthetic molecules to perturb and/or detect these processes for fundamental research and clinical applications. In this context, photochemical tools have emerged as an approach to control the activity of drug or probe molecules at high temporal and spatial resolutions. Traditional photochemical tools, particularly photolabile protecting groups (photocages) and photoswitches, rely on high-energy UV light that is only applicable to cells or transparent model animals. More recently, such designs have evolved into the visible and near-infrared regions with deeper tissue penetration, enabling photocontrol to study biology in tissue and model animal contexts. This Review highlights recent developments in synthetic far-red and near-infrared photocages and photoswitches and their current and potential applications at the interface of chemistry and biology.
Collapse
Affiliation(s)
- Shang Jia
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Ellen M Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
18
|
Xiong H, Xu Y, Kim B, Rha H, Zhang B, Li M, Yang GF, Kim JS. Photo-controllable biochemistry: Exploiting the photocages in phototherapeutic window. Chem 2022. [DOI: 10.1016/j.chempr.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
19
|
Shrestha P, Mukhopadhyay A, Dissanayake KC, Winter AH. Efficiency of Functional Group Caging with Second-Generation Green- and Red-Light-Labile BODIPY Photoremovable Protecting Groups. J Org Chem 2022; 87:14334-14341. [PMID: 36255274 DOI: 10.1021/acs.joc.2c01781] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BODIPY-based photocages release substrates by excitation with wavelengths in the visible to near-IR regions. The recent development of more efficient BODIPY photocages spurred us to evaluate the scope and efficiency of these second-generation boron-methylated green-light and red-light-absorbing BODIPY photocages. Here, we show that these more photosensitive photocages release amine, alcohol, phenol, phosphate, halides, and carboxylic acid derivatives with much higher quantum yields than first-generation BODIPY photocages and excellent chemical yields. Chemical yields are near-quantitative for the release of all functional groups except the photorelease of amines, which react with concomitantly photogenerated singlet oxygen. In these cases, high chemical yields for photoreleased amines are restored by irradiation under an inert atmosphere. The photorelease quantum yield has a weak relationship with the leaving group pKa of the green-absorbing BODIPY photocages but little relationship with the red-absorbing derivatives, suggesting that factors other than leaving group quality impact the quantum yield. For the photorelease of alcohols, in all cases a carbonate linker (that loses CO2 upon photorelease) significantly increases both the quantum yield and the chemical yield compared to those for direct photorelease via the ether.
Collapse
Affiliation(s)
- Pradeep Shrestha
- Department of Chemistry, Iowa State University, 1608 Gilman Hall, Ames, Iowa50010, United States
| | - Atreyee Mukhopadhyay
- Department of Chemistry, Iowa State University, 1608 Gilman Hall, Ames, Iowa50010, United States
| | - Komadhie C Dissanayake
- Department of Chemistry, Iowa State University, 1608 Gilman Hall, Ames, Iowa50010, United States
| | - Arthur H Winter
- Department of Chemistry, Iowa State University, 1608 Gilman Hall, Ames, Iowa50010, United States
| |
Collapse
|
20
|
Feng Z, Ducos B, Scerbo P, Aujard I, Jullien L, Bensimon D. The Development and Application of Opto-Chemical Tools in the Zebrafish. Molecules 2022; 27:6231. [PMID: 36234767 PMCID: PMC9572478 DOI: 10.3390/molecules27196231] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022] Open
Abstract
The zebrafish is one of the most widely adopted animal models in both basic and translational research. This popularity of the zebrafish results from several advantages such as a high degree of similarity to the human genome, the ease of genetic and chemical perturbations, external fertilization with high fecundity, transparent and fast-developing embryos, and relatively low cost-effective maintenance. In particular, body translucency is a unique feature of zebrafish that is not adequately obtained with other vertebrate organisms. The animal's distinctive optical clarity and small size therefore make it a successful model for optical modulation and observation. Furthermore, the convenience of microinjection and high embryonic permeability readily allow for efficient delivery of large and small molecules into live animals. Finally, the numerous number of siblings obtained from a single pair of animals offers large replicates and improved statistical analysis of the results. In this review, we describe the development of opto-chemical tools based on various strategies that control biological activities with unprecedented spatiotemporal resolution. We also discuss the reported applications of these tools in zebrafish and highlight the current challenges and future possibilities of opto-chemical approaches, particularly at the single cell level.
Collapse
Affiliation(s)
- Zhiping Feng
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Bertrand Ducos
- Laboratoire de Physique de l’Ecole Normale Supérieure, Paris Sciences Letters University, Sorbonne Université, Université de Paris, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75005 Paris, France
- High Throughput qPCR Core Facility, Ecole Normale Supérieure, Paris Sciences Letters University, 46 Rue d’Ulm, 75005 Paris, France
| | - Pierluigi Scerbo
- Laboratoire de Physique de l’Ecole Normale Supérieure, Paris Sciences Letters University, Sorbonne Université, Université de Paris, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75005 Paris, France
- Inovarion, 75005 Paris, France
| | - Isabelle Aujard
- Laboratoire PASTEUR, Département de Chimie, Ecole Normale Supérieure, Paris Sciences Letters University, Sorbonne Université, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75005 Paris, France
| | - Ludovic Jullien
- Laboratoire PASTEUR, Département de Chimie, Ecole Normale Supérieure, Paris Sciences Letters University, Sorbonne Université, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75005 Paris, France
| | - David Bensimon
- Laboratoire de Physique de l’Ecole Normale Supérieure, Paris Sciences Letters University, Sorbonne Université, Université de Paris, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75005 Paris, France
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
21
|
Zlatić K, Bogomolec M, Cindrić M, Uzelac L, Basarić N. Synthesis, photophysical properties, anti-Kasha photochemical reactivity and biological activity of vinyl- and alkynyl-BODIPY derivatives. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Red‐Shifted Water‐Soluble BODIPY Photocages for Visualisation and Controllable Cellular Delivery of Signaling Lipids. Angew Chem Int Ed Engl 2022; 61:e202205855. [DOI: 10.1002/anie.202205855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Indexed: 11/07/2022]
|
23
|
Janeková H, Russo M, Ziegler U, Štacko P. Photouncaging of Carboxylic Acids from Cyanine Dyes with Near-Infrared Light. Angew Chem Int Ed Engl 2022; 61:e202204391. [PMID: 35578980 PMCID: PMC9542589 DOI: 10.1002/anie.202204391] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Indexed: 11/13/2022]
Abstract
Near-infrared light (NIR; 650-900 nm) offers unparalleled advantages as a biocompatible stimulus. The development of photocages that operate in this region represents a fundamental challenge due to the low energy of the excitation light. Herein, we repurpose cyanine dyes into photocages that are available on a multigram scale in three steps and efficiently release carboxylic acids in aqueous media upon irradiation with NIR light up to 820 nm. The photouncaging process is examined using several techniques, providing evidence that it proceeds via photooxidative pathway. We demonstrate the practical utility in live HeLa cells by delivery and release of the carboxylic acid cargo, that was otherwise not uptaken by cells in its free form. In combination with modularity of the cyanine scaffold, the realization of these accessible photocages will fully unleash the potential of the emerging field of NIR-photoactivation and facilitate its widespread adoption outside the photochemistry community.
Collapse
Affiliation(s)
- Hana Janeková
- Department of ChemistryUniversity of ZurichWintherthurerstrasse 1908057ZurichSwitzerland
| | - Marina Russo
- Department of ChemistryUniversity of ZurichWintherthurerstrasse 1908057ZurichSwitzerland
| | - Urs Ziegler
- Center for Microscopy and Image AnalysisUniversity of ZurichWintherthurerstrasse 1908057ZurichSwitzerland
| | - Peter Štacko
- Department of ChemistryUniversity of ZurichWintherthurerstrasse 1908057ZurichSwitzerland
| |
Collapse
|
24
|
Kaufmann J, Müller P, Andreadou E, Heckel A. Green-Light Activatable BODIPY and Coumarin 5'-Caps for Oligonucleotide Photocaging. Chemistry 2022; 28:e202200477. [PMID: 35420231 PMCID: PMC9322594 DOI: 10.1002/chem.202200477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Indexed: 12/02/2022]
Abstract
We synthesized two green-light activatable 5'-caps for oligonucleotides based on the BODIPY and coumarin scaffold. Both bear an alkyne functionality allowing their use in numerous biological applications. They were successfully incorporated in oligonucleotides via solid-phase synthesis. Copper-catalyzed alkyne-azide cycloaddition (CuAAC) using a bisazide photo-tether gave cyclic oligonucleotides that could be relinearized by activation with green light and were shown to exhibit high stability against exonucleases. Chemical ligation as another example for bioconjugation yielded oligonucleotides with an internal strand break site. Irradiation at 530 nm or 565 nm resulted in complete photolysis of both caging groups.
Collapse
Affiliation(s)
- Janik Kaufmann
- Institute for Organic Chemistry and Chemical BiologyGoethe University FrankfurtMax-von-Laue-Str. 760438FrankfurtGermany
| | - Patricia Müller
- Institute for Organic Chemistry and Chemical BiologyGoethe University FrankfurtMax-von-Laue-Str. 760438FrankfurtGermany
| | - Eleni Andreadou
- Institute for Organic Chemistry and Chemical BiologyGoethe University FrankfurtMax-von-Laue-Str. 760438FrankfurtGermany
| | - Alexander Heckel
- Institute for Organic Chemistry and Chemical BiologyGoethe University FrankfurtMax-von-Laue-Str. 760438FrankfurtGermany
| |
Collapse
|
25
|
Porphyrin as a versatile visible-light-activatable organic/metal hybrid photoremovable protecting group. Nat Commun 2022; 13:3614. [PMID: 35750661 PMCID: PMC9232598 DOI: 10.1038/s41467-022-31288-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 06/03/2022] [Indexed: 11/08/2022] Open
Abstract
Photoremovable protecting groups (PPGs) represent one of the main contemporary implementations of photochemistry in diverse fields of research and practical applications. For the past half century, organic and metal-complex PPGs were considered mutually exclusive classes, each of which provided unique sets of physical and chemical properties thanks to their distinctive structures. Here, we introduce the meso-methylporphyrin group as a prototype hybrid-class PPG that unites traditionally exclusive elements of organic and metal-complex PPGs within a single structure. We show that the porphyrin scaffold allows extensive modularity by functional separation of the metal-binding chromophore and up to four sites of leaving group release. The insertion of metal ions can be used to tune their spectroscopic, photochemical, and biological properties. We provide a detailed description of the photoreaction mechanism studied by steady-state and transient absorption spectroscopies and quantum-chemical calculations. Our approach applied herein could facilitate access to a hitherto untapped chemical space of potential PPG scaffolds.
Collapse
|
26
|
Janeková H, Russo M, Ziegler U, Štacko P. Photouncaging of Carboxylic Acids from Cyanine Dyes with Near‐Infrared Light**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hana Janeková
- Department of Chemistry University of Zurich Wintherthurerstrasse 190 8057 Zurich Switzerland
| | - Marina Russo
- Department of Chemistry University of Zurich Wintherthurerstrasse 190 8057 Zurich Switzerland
| | - Urs Ziegler
- Center for Microscopy and Image Analysis University of Zurich Wintherthurerstrasse 190 8057 Zurich Switzerland
| | - Peter Štacko
- Department of Chemistry University of Zurich Wintherthurerstrasse 190 8057 Zurich Switzerland
| |
Collapse
|
27
|
Contreras-García E, Lozano C, García-Iriepa C, Marazzi M, Winter AH, Torres C, Sampedro D. Controlling Antimicrobial Activity of Quinolones Using Visible/NIR Light-Activated BODIPY Photocages. Pharmaceutics 2022; 14:pharmaceutics14051070. [PMID: 35631655 PMCID: PMC9144359 DOI: 10.3390/pharmaceutics14051070] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/03/2022] [Accepted: 05/13/2022] [Indexed: 11/26/2022] Open
Abstract
Controlling the activity of a pharmaceutical agent using light offers improved selectivity, reduction of adverse effects, and decreased environmental build-up. These benefits are especially attractive for antibiotics. Herein, we report a series of photoreleasable quinolones, which can be activated using visible/NIR light (520–800 nm). We have used BODIPY photocages with strong absorption in the visible to protect two different quinolone-based compounds and deactivate their antimicrobial properties. This activity could be recovered upon green or red light irradiation. A comprehensive computational study provides new insight into the reaction mechanism, revealing the relevance of considering explicit solvent molecules. The triplet excited state is populated and the photodissociation is assisted by the solvent. The light-controlled activity of these compounds has been assessed on a quinolone-susceptible E. coli strain. Up to a 32-fold change in the antimicrobial activity was measured.
Collapse
Affiliation(s)
- Elena Contreras-García
- Departamento de Química, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Madre de Dios 53, 26006 Logroño, Spain;
| | - Carmen Lozano
- Área Bioquímica y Biología Molecular, Universidad de La Rioja, Madre de Dios 53, 26006 Logroño, Spain; (C.L.); (C.T.)
| | - Cristina García-Iriepa
- Departamento de Química Analítica, Química Física e Ingeniería Química, Grupo de Reactividad y Estructura Molecular (RESMOL), Universidad de Alcalá, 28805 Alcalá de Henares, Spain; (C.G.-I.); (M.M.)
- Instituto de Investigación Química “Andrés M. del Río” (IQAR), Universidad de Alcalá, 28805 Alcalá de Henares, Spain
| | - Marco Marazzi
- Departamento de Química Analítica, Química Física e Ingeniería Química, Grupo de Reactividad y Estructura Molecular (RESMOL), Universidad de Alcalá, 28805 Alcalá de Henares, Spain; (C.G.-I.); (M.M.)
- Instituto de Investigación Química “Andrés M. del Río” (IQAR), Universidad de Alcalá, 28805 Alcalá de Henares, Spain
| | - Arthur H. Winter
- Department of Chemistry, Iowa State University, Ames, IA 50014, USA;
| | - Carmen Torres
- Área Bioquímica y Biología Molecular, Universidad de La Rioja, Madre de Dios 53, 26006 Logroño, Spain; (C.L.); (C.T.)
| | - Diego Sampedro
- Departamento de Química, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Madre de Dios 53, 26006 Logroño, Spain;
- Correspondence:
| |
Collapse
|
28
|
Poryvai A, Galkin M, Shvadchak V, Slanina T. Red‐Shifted Water‐Soluble BODIPY Photocages for Visualisation and Controllable Cellular Delivery of Signaling Lipids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Anna Poryvai
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences: Ustav organicke chemie a biochemie Akademie ved Ceske republiky Redox Photochemistry CZECH REPUBLIC
| | - Maksym Galkin
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences: Ustav organicke chemie a biochemie Akademie ved Ceske republiky Chemical Biology CZECH REPUBLIC
| | - Volodymyr Shvadchak
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences: Ustav organicke chemie a biochemie Akademie ved Ceske republiky Chemical biology CZECH REPUBLIC
| | - Tomáš Slanina
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences: Ustav organicke chemie a biochemie Akademie ved Ceske republiky Redox Photochemistry Flemingovo nám. 2 16000 Prague CZECH REPUBLIC
| |
Collapse
|
29
|
Guseva GB, Antina EV, Berezin MB, Ksenofontov AA, Bocharov PS, Smirnova AS, Pavelyev RS, Gilfanov IR, Pestova SV, Izmest'ev ES, Rubtsova SA, Kayumov AR, Kiselev SV, Azizova ZR, Ostolopovskaya OV, Efimov SV, Klochkov VV, Khodov IA, Nikitina LE. Conjugate of meso-carboxysubstituted-BODIPY with thioterpenoid as an effective fluorescent probe: Synthesis, structure, spectral characteristics, and molecular docking. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 268:120638. [PMID: 34840052 DOI: 10.1016/j.saa.2021.120638] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/20/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
This paper is devoted to the design of a fluorescent probe based on meso-carboxysubstituted-BODIPY with a thioterpene fragment. The functional replacement of the methoxy group in the BODIPY molecule on a thioterpene fragment was carried out in order to find out the antiplatelet and anticoagulant action mechanisms of thioterpenoids and to assess the membrane and receptor factors contributions. The molecular structure of the conjugate was confirmed via UV/vis-, NMR- and MS-spectra. It is found that the probe is a high fluorescence quantum yield (to ∼ 100%) in the blue-green region at 509-516 nm. Molecular docking of all studied molecules showed that the BODIPY with terpenoid conjugation is an excellent way to increase their affinity to platelet receptor P2Y12.
Collapse
Affiliation(s)
- Galina B Guseva
- G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences, 1 Akademicheskaya st., 153045 Ivanovo, Russia.
| | - Elena V Antina
- G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences, 1 Akademicheskaya st., 153045 Ivanovo, Russia
| | - Mikhail B Berezin
- G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences, 1 Akademicheskaya st., 153045 Ivanovo, Russia
| | - Alexander A Ksenofontov
- G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences, 1 Akademicheskaya st., 153045 Ivanovo, Russia
| | - Pavel S Bocharov
- G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences, 1 Akademicheskaya st., 153045 Ivanovo, Russia; Ivanovo State University of Chemistry and Technology, 7, Sheremetevskiy Avenue, 153000 Ivanovo, Russia
| | - Anastassia S Smirnova
- G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences, 1 Akademicheskaya st., 153045 Ivanovo, Russia; Ivanovo State University of Chemistry and Technology, 7, Sheremetevskiy Avenue, 153000 Ivanovo, Russia
| | - Roman S Pavelyev
- Kazan Federal University, 18 Kremlevskaya st., 420008 Kazan, Russia
| | - Ilmir R Gilfanov
- Kazan State Medical University, 49 Butlerova st., 420012 Kazan, Russia
| | - Svetlana V Pestova
- Institute of Chemistry, Federal Research Center "Komi Scientific Centre", Ural Branch, Russian Academy of Sciences, ul. Pervomaiskaya 48, 167000 Syktyvkar, Russia
| | - Evgeny S Izmest'ev
- Institute of Chemistry, Federal Research Center "Komi Scientific Centre", Ural Branch, Russian Academy of Sciences, ul. Pervomaiskaya 48, 167000 Syktyvkar, Russia
| | - Svetlana A Rubtsova
- Institute of Chemistry, Federal Research Center "Komi Scientific Centre", Ural Branch, Russian Academy of Sciences, ul. Pervomaiskaya 48, 167000 Syktyvkar, Russia
| | - Airat R Kayumov
- Kazan Federal University, 18 Kremlevskaya st., 420008 Kazan, Russia
| | - Sergei V Kiselev
- Kazan State Medical University, 49 Butlerova st., 420012 Kazan, Russia
| | - Zulfiya R Azizova
- Kazan State Medical University, 49 Butlerova st., 420012 Kazan, Russia
| | | | - Sergey V Efimov
- Kazan Federal University, 18 Kremlevskaya st., 420008 Kazan, Russia
| | | | - Ilya A Khodov
- G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences, 1 Akademicheskaya st., 153045 Ivanovo, Russia
| | - Liliya E Nikitina
- Kazan State Medical University, 49 Butlerova st., 420012 Kazan, Russia; Kazan Federal University, 18 Kremlevskaya st., 420008 Kazan, Russia
| |
Collapse
|
30
|
Zheng Y, Wágner G, Hauwert N, Ma X, Vischer HF, Leurs R. New Chemical Biology Tools for the Histamine Receptor Family. Curr Top Behav Neurosci 2022; 59:3-28. [PMID: 35851442 DOI: 10.1007/7854_2022_360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The histamine research community has in the last decade been very active and generated a number of exciting new chemical biology tools for the study of histamine receptors, their ligands, and their pharmacology. In this paper we describe the development of histamine receptor structural biology, the use of receptor conformational biosensors, and the development of new ligands for covalent or fluorescent labeling or for photopharmacological approaches (photocaging and photoswitching). These new tools allow new approaches to study histamine receptors and hopefully will lead to better insights in the molecular aspects of histamine receptors and their ligands.
Collapse
Affiliation(s)
- Yang Zheng
- Department of Medicinal Chemistry, Faculty of Science, Amsterdam Institute of Molecular Life Sciences (AIMMS), Amsterdam, The Netherlands
| | - Gábor Wágner
- Department of Medicinal Chemistry, Faculty of Science, Amsterdam Institute of Molecular Life Sciences (AIMMS), Amsterdam, The Netherlands
| | - Niels Hauwert
- Department of Medicinal Chemistry, Faculty of Science, Amsterdam Institute of Molecular Life Sciences (AIMMS), Amsterdam, The Netherlands
| | - Xiaoyuan Ma
- Department of Medicinal Chemistry, Faculty of Science, Amsterdam Institute of Molecular Life Sciences (AIMMS), Amsterdam, The Netherlands
| | - Henry F Vischer
- Department of Medicinal Chemistry, Faculty of Science, Amsterdam Institute of Molecular Life Sciences (AIMMS), Amsterdam, The Netherlands
| | - Rob Leurs
- Department of Medicinal Chemistry, Faculty of Science, Amsterdam Institute of Molecular Life Sciences (AIMMS), Amsterdam, The Netherlands.
| |
Collapse
|
31
|
Synthetic approaches for BF2-containing adducts of outstanding biological potential. A review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
32
|
Wang L, Wang S, Tang J, Espinoza VB, Loredo A, Tian Z, Weisman RB, Xiao H. Oxime as a general photocage for the design of visible light photo-activatable fluorophores. Chem Sci 2021; 12:15572-15580. [PMID: 35003586 PMCID: PMC8654061 DOI: 10.1039/d1sc05351e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/21/2021] [Indexed: 12/18/2022] Open
Abstract
Photoactivatable fluorophores have been widely used for tracking molecular and cellular dynamics with subdiffraction resolution. In this work, we have prepared a series of photoactivatable probes using the oxime moiety as a new class of photolabile caging group in which the photoactivation process is mediated by a highly efficient photodeoximation reaction. Incorporation of the oxime caging group into fluorophores results in loss of fluorescence. Upon light irradiation in the presence of air, the oxime-caged fluorophores are oxidized to their carbonyl derivatives, restoring strong fluorophore fluorescence. To demonstrate the utility of these oxime-caged fluorophores, we have created probes that target different organelles for live-cell confocal imaging. We also carried out photoactivated localization microscopy (PALM) imaging under physiological conditions using low-power light activation in the absence of cytotoxic additives. Our studies show that oximes represent a new class of visible-light photocages that can be widely used for cellular imaging, sensing, and photo-controlled molecular release.
Collapse
Affiliation(s)
- Lushun Wang
- Department of Chemistry, Rice University 6100 Main Street Houston Texas 77005 USA
| | - Shichao Wang
- Department of Chemistry, Rice University 6100 Main Street Houston Texas 77005 USA
| | - Juan Tang
- Department of Chemistry, Rice University 6100 Main Street Houston Texas 77005 USA
| | - Vanessa B Espinoza
- Department of Chemistry, Rice University 6100 Main Street Houston Texas 77005 USA
| | - Axel Loredo
- Department of Chemistry, Rice University 6100 Main Street Houston Texas 77005 USA
| | - Zeru Tian
- Department of Chemistry, Rice University 6100 Main Street Houston Texas 77005 USA
| | - R Bruce Weisman
- Department of Chemistry, Rice University 6100 Main Street Houston Texas 77005 USA
| | - Han Xiao
- Department of Chemistry, Rice University 6100 Main Street Houston Texas 77005 USA
- Department of Biosciences, Rice University 6100 Main Street Houston Texas 77005 USA
- Department of Bioengineering, Rice University 6100 Main Street Houston Texas 77005 USA
| |
Collapse
|
33
|
Wang J, Zhang L, Li Z. Aggregation-Induced Emission Luminogens with Photoresponsive Behaviors for Biomedical Applications. Adv Healthc Mater 2021; 10:e2101169. [PMID: 34783194 DOI: 10.1002/adhm.202101169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/25/2021] [Indexed: 12/25/2022]
Abstract
Fluorescent biomedical materials can visualize subcellular structures and therapy processes in vivo. The aggregation-induced emission (AIE) phenomenon helps suppress the quenching effect in the aggregated state suffered by conventional fluorescent materials, thereby contributing to design strategies for fluorescent biomedical materials. Photoresponsive biomedical materials have attracted attention because of the inherent advantages of light; i.e., remote control, high spatial and temporal resolution, and environmentally friendly characteristics, and their combination with AIE facilitates development of fluorescent molecules with efficient photochemical reactions upon light irradiation. In this review, organic compounds with AIE features for biomedical applications and design strategies for photoresponsive AIE luminogens (AIEgens) are first summarized briefly. Applications are then reviewed, with the employment of photoresponsive and AIE-active molecules for photoactivation imaging, super-resolution imaging, light-induced drug delivery, photodynamic therapy with photochromic behavior, and bacterial targeting and killing being discussed at length. Finally, the future outlook for AIEgens is considered with the aim of stimulating innovative work for further development of this field.
Collapse
Affiliation(s)
- Jiaqiang Wang
- Institute of Molecular Aggregation Science Tianjin University Tianjin 300072 China
| | - Liyao Zhang
- School of Life Sciences Tianjin University Tianjin 300072 China
| | - Zhen Li
- Institute of Molecular Aggregation Science Tianjin University Tianjin 300072 China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
- Department of Chemistry Wuhan University Wuhan 430072 China
- Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology Wuhan 430074 China
| |
Collapse
|
34
|
|
35
|
Martynov VI, Pakhomov AA. BODIPY derivatives as fluorescent reporters of molecular activities in living cells. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Abstract
Fluorescent compounds have become indispensable tools for imaging molecular activities in the living cell. 4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) is currently one of the most popular fluorescent reporters due to its unique photophysical properties. This review provides a general survey and presents a summary of recent advances in the development of new BODIPY-based cellular biomarkers and biosensors. The review starts with the consideration of the properties of BODIPY derivatives required for their application as cellular reporters. Then review provides examples of the design of sensors for different biologically important molecules, ions, membrane potential, temperature and viscosity defining the live cell status. Special attention is payed to BODPY-based phototransformable reporters.
The bibliography includes 339 references.
Collapse
|
36
|
Štacko P, Šolomek T. Photoremovable Protecting Groups: Across the Light Spectrum to Near- Infrared Absorbing Photocages. Chimia (Aarau) 2021; 75:873-881. [PMID: 34728015 DOI: 10.2533/chimia.2021.873] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We discuss the past decade of progress in the field of photoremovable protecting groups that allowed the development of photocages activatable by near-IR light and highlight the individual conceptual advancements that lead to general guidelines to design new such photoremovable protecting groups. We emphasize the importance of understanding the individual photochemical reaction mechanisms that was necessary to achieve this progress and provide an outlook of the subsequent steps to facilitate a swift translation of this research into clinical praxis. Since this issue of CHIMIA is dedicated to the late Prof. Thomas Bally, we decided to provide a personal perspective on the field to which he contributed himself. We tried to write this review with the general readership of CHIMIA in mind in a hope to pay a tribute to the extraordinary dedication and clarity with which Thomas Bally used to explain abstract chemical concepts to his students or colleagues. We are uncertain whether we matched such challenge but we believe that he would have liked such approach very much.
Collapse
Affiliation(s)
- Peter Štacko
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich; Prievidza Chemical Society, M. Hodžu 10/16, 971 01 Prievidza, Slovakia;,
| | - Tomáš Šolomek
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland; Prievidza Chemical Society, M. Hodžu 10/16, 971 01 Prievidza, Slovakia;,
| |
Collapse
|
37
|
8-[4-(2-Hydroxypropane-2-yl)phenyl]-1,3,4,4,5,7-hexamethyl-4-boron-3a,4a-diaza-S-indacene. MOLBANK 2021. [DOI: 10.3390/m1286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
During recent years, the BODIPY core became a popular scaffold for designing photoremovable protecting groups (PPG). In this paper, we report the synthesis of a new molecule—8-[4-(2-hydroxypropane-2-yl)phenyl]-1,3,4,4,5,7-hexamethyl-4-boron-3a,4a-diaza-S-indacene—by the treatment of meso-(4-CO2Me-phenyl)-BODIPY with excess of MeMgI. The product was characterized by 1H, 13C NMR and HRMS. The combination of BODIPY core with tertiary benzilyc alcohol might be promising for utilizing this molecule as visible light removable PPG.
Collapse
|
38
|
Müller P, Sahlbach M, Gasper S, Mayer G, Müller J, Pötzsch B, Heckel A. Controlling Coagulation in Blood with Red Light. Angew Chem Int Ed Engl 2021; 60:22441-22446. [PMID: 34293228 PMCID: PMC8518524 DOI: 10.1002/anie.202108468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Indexed: 12/15/2022]
Abstract
Precise control of blood clotting and rapid reversal of anticoagulation are essential in many clinical situations. We were successful in modifying a thrombin-binding aptamer with a red-light photocleavable linker derived from Cy7 by Cu-catalyzed Click chemistry. We were able to show that we can successfully deactivate the modified aptamer with red light (660 nm) even in human blood-restoring the blood's natural coagulation capability.
Collapse
Affiliation(s)
- Patricia Müller
- Goethe University FrankfurtInstitute for Organic Chemistry and Chemical BiologyMax-von-Laue Str. 960438Frankfurt am MainGermany
| | - Marlen Sahlbach
- Goethe University FrankfurtInstitute for Organic Chemistry and Chemical BiologyMax-von-Laue Str. 960438Frankfurt am MainGermany
| | - Simone Gasper
- University Hospital BonnInstitute of Experimental Hematology and Transfusion MedicineVenusberg-Campus 153105BonnGermany
| | - Günter Mayer
- University of BonnLife and Medical Sciences InstituteCenter of Aptamer Research & DevelopmentGerhard-Domagk-Str. 153121BonnGermany
| | - Jens Müller
- University Hospital BonnInstitute of Experimental Hematology and Transfusion MedicineVenusberg-Campus 153105BonnGermany
| | - Bernd Pötzsch
- University Hospital BonnInstitute of Experimental Hematology and Transfusion MedicineVenusberg-Campus 153105BonnGermany
| | - Alexander Heckel
- Goethe University FrankfurtInstitute for Organic Chemistry and Chemical BiologyMax-von-Laue Str. 960438Frankfurt am MainGermany
| |
Collapse
|
39
|
Goodwin MJ, Zhang X, Shekleton TB, Kirr DA, Hannon HC, Harbron EJ. Amplifying the reactivity of BODIPY photoremovable protecting groups. Chem Commun (Camb) 2021; 57:10059-10062. [PMID: 34514485 DOI: 10.1039/d1cc04457e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conjugated polymer nanoparticles (CPNs or Pdots) are used to sensitize the photorelease reaction of a BODIPY photoremovable protecting group. Sensitization yields effective values of ελΦpr - the product of the extinction coefficient at the irradiation wavelength and the photorelease quantum yield - that are more than 60-fold greater than those measured upon direct excitation.
Collapse
Affiliation(s)
- Matthew J Goodwin
- Department of Chemistry, William & Mary, Williamsburg, Virginia, 23187-8795, USA.
| | - Xinzi Zhang
- Department of Chemistry, William & Mary, Williamsburg, Virginia, 23187-8795, USA.
| | - Tayli B Shekleton
- Department of Chemistry, William & Mary, Williamsburg, Virginia, 23187-8795, USA.
| | - Delaney A Kirr
- Department of Chemistry, William & Mary, Williamsburg, Virginia, 23187-8795, USA.
| | - Henry C Hannon
- Department of Chemistry, William & Mary, Williamsburg, Virginia, 23187-8795, USA.
| | - Elizabeth J Harbron
- Department of Chemistry, William & Mary, Williamsburg, Virginia, 23187-8795, USA.
| |
Collapse
|
40
|
Müller P, Sahlbach M, Gasper S, Mayer G, Müller J, Pötzsch B, Heckel A. Controlling Coagulation in Blood with Red Light. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Patricia Müller
- Goethe University Frankfurt Institute for Organic Chemistry and Chemical Biology Max-von-Laue Str. 9 60438 Frankfurt am Main Germany
| | - Marlen Sahlbach
- Goethe University Frankfurt Institute for Organic Chemistry and Chemical Biology Max-von-Laue Str. 9 60438 Frankfurt am Main Germany
| | - Simone Gasper
- University Hospital Bonn Institute of Experimental Hematology and Transfusion Medicine Venusberg-Campus 1 53105 Bonn Germany
| | - Günter Mayer
- University of Bonn Life and Medical Sciences Institute Center of Aptamer Research & Development Gerhard-Domagk-Str. 1 53121 Bonn Germany
| | - Jens Müller
- University Hospital Bonn Institute of Experimental Hematology and Transfusion Medicine Venusberg-Campus 1 53105 Bonn Germany
| | - Bernd Pötzsch
- University Hospital Bonn Institute of Experimental Hematology and Transfusion Medicine Venusberg-Campus 1 53105 Bonn Germany
| | - Alexander Heckel
- Goethe University Frankfurt Institute for Organic Chemistry and Chemical Biology Max-von-Laue Str. 9 60438 Frankfurt am Main Germany
| |
Collapse
|
41
|
Xu Y, Lin S, He R, Zhang Y, Gao Q, Ng DKP, Geng J. C=C Bond Oxidative Cleavage of BODIPY Photocages by Visible Light. Chemistry 2021; 27:11268-11272. [PMID: 34114272 DOI: 10.1002/chem.202101833] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Indexed: 12/11/2022]
Abstract
Photocages for protection and the controlled release of bioactive compounds have been widely investigated. However, the vast majority of these photocages employ the cleavage of single bonds and high-energy ultraviolet light. The construction of a photoactivation system that uses visible light to cleave unsaturated bonds still remains a challenge. Herein, we report a regioselective oxidative cleavage of C=C bonds from a boron-dipyrrolemethene (BODIPY)-based photocage by illumination at 630 nm, resulting in a free aldehyde and a thiol fluorescent probe. This strategy was demonstrated in live HeLa cells, and the generated α-formyl-BODIPY allowed real-time monitoring of aldehyde release in the cells. In particular, it is shown that a mannose-functionalized photocage can target HepG2 cells.
Collapse
Affiliation(s)
- Youwei Xu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Shanmeng Lin
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Rongkun He
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Yichuan Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Quan Gao
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Dennis K P Ng
- Department of Chemistry, The Chinese University of Hong Kong-Shatin, N.T., Hong Kong, China
| | - Jin Geng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| |
Collapse
|
42
|
Peterson JA, Yuan D, Winter AH. Multiwavelength Control of Mixtures Using Visible Light-Absorbing Photocages. J Org Chem 2021; 86:9781-9787. [PMID: 34197119 DOI: 10.1021/acs.joc.1c00658] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Selective deprotection of functional groups using different wavelengths of light is attractive for materials synthesis as well as for achieving independent photocontrol over substrates in biological systems. Here, we show that mixtures of recently developed visible light-absorbing BODIPY-derived photoremovable protecting groups (PRPGs) and a coumarin-derived PRPG can undergo wavelength-selective activation, giving independent optical control over a mixture of photocaged substrates using biologically benign long-wavelength light.
Collapse
Affiliation(s)
- Julie A Peterson
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, Ames, Iowa 50010, United States
| | - Ding Yuan
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, Ames, Iowa 50010, United States
| | - Arthur H Winter
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, Ames, Iowa 50010, United States
| |
Collapse
|
43
|
Affiliation(s)
- Christian G. Bochet
- Department of chemistry University of Fribourg 9 Chemin du Musée CH-1700 Fribourg Switzerland
| |
Collapse
|
44
|
Photolytical reactions for light induced biological effectors release: on the road to the phototherapeutic window. J INCL PHENOM MACRO 2021. [DOI: 10.1007/s10847-021-01071-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
45
|
Strasser P, Russo M, Stadler P, Breiteneder P, Redhammer G, Himmelsbach M, Brüggemann O, Monkowius U, Klán P, Teasdale I. Green-light photocleavable meso-methyl BODIPY building blocks for macromolecular chemistry. Polym Chem 2021. [DOI: 10.1039/d1py01245b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report the design of easily accessible, meso-methyl BODIPY monomers and their incorporation into photoclippable macromolecules.
Collapse
Affiliation(s)
- Paul Strasser
- Institute of Polymer Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, A-4040 Linz, Austria
| | - Marina Russo
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Pauline Stadler
- Institute of Polymer Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, A-4040 Linz, Austria
| | - Patrick Breiteneder
- Institute of Polymer Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, A-4040 Linz, Austria
| | - Günther Redhammer
- Chemie und Physik der Materialien, Abteilung für Materialwissenschaften und Mineralogie, Paris-Lodron Universität Salzburg, Jakob-Haringerstr. 2A, 5020 Salzburg, Austria
| | - Markus Himmelsbach
- Institute of Analytical Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, A-4040 Linz, Austria
| | - Oliver Brüggemann
- Institute of Polymer Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, A-4040 Linz, Austria
| | - Uwe Monkowius
- Linz School of Education, Johannes Kepler University Linz, Altenberger Straße 69, A-4040 Linz, Austria
| | - Petr Klán
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Ian Teasdale
- Institute of Polymer Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, A-4040 Linz, Austria
| |
Collapse
|
46
|
Abstract
More than four decades have passed since the first example of a light-activated (caged) compound was described. In the intervening years, a large number of light-responsive derivatives have been reported, several of which have found utility under a variety of in vitro conditions using cells and tissues. Light-triggered bioactivity furnishes spatial and temporal control, and offers the possibility of precision dosing and orthogonal communication with different biomolecules. These inherent attributes of light have been advocated as advantageous for the delivery and/or activation of drugs at diseased sites for a variety of indications. However, the tissue penetrance of light is profoundly wavelength-dependent. Only recently have phototherapeutics that are photoresponsive in the optical window of tissue (600-900 nm) been described. This Review highlights these recent discoveries, along with their limitations and clinical opportunities. In addition, we describe preliminary in vivo studies of prospective phototherapeutics, with an emphasis on the path that remains to be navigated in order to translate light-activated drugs into clinically useful therapeutics. Finally, the unique attributes of phototherapeutics is highlighted by discussing several potential disease applications.
Collapse
|
47
|
Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev 2020; 120:13135-13272. [PMID: 33125209 PMCID: PMC7833475 DOI: 10.1021/acs.chemrev.0c00663] [Citation(s) in RCA: 278] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.
Collapse
Affiliation(s)
- Roy Weinstain
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tomáš Slanina
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Dnyaneshwar Kand
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Petr Klán
- Department
of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
48
|
Josa‐Culleré L, Llebaria A. In the Search for Photocages Cleavable with Visible Light: An Overview of Recent Advances and Chemical Strategies. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000253] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Laia Josa‐Culleré
- Laboratory of Medicinal Chemistry Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) Jordi Girona 18–26 08034 Barcelona Spain
| | - Amadeu Llebaria
- Laboratory of Medicinal Chemistry Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) Jordi Girona 18–26 08034 Barcelona Spain
| |
Collapse
|
49
|
Tang J, Yu C, Loredo A, Chen Y, Xiao H. Site-Specific Incorporation of a Photoactivatable Fluorescent Amino Acid. Chembiochem 2020; 22:501-504. [PMID: 32961013 DOI: 10.1002/cbic.202000602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/21/2020] [Indexed: 12/11/2022]
Abstract
Photoactivatable fluorophores are emerging optical probes for biological applications. Most photoactivatable fluorophores are relatively large in size and need to be activated by ultraviolet light; this dramatically limits their applications. To introduce photoactivatable fluorophores into proteins, recent investigations have explored several protein-labeling technologies, including fluorescein arsenical hairpin (FlAsH) Tag, HaloTag labeling, SNAPTag labeling, and other bioorthogonal chemistry-based methods. However, these technologies require a multistep labeling process. Here, by using genetic code expansion and a single sulfur-for-oxygen atom replacement within an existing fluorescent amino acid, we have site-specifically incorporated the photoactivatable fluorescent amino acid thioacridonylalanine (SAcd) into proteins in a single step. Moreover, upon exposure to visible light, SAcd can be efficiently desulfurized to its oxo derivatives, thus restoring the strong fluorescence of labeled proteins.
Collapse
Affiliation(s)
- Juan Tang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Chenfei Yu
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Axel Loredo
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Yuda Chen
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Han Xiao
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Department of Biosciences, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| |
Collapse
|
50
|
Rodat T, Krebs M, Döbber A, Jansen B, Steffen-Heins A, Schwarz K, Peifer C. Restricted suitability of BODIPY for caging in biological applications based on singlet oxygen generation. Photochem Photobiol Sci 2020; 19:1319-1325. [PMID: 32820789 DOI: 10.1039/d0pp00097c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Recent studies report the boron-dipyrromethene (BODIPY) moiety to be interesting for caging applications in photopharmacology based on its response to irradiation with wavelengths in the biooptical window. Thus, in a model study, we investigated the meso-methyl-BODIPY caged CDK2 inhibitor AZD5438 and aimed to assess the usability of BODIPY as a photoremovable protecting group in photoresponsive kinase inhibitor applications. Photochemical analysis and biological characterisation in vitro revealed significant limitations of the BODIPY-caged inhibitor concept regarding solubility and uncaging in aqueous solution. Notably, we provide evidence for BODIPY-caged compounds generating singlet oxygen/radicals upon irradiation, followed by photodegradation of the caged compound system. Consequently, instead of caging, a non-specific induction of necrosis in cells suggests the potential usage of BODIPY derivatives for photodynamic approaches.
Collapse
Affiliation(s)
- Theo Rodat
- Institute of Pharmacy, Kiel University, Gutenbergstraße 76, 24118 Kiel, Germany.
| | - Melanie Krebs
- Institute of Pharmacy, Kiel University, Gutenbergstraße 76, 24118 Kiel, Germany.
| | - Alexander Döbber
- Institute of Pharmacy, Kiel University, Gutenbergstraße 76, 24118 Kiel, Germany.
| | - Björn Jansen
- Institute of Pharmacy, Kiel University, Gutenbergstraße 76, 24118 Kiel, Germany.
| | - Anja Steffen-Heins
- Institute of Human Nutrition and Food Science, Division of Food Technology, Kiel University, Heinrich-Hecht-Platz 10, 24118 Kiel, Germany
| | - Karin Schwarz
- Institute of Human Nutrition and Food Science, Division of Food Technology, Kiel University, Heinrich-Hecht-Platz 10, 24118 Kiel, Germany
| | - Christian Peifer
- Institute of Pharmacy, Kiel University, Gutenbergstraße 76, 24118 Kiel, Germany.
| |
Collapse
|