1
|
Nishijima A, Ximenis M, Qiao S, Hosono N, Uemura T. Block Architectures in 2D Polymer Networks Fabricated via Sequential Copolymerization in a Metal-Organic Framework. Chemistry 2025; 31:e202404169. [PMID: 39714825 PMCID: PMC11840661 DOI: 10.1002/chem.202404169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/24/2024]
Abstract
Two-dimensional (2D) polymer network monolayers with novel block architectures were fabricated via sequential copolymerization within a pillared-layer metal-organic framework (MOF) that served as the reaction template. The MOF provides a confined 2D nanospace, restricting the crosslinking copolymerization of vinyl monomers to two dimensions. Sequential crosslinking copolymerization of methyl methacrylate and styrene, regulated by the reversible addition-fragmentation chain transfer (RAFT) process, resulted in the formation of 2D block architectures with 'patchy' domains consisting of crosslinked poly(methyl methacrylate) and polystyrene segments. Atomic force microscopy revealed that the resulting block monolayers exhibited varied morphologies on substrates, attributed to their intrinsic flexibility in 2D conformation, which facilitated microphase separation of the 2D segments within monolayers, leading to the unique aggregation morphologies. The unprecedented block topology in 2D polymeric monolayers presented in this study introduces a novel strategy for designing 2D polymeric nanomaterials with flexible yet anisotropic properties.
Collapse
Affiliation(s)
- Ami Nishijima
- Department of Applied ChemistryGraduate School of EngineeringThe University of Tokyo7-3-1 Hongo, Bunkyo-kuTokyo113-8656Japan
| | - Marta Ximenis
- Joxe Mari Korta CenterPOLYMATUniversity of the Basque Country UPV/EHUAvda. Tolosa 7220018Donostia-San SebastianSpain
| | - Shihui Qiao
- Department of Applied ChemistryGraduate School of EngineeringThe University of Tokyo7-3-1 Hongo, Bunkyo-kuTokyo113-8656Japan
| | - Nobuhiko Hosono
- Department of Applied ChemistryGraduate School of EngineeringThe University of Tokyo7-3-1 Hongo, Bunkyo-kuTokyo113-8656Japan
| | - Takashi Uemura
- Department of Applied ChemistryGraduate School of EngineeringThe University of Tokyo7-3-1 Hongo, Bunkyo-kuTokyo113-8656Japan
| |
Collapse
|
2
|
Wei Z, Tu YM, Yim W, Quien M, Alizadehmojarad AA, Gong X, Strano MS. 1H NMR Trajectories for Analyzing the Growth and Purification of 2D Polyaramids. J Am Chem Soc 2025; 147:5921-5932. [PMID: 39912750 DOI: 10.1021/jacs.4c15053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
The recent synthesis of two-dimensional (2D) polyaramid (PA) polymers has shown that they exhibit remarkable mechanical and gas barrier properties. However, new methods are necessary to enable the efficient measurement of discoidal sizes of 2D polyaramids and tracking of their growth over time during reaction. Herein, we employ 1H NMR peak analysis of the aromatic and proton end group regions to characterize 2D-PA growth from monomeric precursors, alongside purification using two-stage filtration and washing steps. The ratio of aromatic to end group protons yields the molecular weight and discoidal size, while the skewness of the NMR peaks in the aromatic region provides a relative weighting between dendritic, small, and larger polycyclic domains. These two metrics delineate a distinct two-dimensional 1H NMR trajectory that we show to be valuable for analyzing the results of differing synthetic and processing conditions. Theoretical bounds corresponding to dendrimer and polycyclic limits as a function of repeat unit size are derived as an aid in trajectory analysis. These results establish an analytical framework for evaluating 2D-PA and its variants, facilitating the exploration of the synthetic landscape.
Collapse
Affiliation(s)
- Zitang Wei
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yu-Ming Tu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Wonjun Yim
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michelle Quien
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ali A Alizadehmojarad
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xun Gong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Wang Z, Ge Y, Li W, Zhang C, Dong Z. Enzymatically Covalent and Noncovalent Weaving toward Highly Efficient Synthesis of 2D Monolayered Molecular Fabrics. ACS Macro Lett 2025; 14:201-206. [PMID: 39899328 DOI: 10.1021/acsmacrolett.5c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Molecular fabrics with fascinating physical characteristics, such as structural flexibility and single-layered thinness, have attracted much attention. Chemists worldwide have been working on building unique molecularly woven structures in two dimensions. However, the synthesis of two-dimensional molecular weaving remains a challenging task, especially in water. Herein, we propose a straightforward and practical method to construct 2D molecular fabrics by enzymatically covalent and noncovalent syntheses in water. In particular, aromatic helical pentamers with two-terminal tyrosine residues (Penta-Tyr) can spontaneously dimerize via π-π interactions into double-helical interlocking structure, and the two-terminal tyrosine moieties of Penta-Tyr can undergo oxidative polymerization catalyzed by horseradish peroxidase (HRP) and hydrogen peroxide (H2O2) for effective covalent cross-linking. The 2D monolayered molecular fabrics can be readily prepared by the catalysis of HRP and H2O2 under mild conditions, which exhibit concentration-dependent weaving behavior. This work not only demonstrates an enzyme-catalyzed approach for the highly efficient synthesis of 2D monolayered molecular fabrics for the first time but also will promote the controllable preparation and application of water-soluble 2D molecular fabrics.
Collapse
Affiliation(s)
- Zhenzhu Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- Center for Supramolecular Chemical Biology, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Yunpeng Ge
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- Center for Supramolecular Chemical Biology, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Wencan Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- Center for Supramolecular Chemical Biology, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Chenyang Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- Center for Supramolecular Chemical Biology, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Zeyuan Dong
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- Center for Supramolecular Chemical Biology, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
4
|
Xu JQ, Shi R, Zhu YL, Lu ZY. Folding behaviors of two-dimensional flexible polymers. J Chem Phys 2024; 161:161101. [PMID: 39440903 DOI: 10.1063/5.0233042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
Unlike one-dimensional polymers, the theoretical framework on the behaviors of two-dimensional (2D) polymers is far from completeness. In this study, we model single-layer flexible 2D polymers of different sizes and examine their scaling behaviors in solution, represented by Rg ∼ Lν, where Rg is the radius of gyration and L is the side length of a 2D polymer. We find that the scaling exponent ν is 0.96 for a good solvent and 0.64 for under poor solvent condition. Interestingly, we observe a previously unnoticed phenomenon: under intermediate solvent conditions, the 2D polymer folds to maintain a flat structure, and as L becomes larger, multiple folded structures emerge. We introduce a shape parameter Q to diagram the relationship of folded structures with the polymer size and solvent condition. Theoretically, we explain the folding transitions by the competition between bending and solvophobic free energies.
Collapse
Affiliation(s)
- Jia-Qi Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130023, China
| | - Rui Shi
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130023, China
| | - You-Liang Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130023, China
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130023, China
| |
Collapse
|
5
|
Balan H, Sureshan KM. Hierarchical single-crystal-to-single-crystal transformations of a monomer to a 1D-polymer and then to a 2D-polymer. Nat Commun 2024; 15:6638. [PMID: 39103335 DOI: 10.1038/s41467-024-51051-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/26/2024] [Indexed: 08/07/2024] Open
Abstract
Designing and synthesizing flawless two-dimensional polymers (2D-Ps) via meticulous molecular preorganization presents an intriguing yet challenging frontier in research. We report here the single-crystal-to-single-crystal (SCSC) synthesis of a 2D-P via thermally induced topochemical azide-alkyne cycloaddition (TAAC) reaction. A designed monomer incorporating two azide and two alkyne units is synthesized. The azide and alkyne groups are preorganized in the monomer crystal in reactive geometries for polymerizations in two orthogonal directions. On heating, the polymerizations proceed in a hierarchical manner; at first, the monomer reacts regiospecifically in a SCSC fashion to form a 1,5-triazolyl-linked 1D polymer (1D-P), which upon further heating undergoes another SCSC polymerization to a 2D-P through a second regiospecific TAAC reaction forming 1,4-triazolyl-linkages. Two different linkages in orthogonal directions make this an architecturally attractive 2D-P, as determined, at atomic resolution, by single-crystal X-ray diffraction. The 2D-P reported here is thermally stable in view of the robust triazole-linkages and can be exfoliated as 2D-sheets.
Collapse
Affiliation(s)
- Haripriya Balan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, 695551, India
| | - Kana M Sureshan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, 695551, India.
| |
Collapse
|
6
|
Gao W, Zhi G, Zhou M, Niu T. Growth of Single Crystalline 2D Materials beyond Graphene on Non-metallic Substrates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311317. [PMID: 38712469 DOI: 10.1002/smll.202311317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/14/2024] [Indexed: 05/08/2024]
Abstract
The advent of 2D materials has ushered in the exploration of their synthesis, characterization and application. While plenty of 2D materials have been synthesized on various metallic substrates, interfacial interaction significantly affects their intrinsic electronic properties. Additionally, the complex transfer process presents further challenges. In this context, experimental efforts are devoted to the direct growth on technologically important semiconductor/insulator substrates. This review aims to uncover the effects of substrate on the growth of 2D materials. The focus is on non-metallic substrate used for epitaxial growth and how this highlights the necessity for phase engineering and advanced characterization at atomic scale. Special attention is paid to monoelemental 2D structures with topological properties. The conclusion is drawn through a discussion of the requirements for integrating 2D materials with current semiconductor-based technology and the unique properties of heterostructures based on 2D materials. Overall, this review describes how 2D materials can be fabricated directly on non-metallic substrates and the exploration of growth mechanism at atomic scale.
Collapse
Affiliation(s)
- Wenjin Gao
- Tianmushan Laboratory, Hangzhou, 310023, China
- Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China
- School of Physics, Beihang University, Beijing, 100191, China
| | | | - Miao Zhou
- Tianmushan Laboratory, Hangzhou, 310023, China
- Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China
- School of Physics, Beihang University, Beijing, 100191, China
| | - Tianchao Niu
- Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China
| |
Collapse
|
7
|
Ren Y, Xu Y. Recent advances in two-dimensional polymers: synthesis, assembly and energy-related applications. Chem Soc Rev 2024; 53:1823-1869. [PMID: 38192222 DOI: 10.1039/d3cs00782k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Two-dimensional polymers (2DPs) are a class of 2D crystalline polymer materials with definite structures, which have outstanding physical-chemical and electronic properties. They cleverly link organic building units through strong covalent bonds and can construct functional 2DPs through reasonable design and selection of different monomer units to meet various application requirements. As promising energy materials, 2DPs have developed rapidly in recent years. This review first introduces the basic overview of 2DPs, such as their historical development, inherent 2D characteristics and diversified topological advantages, followed by the summary of the typical 2DP synthesis methods recently (including "top-down" and "bottom-up" methods). The latest research progress in assembly and processing of 2DPs and the energy-related applications in energy storage and conversion are also discussed. Finally, we summarize and prospect the current research status, existing challenges, and future research directions of 2DPs.
Collapse
Affiliation(s)
- Yumei Ren
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China.
- School of Materials Science and Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450046, China
| | - Yuxi Xu
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China.
| |
Collapse
|
8
|
Pavlak I, Matasović L, Buchanan EA, Michl J, Rončević I. Electronic Structure of Metalloporphenes, Antiaromatic Analogues of Graphene. J Am Chem Soc 2024; 146:3992-4000. [PMID: 38294407 PMCID: PMC10870706 DOI: 10.1021/jacs.3c12079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
Zinc porphene is a two-dimensional material made of fully fused zinc porphyrins in a tetragonal lattice. It has a fully conjugated π-system, making it similar to graphene. Zinc porphene has recently been synthesized, and a combination of rough conductivity measurements and infrared and Raman spectroscopies all suggested that it is a semiconductor (Magnera, T.F. et al. Porphene and Porphite as Porphyrin Analogs of Graphene and Graphite, Nat. Commun.2023, 14, 6308). This is in contrast with all previous predictions of its electronic structure, which indicated metallic conductivity. We show that the gap-opening in zinc porphene is caused by a Peierls distortion of its unit cell from square to rectangular, thus giving the first account of its electronic structure in agreement with the experiment. Accounting for this distortion requires proper treatment of electron delocalization, which can be done using hybrid functionals with a substantial amount of exact exchange. Such a functional, PBE38, is then applied to predict the properties of many first transition row metalloporphenes, some of which have already been prepared. We find that changing the metal strongly affects the electronic structure of metalloporphenes, resulting in a rich variety of both metallic conductors and semiconductors, which may be of great interest to molecular electronics and spintronics. Properties of these materials are mostly governed by the extent of the Peierls distortion and the number of electrons in their π-system, analogous to changes in aromaticity observed in cyclic conjugated molecules upon oxidation or reduction. These results give an account of how the concept of antiaromaticity can be extended to periodic systems.
Collapse
Affiliation(s)
- Ivan Pavlak
- Department
of Chemistry, Faculty of Science, University
of Zagreb, Horvatovac 102A, Zagreb 10000, Croatia
| | - Lujo Matasović
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - Eric A. Buchanan
- Department
of Chemistry and Biochemistry, University
of Colorado, Boulder, Colorado 80309-0215, United States
| | - Josef Michl
- Department
of Chemistry and Biochemistry, University
of Colorado, Boulder, Colorado 80309-0215, United States
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, Prague 6 16610, Czech Republic
| | - Igor Rončević
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, Prague 6 16610, Czech Republic
- Department
of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford OX1 3TA, U.K.
| |
Collapse
|
9
|
Rubert L, Islam MF, Greytak AB, Prakash R, Smith MD, Gomila RM, Frontera A, Shimizu LS, Soberats B. Two-Dimensional Supramolecular Polymerization of a Bis-Urea Macrocycle into a Brick-Like Hydrogen-Bonded Network. Angew Chem Int Ed Engl 2023; 62:e202312223. [PMID: 37750233 DOI: 10.1002/anie.202312223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 09/27/2023]
Abstract
We report on a dendronized bis-urea macrocycle 1 self-assembling via a cooperative mechanism into two-dimensional (2D) nanosheets formed solely by alternated urea-urea hydrogen bonding interactions. The pure macrocycle self-assembles in bulk into one-dimensional liquid-crystalline columnar phases. In contrast, its self-assembly mode drastically changes in CHCl3 or tetrachloroethane, leading to 2D hydrogen-bonded networks. Theoretical calculations, complemented by previously reported crystalline structures, indicate that the 2D assembly is formed by a brick-like hydrogen bonding pattern between bis-urea macrocycles. This assembly is promoted by the swelling of the trisdodecyloxyphenyl groups upon solvation, which frustrates, due to steric effects, the formation of the thermodynamically more stable columnar macrocycle stacks. This work proposes a new design strategy to access 2D supramolecular polymers by means of a single non-covalent interaction motif, which is of great interest for materials development.
Collapse
Affiliation(s)
- Llorenç Rubert
- Department of Chemistry, Universitat de les Illes Balears, Cra. Valldemossa, Km. 7.5, 07122, Palma de Mallorca, Spain
| | - Md Faizul Islam
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC-29208, USA
| | - Andrew B Greytak
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC-29208, USA
| | - Rahul Prakash
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC-29208, USA
| | - Mark D Smith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC-29208, USA
| | - Rosa Maria Gomila
- Department of Chemistry, Universitat de les Illes Balears, Cra. Valldemossa, Km. 7.5, 07122, Palma de Mallorca, Spain
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears, Cra. Valldemossa, Km. 7.5, 07122, Palma de Mallorca, Spain
| | - Linda S Shimizu
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC-29208, USA
| | - Bartolome Soberats
- Department of Chemistry, Universitat de les Illes Balears, Cra. Valldemossa, Km. 7.5, 07122, Palma de Mallorca, Spain
| |
Collapse
|
10
|
Itoh T, Kondo F, Suzuki T, Inayoshi K, Uno T, Kubo M, Tohnai N, Miyata M. Elucidation of Substituent-Responsive Reactivities via Hierarchical and Asymmetric Assemblies in Crystalline p-Quinodimethane Derivatives. Chemistry 2023; 29:e202301327. [PMID: 37439484 DOI: 10.1002/chem.202301327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/14/2023]
Abstract
We propose a mechanism for substituent-responsive reactivities of p-quinodimethane derivatives with four ester groups through their hierarchical and asymmetric assembly modes. Four asymmetric 7,8,8-tris(methoxycarbonyl)-p-quinodimethanes with a 7-positioned ethoxycarbonyl (2 a(H)), 2'-fluoroethoxycarbonyl (2 b(F)), 2'-chloroethoxycarbonyl (2 c(Cl)), or 2'-bromoethoxycarbonyl (2 d(Br)) were synthesized and crystallized. 2 a(H), 2 b(F) and 2 d(Br) afforded only one shape crystal, while 2 c(Cl) did two polymorphic 2 c(Cl)-α and 2 c(Cl)-β. UV-irradiation induced topochemical polymerization for 2 a(H), no reactions for 2 b(F) and 2 c(Cl)-α, and [6+6] photocycloaddition dimerization for 2 c(Cl)-β and 2 d(Br). Such substituent-responsive reactivities and crystal structures were compared with those of the known symmetric 7,7,8,8-tetrakis(alkoxycarbonyl)-p-quinodimethanes such as 7,7,8,8-tetrakis(methoxycarbonyl)- (1 a(Me)-α and 1 a(Me)-β), 7,7,8,8-tetrakis(ethoxycarbonyl)- (1 b(Et)), and 7,7,8,8-tetrakis(bromoethoxycarbonyl)- (1 c(BrEt)). The comparative study clarified that the reactivities and crystal structures are classified into four types that link to each other. This linkage is understandable when we analyze the crystal structures through the following hierarchical and asymmetric assemblies; conformers, dimers, one dimensional (1D)-columns, two dimensional (2D)-sheets, and three dimensional (3D)-stacked sheets (3D-crystals). This supramolecular viewpoint is supported by intermolecular interaction energies among neighbored molecules with the density functional theory (DFT) calculation. Such research enables us to elucidate the substituent-responsive reactivities of the crystals, and reminds us of the selection of the right path in a so-called "maze game".
Collapse
Affiliation(s)
- Takahito Itoh
- Department of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu-shi, Mie, 514-8507, Japan
| | - Fumiaki Kondo
- Department of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu-shi, Mie, 514-8507, Japan
| | - Takumi Suzuki
- Department of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu-shi, Mie, 514-8507, Japan
| | - Kohji Inayoshi
- Department of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu-shi, Mie, 514-8507, Japan
| | - Takahiro Uno
- Department of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu-shi, Mie, 514-8507, Japan
| | - Masataka Kubo
- Department of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu-shi, Mie, 514-8507, Japan
| | - Norimitsu Tohnai
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mikiji Miyata
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| |
Collapse
|
11
|
Mu B, Wang L, Yang Z, Luo X, Tian W. Topological transformation across different dimensions of supramolecular polymer via photo-isomerization. Chem Commun (Camb) 2023; 59:12645-12648. [PMID: 37791951 DOI: 10.1039/d3cc03911k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Herein, we report a novel topological transformable supramolecular polymer capable of converting its architecture from a two-dimensional to a one-dimensional structure. The transformative process is achieved by the precise control of the steric configuration of constituent monomers via photo-isomerization.
Collapse
Affiliation(s)
- Bin Mu
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Liang Wang
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Zhongke Yang
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Xiao Luo
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Wei Tian
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|
12
|
Ahmad A, Siddiqui SA, Mittal G, Sukumar N, Dubey KD, Kapat A. Design and Synthesis of Co-initiators via Base-Catalysed Sequential Conjugate Addition: Application in Photoinduced Radical Polymerisation Reaction. Chemistry 2023; 29:e202301844. [PMID: 37503865 DOI: 10.1002/chem.202301844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 07/29/2023]
Abstract
Applications of photochemistry are becoming very popular in modern-day life due to its operational simplicity, environmentally friendly and economically sustainable nature in comparison to thermochemistry. In particular photoinduced radical polymerisation (PRP) reactions are finding more biological applications and especially in the areas of dental restoration processes, tissue engineering and artificial bone generation. A type-II photoinitiator and co-initiator-promoted PRP turned out to be a cost-effective protocol, and herein we report the design and synthesis of a new efficient co-initiator for a PRP reaction via a barrierless sequential conjugate addition reaction. Experimental mechanistic observations have been further complemented by computational data. Time for newly synthesised 1,2-benzenedithiol (DTH) based co-initiator promoted polymerisation of urethane dimethacrylate (UDMA, 70 %) and triethylene glycol dimethacrylate (TEGDMA, 30 %) in presence of 450 nm LED (15 W) under the aerobic conditions is 38 seconds. Polymeric material has high glass transition temperature, improved mechanical strength (860 BHN) and longer in-depth polymerisation (3 cm).
Collapse
Affiliation(s)
- Asrar Ahmad
- Department of Chemistry, School of Natural Science, Shiv Nadar (Institution of Eminence Deemed to be University), Delhi-NCR, Dadri, Chithera, Gautam Buddha Nagar, Uttar Pradesh, 201314, India
| | - Shakir Ali Siddiqui
- Department of Chemistry, School of Natural Science, Shiv Nadar (Institution of Eminence Deemed to be University), Delhi-NCR, Dadri, Chithera, Gautam Buddha Nagar, Uttar Pradesh, 201314, India
| | - Garvisha Mittal
- Department of Chemistry, School of Natural Science, Shiv Nadar (Institution of Eminence Deemed to be University), Delhi-NCR, Dadri, Chithera, Gautam Buddha Nagar, Uttar Pradesh, 201314, India
| | - N Sukumar
- Department of Chemistry, School of Natural Science, Shiv Nadar (Institution of Eminence Deemed to be University), Delhi-NCR, Dadri, Chithera, Gautam Buddha Nagar, Uttar Pradesh, 201314, India
- Current affiliation: Centre for Computational Engineering & Networking, School of Artificial Intelligence, Amrita Vishwa Vidyapeetham, Coimbatore, 641105, Tamil Nadu, India
| | - Kshatresh Dutta Dubey
- Department of Chemistry, School of Natural Science, Shiv Nadar (Institution of Eminence Deemed to be University), Delhi-NCR, Dadri, Chithera, Gautam Buddha Nagar, Uttar Pradesh, 201314, India
| | - Ajoy Kapat
- Department of Chemistry, School of Natural Science, Shiv Nadar (Institution of Eminence Deemed to be University), Delhi-NCR, Dadri, Chithera, Gautam Buddha Nagar, Uttar Pradesh, 201314, India
| |
Collapse
|
13
|
Magnera TF, Dron PI, Bozzone JP, Jovanovic M, Rončević I, Tortorici E, Bu W, Miller EM, Rogers CT, Michl J. Porphene and porphite as porphyrin analogs of graphene and graphite. Nat Commun 2023; 14:6308. [PMID: 37813887 PMCID: PMC10562370 DOI: 10.1038/s41467-023-41461-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 09/01/2023] [Indexed: 10/11/2023] Open
Abstract
Two-dimensional materials have unusual properties and promise applications in nanoelectronics, spintronics, photonics, (electro)catalysis, separations, and elsewhere. Most are inorganic and their properties are difficult to tune. Here we report the preparation of Zn porphene, a member of the previously only hypothetical organic metalloporphene family. Similar to graphene, these also are fully conjugated two-dimensional polymers, but are composed of fused metalloporphyrin rings. Zn porphene is synthesized on water surface by two-dimensional oxidative polymerization of a Langmuir layer of Zn porphyrin with K2IrCl6, reminiscent of known one-dimensional polymerization of pyrroles. It is transferable to other substrates and bridges μm-sized pits. Contrary to previous theoretical predictions of metallic conductivity, it is a p-type semiconductor due to a predicted Peierls distortion of its unit cell from square to rectangular, analogous to the appearance of bond-length alternation in antiaromatic molecules. The observed reversible insertion of various metal ions, possibly carrying a fifth or sixth ligand, promises tunability and even patterning of circuits on an atomic canvas without removing any π centers from conjugation.
Collapse
Grants
- University of Colorado Boulder Institute of Organic Chemistry and Biochemistry, RVO: 61388963 The Czech Science Foundation grant 20-03691X
- Army Research Laboratory and Army Research Office grant W911NF-15-1-0435 National Science Foundation grant CHE 1900226 DARPA grant HR00111810006 University of Colorado Boulder
- Army Research Laboratory and Army Research Office grant W911NF-15-1-0435 National Science Foundation grant CHE 1900226 University of Colorado Boulder
- University of Colorado Boulder Research Computing Group, funded by National Science Foundation grants ACI-1532235 and ACI-1532236, and Colorado State University Institute of Organic Chemistry and Biochemistry, RVO: 61388963 The Czech Science Foundation grant 20-03691X Czech Ministry of Education, Youth and Sports grant e-INFRA CZ, ID:90140 Wallonia-Brussels International Excellence Grant (IR)
- Department of Energy Office of Science, BES, Division of Chemical Sciences, Geosciences and Biosciences, Solar Photochemistry. The views expressed in the article do not necessarily represent the views of the Department of Energy or the U.S. Government. Alliance for Sustainable Energy, LLC, operating NREL for Department of Energy grant DE-AC36-08GO28308
Collapse
Affiliation(s)
- Thomas F Magnera
- Department of Chemistry, University of Colorado, Boulder, CO, 80309, USA
| | - Paul I Dron
- Department of Chemistry, University of Colorado, Boulder, CO, 80309, USA
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Jared P Bozzone
- Department of Chemistry, University of Colorado, Boulder, CO, 80309, USA
| | - Milena Jovanovic
- Department of Chemistry, University of Colorado, Boulder, CO, 80309, USA
| | - Igor Rončević
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Edward Tortorici
- Department of Physics, University of Colorado, Boulder, CO, 80309, USA
| | - Wei Bu
- ChemMatCARS, University of Chicago, Lemont, IL, 60439, USA
| | - Elisa M Miller
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Charles T Rogers
- Department of Physics, University of Colorado, Boulder, CO, 80309, USA
- Renewable and Sustainable Energy Institute (RASEI) at the University of Colorado, Boulder, CO, 80303, USA
| | - Josef Michl
- Department of Chemistry, University of Colorado, Boulder, CO, 80309, USA.
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
14
|
Sasaki N, Kikkawa J, Ishii Y, Uchihashi T, Imamura H, Takeuchi M, Sugiyasu K. Multistep, site-selective noncovalent synthesis of two-dimensional block supramolecular polymers. Nat Chem 2023; 15:922-929. [PMID: 37264101 DOI: 10.1038/s41557-023-01216-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 04/24/2023] [Indexed: 06/03/2023]
Abstract
Although the principles of noncovalent bonding are well understood and form the basis for the syntheses of many intricate supramolecular structures, supramolecular noncovalent synthesis cannot yet achieve the levels of precision and complexity that are attainable in organic and/or macromolecular covalent synthesis. Here we show the stepwise synthesis of block supramolecular polymers from metal-porphyrin derivatives (in which the metal centre is Zn, Cu or Ni) functionalized with fluorinated alkyl chains. These monomers first undergo a one-dimensional supramolecular polymerization and cyclization process to form a toroidal structure. Subsequently, successive secondary nucleation, elongation and cyclization steps result in two-dimensional assemblies with concentric toroidal morphologies. The site selectivity endowed by the fluorinated chains, reminiscent of regioselectivity in covalent synthesis, enables the precise control of the compositions and sequences of the supramolecular structures, as demonstrated by the synthesis of several triblock supramolecular terpolymers.
Collapse
Grants
- JP22H02134 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 20H04682 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP19K05592 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 20H04669 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP20H05868 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
Collapse
Affiliation(s)
- Norihiko Sasaki
- Molecular Design and Function Group, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| | - Jun Kikkawa
- Electron Microscopy Group, Center for Basic Research on Materials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| | - Yoshiki Ishii
- Department of Physics, Nagoya University, Nagoya, Japan
| | | | - Hitomi Imamura
- Molecular Design and Function Group, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
- Department of Materials Science and Engineering, Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Masayuki Takeuchi
- Molecular Design and Function Group, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
- Department of Materials Science and Engineering, Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazunori Sugiyasu
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan.
| |
Collapse
|
15
|
Jiang J, Xu S, Ma H, Li C, Huang Z. Photoresponsive hydrogel-based soft robot: A review. Mater Today Bio 2023; 20:100657. [PMID: 37229213 PMCID: PMC10205512 DOI: 10.1016/j.mtbio.2023.100657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/13/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023] Open
Abstract
Soft robots have received a lot of attention because of their great human-robot interaction and environmental adaptability. Most soft robots are currently limited in their applications due to wired drives. Photoresponsive soft robotics is one of the most effective ways to promote wireless soft drives. Among the many soft robotics materials, photoresponsive hydrogels have received a lot of attention due to their good biocompatibility, ductility, and excellent photoresponse properties. This paper visualizes and analyzes the research hotspots in the field of hydrogels using the literature analysis tool Citespace, demonstrating that photoresponsive hydrogel technology is currently a key research direction. Therefore, this paper summarizes the current state of research on photoresponsive hydrogels in terms of photochemical and photothermal response mechanisms. The progress of the application of photoresponsive hydrogels in soft robots is highlighted based on bilayer, gradient, orientation, and patterned structures. Finally, the main factors influencing its application at this stage are discussed, including the development directions and insights. Advancement in photoresponsive hydrogel technology is crucial for its application in the field of soft robotics. The advantages and disadvantages of different preparation methods and structures should be considered in different application scenarios to select the best design scheme.
Collapse
Affiliation(s)
- Jingang Jiang
- Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin, 150080, Heilongjiang, PR China
| | - Shuainan Xu
- Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin, 150080, Heilongjiang, PR China
| | - Hongyuan Ma
- Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin, 150080, Heilongjiang, PR China
- Harbin Branch of Taili Communication Technology Limited, China Electronics Technology Group Corporation, Harbin, 150080, Heilongjiang, PR China
| | - Changpeng Li
- Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin, 150080, Heilongjiang, PR China
| | - Zhiyuan Huang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, PR China
| |
Collapse
|
16
|
Corra S, Curcio M, Credi A. Photoactivated Artificial Molecular Motors. JACS AU 2023; 3:1301-1313. [PMID: 37234111 PMCID: PMC10207102 DOI: 10.1021/jacsau.3c00089] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023]
Abstract
Accurate control of long-range motion at the molecular scale holds great potential for the development of ground-breaking applications in energy storage and bionanotechnology. The past decade has seen tremendous development in this area, with a focus on the directional operation away from thermal equilibrium, giving rise to tailored man-made molecular motors. As light is a highly tunable, controllable, clean, and renewable source of energy, photochemical processes are appealing to activate molecular motors. Nonetheless, the successful operation of molecular motors fueled by light is a highly challenging task, which requires a judicious coupling of thermal and photoinduced reactions. In this paper, we focus on the key aspects of light-driven artificial molecular motors with the aid of recent examples. A critical assessment of the criteria for the design, operation, and technological potential of such systems is provided, along with a perspective view on future advances in this exciting research area.
Collapse
Affiliation(s)
- Stefano Corra
- CLAN-Center
for Light Activated Nanostructures, Istituto
per la Sintesi Organica e Fotoreattività, CNR area della ricerca
Bologna, via Gobetti,
101, 40129 Bologna, Italy
- Dipartimento
di Chimica Industriale “Toso-Montanari”, Alma Mater Studiorum - Università di Bologna, viale del Risorgimento, 8, 40136 Bologna, Italy
| | - Massimiliano Curcio
- CLAN-Center
for Light Activated Nanostructures, Istituto
per la Sintesi Organica e Fotoreattività, CNR area della ricerca
Bologna, via Gobetti,
101, 40129 Bologna, Italy
- Dipartimento
di Chimica Industriale “Toso-Montanari”, Alma Mater Studiorum - Università di Bologna, viale del Risorgimento, 8, 40136 Bologna, Italy
| | - Alberto Credi
- CLAN-Center
for Light Activated Nanostructures, Istituto
per la Sintesi Organica e Fotoreattività, CNR area della ricerca
Bologna, via Gobetti,
101, 40129 Bologna, Italy
- Dipartimento
di Chimica Industriale “Toso-Montanari”, Alma Mater Studiorum - Università di Bologna, viale del Risorgimento, 8, 40136 Bologna, Italy
| |
Collapse
|
17
|
Wang C, Lyu P, Chen Z, Xu Y. Green and Scalable Synthesis of Atomic-Thin Crystalline Two-Dimensional Triazine Polymers with Ultrahigh Photocatalytic Properties. J Am Chem Soc 2023. [PMID: 37171112 DOI: 10.1021/jacs.3c02874] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Scalable and eco-friendly synthesis of crystalline two-dimensional (2D) polymers with proper band gap and single-layer thickness is highly desired for the fundamental research and practical applications of 2D polymers; however, it remains a considerable and unresolved challenge. Herein, we report a convenient and robust method to synthesize a series of crystalline covalent triazine framework nanosheets (CTF NSs) with a thickness of ∼80 nm via a new solvent-free salt-catalyzed nitrile cyclotrimerization process, which enables the cost-effective large-scale preparation of crystalline CTF NSs at the hundred-gram level. Theoretical calculations and detailed experiments revealed for the first time that the conventional salts such as KCl can not only act as physical templates as traditionally believed but also more importantly can efficiently catalyze the cyclotrimerization reaction of carbonitrile monomers as a new kind of green solid catalysts to achieve crystalline CTF NSs. Upon simple liquid-phase sonication, these CTF NSs can be easily further exfoliated into abundant single-layer crystalline 2D triazine polymers (2D-TPs) in high yields. The obtained atomically thin crystalline 2D-TPs with a band gap of 2.36 eV and rich triazine active groups exhibited a remarkable photocatalytic hydrogen evolution rate of 1321 μmol h-1 under visible light irradiation with an apparent quantum yield up to 29.5% at 420 nm and excellent photocatalytic overall water splitting activity with a solar-to-hydrogen efficiency up to 0.35%, which exceed all molecular framework materials and are among the best metal-free photocatalysts ever reported. Moreover, the processable 2D-TPs could be readily assembled on a support as a photocatalytic film device, which demonstrated superior photocatalytic performance (135.2 mmol h-1 m-2 for hydrogen evolution).
Collapse
Affiliation(s)
- Congxu Wang
- Zhejiang University, Hangzhou 310027, Zhejiang Province, China
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China
| | - Pengbo Lyu
- Hunan Provincial Key Laboratory of Thin Film Materials and Devices, School of Material Sciences and Engineering, Xiangtan University, Xiangtan 411105, Hunan Province, China
| | - Zhong Chen
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Instrumentation and Service Center for Molecular Sciences, Westlake University, Hangzhou 310024, Zhejiang Province, China
| | - Yuxi Xu
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
18
|
Zhang X, Kitao T, Nishijima A, Uemura T. Thermal Transformation of Polyacrylonitrile Accelerated by the Formation of Ultrathin Nanosheets in a Metal-Organic Framework. ACS Macro Lett 2023; 12:415-420. [PMID: 36916794 DOI: 10.1021/acsmacrolett.3c00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
In this study, polyacrylonitrile (PAN) nanosheets with unimolecular thickness were successfully synthesized by cross-linking polymerization in the 2D nanospaces of a metal-organic framework. In contrast to 1D and 3D analogues, crystallization could be inhibited by the topological constraint of the ultrathin 2D network structure, allowing for an efficient thermal transformation reaction of PAN. The amorphous nature of the PAN nanosheets led to an increase in the access of oxygen molecules to the polymer chains, facilitating the thermal dehydroaromatization reactions to yield a ladder polymer structure with a highly extended conjugated system. Notably, further carbonization of this ladder polymer afforded graphitic carbon with a highly ordered structure because of the well-defined precursor structure.
Collapse
Affiliation(s)
- Xiyuan Zhang
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Takashi Kitao
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Ami Nishijima
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takashi Uemura
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
19
|
Interfacial Synthesis of an Ultrathin Two-Dimensional Polymer Film via [2 + 2] Photocycloaddition. Molecules 2023; 28:molecules28041930. [PMID: 36838919 PMCID: PMC9965025 DOI: 10.3390/molecules28041930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
A carbon-carbon-linked, ultrathin, two-dimensional (2D) polymer film was prepared at the air/water interface through photochemically triggered [2 + 2] cycloaddition. The preorganization of the monomers on the water surface and the subsequent photo-polymerization led to the successful preparation of the ultrathin 2D polymer film. The obtained film is continuous, free standing, and has a large area (over 50 μm2). Transmission electron microscopy (TEM) and atomic force microscopy (AFM) give clear evidence of the ultrathin film morphology. Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) indicate successful photo-induced [2 + 2] polymerization.
Collapse
|
20
|
Salzillo T, Brillante A, Weber T, Schlüter AD. What Changes in Topochemistry when Going from Small Molecule Dimerizations to Polymerizations in Single Crystals? Helv Chim Acta 2023. [DOI: 10.1002/hlca.202200168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Tommaso Salzillo
- Department of Industrial Chemistry ‘Toso Montanari' University of Bologna Viale del Risorgimento 4 IT-40136 Bologna Italy
| | - Aldo Brillante
- Department of Industrial Chemistry ‘Toso Montanari' University of Bologna Viale del Risorgimento 4 IT-40136 Bologna Italy
| | - Thomas Weber
- Department of Materials ETH Zürich Vladimir-Prelog-Weg 5 CH-8093 Zürich Switzerland
| | - A. Dieter Schlüter
- Department of Materials ETH Zürich Vladimir-Prelog-Weg 5 CH-8093 Zürich Switzerland
| |
Collapse
|
21
|
Matsumoto M, Sutrisno L, Ariga K. Covalent nanoarchitectonics: Polymer synthesis with designer structures and sequences. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Michio Matsumoto
- International Center for Materials Nanoarchitectonics (WPI‐MANA) National Institute for Materials Science (NIMS) Ibaraki Japan
| | - Linawati Sutrisno
- International Center for Materials Nanoarchitectonics (WPI‐MANA) National Institute for Materials Science (NIMS) Ibaraki Japan
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI‐MANA) National Institute for Materials Science (NIMS) Ibaraki Japan
- Graduate School of Frontier Sciences The University of Tokyo Chiba Japan
| |
Collapse
|
22
|
Mrđenović D, Cai ZF, Pandey Y, Bartolomeo GL, Zenobi R, Kumar N. Nanoscale chemical analysis of 2D molecular materials using tip-enhanced Raman spectroscopy. NANOSCALE 2023; 15:963-974. [PMID: 36541047 PMCID: PMC9851175 DOI: 10.1039/d2nr05127c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/01/2022] [Indexed: 05/10/2023]
Abstract
Two-dimensional (2D) molecular materials have attracted immense attention due to their unique properties, promising a wide range of exciting applications. To understand the structure-property relationship of these low-dimensional materials, sensitive analytical tools capable of providing structural and chemical characterisation at the nanoscale are required. However, most conventional analytical techniques fail to meet this challenge, especially in a label-free and non-destructive manner under ambient conditions. In the last two decades, tip-enhanced Raman spectroscopy (TERS) has emerged as a powerful analytical technique for nanoscale chemical characterisation by combining the high spatial resolution of scanning probe microscopy and the chemical sensitivity and specificity of surface-enhanced Raman spectroscopy. In this review article, we provide an overview of the application of TERS for nanoscale chemical analysis of 2D molecular materials, including 2D polymers, biomimetic lipid membranes, biological cell membranes, and 2D reactive systems. The progress in the structural and chemical characterisation of these 2D materials is demonstrated with key examples from our as well as other laboratories. We highlight the unique information that TERS can provide as well as point out the common pitfalls in experimental work and data interpretation and the possible ways of averting them.
Collapse
Affiliation(s)
- Dušan Mrđenović
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland.
| | - Zhen-Feng Cai
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland.
| | - Yashashwa Pandey
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland.
| | | | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland.
| | - Naresh Kumar
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland.
| |
Collapse
|
23
|
Shen H, Yang Z, Xiong Y, Cao Q, Xu K, Lin M, Zhang J, Dong Z. An organic-based amphiphilic Janus polymer nanosheet: Synthesis, properties, and microscopic dispersion interpretations. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
24
|
Zhang Y, Ma N, Wang T, Fan J. Work function regulation of surface-engineered Ti 2CT 2 MXenes for efficient electrochemical nitrogen reduction reaction. NANOSCALE 2022; 14:12610-12619. [PMID: 35880702 DOI: 10.1039/d2nr01861f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Electrochemical conversion of nitrogen to ammonia is a promising method in modern agriculture and industry due to its suitability and feasibility under mild conditions. Therefore, seeking electrocatalysts and understanding the catalytic mechanisms are of great importance. In this work, by combining the concept of the synergetic effect of the terminal vacancy and transition metal active center, we studied the whole catalytic mechanism of defective Ti2CT2 MXenes with functional groups (T = O, F, H, OH) by employing first-principles calculations. It is demonstrated that the electron transfer behavior of 2D transition metal carbides can be tuned by modifying the surface functional groups. Herein, the rarely investigated work function regulation is proved to effectively alter the electron transfer ability, thus the binding strength of key intermediates on the surface can be optimized. Besides, Ti2CO2 with an oxygen vacancy is identified as a promising candidate through a distal mechanism, where the calculated electronic properties reveal that the introduction of in-gap states is responsible for activating N2 with physical adsorption. In addition, obvious orbital splitting of the σ and π* orbitals of N2 is observed due to the hybridization of frontier orbitals. The symmetry matching rule of the frontier orbitals of π* 2p and the σ 2p orbitals of N with Ti d orbitals further illustrates the "acceptance-donation" interaction. These theoretical insights highlight the underlying mechanism of the synergetic effect of surficial vacancy and exposed transition metal atoms, and provide an alternative view of designing efficient NRR electrocatalysts.
Collapse
Affiliation(s)
- Yaqin Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China.
| | - Ninggui Ma
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China.
| | - Tairan Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China.
| | - Jun Fan
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China.
- Center for Advanced Nuclear Safety and Sustainable Development, City University of Hong Kong, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
25
|
Chen J, Ye Z, Chen P, Hu H, Zhang S, Xu H, Cao L, Wang C. Two-dimensional metal-organic layers constructed from Hf 6/Hf 12-oxo clusters and a trigonal pyramidal phosphine oxide ligand. Dalton Trans 2022; 51:11236-11240. [PMID: 35822837 DOI: 10.1039/d2dt01239a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-organic layers (MOLs), a category of two-dimensional materials, have attracted wide interest due to their molecular tunability and the ease of surface modification. Herein, we reported the synthesis and structural determination of a free-standing MOL, {[Hf6O8H4(HCOO)2(H2O·OH)4]3[Hf12O16H8(HCOO)6.8(H2O·OH)11.2](TPO)8}n, constructed from Hf6-oxo and Hf12-oxo clusters as secondary building units (SBUs) and the tris(4-carboxylphenyl)phosphine oxide (TPO) ligand. We establish a structure model of this new MOL based on the combined information from different characterization methods.
Collapse
Affiliation(s)
- Jiawei Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Zhi Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Peican Chen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 53004, P. R. China
| | - Huihui Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Shuhong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Han Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Lingyun Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China. .,Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, P. R. China
| | - Cheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China. .,Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, P. R. China
| |
Collapse
|
26
|
Yu S, Lin F, Tian J, Liu Y, Zhang D, Li Z. Two‐Dimensional Covalent and Supramolecular Polymers: From Monolayer to Bilayer and the Thicker. Chemistry 2022; 28:e202200914. [DOI: 10.1002/chem.202200914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Shang‐Bo Yu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Furong Lin
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Jia Tian
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Yi Liu
- The Molecular Foundry Lawrence Berkeley National Laboratory Berkeley California 94720 United States
| | - Dan‐Wei Zhang
- Department of Chemistry Fudan University 2205 Songhu Road Shanghai 200438 China
| | - Zhan‐Ting Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- Department of Chemistry Fudan University 2205 Songhu Road Shanghai 200438 China
| |
Collapse
|
27
|
Itoh T, Suzuki T, Kondo F, Suzuki T, Uno T, Kubo M, Tohnai N, Sanda F, Miyata M. Preservation of the Conformational Structures of Single-Polymer Crystals in Solution. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Takahito Itoh
- Department of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu-shi, Mie 514-8507, Japan
| | - Tatsuya Suzuki
- Department of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu-shi, Mie 514-8507, Japan
| | - Fumiaki Kondo
- Department of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu-shi, Mie 514-8507, Japan
| | - Takumi Suzuki
- Department of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu-shi, Mie 514-8507, Japan
| | - Takahiro Uno
- Department of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu-shi, Mie 514-8507, Japan
| | - Masataka Kubo
- Department of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu-shi, Mie 514-8507, Japan
| | - Norimitsu Tohnai
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Fumio Sanda
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka 564-8680, Japan
| | - Mikiji Miyata
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
28
|
Stohmann P, Koch S, Yang Y, Kaiser CD, Ehrens J, Schnack J, Biere N, Anselmetti D, Gölzhäuser A, Zhang X. Investigation of electron-induced cross-linking of self-assembled monolayers by scanning tunneling microscopy. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:462-471. [PMID: 35673603 PMCID: PMC9152271 DOI: 10.3762/bjnano.13.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Ultrathin membranes with subnanometer pores enabling molecular size-selective separation were generated on surfaces via electron-induced cross-linking of self-assembled monolayers (SAMs). The evolution of p-terphenylthiol (TPT) SAMs on Au(111) surfaces into cross-linked monolayers was observed with a scanning tunneling microscope. As the irradiation dose was increased, the cross-linked regions continued to grow and a large number of subnanometer voids appeared. Their equivalent diameter is 0.5 ± 0.2 nm and the areal density is ≈1.7 × 1017 m-2. Supported by classical molecular dynamics simulations, we propose that these voids may correspond to free volumes inside a cross-linked monolayer.
Collapse
Affiliation(s)
- Patrick Stohmann
- Physics of Supramolecular Systems and Surfaces, Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| | - Sascha Koch
- Physics of Supramolecular Systems and Surfaces, Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| | - Yang Yang
- Physics of Supramolecular Systems and Surfaces, Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Christopher David Kaiser
- Physics of Supramolecular Systems and Surfaces, Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| | - Julian Ehrens
- Condensed Matter Theory Group, Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| | - Jürgen Schnack
- Condensed Matter Theory Group, Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| | - Niklas Biere
- Experimental Biophysics and Applied Nanoscience, Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| | - Dario Anselmetti
- Experimental Biophysics and Applied Nanoscience, Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| | - Armin Gölzhäuser
- Physics of Supramolecular Systems and Surfaces, Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| | - Xianghui Zhang
- Physics of Supramolecular Systems and Surfaces, Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
29
|
Milyaeva OY, Rafikova AR. Effect of Low Concentrations of Thrombin on the Dynamic Surface Properties of Fibrinogen Solutions. COLLOID JOURNAL 2022. [DOI: 10.1134/s1061933x22010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Zhan G, Cai ZF, Strutyński K, Yu L, Herrmann N, Martínez-Abadía M, Melle-Franco M, Mateo-Alonso A, Feyter SD. Observing polymerization in 2D dynamic covalent polymers. Nature 2022; 603:835-840. [PMID: 35355001 DOI: 10.1038/s41586-022-04409-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/06/2022] [Indexed: 11/09/2022]
Abstract
The quality of crystalline two-dimensional (2D) polymers1-6 is intimately related to the elusive polymerization and crystallization processes. Understanding the mechanism of such processes at the (sub)molecular level is crucial to improve predictive synthesis and to tailor material properties for applications in catalysis7-10 and (opto)electronics11,12, among others13-18. We characterize a model boroxine 2D dynamic covalent polymer, by using in situ scanning tunnelling microscopy, to unveil both qualitative and quantitative details of the nucleation-elongation processes in real time and under ambient conditions. Sequential data analysis enables observation of the amorphous-to-crystalline transition, the time-dependent evolution of nuclei, the existence of 'non-classical' crystallization pathways and, importantly, the experimental determination of essential crystallization parameters with excellent accuracy, including critical nucleus size, nucleation rate and growth rate. The experimental data have been further rationalized by atomistic computer models, which, taken together, provide a detailed picture of the dynamic on-surface polymerization process. Furthermore, we show how 2D crystal growth can be affected by abnormal grain growth. This finding provides support for the use of abnormal grain growth (a typical phenomenon in metallic and ceramic systems) to convert a polycrystalline structure into a single crystal in organic and 2D material systems.
Collapse
Affiliation(s)
- Gaolei Zhan
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Leuven, Belgium.,Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Zhen-Feng Cai
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Leuven, Belgium. .,Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.
| | - Karol Strutyński
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Lihua Yu
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Leuven, Belgium
| | - Niklas Herrmann
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Leuven, Belgium
| | | | - Manuel Melle-Franco
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Aurelio Mateo-Alonso
- POLYMAT, University of the Basque Country UPV/EHU, Donostia-San Sebastian, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Steven De Feyter
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Leuven, Belgium.
| |
Collapse
|
31
|
Wang F, Zhang Z, Shakir I, Yu C, Xu Y. 2D Polymer Nanosheets for Membrane Separation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103814. [PMID: 35084113 PMCID: PMC8922124 DOI: 10.1002/advs.202103814] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/10/2021] [Indexed: 05/12/2023]
Abstract
Since the discovery of single-layer graphene in 2004, the family of 2D inorganic nanosheets is considered as ideal membrane materials due to their ultrathin atomic thickness and fascinating physicochemical properties. However, the intrinsically nonporous feature of 2D inorganic nanosheets hinders their potential to achieve a higher flux to some extent. Recently, 2D polymer nanosheets, originated from the regular and periodic covalent connection of the building units in 2D plane, have emerged as promising candidates for preparing ultrafast and highly selective membranes owing to their inherently tunable and ordered pore structure, light weight, and high specific surface. In this review, the synthetic methodologies (including top-down and bottom-up methods) of 2D polymer nanosheets are first introduced, followed by the summary of 2D polymer nanosheets-based membrane fabrication as well as membrane applications in the fields of gas separation, water purification, organic solvent separation, and ion exchange/transport in fuel cells and lithium-sulfur batteries. Finally, based on their current achievements, the authors' personal insights are put forward into the existing challenges and future research directions of 2D polymer nanosheets for membrane separation. The authors believe this comprehensive review on 2D polymer nanosheets-based membrane separation will definitely inspire more studies in this field.
Collapse
Affiliation(s)
- Fei Wang
- School of Materials Science and EngineeringShanghai UniversityShanghai201800China
- School of EngineeringWestlake UniversityHangzhouZhejiang Province310024China
- School of EngineeringWestlake Institute for Advanced StudyHangzhouZhejiang Province310024China
| | - Zhao Zhang
- School of EngineeringWestlake UniversityHangzhouZhejiang Province310024China
- School of EngineeringWestlake Institute for Advanced StudyHangzhouZhejiang Province310024China
| | - Imran Shakir
- Department of Materials Science and EngineeringUniversity of CaliforniaLos AngelesCA90095USA
- Sustainable Energy Technologies CenterCollege of EngineeringKing Saud UniversityRiyadh11421Saudi Arabia
| | - Chengbing Yu
- School of Materials Science and EngineeringShanghai UniversityShanghai201800China
| | - Yuxi Xu
- School of EngineeringWestlake UniversityHangzhouZhejiang Province310024China
- School of EngineeringWestlake Institute for Advanced StudyHangzhouZhejiang Province310024China
| |
Collapse
|
32
|
Affiliation(s)
- Gaoyuan Wang
- Institute for Theoretical Physics, Georg-August University, 37077 Göttingen, Germany
| | - Marcus Müller
- Institute for Theoretical Physics, Georg-August University, 37077 Göttingen, Germany
| |
Collapse
|
33
|
Zeng Y, Gordiichuk P, Ichihara T, Zhang G, Sandoz-Rosado E, Wetzel ED, Tresback J, Yang J, Kozawa D, Yang Z, Kuehne M, Quien M, Yuan Z, Gong X, He G, Lundberg DJ, Liu P, Liu AT, Yang JF, Kulik HJ, Strano MS. Irreversible synthesis of an ultrastrong two-dimensional polymeric material. Nature 2022; 602:91-95. [PMID: 35110762 DOI: 10.1038/s41586-021-04296-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 12/01/2021] [Indexed: 12/28/2022]
Abstract
Polymers that extend covalently in two dimensions have attracted recent attention1,2 as a means of combining the mechanical strength and in-plane energy conduction of conventional two-dimensional (2D) materials3,4 with the low densities, synthetic processability and organic composition of their one-dimensional counterparts. Efforts so far have proven successful in forms that do not allow full realization of these properties, such as polymerization at flat interfaces5,6 or fixation of monomers in immobilized lattices7-9. Another frequently employed synthetic approach is to introduce microscopic reversibility, at the cost of bond stability, to achieve 2D crystals after extensive error correction10,11. Here we demonstrate a homogenous 2D irreversible polycondensation that results in a covalently bonded 2D polymeric material that is chemically stable and highly processable. Further processing yields highly oriented, free-standing films that have a 2D elastic modulus and yield strength of 12.7 ± 3.8 gigapascals and 488 ± 57 megapascals, respectively. This synthetic route provides opportunities for 2D materials in applications ranging from composite structures to barrier coating materials.
Collapse
Affiliation(s)
- Yuwen Zeng
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Pavlo Gordiichuk
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Takeo Ichihara
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ge Zhang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emil Sandoz-Rosado
- U.S. Army Combat Capabilities Development Command, Army Research Laboratory, Aberdeen Proving Ground, MD, USA
| | - Eric D Wetzel
- U.S. Army Combat Capabilities Development Command, Army Research Laboratory, Aberdeen Proving Ground, MD, USA
| | - Jason Tresback
- Center for Nanoscale Systems, Harvard University, Cambridge, MA, USA
| | - Jing Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daichi Kozawa
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zhongyue Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthias Kuehne
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michelle Quien
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zhe Yuan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xun Gong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Guangwei He
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel James Lundberg
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Pingwei Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Albert Tianxiang Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jing Fan Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
34
|
Yang H, Zhang T, Xue Q. Recent advances in single-crystalline two-dimensional polymers: Synthesis, characterization and challenges. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Affiliation(s)
- Gregor Hofer
- X-ray Platform D-MATL, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5-10, 8093 Zurich, Switzerland
- Laboratory of Polymer Chemistry, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5-10, 8093 Zurich, Switzerland
| | - A. Dieter Schlüter
- Laboratory of Polymer Chemistry, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5-10, 8093 Zurich, Switzerland
| | - Thomas Weber
- X-ray Platform D-MATL, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5-10, 8093 Zurich, Switzerland
| |
Collapse
|
36
|
Shankar S, Nelson DR. Thermalized buckling of isotropically compressed thin sheets. Phys Rev E 2021; 104:054141. [PMID: 34942813 DOI: 10.1103/physreve.104.054141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 10/19/2021] [Indexed: 11/07/2022]
Abstract
The buckling of thin elastic sheets is a classic mechanical instability that occurs over a wide range of scales. In the extreme limit of atomically thin membranes like graphene, thermal fluctuations can dramatically modify such mechanical instabilities. We investigate here the delicate interplay of boundary conditions, nonlinear mechanics, and thermal fluctuations in controlling buckling of confined thin sheets under isotropic compression. We identify two inequivalent mechanical ensembles based on the boundaries at constant strain (isometric) or at constant stress (isotensional) conditions. Remarkably, in the isometric ensemble, boundary conditions induce a novel long-ranged nonlinear interaction between the local tilt of the surface at distant points. This interaction combined with a spontaneously generated thermal tension leads to a renormalization group description of two distinct universality classes for thermalized buckling, realizing a mechanical variant of Fisher-renormalized critical exponents. We formulate a complete scaling theory of buckling as an unusual phase transition with a size-dependent critical point, and we discuss experimental ramifications for the mechanical manipulation of ultrathin nanomaterials.
Collapse
Affiliation(s)
- Suraj Shankar
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - David R Nelson
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.,Department of Molecular and Cellular Biology and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
37
|
Yu SB, Lin F, Tian J, Yu J, Zhang DW, Li ZT. Water-soluble and dispersible porous organic polymers: preparation, functions and applications. Chem Soc Rev 2021; 51:434-449. [PMID: 34931205 DOI: 10.1039/d1cs00862e] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Porous organic polymers (POPs) have attracted increasing attention and emerged as a new research area in polymer chemistry. During the past decade, the intense desirability for application in aqueous scenarios has spawned the development of a specific class of POPs, i.e., water-soluble or dispersible porous organic polymers (WS-POPs) that can allow the implementation of porosity-based functions in aqueous media. In this Tutorial Review, aiming at providing a practical guide to this area, we will discuss recent advances in the preparation of WS-POPs through covalent/dynamic covalent, coordination and supramolecular approaches. As a result of their intrinsic and well-defined porosity, diverse topological architectures as well as unique water-processable features, many water-soluble/dispersible POPs have been demonstrated to exhibit potential for various applications, which include drug, DNA and protein delivery, bioimaging, photocatalysis, explosive detection and membrane separation. We will also highlight the related function of the representative structures. Finally, we provide our perspective for the future research, with a focus on the development of new structures and biofunctions.
Collapse
Affiliation(s)
- Shang-Bo Yu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry (SIOC), Chinese Academy of Sciences, Shanghai 200032, China.
| | - Furong Lin
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry (SIOC), Chinese Academy of Sciences, Shanghai 200032, China.
| | - Jia Tian
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry (SIOC), Chinese Academy of Sciences, Shanghai 200032, China.
| | - Junlai Yu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China.
| | - Dan-Wei Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China.
| | - Zhan-Ting Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry (SIOC), Chinese Academy of Sciences, Shanghai 200032, China. .,Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2205 Songhu Road, Shanghai 200438, China.
| |
Collapse
|
38
|
Yang B, Yu S, Zhang P, Wang Z, Qi Q, Wang X, Xu X, Yang H, Wu Z, Liu Y, Ma D, Li Z. Self‐Assembly of a Bilayer 2D Supramolecular Organic Framework in Water. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Bo Yang
- College of Chemistry Zhengzhou University 100 Kexue Street Zhengzhou 450001 China
| | - Shang‐Bo Yu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Pan‐Qing Zhang
- College of Chemistry Zhengzhou University 100 Kexue Street Zhengzhou 450001 China
| | - Ze‐Kun Wang
- Department of Chemistry Fudan University 2205 Songhu Road Shanghai 200438 China
| | - Qiao‐Yan Qi
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Xu‐Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 China
| | - Xun‐Hui Xu
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology 193 Tunxi Road Hefei 230009 China
| | - Hai‐Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 China
| | - Zong‐Quan Wu
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology 193 Tunxi Road Hefei 230009 China
| | - Yi Liu
- The Molecular Foundry Lawrence Berkeley National Laboratory Berkeley California 94720 United States
| | - Da Ma
- Department of Chemistry Fudan University 2205 Songhu Road Shanghai 200438 China
| | - Zhan‐Ting Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- Department of Chemistry Fudan University 2205 Songhu Road Shanghai 200438 China
| |
Collapse
|
39
|
Yang B, Yu SB, Zhang PQ, Wang ZK, Qi QY, Wang XQ, Xu XH, Yang HB, Wu ZQ, Liu Y, Ma D, Li ZT. Self-Assembly of a Bilayer 2D Supramolecular Organic Framework in Water. Angew Chem Int Ed Engl 2021; 60:26268-26275. [PMID: 34562051 DOI: 10.1002/anie.202112514] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Indexed: 12/22/2022]
Abstract
Accurate control of the layer number of orderly stacked 2D polymers has been an unsettled challenge in self-assembly. Herein we describe the fabrication of a bilayer 2D supramolecular organic framework from a monolayer 2D supramolecular organic framework in water by utilizing the cooperative coordination of a rod-like bipyridine ligands to zinc porphyrin subunits of the monolayer network. The monolayer supramolecular framework is prepared from the co-assembly of an octacationic zinc porphyrin monomer and cucurbit[8]uril (CB[8]) in water through CB[8]-encapsulation-promoted dimerization of 4-phenylpyridiunium subunits that the zinc porphyrin monomer bear. The bilayer 2D supramolecular organic framework exhibits structural regularity in both solution and the solid state, which is characterized by synchrotron small-angle X-ray scattering and high-resolution transmission electron microscopic techniques. Atomic force microscopic imaging confirms that the bilayer character of the 2D supramolecular organic framework can be realized selectively on the micrometer scale.
Collapse
Affiliation(s)
- Bo Yang
- College of Chemistry, Zhengzhou University, 100 Kexue Street, Zhengzhou, 450001, China
| | - Shang-Bo Yu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Pan-Qing Zhang
- College of Chemistry, Zhengzhou University, 100 Kexue Street, Zhengzhou, 450001, China
| | - Ze-Kun Wang
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Qiao-Yan Qi
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Xun-Hui Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Zong-Quan Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Yi Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States
| | - Da Ma
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Zhan-Ting Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China.,Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| |
Collapse
|
40
|
Evans AM, Strauss MJ, Corcos AR, Hirani Z, Ji W, Hamachi LS, Aguilar-Enriquez X, Chavez AD, Smith BJ, Dichtel WR. Two-Dimensional Polymers and Polymerizations. Chem Rev 2021; 122:442-564. [PMID: 34852192 DOI: 10.1021/acs.chemrev.0c01184] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Synthetic chemists have developed robust methods to synthesize discrete molecules, linear and branched polymers, and disordered cross-linked networks. However, two-dimensional polymers (2DPs) prepared from designed monomers have been long missing from these capabilities, both as objects of chemical synthesis and in nature. Recently, new polymerization strategies and characterization methods have enabled the unambiguous realization of covalently linked macromolecular sheets. Here we review 2DPs and 2D polymerization methods. Three predominant 2D polymerization strategies have emerged to date, which produce 2DPs either as monolayers or multilayer assemblies. We discuss the fundamental understanding and scope of each of these approaches, including: the bond-forming reactions used, the synthetic diversity of 2DPs prepared, their multilayer stacking behaviors, nanoscale and mesoscale structures, and macroscale morphologies. Additionally, we describe the analytical tools currently available to characterize 2DPs in their various isolated forms. Finally, we review emergent 2DP properties and the potential applications of planar macromolecules. Throughout, we highlight achievements in 2D polymerization and identify opportunities for continued study.
Collapse
Affiliation(s)
- Austin M Evans
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael J Strauss
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Amanda R Corcos
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zoheb Hirani
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Woojung Ji
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Leslie S Hamachi
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Xavier Aguilar-Enriquez
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Anton D Chavez
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Brian J Smith
- Department of Chemistry, Bucknell University,1 Dent Drive, Lewisburg, Pennsylvania 17837, United States
| | - William R Dichtel
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
41
|
Liu Y, Lu W, Cheng X, Wang J, Wong WY. A new cobalt(II) complex nanosheet as an electroactive medium for plasmonic switching on Au nanoparticles. Dalton Trans 2021; 50:15900-15905. [PMID: 34709273 DOI: 10.1039/d1dt02780h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2D metal-organic complex nanosheets with the merits of high stability and structure tunability are an emerging topic in recent years. To extend the promising ultrathin architectures, a new Co(II) complex nanosheet (Co-nanosheet) is designed and prepared via a readily operated interface-assisted coordination reaction between the ligand 4,4'',4'''-(2,4,6-trimethylbenzene-1,3,5-triyl)tris(2,2':6',2''-terpyridyl) (L) and Co2+ ions. The as-formed Co(II) complex nanosheet exhibits both a uniform layered structure and good thermostability as proposed, which were verified by various chemical and physical analytical methods. Moreover, it is first utilized as an electroresponsive medium to tune the surface plasmon resonance behavior of Au nanoparticles, expanding the applicable fields of this type of 2D materials.
Collapse
Affiliation(s)
- Yurong Liu
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China. .,Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong, P.R. China
| | - Wenzheng Lu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, Hong Kong, P.R. China.
| | - Xizhe Cheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, Hong Kong, P.R. China.
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, Hong Kong, P.R. China.
| | - Wai-Yeung Wong
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China. .,Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong, P.R. China.,Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Hom, Hong Kong, P.R. China
| |
Collapse
|
42
|
Key progresses of MOE key laboratory of macromolecular synthesis and functionalization in 2020. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.10.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
43
|
Lackinger M, Schlüter AD. The Current Understanding of how 2D Polymers Grow Photochemically. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Markus Lackinger
- Technische Universität München Physik Department James-Franck-Str. 1 85748 Garching Germany
- Deutsches Museum Museumsinsel 1 80538 München Germany
| | - A. Dieter Schlüter
- Department of Materials ETH Zürich Vladimir-Prelog-Weg 5 8092 Zürich Switzerland
| |
Collapse
|
44
|
On-surface photopolymerization of two-dimensional polymers ordered on the mesoscale. Nat Chem 2021; 13:730-736. [PMID: 34083780 DOI: 10.1038/s41557-021-00709-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 04/19/2021] [Indexed: 02/04/2023]
Abstract
The use of solid supports and ultra-high vacuum conditions for the synthesis of two-dimensional polymers is attractive, as it can enable thorough characterization, often with submolecular resolution, and prevent contamination. However, most on-surface polymerizations are thermally activated, which often leads to high defect densities and relatively small domain sizes. Here, we have obtained a porous two-dimensional polymer that is ordered on the mesoscale by the two-staged topochemical photopolymerization of fluorinated anthracene triptycene (fantrip) monomers on alkane-passivated graphite surfaces under ultra-high vacuum. First, the fantrip monomers self-assemble into highly ordered monolayer structures, where all anthracene moieties adopt a suitable arrangement for photopolymerization. Irradiation with violet light then induces complete covalent crosslinking by [4+4] photocycloaddition to form a two-dimensional polymer, while fully preserving the long-range order of the self-assembled structure. The extent of the polymerization is confirmed by local infrared spectroscopy and scanning tunnelling microscopy characterization, in agreement with density functional theory calculations, which also gives mechanistic insights.
Collapse
|
45
|
Liao Y, Li Z, Ghazanfari S, Croll AB, Xia W. Understanding the Role of Self-Adhesion in Crumpling Behaviors of Sheet Macromolecules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8627-8637. [PMID: 34227388 DOI: 10.1021/acs.langmuir.1c01545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Understanding the crumpling behavior of two-dimensional (2D) macromolecular sheet materials is of fundamental importance in engineering and technological applications. Among the various properties of these sheets, interfacial adhesion critically contributes to the formation of crumpled structures. Here, we present a coarse-grained molecular dynamics (CG-MD) simulation study to explore the fundamental role of self-adhesion in the crumpling behaviors of macromolecular sheets having varying masses or sizes. By evaluating the potential energy evolution, our results show that the self-adhesion plays a dominant role in the crumpling behavior of the sheets compared to in-plane and out-of-plane stiffnesses. The macromolecular sheets with higher adhesion tend to form a self-folding planar structure at the quasi-equilibrium state of the crumpling and exhibit a lower packing efficiency as evaluated by the fractal dimension of the system. Notably, during the crumpling process, both the radius of gyration Rg and the hydrodynamic radius Rh of the macromolecular sheet can be quantitatively described by the power-law scaling relationships associated with adhesion. The evaluation of the shape descriptors indicates that the overall crumpling behavior of macromolecular sheets can be characterized by three regimes, i.e., the less bent, intermediate, and highly crumpled regimes, dominated by edge-bending, self-adhesion, and further compression, respectively. The internal structural analysis further reveals that the sheet transforms from the initially ordered state to the disordered glassy state upon crumpling, which can be facilitated by greater self-adhesion. Our study provides fundamental insights into the adhesion-dependent structural behavior of macromolecular sheets under crumpling, which is essential for establishing the structure-processing-property relationships for crumpled macromolecular sheets.
Collapse
Affiliation(s)
- Yangchao Liao
- Department of Civil & Environmental Engineering, North Dakota State University, 1410 14th Ave N, Fargo, North Dakota 58108, United States
| | - Zhaofan Li
- Department of Civil & Environmental Engineering, North Dakota State University, 1410 14th Ave N, Fargo, North Dakota 58108, United States
| | - Sarah Ghazanfari
- Department of Civil & Environmental Engineering, North Dakota State University, 1410 14th Ave N, Fargo, North Dakota 58108, United States
| | - Andrew B Croll
- Department of Physics, North Dakota State University, 1211 Albrecht Blvd, Fargo, North Dakota 58108, United States
- Materials and Nanotechnology, North Dakota State University, 1410 14th Ave N, Fargo, North Dakota 58108, United States
| | - Wenjie Xia
- Department of Civil & Environmental Engineering, North Dakota State University, 1410 14th Ave N, Fargo, North Dakota 58108, United States
- Materials and Nanotechnology, North Dakota State University, 1410 14th Ave N, Fargo, North Dakota 58108, United States
| |
Collapse
|
46
|
Chen R, Wang D, Hao W, Shao F, Zhao Y. Tessellation strategy for the interfacial synthesis of an anthracene-based 2D polymer via [4+4]-photocycloaddition. Chem Commun (Camb) 2021; 57:5794-5797. [PMID: 33998616 DOI: 10.1039/d1cc02179f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inspired by the tessellation or tiling process in daily life, a rigid triangular macrocyclic molecule containing anthracene as a photo-active moiety was synthesized to realize pre-organization through π-π interactions. The successful preparation of a 2D polymer monolayer at the air/water interface was achieved through [4+4]-photocycloaddition.
Collapse
Affiliation(s)
- Renzeng Chen
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Danbo Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Wenbo Hao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Feng Shao
- Department of Physics and Astronomy, National Graphene Institute, University of Manchester, Manchester, M13 9PL, UK.
| | - Yingjie Zhao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
47
|
Li M, Wang J, Xu W, Li L, Pisula W, Janssen RA, Liu M. Noncovalent semiconducting polymer monolayers for high-performance field-effect transistors. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
48
|
Mohammadifar E, Ahmadi V, Gholami MF, Oehrl A, Kolyvushko O, Nie C, Donskyi IS, Herziger S, Radnik J, Ludwig K, Böttcher C, Rabe JP, Osterrieder K, Azab W, Haag R, Adeli M. Graphene-Assisted Synthesis of 2D Polyglycerols as Innovative Platforms for Multivalent Virus Interactions. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2009003. [PMID: 34230823 PMCID: PMC8250216 DOI: 10.1002/adfm.202009003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/08/2021] [Indexed: 05/12/2023]
Abstract
2D nanomaterials have garnered widespread attention in biomedicine and bioengineering due to their unique physicochemical properties. However, poor functionality, low solubility, intrinsic toxicity, and nonspecific interactions at biointerfaces have hampered their application in vivo. Here, biocompatible polyglycerol units are crosslinked in two dimensions using a graphene-assisted strategy leading to highly functional and water-soluble polyglycerols nanosheets with 263 ± 53 nm and 2.7 ± 0.2 nm average lateral size and thickness, respectively. A single-layer hyperbranched polyglycerol containing azide functional groups is covalently conjugated to the surface of a functional graphene template through pH-sensitive linkers. Then, lateral crosslinking of polyglycerol units is carried out by loading tripropargylamine on the surface of graphene followed by lifting off this reagent for an on-face click reaction. Subsequently, the polyglycerol nanosheets are detached from the surface of graphene by slight acidification and centrifugation and is sulfated to mimic heparin sulfate proteoglycans. To highlight the impact of the two-dimensionality of the synthesized polyglycerol sulfate nanosheets at nanobiointerfaces, their efficiency with respect to herpes simplex virus type 1 and severe acute respiratory syndrome corona virus 2 inhibition is compared to their 3D nanogel analogs. Four times stronger in virus inhibition suggests that 2D polyglycerols are superior to their current 3D counterparts.
Collapse
Affiliation(s)
- Ehsan Mohammadifar
- Institut für Chemie und BiochemieFreie Universität BerlinTakustrasse 314195BerlinGermany
| | - Vahid Ahmadi
- Institut für Chemie und BiochemieFreie Universität BerlinTakustrasse 314195BerlinGermany
| | - Mohammad Fardin Gholami
- Department of Physics and Integrative Research Institute for the Sciences IRIS AdlershofHumboldt‐Universität zu BerlinNewtonstrasse 15 and Zum Großen Windkanal 212489BerlinGermany
| | - Alexander Oehrl
- Institut für Chemie und BiochemieFreie Universität BerlinTakustrasse 314195BerlinGermany
| | - Oleksandr Kolyvushko
- Institut für VirologieRobert von Ostertag‐HausZentrum für InfektionsmedizinFreie Universität BerlinRobert‐von‐Ostertag‐Str. 7‐1314163BerlinGermany
| | - Chuanxiong Nie
- Institut für Chemie und BiochemieFreie Universität BerlinTakustrasse 314195BerlinGermany
| | - Ievgen S. Donskyi
- Institut für Chemie und BiochemieFreie Universität BerlinTakustrasse 314195BerlinGermany
- BAM – Federal Institute for Material Science and Testing Division of Surface Analysis, and Interfacial ChemistryUnter den Eichen 44‐4612205BerlinGermany
| | - Svenja Herziger
- Forschungszentrum für Elektronenmikroskopie and Core Facility BioSupraMolInstitut für Chemie und Biochemie Freie Universität BerlinFabeckstrasse 36a14195BerlinGermany
| | - Jörg Radnik
- BAM – Federal Institute for Material Science and Testing Division of Surface Analysis, and Interfacial ChemistryUnter den Eichen 44‐4612205BerlinGermany
| | - Kai Ludwig
- Forschungszentrum für Elektronenmikroskopie and Core Facility BioSupraMolInstitut für Chemie und Biochemie Freie Universität BerlinFabeckstrasse 36a14195BerlinGermany
| | - Christoph Böttcher
- Forschungszentrum für Elektronenmikroskopie and Core Facility BioSupraMolInstitut für Chemie und Biochemie Freie Universität BerlinFabeckstrasse 36a14195BerlinGermany
| | - Jürgen P. Rabe
- Department of Physics and Integrative Research Institute for the Sciences IRIS AdlershofHumboldt‐Universität zu BerlinNewtonstrasse 15 and Zum Großen Windkanal 212489BerlinGermany
| | - Klaus Osterrieder
- Institut für VirologieRobert von Ostertag‐HausZentrum für InfektionsmedizinFreie Universität BerlinRobert‐von‐Ostertag‐Str. 7‐1314163BerlinGermany
- Department of Infectious Diseases and Public HealthJockey Club College of Veterinary Medicine and Life SciencesCity University of Hong KongKowloon TongHong Kong
| | - Walid Azab
- Institut für VirologieRobert von Ostertag‐HausZentrum für InfektionsmedizinFreie Universität BerlinRobert‐von‐Ostertag‐Str. 7‐1314163BerlinGermany
| | - Rainer Haag
- Institut für Chemie und BiochemieFreie Universität BerlinTakustrasse 314195BerlinGermany
| | - Mohsen Adeli
- Department of ChemistryFaculty of ScienceLorestan UniversityKhorramabadIran
| |
Collapse
|
49
|
Zhang G, Zeng Y, Gordiichuk P, Strano MS. Chemical kinetic mechanisms and scaling of two-dimensional polymers via irreversible solution-phase reactions. J Chem Phys 2021; 154:194901. [PMID: 34240902 DOI: 10.1063/5.0044050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Two-dimensional (2D) polymers are extended networks of multi-functional repeating units that are covalently linked together but confined to a single plane. The past decade has witnessed a surge in interest and effort toward producing and utilizing 2D polymers. However, facile synthesis schemes suitable for mass production are yet to be realized. In addition, unifying theories to describe the 2D polymerization process, such as those for linear polymers, have not yet been established. Herein, we perform a chemical kinetic simulation to study the recent synthesis of 2D polymers in homogeneous solution with irreversible chemistry. We show that reaction sites for polymerization in 2D always scale unfavorably compared to 3D, growing as molecular weight to the 1/2 power vs 2/3 power for 3D. However, certain mechanisms can effectively suppress out-of-plane defect formation and subsequent 3D growth. We consider two such mechanisms, which we call bond-planarity and templated autocatalysis. In the first, although single bonds can easily rotate out-of-plane to render polymerization in 3D, some double-bond linkages prefer a planar configuration. In the second mechanism, stacked 2D plates may act as van der Waals templates for each other to enhance growth, which leads to an autocatalysis. When linkage reactions possess a 1000:1 selectivity (γ) for staying in plane vs rotating, solution-synthesized 2D polymers can have comparable size and yield with those synthesized from confined polymerization on a surface. Autocatalysis could achieve similar effects when self-templating accelerates 2D growth by a factor β of 106. A combined strategy relaxes the requirement of both mechanisms by over one order of magnitude. We map the dependence of molecular weight and yield for the 2D polymer on the reaction parameters, allowing experimental results to be used to estimate β and γ. Our calculations show for the first time from theory the feasibility of producing two-dimensional polymers from irreversible polymerization in solution.
Collapse
Affiliation(s)
- Ge Zhang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Yuwen Zeng
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Pavlo Gordiichuk
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
50
|
Silmore KS, Strano MS, Swan JW. Buckling, crumpling, and tumbling of semiflexible sheets in simple shear flow. SOFT MATTER 2021; 17:4707-4718. [PMID: 33978658 DOI: 10.1039/d0sm02184a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As 2D materials such as graphene, transition metal dichalcogenides, and 2D polymers become more prevalent, solution processing and colloidal-state properties are being exploited to create advanced and functional materials. However, our understanding of the fundamental behavior of 2D sheets and membranes in fluid flow is still lacking. In this work, we perform numerical simulations of athermal semiflexible sheets with hydrodynamic interactions in shear flow. For sheets initially oriented near the flow-vorticity plane, we find buckling instabilities of different mode numbers that vary with bending stiffness and can be understood with a quasi-static model of elasticity. For different initial orientations, chaotic tumbling trajectories are observed. Notably, we find that sheets fold or crumple before tumbling but do not stretch again upon applying greater shear.
Collapse
Affiliation(s)
- Kevin S Silmore
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - James W Swan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|