1
|
Colalto C. Aspects of complexity in quality and safety assessment of peptide therapeutics and peptide-related impurities. A regulatory perspective. Regul Toxicol Pharmacol 2024; 153:105699. [PMID: 39243929 DOI: 10.1016/j.yrtph.2024.105699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/12/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
In recent years, a number of therapeutic peptides have been authorized in the EU market, and several others are in the clinical development phase or under assessment for full dossier or generic applications. Quality and safety guidelines specific to peptides are limited, and some aspects have to be considered. In particular, concerns relate to the analytical investigation for impurities and the toxicological assessment of these substances. The guidelines and the compendial pharmacopoeias provide certain references but that may be questionable if interpreted according to whether therapeutic peptides are considered chemical or biological entities, large or small. The characterization of peptide-related impurities cannot follow the small molecule approach but should consider aspects closely linked to the complex mechanisms of action that these large molecules can exert in the human body. Although direct genotoxic mechanisms cannot be excluded, hazardous interactions on biological systems cannot be ruled out, as in the case of natural peptide toxins and their specific interactions with cellular or membrane targets. From a regulatory perspective, only after specific risk identification and characterization should an equally specific safety threshold in relation to potential toxicity be defined.
Collapse
Affiliation(s)
- Cristiano Colalto
- Marketing Authorization Unit, Italian Medicine Agency (AIFA), Via Del Tritone 181, Rome, Italy.
| |
Collapse
|
2
|
Prochiner M, Judmann B, Ruder A, Wängler B, Schirrmacher R, Wängler C. Ultrasound-Assisted Solid-Phase Affibody Synthesis Using Z EGFR:1907 as an Example-Superior to the Conventional Protocol? Pharmaceuticals (Basel) 2024; 17:1280. [PMID: 39458921 PMCID: PMC11510254 DOI: 10.3390/ph17101280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Affibody molecules represent a class of highly specific binders of particular interest for the development of highly affine target-specific radiopharmaceuticals. Their chemical synthesis is, however, intricate due to their considerable length of 58 amino acids; thus, approaches to optimize their preparation are constantly being sought. METHODS As ultrasound assistance has recently been shown to increase the efficiency of amino acid conjugation during solid-phase peptide synthesis (SPPS), the influence of ultrasonication on the outcome of the SPPS-based preparation of the EGFR-specific affibody ZEGFR:1907 was compared to a common protocol relying on mechanical shaking. RESULTS After the identification of a suitable solid support for the study, the execution of the systematic comparison of both approaches showed that conventional and ultrasound-assisted syntheses yielded equivalent results with analogous composition of the raw products. Further, both approaches produced the affibody in good isolated yields of >20% when applying the same optimal reagent excesses and coupling times for the conjugation of each amino acid. This indicates that, under optimal reaction conditions, the choice of solid support used has a much stronger influence on the outcome of the preparation of ZEGFR:1907 than the application of ultrasound, which did not further improve the synthesis results. CONCLUSIONS Therefore, for the chemical synthesis of affibodies, great attention should be paid to the choice of a suitable solid support, enabling this highly interesting class of biomolecules to be obtained in good yields and to bring them more into the focus of radiopharmaceutical research.
Collapse
Affiliation(s)
- Marie Prochiner
- Biomedical Chemistry, Clinic of Radiology and Nuclear Medicine, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (M.P.); (B.J.); (A.R.)
- Research Campus M²OLIE, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany;
| | - Benedikt Judmann
- Biomedical Chemistry, Clinic of Radiology and Nuclear Medicine, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (M.P.); (B.J.); (A.R.)
- Research Campus M²OLIE, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany;
| | - Alina Ruder
- Biomedical Chemistry, Clinic of Radiology and Nuclear Medicine, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (M.P.); (B.J.); (A.R.)
- Research Campus M²OLIE, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany;
| | - Björn Wängler
- Research Campus M²OLIE, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany;
- Molecular Imaging and Radiochemistry, Clinic of Radiology and Nuclear Medicine, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Ralf Schirrmacher
- Division of Oncological Imaging, Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada;
| | - Carmen Wängler
- Biomedical Chemistry, Clinic of Radiology and Nuclear Medicine, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (M.P.); (B.J.); (A.R.)
- Research Campus M²OLIE, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany;
| |
Collapse
|
3
|
Duan X, Wang P, He L, He Z, Wang S, Yang F, Gao C, Ren W, Lin J, Chen T, Xu C, Li J, Wu A. Peptide-Functionalized Inorganic Oxide Nanomaterials for Solid Cancer Imaging and Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311548. [PMID: 38333964 DOI: 10.1002/adma.202311548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/15/2024] [Indexed: 02/10/2024]
Abstract
The diagnosis and treatment of solid tumors have undergone significant advancements marked by a trend toward increased specificity and integration of imaging and therapeutic functions. The multifaceted nature of inorganic oxide nanomaterials (IONs), which boast optical, magnetic, ultrasonic, and biochemical modulatory properties, makes them ideal building blocks for developing multifunctional nanoplatforms. A promising class of materials that have emerged in this context are peptide-functionalized inorganic oxide nanomaterials (PFIONs), which have demonstrated excellent performance in multifunctional imaging and therapy, making them potential candidates for advancing solid tumor diagnosis and treatment. Owing to the functionalities of peptides in tumor targeting, penetration, responsiveness, and therapy, well-designed PFIONs can specifically accumulate and release therapeutic or imaging agents at the solid tumor sites, enabling precise imaging and effective treatment. This review provides an overview of the recent advances in the use of PFIONs for the imaging and treatment of solid tumors, highlighting the superiority of imaging and therapeutic integration as well as synergistic treatment. Moreover, the review discusses the challenges and prospects of PFIONs in depth, aiming to promote the intersection of the interdisciplinary to facilitate their clinical translation and the development of personalized diagnostic and therapeutic systems by optimizing the material systems.
Collapse
Affiliation(s)
- Xiaolin Duan
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pin Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lulu He
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Zhen He
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shiwei Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Yang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Changyong Gao
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Wenzhi Ren
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Jie Lin
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Tianxiang Chen
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Chen Xu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Juan Li
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| |
Collapse
|
4
|
Pacini L, Muthyala M, Aguiar L, Zitterbart R, Rovero P, Papini AM. Optimization of peptide synthesis time and sustainability using novel eco-friendly binary solvent systems with induction heating on an automated peptide synthesizer. J Pept Sci 2024; 30:e3605. [PMID: 38660732 DOI: 10.1002/psc.3605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 04/26/2024]
Abstract
On December 12th, 2023, the European Commission took regulatory action to amend Annex XVII of REACH, imposing restrictions on the use of N,N-dimethylformamide (DMF) within the EU market owing to its high toxicity. Historically, DMF has been widely considered the gold standard for solid-phase peptide synthesis (SPPS). Being urgent to propose alternative solvents, we tested the suitability of non-hazardous neat and mixed solvents. Notably, binary solvent mixtures containing dimethyl sulfoxide as one of the solvent partners demonstrated high efficacy in solubilizing reagents while maintaining the desired swelling characteristics of common resins. A series of binary solvent mixtures were tested in automated SPPS, both at room temperature and high temperature, employing the PurePep® Chorus synthesizer, which enabled controlled induction heating between 25 and 90°C with oscillation mixing. The performances were assessed in challenging peptide sequences, i.e., ACP (65-74), and in longer and aggregating sequences like SARS-CoV-2 RBM (436-507) and β-amyloid (1-42). Furthermore, as part of the proposed sustainable approach to minimize the utilization of hazardous solvents, we coupled the novel PurePep EasyClean catch-and-release purification technology. This work, addressing regulatory compliance, emphasizes the crucial role of green chemistry in advancing safer and more environmentally friendly practices in SPPS.
Collapse
Affiliation(s)
- Lorenzo Pacini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology - Peptlab, MoD&LS Laboratory, University of Florence, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | | | - Luisa Aguiar
- Gyros Protein Technologies Inc., Tucson, Arizona, USA
| | | | - Paolo Rovero
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
- Department of Neurosciences, Psychology, Drug Research and Child Health, Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Sesto Fiorentino, Italy
| | - Anna Maria Papini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology - Peptlab, MoD&LS Laboratory, University of Florence, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
5
|
Ai H, Pan M, Liu L. Chemical Synthesis of Human Proteoforms and Application in Biomedicine. ACS CENTRAL SCIENCE 2024; 10:1442-1459. [PMID: 39220697 PMCID: PMC11363345 DOI: 10.1021/acscentsci.4c00642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 09/04/2024]
Abstract
Limited understanding of human proteoforms with complex posttranslational modifications and the underlying mechanisms poses a major obstacle to research on human health and disease. This Outlook discusses opportunities and challenges of de novo chemical protein synthesis in human proteoform studies. Our analysis suggests that to develop a comprehensive, robust, and cost-effective methodology for chemical synthesis of various human proteoforms, new chemistries of the following types need to be developed: (1) easy-to-use peptide ligation chemistries allowing more efficient de novo synthesis of protein structural domains, (2) robust temporary structural support strategies for ligation and folding of challenging targets, and (3) efficient transpeptidative protein domain-domain ligation methods for multidomain proteins. Our analysis also indicates that accurate chemical synthesis of human proteoforms can be applied to the following aspects of biomedical research: (1) dissection and reconstitution of the proteoform interaction networks, (2) structural mechanism elucidation and functional analysis of human proteoform complexes, and (3) development and evaluation of drugs targeting human proteoforms. Overall, we suggest that through integrating chemical protein synthesis with in vivo functional analysis, mechanistic biochemistry, and drug development, synthetic chemistry would play a pivotal role in human proteoform research and facilitate the development of precision diagnostics and therapeutics.
Collapse
Affiliation(s)
- Huasong Ai
- New
Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life
Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and
Chemical Biology, Center for Synthetic and Systems Biology, Department
of Chemistry, Tsinghua University, Beijing 100084, China
- Institute
of Translational Medicine, School of Pharmacy, School of Chemistry
and Chemical Engineering, National Center for Translational Medicine
(Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Man Pan
- Institute
of Translational Medicine, School of Pharmacy, School of Chemistry
and Chemical Engineering, National Center for Translational Medicine
(Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Liu
- New
Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life
Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and
Chemical Biology, Center for Synthetic and Systems Biology, Department
of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Liu H, Chow HY, Liu J, Shi P, Li X. Prior disulfide bond-mediated Ser/Thr ligation. Chem Sci 2024:d4sc04825c. [PMID: 39170718 PMCID: PMC11333947 DOI: 10.1039/d4sc04825c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024] Open
Abstract
In this work, we developed a novel strategy, prior disulfide bond-mediated Ser/Thr ligation (PD-STL), for the chemical synthesis of peptides and proteins. This approach combines disulfide bond-forming chemistry with Ser/Thr ligation (STL), converting intermolecular STL into intramolecular STL to effectively proceed regardless of concentrations. We demonstrated the effectiveness of PD-STL under high dilution conditions, even for the relatively inert C-terminal proline at the ligation site. Additionally, we applied this method to synthesize the N-terminal cytoplasmic domain (2-104) of caveolin-1 and its Tyr14 phosphorylated form.
Collapse
Affiliation(s)
- Heng Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Hong Kong SAR P. R. China
| | - Hoi Yee Chow
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Hong Kong SAR P. R. China
| | - Jiamei Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Hong Kong SAR P. R. China
| | - Pengfei Shi
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Hong Kong SAR P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Hong Kong SAR P. R. China
| |
Collapse
|
7
|
Luna OF, Perez YV, Ferrari DP, Sayedipour SS, Royo M, Acosta GA, Cruz LJ, Alves F, Agner E, Sydnes MO, Albericio F. Impact of N-Terminal PEGylation on Synthesis and Purification of Peptide-Based Cancer Epitopes for Pancreatic Ductal Adenocarcinoma (PDAC). ACS OMEGA 2024; 9:34544-34554. [PMID: 39157077 PMCID: PMC11325526 DOI: 10.1021/acsomega.4c02604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 08/20/2024]
Abstract
Peptide-based cancer vaccines have shown promising results in preclinical trials focusing on tumor immunotherapy. However, the presence of hydrophobic amino acid segments within these peptide sequences poses challenges in their synthesis, purification, and solubility, thereby hindering their potential use as cancer vaccines. In this study, we successfully synthesized peptide sequences derived from mesothelin (MSLN), a tumor-associated antigen overexpressed in pancreatic ductal adenocarcinoma (PDAC) by conjugating them with monodisperse polyethylene glycol (PEG). By PEGylating mesothelin epitopes of varying lengths (ranging from 9 to 38 amino acids) and hydrophobicity (60-90%), we achieved an effective method to improve the peptide yield and facilitate the processes of synthesis and purification. PEGylation significantly enhanced the solubility, facilitating the single-step purification of lengthy hydrophobic peptides. Most importantly, PEGylation did not compromise cell viability and had little to no effect on the immunogenicity of the peptides. In contrast, the addition of a palmitoyl group to increase immunogenicity led to reduced yield and solubility. Overall, PEGylation proves to be an effective technique for enhancing the solubility and broadening the range of utility of diverse long hydrophobic peptides.
Collapse
Affiliation(s)
- Omar F. Luna
- Department
of Organic Chemistry, University of Barcelona,
and CIBER-BBN, Networking Centre on Bioengineering, Biomaterials,
and Nanomedicine, Barcelona 08028, Spain
| | - Yomkippur V. Perez
- Polypure
AS, Martin Linges vei 25, Fornebu 1364, Norway
- Department
of Chemistry, Bioscience, and Environmental Engineering, University of Stavanger, Stavanger 4036, Norway
| | - Daniele P. Ferrari
- Translational
Molecular Imaging, Max Planck Institute
of Multidisciplinary Sciences, Göttingen 37075, Germany
| | - Sana S. Sayedipour
- Department
of Radiology, Leiden University Medical
Center, Leiden 2333, Netherlands
| | - Miriam Royo
- Department
of Organic Chemistry, University of Barcelona,
and CIBER-BBN, Networking Centre on Bioengineering, Biomaterials,
and Nanomedicine, Barcelona 08028, Spain
- Institute
for Advanced Chemistry of Catalonia (IQAC) of the Spanish Council
for Scientific Research (CSIC), Barcelona 08028, Spain
| | - Gerardo A. Acosta
- Department
of Organic Chemistry, University of Barcelona,
and CIBER-BBN, Networking Centre on Bioengineering, Biomaterials,
and Nanomedicine, Barcelona 08028, Spain
- Institute
for Advanced Chemistry of Catalonia (IQAC) of the Spanish Council
for Scientific Research (CSIC), Barcelona 08028, Spain
| | - Luis J. Cruz
- Department
of Radiology, Leiden University Medical
Center, Leiden 2333, Netherlands
| | - Frauke Alves
- Translational
Molecular Imaging, Max Planck Institute
of Multidisciplinary Sciences, Göttingen 37075, Germany
| | - Erik Agner
- Polypure
AS, Martin Linges vei 25, Fornebu 1364, Norway
| | - Magne O. Sydnes
- Department
of Chemistry, Bioscience, and Environmental Engineering, University of Stavanger, Stavanger 4036, Norway
| | - Fernando Albericio
- Department
of Organic Chemistry, University of Barcelona,
and CIBER-BBN, Networking Centre on Bioengineering, Biomaterials,
and Nanomedicine, Barcelona 08028, Spain
- Peptide
Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
| |
Collapse
|
8
|
Li Q, Sanghvi YS, Yan H. An expanded framework toward improving the detritylation reaction in solid-phase oligonucleotide syntheses - filling the gap. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-9. [PMID: 39120431 DOI: 10.1080/15257770.2024.2388789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
A few interactions should be considered during the detritylation reaction of solid-phase oligonucleotide synthesis (SPOS): (i) interaction of solvent with acid; (ii) interaction (or reaction) of solvent with trityl cation, and (iii) interaction of scavenger with acid, with the last one as the focus of this work. Using a stopped-flow setup, commonly used trityl cation scavengers (methanol, thioanisole, 1-dodecanethiol, triisopropylsilane, triethylsilane, and trihexylsilane) were evaluated for their reactivity toward tritylium hexafluorophosphate. Among the scavengers screened, methanol and thioanisole were found to be the most and least reactive, respectively; however, methanol does interact and react with trichloroacetic acid, thus it should not be pre-mixed and stored with acid as deblock solutions. Overall, all aspects of interactions must be taken into consideration while optimizing the detritylation reaction, especially for large scale SPOS.
Collapse
Affiliation(s)
- Quanjian Li
- Department of Chemistry, Brock University, St. Catharines, ON, Canada
| | | | - Hongbin Yan
- Department of Chemistry, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
9
|
Verhoeff J, van Asten S, Kuijper L, van den Braber M, Amstalden-van Hove E, Haselberg R, Kalay H, Garcia-Vallejo JJ. A monodispersed metal-complexing peptide-based polymer for mass cytometry enabling spectral applications. N Biotechnol 2024; 81:33-42. [PMID: 38493996 DOI: 10.1016/j.nbt.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/17/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
We report the synthesis of a novel class of metal-complexing peptide-based polymers, which we name HyperMAPs (Hyper-loaded MetAl-complexed Polymers). The controlled solid-phase synthesis of HyperMAPs' scaffold peptide provides our polymer with a well-defined molecular structure that allows for an accurate on-design assembly of a wide variety of metals. The peptide-scaffold features a handle for direct conjugation to antibodies or any other biomolecules by means of a thiol-maleimide-click or aldehyde-oxime reaction, a fluorogenic moiety for biomolecule conjugation tracking, and a well-defined number of functional groups for direct incorporation of metal-chelator complexes. Since metal-chelator complexes are prepared in a separate reaction prior to incorporation to the peptide scaffold, polymers can be designed to contain specific ratios of metal isotopes, providing each polymer with a unique CyTOF spectral fingerprint. We demonstrate the complexing of 21 different metals using two different chelators and provide evidence of the application of HyperMAPs on a 13 parameter CyTOF panel and compare its performance to monoisotopic metal-conjugated antibodies.
Collapse
Affiliation(s)
- Jan Verhoeff
- Amsterdam UMC, VU Amsterdam, Department of Molecular Cell Biology & Immunology, Amsterdam Infection & Immunity, Cancer Center Amsterdam, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research; Amsterdam 1105 BK, the Netherlands.
| | - Saskia van Asten
- Amsterdam UMC, VU Amsterdam, Department of Molecular Cell Biology & Immunology, Amsterdam Infection & Immunity, Cancer Center Amsterdam, Amsterdam, the Netherlands.
| | - Lisan Kuijper
- Amsterdam UMC, VU Amsterdam, Department of Molecular Cell Biology & Immunology, Amsterdam Infection & Immunity, Cancer Center Amsterdam, Amsterdam, the Netherlands.
| | - Marlous van den Braber
- Amsterdam UMC, VU Amsterdam, Department of Molecular Cell Biology & Immunology, Amsterdam Infection & Immunity, Cancer Center Amsterdam, Amsterdam, the Netherlands.
| | - Erika Amstalden-van Hove
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | - Rob Haselberg
- Division of Bioanalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | - Hakan Kalay
- Amsterdam UMC, VU Amsterdam, Department of Molecular Cell Biology & Immunology, Amsterdam Infection & Immunity, Cancer Center Amsterdam, Amsterdam, the Netherlands.
| | - Juan J Garcia-Vallejo
- Amsterdam UMC, VU Amsterdam, Department of Molecular Cell Biology & Immunology, Amsterdam Infection & Immunity, Cancer Center Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
10
|
Huang DL, Guo WC, Shi WW, Gao YP, Zhou YK, Wang LJ, Wang C, Tang S, Liu L, Zheng JS. Enhanced native chemical ligation by peptide conjugation in trifluoroacetic acid. SCIENCE ADVANCES 2024; 10:eado9413. [PMID: 39018393 PMCID: PMC466938 DOI: 10.1126/sciadv.ado9413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/10/2024] [Indexed: 07/19/2024]
Abstract
Chemical ligation of peptides is increasingly used to generate proteins not readily accessible by recombinant approaches. However, a robust method to ligate "difficult" peptides remains to be developed. Here, we report an enhanced native chemical ligation strategy mediated by peptide conjugation in trifluoroacetic acid (TFA). The conjugation between a carboxyl-terminal peptide thiosalicylaldehyde thioester and a 1,3-dithiol-containing peptide in TFA proceeds rapidly to form a thioacetal-linked intermediate, which is readily converted into the desired native amide bond product through simple postligation treatment. The effectiveness and practicality of the method was demonstrated by the successful synthesis of several challenging proteins, including the SARS-CoV-2 transmembrane Envelope (E) protein and nanobodies. Because of the ability of TFA to dissolve virtually all peptides and prevent the formation of unreactive peptide structures, the method is expected to open new opportunities for synthesizing all families of proteins, particularly those with aggregable or colloidal peptide segments.
Collapse
Affiliation(s)
- Dong-Liang Huang
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Department of Chemistry, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Wu-Chen Guo
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Wei-Wei Shi
- Department of Chemistry, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Yun-Pu Gao
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Yong-Kang Zhou
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Long-Jie Wang
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Chen Wang
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Shan Tang
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Lei Liu
- Department of Chemistry, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Ji-Shen Zheng
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| |
Collapse
|
11
|
Acar M, Tatini D, Fidi A, Pacini L, Quagliata M, Nuti F, Papini AM, Lo Nostro P. A Promising Compound for Green Multiresponsive Materials Based on Acyl Carrier Protein. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12381-12393. [PMID: 38836557 DOI: 10.1021/acs.langmuir.4c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
A gel that exhibits intrinsically multiple-responsive behavior was prepared from an oligopeptide and studied. ACP(65-74) is an active decapeptide fragment of acyl carrier protein. We investigated 3% w/v ACP(65-74)-NH2 self-healing physical gels in water, glycerol carbonate (GC), and their mixtures. The morphology was investigated by optical, birefringence, and confocal laser scanning microscopy, circular dichroism, Fourier transform infrared, and fluorescence spectroscopy experiments. We found that all samples possess pH responsiveness with fully reversible sol-to-gel transitions. The rheological properties depend on the temperature and solvent composition. The temperature dependence of the gels in water shows a peculiar behavior that is similar to that of thermoresponsive polymer solutions. The results reveal the presence of several β-sheet structures and amyloid aggregates, offering valuable insights into the fibrillation mechanism of amyloids in different solvent media.
Collapse
Affiliation(s)
- Mert Acar
- Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino (FI), Italy
| | - Duccio Tatini
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Alberto Fidi
- Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino (FI), Italy
| | - Lorenzo Pacini
- Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino (FI), Italy
- PeptLab, University of Florence, 50019 Sesto Fiorentino (FI), Italy
| | - Michael Quagliata
- Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino (FI), Italy
- PeptLab, University of Florence, 50019 Sesto Fiorentino (FI), Italy
| | - Francesca Nuti
- Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino (FI), Italy
- PeptLab, University of Florence, 50019 Sesto Fiorentino (FI), Italy
| | - Anna Maria Papini
- Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino (FI), Italy
- PeptLab, University of Florence, 50019 Sesto Fiorentino (FI), Italy
| | - Pierandrea Lo Nostro
- Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
12
|
Wu H, Sun Z, Li X. Selective Peptide Cysteine Manipulation on Demand and Difficult Protein Chemical Synthesis Enabled by Controllable Acidolysis of N,S-Benzylidene Thioacetals. Angew Chem Int Ed Engl 2024; 63:e202403396. [PMID: 38490953 DOI: 10.1002/anie.202403396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/17/2024]
Abstract
Although solid-phase peptide synthesis combining with chemical ligation provides a way to build up customized polypeptides in general, many targets are still presenting challenges for the conventional synthetic process, such as hydrophobic proteins. New methods and strategies are still required to overcome these obstacles. In this study, kinetic studies of Cys/Pen ligation and its acidolysis were performed, from which the fast acidolysis of substituted N,S-benzylidene thioacetals (NBTs) was discovered. The study demonstrates the potential of NBTs as a promising Cys switchable protection, facilitating the chemical synthesis of peptides and proteins by efficiently disrupting peptide aggregation. The compatibility of NBTs with other commonly adopted Cys protecting groups and their applications in sequential disulfide bond formation were also investigated. The first chemical synthesis of the native human programmed death ligand 1 immunoglobulin V-like (PD-L1 IgV) domain was achieved using the NBT strategy, showcasing its potential in difficult protein synthesis.
Collapse
Affiliation(s)
- Hongxiang Wu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, SAR, People's Republic of, China
| | - Zhenquan Sun
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, SAR, People's Republic of, China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, SAR, People's Republic of, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Ocean University China, Qingdao, 266237, People's Republic of China
| |
Collapse
|
13
|
Nakamura G, Nakatsu K, Hayashi G. One-pot ligation of multiple peptide segments via N-terminal thiazolidine deprotection chemistry. Methods Enzymol 2024; 698:169-194. [PMID: 38886031 DOI: 10.1016/bs.mie.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Peptide ligation chemistries have revolutionized the synthesis of proteins with site-specific modifications or proteomimetics through assembly of multiple peptide segments. In order to prepare polypeptide chains consisting of 100-150 amino acid residues or larger generally assembled from three or more peptide segments, iterative purification process that decreases the product yield is usually demanded. Accordingly, methodologies for one-pot peptide ligation that omit the purification steps of intermediate peptide segments have been vigorously developed so far to improve the efficiency of chemical protein synthesis. In this chapter, we first outline the concept and recent advances of one-pot peptide ligation strategies. Then, the practical guideline for the preparation of peptide segments for one-pot peptide ligation is described with an emphasis on diketopiperazine thioester synthesis. Finally, we disclose the explicit protocols for one-pot four segment ligation via repetitive deprotection of N-terminal thiazolidine by a 2-aminobenzamide type aldehyde scavenger.
Collapse
Affiliation(s)
- Genki Nakamura
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, Japan
| | - Koki Nakatsu
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, Japan
| | - Gosuke Hayashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, Japan.
| |
Collapse
|
14
|
Vijayakanth T, Dasgupta S, Ganatra P, Rencus-Lazar S, Desai AV, Nandi S, Jain R, Bera S, Nguyen AI, Gazit E, Misra R. Peptide hydrogen-bonded organic frameworks. Chem Soc Rev 2024; 53:3640-3655. [PMID: 38450536 DOI: 10.1039/d3cs00648d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Hydrogen-bonded porous frameworks (HPFs) are versatile porous crystalline frameworks with diverse applications. However, designing chiral assemblies or biocompatible materials poses significant challenges. Peptide-based hydrogen-bonded porous frameworks (P-HPFs) are an exciting alternative to conventional HPFs due to their intrinsic chirality, tunability, biocompatibility, and structural diversity. Flexible, ultra-short peptide-based P-HPFs (composed of 3 or fewer amino acids) exhibit adaptable porous topologies that can accommodate a variety of guest molecules and capture hazardous greenhouse gases. Longer, folded peptides present challenges and opportunities in designing P-HPFs. This review highlights recent developments in P-HPFs using ultra-short peptides, folded peptides, and foldamers, showcasing their utility for gas storage, chiral recognition, chiral separation, and medical applications. It also addresses design challenges and future directions in the field.
Collapse
Affiliation(s)
- Thangavel Vijayakanth
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-6997801, Israel.
| | - Sneha Dasgupta
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, S.A.S. Nagar (Mohali) 160062, India.
| | - Pragati Ganatra
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA.
| | - Sigal Rencus-Lazar
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-6997801, Israel.
| | - Aamod V Desai
- School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK
| | - Shyamapada Nandi
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology, 600127, Chennai, India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, S.A.S. Nagar (Mohali) 160062, India.
| | - Santu Bera
- Department of Chemistry, Ashoka University, Sonipat, Haryana 131029, India
| | - Andy I Nguyen
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA.
| | - Ehud Gazit
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-6997801, Israel.
- Sagol School of Neuroscience, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Rajkumar Misra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, S.A.S. Nagar (Mohali) 160062, India.
| |
Collapse
|
15
|
Szaniszló S, Csámpai A, Horváth D, Tomecz R, Farkas V, Perczel A. Unveiling the Oxazolidine Character of Pseudoproline Derivatives by Automated Flow Peptide Chemistry. Int J Mol Sci 2024; 25:4150. [PMID: 38673739 PMCID: PMC11050244 DOI: 10.3390/ijms25084150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Pseudoproline derivatives such as Thr(ΨPro)-OH are commonly used in peptide synthesis to reduce the likelihood of peptide aggregation and to prevent aspartimide (Asi) formation during the synthesis process. In this study, we investigate notable by-products such as aspartimide formation and an imine derivative of the Thr(ΨPro) moiety observed in flow peptide chemistry synthesis. To gain insight into the formation of these unexpected by-products, we design a series of experiments. Furthermore, we demonstrate the oxazolidine character of the pseudoproline moiety and provide plausible mechanisms for the two-way ring opening of oxazolidine leading to these by-products. In addition, we present evidence that Asi formation appears to be catalyzed by the presence of the pseudoproline moiety. These observed side reactions are attributed to elevated temperature and pressure; therefore, caution is advised when using ΨPro derivatives under such harsh conditions. In addition, we propose a solution whereby thermodynamically controlled Asi formation can be kinetically prevented.
Collapse
Affiliation(s)
- Szebasztián Szaniszló
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, 1117 Budapest, Hungary; (S.S.); (D.H.); (R.T.)
- ELTE Hevesy György Ph.D. School of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, 1117 Budapest, Hungary
| | - Antal Csámpai
- Instutite of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, 1117 Budapest, Hungary;
| | - Dániel Horváth
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, 1117 Budapest, Hungary; (S.S.); (D.H.); (R.T.)
| | - Richárd Tomecz
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, 1117 Budapest, Hungary; (S.S.); (D.H.); (R.T.)
| | - Viktor Farkas
- HUN-REN—ELTE Protein Modeling Research Group, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, 1117 Budapest, Hungary
| | - András Perczel
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, 1117 Budapest, Hungary; (S.S.); (D.H.); (R.T.)
- HUN-REN—ELTE Protein Modeling Research Group, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, 1117 Budapest, Hungary
| |
Collapse
|
16
|
Kekessie I, Wegner K, Martinez I, Kopach ME, White TD, Tom JK, Kenworthy MN, Gallou F, Lopez J, Koenig SG, Payne PR, Eissler S, Arumugam B, Li C, Mukherjee S, Isidro-Llobet A, Ludemann-Hombourger O, Richardson P, Kittelmann J, Sejer Pedersen D, van den Bos LJ. Process Mass Intensity (PMI): A Holistic Analysis of Current Peptide Manufacturing Processes Informs Sustainability in Peptide Synthesis. J Org Chem 2024; 89:4261-4282. [PMID: 38508870 PMCID: PMC11002941 DOI: 10.1021/acs.joc.3c01494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/17/2024] [Accepted: 03/01/2024] [Indexed: 03/22/2024]
Abstract
Small molecule therapeutics represent the majority of the FDA-approved drugs. Yet, many attractive targets are poorly tractable by small molecules, generating a need for new therapeutic modalities. Due to their biocompatibility profile and structural versatility, peptide-based therapeutics are a possible solution. Additionally, in the past two decades, advances in peptide design, delivery, formulation, and devices have occurred, making therapeutic peptides an attractive modality. However, peptide manufacturing is often limited to solid-phase peptide synthesis (SPPS), liquid phase peptide synthesis (LPPS), and to a lesser extent hybrid SPPS/LPPS, with SPPS emerging as a predominant platform technology for peptide synthesis. SPPS involves the use of excess solvents and reagents which negatively impact the environment, thus highlighting the need for newer technologies to reduce the environmental footprint. Herein, fourteen American Chemical Society Green Chemistry Institute Pharmaceutical Roundtable (ACS GCIPR) member companies with peptide-based therapeutics in their portfolio have compiled Process Mass Intensity (PMI) metrics to help inform the sustainability efforts in peptide synthesis. This includes PMI assessment on 40 synthetic peptide processes at various development stages in pharma, classified according to the development phase. This is the most comprehensive assessment of synthetic peptide environmental metrics to date. The synthetic peptide manufacturing process was divided into stages (synthesis, purification, isolation) to determine their respective PMI. On average, solid-phase peptide synthesis (SPPS) (PMI ≈ 13,000) does not compare favorably with other modalities such as small molecules (PMI median 168-308) and biopharmaceuticals (PMI ≈ 8300). Thus, the high PMI for peptide synthesis warrants more environmentally friendly processes in peptide manufacturing.
Collapse
Affiliation(s)
- Ivy Kekessie
- Early Discovery
Biochemistry - Peptide Therapeutics, Genentech,
Inc., A Member of the Roche Group, 1 DNA Way, South San Francisco, California 94080, United States
| | - Katarzyna Wegner
- Active Pharmaceutical
Ingredient Development, Ipsen Manufacturing
Ireland Ltd., Blanchardstown
Industrial Park, Dublin 15, Ireland
| | - Isamir Martinez
- Green Chemistry
Institute, American Chemical Society, 1155 16th St North West, Washington, District of Columbia, 20036, United
States
| | - Michael E. Kopach
- Synthetic
Molecule Design and Development, Eli Lilly
and Company, Indianapolis, Indiana 46285, United States
| | - Timothy D. White
- Synthetic
Molecule Design and Development, Eli Lilly
and Company, Indianapolis, Indiana 46285, United States
| | - Janine K. Tom
- Drug Substance
Technologies, Amgen, Inc., 1 Amgen Center Drive, Thousand
Oaks, California 91320, United States
| | - Martin N. Kenworthy
- Chemical
Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, SK10 2NA, United Kingdom
| | - Fabrice Gallou
- Chemical
& Analytical Development, Novartis Pharma
AG, 4056 Basel, Switzerland
| | - John Lopez
- Chemical
& Analytical Development, Novartis Pharma
AG, 4056 Basel, Switzerland
| | - Stefan G. Koenig
- Small
Molecule
Pharmaceutical Sciences, Genentech, Inc.,
A Member of the Roche Group, 1 DNA Way, South San Francisco, California 94080, United States
| | - Philippa R. Payne
- Outsourced
Manufacturing, Pharmaceutical Development & Manufacturing, Gilead Alberta ULC, 1021 Hayter Rd NW, Edmonton, T6S 1A1, Canada
| | - Stefan Eissler
- Bachem
AG, Hauptstrasse 144, 4416 Bubendorf, Switzerland
| | - Balasubramanian Arumugam
- Chemical
Macromolecule Division, Asymchem Life Science
(Tianjin) Co., Ltd., 71 Seventh Avenue, TEDA Tianjin 300457, China
| | - Changfeng Li
- Chemical
Macromolecule Division, Asymchem Life Science
(Tianjin) Co., Ltd., 71 Seventh Avenue, TEDA Tianjin 300457, China
| | - Subha Mukherjee
- Chemical
Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | | | | | - Paul Richardson
- Chemistry, Pfizer, 10578 Science Center Drive (CB6), San Diego, California 09121, United States
| | | | | | | |
Collapse
|
17
|
Zheng Y, Zhang B, Shi WW, Deng X, Wang TY, Han D, Ren Y, Yang Z, Zhou YK, Kuang J, Wang ZW, Tang S, Zheng JS. An Enzyme-Cleavable Solubilizing-Tag Facilitates the Chemical Synthesis of Mirror-Image Proteins. Angew Chem Int Ed Engl 2024; 63:e202318897. [PMID: 38326236 DOI: 10.1002/anie.202318897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/09/2024]
Abstract
Mirror-image proteins (D-proteins) are useful in biomedical research for purposes such as mirror-image screening for D-peptide drug discovery, but the chemical synthesis of many D-proteins is often low yielding due to the poor solubility or aggregation of their constituent peptide segments. Here, we report a Lys-C protease-cleavable solubilizing tag and its use to synthesize difficult-to-obtain D-proteins. Our tag is easily installed onto multiple amino acids such as DLys, DSer, DThr, and/or the N-terminal amino acid of hydrophobic D-peptides, is impervious to various reaction conditions, such as peptide synthesis, ligation, desulfurization, and transition metal-mediated deprotection, and yet can be completely removed by Lys-C protease under denaturing conditions to give the desired D-protein. The efficacy and practicality of the new method were exemplified in the synthesis of two challenging D-proteins: D-enantiomers of programmed cell death protein 1 IgV domain and SARS-CoV-2 envelope protein, in high yield. This work demonstrates that the enzymatic cleavage of solubilizing tags under denaturing conditions is feasible, thus paving the way for the production of more D-proteins.
Collapse
Affiliation(s)
- Yupeng Zheng
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China (USTC), MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, and Division of Life Sciences and Medicine, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Baochang Zhang
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China (USTC), MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, and Division of Life Sciences and Medicine, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wei-Wei Shi
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xiangyu Deng
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Tong-Yue Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Dongyang Han
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yuxiang Ren
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Ziyi Yang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yong-Kang Zhou
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Jian Kuang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhi-Wen Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Shan Tang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Ji-Shen Zheng
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China (USTC), MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, and Division of Life Sciences and Medicine, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230001, China
| |
Collapse
|
18
|
Pramod T, Khazeber R, Athiyarath V, Sureshan KM. Topochemistry for Difficult Peptide-Polymer Synthesis: Single-Crystal-to-Single-Crystal Synthesis of an Isoleucine-Based Polymer, a Hydrophobic Coating Material. J Am Chem Soc 2024; 146:7257-7265. [PMID: 38253536 DOI: 10.1021/jacs.3c10779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Polymers of hydrophobic amino acids are predicted to be potential coating materials for the creation of hydrophobic surfaces. The oligopeptides of hydrophobic amino acids are called "difficult peptides"; as the name suggests, it is difficult to synthesize them by conventional methods. We circumvented this synthetic challenge by adopting topochemical azide-alkyne cycloaddition (TAAC) polymerization of a hydrophobic dipeptide monomer. We designed an Ile-based dipeptide, decorated with azide and alkyne, which arrange in the crystal in a head-to-tail fashion with the azide and alkyne of the adjacent molecules in a ready-to-react orientation. The monomer, on mild heating of its crystals, undergoes regiospecific TAAC polymerization to yield a 1,4-disubstituted-triazole-linked polymer in a single-crystal-to-single-crystal fashion. The solid obtained after evaporation of the monomer solution also maintained crystallinity and underwent regiospecific topochemical polymerization as in the case of crystals. This topochemical polymerization could be studied using different techniques such as FTIR, NMR, DSC, GPC, MALDI, PXRD, and SCXRD. Since the polymer is insoluble in common solvents and hence difficult to coat surfaces, the monomer was first sprayed and evaporated on various surfaces and polymerized on the surface. Such polymer-coated surfaces exhibited water contact angles of up to 134°, showing that this Ile-derived polymer is very hydrophobic and can potentially be used as a coating material for various applications.
Collapse
Affiliation(s)
- Thejus Pramod
- School of Chemistry, IISER Thiruvananthapuram, Maruthamala, Thiruvananthapuram 695551, India
| | - Ravichandran Khazeber
- School of Chemistry, IISER Thiruvananthapuram, Maruthamala, Thiruvananthapuram 695551, India
| | - Vignesh Athiyarath
- School of Chemistry, IISER Thiruvananthapuram, Maruthamala, Thiruvananthapuram 695551, India
| | - Kana M Sureshan
- School of Chemistry, IISER Thiruvananthapuram, Maruthamala, Thiruvananthapuram 695551, India
| |
Collapse
|
19
|
Wang X, Jin K. Robust Chemical Synthesis of "Difficult Peptides" via 2-Hydroxyphenol-pseudoproline (ψ 2-hydroxyphenolpro) Modifications. J Org Chem 2024; 89:3143-3149. [PMID: 38373048 DOI: 10.1021/acs.joc.3c02576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The challenging preparation of "difficult peptides" has always hindered the development of peptide-active pharmaceutical ingredients. Pseudoproline (ψpro) building blocks have been proven effective and powerful tools for the synthesis of "difficult peptides". In this paper, we efficiently prepared a set of novel 2-(oxazolidin-2-yl)phenol compounds as proline surrogates (2-hydroxyphenol-pseudoprolines, ψ2-hydroxyphenolpro) and applied it in the synthesis of many well-known "difficult peptides", including human thymosin α1, amylin, and β-amyloid (1-42) (Aβ42).
Collapse
Affiliation(s)
- Xinyue Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Kang Jin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
20
|
Li W, Jacobsen MT, Park C, Jung JU, Lin NP, Huang PS, Lal RA, Chou DHC. A cysteine-specific solubilizing tag strategy enables efficient chemical protein synthesis of difficult targets. Chem Sci 2024; 15:3214-3222. [PMID: 38425513 PMCID: PMC10901488 DOI: 10.1039/d3sc06032b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/18/2024] [Indexed: 03/02/2024] Open
Abstract
We developed a new cysteine-specific solubilizing tag strategy via a cysteine-conjugated succinimide. This solubilizing tag remains stable under common native chemical ligation conditions and can be efficiently removed with palladium-based catalysts. Utilizing this approach, we synthesized two proteins containing notably difficult peptide segments: interleukin-2 (IL-2) and insulin. This IL-2 chemical synthesis represents the simplest and most efficient approach to date, which is enabled by the cysteine-specific solubilizing tag to synthesize and ligate long peptide segments. Additionally, we synthesized a T8P insulin variant, previously identified in an infant with neonatal diabetes. We show that T8P insulin exhibits reduced bioactivity (a 30-fold decrease compared to standard insulin), potentially contributing to the onset of diabetes in these patients. In summary, our work provides an efficient tool to synthesize challenging proteins and opens new avenues for exploring research directions in understanding their biological functions.
Collapse
Affiliation(s)
- Wenchao Li
- División of Endocrinology and Diabetes, Department of Pediatrics, School of Medicine, Stanford University Palo Alto CA 94305 USA
| | - Michael T Jacobsen
- División of Endocrinology and Diabetes, Department of Pediatrics, School of Medicine, Stanford University Palo Alto CA 94305 USA
| | - Claire Park
- División of Endocrinology and Diabetes, Department of Pediatrics, School of Medicine, Stanford University Palo Alto CA 94305 USA
| | - Jae Un Jung
- División of Endocrinology and Diabetes, Department of Pediatrics, School of Medicine, Stanford University Palo Alto CA 94305 USA
| | - Nai-Pin Lin
- División of Endocrinology and Diabetes, Department of Pediatrics, School of Medicine, Stanford University Palo Alto CA 94305 USA
| | - Po-Ssu Huang
- Department of Bioengineering, Stanford University Palo Alto CA 94305 USA
| | - Rayhan A Lal
- Division of Endocrinology, Department of Medicine, School of Medicine, Stanford University Palo Alto CA 94305 USA
| | - Danny Hung-Chieh Chou
- División of Endocrinology and Diabetes, Department of Pediatrics, School of Medicine, Stanford University Palo Alto CA 94305 USA
| |
Collapse
|
21
|
Dillemans L, Yu K, De Zutter A, Noppen S, Gouwy M, Berghmans N, Verhallen L, De Bondt M, Vanbrabant L, Brusselmans S, Martens E, Schols D, Verschueren P, Rosenkilde MM, Marques PE, Struyf S, Proost P. Natural carboxyterminal truncation of human CXCL10 attenuates glycosaminoglycan binding, CXCR3A signaling and lymphocyte chemotaxis, while retaining angiostatic activity. Cell Commun Signal 2024; 22:94. [PMID: 38308278 PMCID: PMC10835923 DOI: 10.1186/s12964-023-01453-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/21/2023] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Interferon-γ-inducible protein of 10 kDa (IP-10/CXCL10) is a dual-function CXC chemokine that coordinates chemotaxis of activated T cells and natural killer (NK) cells via interaction with its G protein-coupled receptor (GPCR), CXC chemokine receptor 3 (CXCR3). As a consequence of natural posttranslational modifications, human CXCL10 exhibits a high degree of structural and functional heterogeneity. However, the biological effect of natural posttranslational processing of CXCL10 at the carboxy (C)-terminus has remained partially elusive. We studied CXCL10(1-73), lacking the four endmost C-terminal amino acids, which was previously identified in supernatant of cultured human fibroblasts and keratinocytes. METHODS Relative levels of CXCL10(1-73) and intact CXCL10(1-77) were determined in synovial fluids of patients with rheumatoid arthritis (RA) through tandem mass spectrometry. The production of CXCL10(1-73) was optimized through Fmoc-based solid phase peptide synthesis (SPPS) and a strategy to efficiently generate human CXCL10 proteoforms was introduced. CXCL10(1-73) was compared to intact CXCL10(1-77) using surface plasmon resonance for glycosaminoglycan (GAG) binding affinity, assays for cell migration, second messenger signaling downstream of CXCR3, and flow cytometry of CHO cells and primary human T lymphocytes and endothelial cells. Leukocyte recruitment in vivo upon intraperitoneal injection of CXCL10(1-73) was also evaluated. RESULTS Natural CXCL10(1-73) was more abundantly present compared to intact CXCL10(1-77) in synovial fluids of patients with RA. CXCL10(1-73) had diminished affinity for GAG including heparin, heparan sulfate and chondroitin sulfate A. Moreover, CXCL10(1-73) exhibited an attenuated capacity to induce CXCR3A-mediated signaling, as evidenced in calcium mobilization assays and through quantification of phosphorylated extracellular signal-regulated kinase-1/2 (ERK1/2) and protein kinase B/Akt. Furthermore, CXCL10(1-73) incited significantly less primary human T lymphocyte chemotaxis in vitro and peritoneal ingress of CXCR3+ T lymphocytes in mice. In contrast, loss of the four endmost C-terminal residues did not affect the inhibitory properties of CXCL10 on migration, proliferation, wound closure, phosphorylation of ERK1/2, and sprouting of human microvascular endothelial cells. CONCLUSION Our study shows that the C-terminal residues Lys74-Pro77 of CXCL10 are important for GAG binding, signaling through CXCR3A, T lymphocyte chemotaxis, but dispensable for angiostasis.
Collapse
Affiliation(s)
- Luna Dillemans
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Karen Yu
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Alexandra De Zutter
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Sam Noppen
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49 Box 1042, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Nele Berghmans
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Lisa Verhallen
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
- Laboratory of Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Mirre De Bondt
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Lotte Vanbrabant
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Stef Brusselmans
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Erik Martens
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49 Box 1042, Leuven, Belgium
| | - Patrick Verschueren
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Mette M Rosenkilde
- Laboratory of Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Pedro Elias Marques
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
22
|
Mthembu SN, Chakraborty A, Schönleber R, Albericio F, de la Torre BG. Morpholine, a strong contender for Fmoc removal in solid-phase peptide synthesis. J Pept Sci 2024; 30:e3538. [PMID: 37609959 DOI: 10.1002/psc.3538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/24/2023]
Abstract
Morpholine, which scores 7.5 in terms of greenness and is not a regulated substance, could be considered a strong contender for Fmoc removal in solid-phase peptide synthesis (SPPS). Morpholine in dimethylformamide (DMF) (50%-60%) efficiently removes Fmoc in SPPS, minimizes the formation of diketopiperazine, and almost avoids the aspartimide formation. As a proof of concept, somatostatin has been synthesized using 50% morpholine in DMF with the same purity as when using 20% piperidine-DMF.
Collapse
Affiliation(s)
- Sinenhlanhla N Mthembu
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Amit Chakraborty
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | | | - Fernando Albericio
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, and Department of Organic Chemistry, University of Barcelona, Barcelona, Spain
| | - Beatriz G de la Torre
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
23
|
Trier NH, Friis T. Production of Antibodies to Peptide Targets Using Hybridoma Technology. Methods Mol Biol 2024; 2821:135-156. [PMID: 38997486 DOI: 10.1007/978-1-0716-3914-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Hybridoma technology is a well-established and indispensable tool for generating high-quality monoclonal antibodies and has become one of the most common methods for monoclonal antibody production. In this process, antibody-producing B cells are isolated from mice following immunization of mice with a specific immunogen and fused with an immortal myeloma cell line to form antibody-producing hybridoma cell lines. Hybridoma-derived monoclonal antibodies not only serve as powerful research and diagnostic reagents but have also emerged as the most rapidly expanding class of therapeutic biologicals. In spite of the development of new high-throughput monoclonal antibody generation technologies, hybridoma technology still is applied for antibody production due to its ability to preserve innate functions of immune cells and to preserve natural cognate antibody paring information. In this chapter, an overview of hybridoma technology and the laboratory procedures used for hybridoma production and antibody screening of peptide-specific antibodies are presented.
Collapse
Affiliation(s)
| | - Tina Friis
- Department of Congenital Disorders, Statens Serum Institut, Copenhagen S, Denmark
| |
Collapse
|
24
|
Alekseeva KA, Nadirova MA, Zaytsev VP, Nikitina EV, Grigoriev MS, Novikov AP, Kolesnik IA, Mayer B, Müller TJJ, Zubkov FI. Domino Three-Component N-Acylation/[4 + 2] Cycloaddition/Alder-ene Synthesis of Polysubstituted Benzo[ f]isoindole-4-carboxylic Acids. J Org Chem 2023; 88:15029-15040. [PMID: 37870950 DOI: 10.1021/acs.joc.3c01476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Diversely substituted, partially saturated benzo[f]isoindole-4-carboxylic acids were synthesized by a new three-component reaction (3CR) starting from cinnamic amines (3-arylallylamines), maleimides, and maleic anhydride. The process consists of N-acylation of the amines by maleic anhydride, intramolecular [4 + 2] cycloaddition in vinylarenes (the IMDAV reaction), and the concluding Alder-ene reaction between Diels-Alder intermediates and maleimides. All of the reaction steps proceed in a highly regio- and stereoselective manner, furnishing five adjacent chiral centers and leading to a single diastereoisomer of the title compound. The efficiency of the transformation is secured by thermal conditions or utilization of soft Lewis acids (Yb(OTf)3) as catalysts. The kinetics and mechanism of the 3CR were studied by using dynamic 19F NMR. Based on the NMR data and density functional theory (DFT) calculations, the IMDAV, not the Alder-ene, reaction is the rate-limiting step of the entire process.
Collapse
Affiliation(s)
- Kseniya A Alekseeva
- Department of Organic Chemistry, RUDN University, Miklukho-Maklaya str. 6, 117198 Moscow, Russian Federation
| | - Maryana A Nadirova
- Department of Organic Chemistry, RUDN University, Miklukho-Maklaya str. 6, 117198 Moscow, Russian Federation
| | - Vladimir P Zaytsev
- Department of Organic Chemistry, RUDN University, Miklukho-Maklaya str. 6, 117198 Moscow, Russian Federation
| | - Evgeniya V Nikitina
- Department of Organic Chemistry, RUDN University, Miklukho-Maklaya str. 6, 117198 Moscow, Russian Federation
| | - Mikhail S Grigoriev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky prosp. 31, bld. 4, 119071 Moscow, Russia
| | - Anton P Novikov
- Department of Organic Chemistry, RUDN University, Miklukho-Maklaya str. 6, 117198 Moscow, Russian Federation
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky prosp. 31, bld. 4, 119071 Moscow, Russia
| | - Irina A Kolesnik
- Institute of Physical Organic Chemistry of National Academy of Sciences of Belarus, 13 Surganov str., 220072 Minsk, Belarus
| | - Bernhard Mayer
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Thomas J J Müller
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Fedor I Zubkov
- Department of Organic Chemistry, RUDN University, Miklukho-Maklaya str. 6, 117198 Moscow, Russian Federation
| |
Collapse
|
25
|
Pereira-Dias L, Oliveira-Pinto PR, Fernandes JO, Regalado L, Mendes R, Teixeira C, Mariz-Ponte N, Gomes P, Santos C. Peptaibiotics: Harnessing the potential of microbial secondary metabolites for mitigation of plant pathogens. Biotechnol Adv 2023; 68:108223. [PMID: 37536466 DOI: 10.1016/j.biotechadv.2023.108223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Agricultural systems are in need of low-cost, safe antibiotics to protect crops from pests and diseases. Peptaibiotics, a family of linear, membrane-active, amphipathic polypeptides, have been shown to exhibit antibacterial, antifungal, and antiviral activity, and to be inducers of plant resistance against a wide range of phytopathogens. Peptaibiotics belong to the new generation of alternatives to agrochemicals, aligned with the United Nations Sustainable Development Goals and the One Health approach toward ensuring global food security and safety. Despite that, these fungi-derived, non-ribosomal peptides remain surprisingly understudied, especially in agriculture, where only a small number has been tested against a reduced number of phytopathogens. This lack of adoption stems from peptaibiotics' poor water solubility and the difficulty to synthesize and purify them in vitro, which compromises their delivery and inclusion in formulations. In this review, we offer a comprehensive analysis of peptaibiotics' classification, biosynthesis, relevance to plant protection, and mode of action against phytopathogens, along with the techniques enabling researchers to extract, purify, and elucidate their structure, and the databases holding such valuable data. It is also discussed how chemical synthesis and ionic liquids could increase their solubility, how genetic engineering and epigenetics could boost in vitro production, and how omics can reduce screenings' workload through in silico selection of the best candidates. These strategies could turn peptaibiotics into effective, ultra-specific, biodegradable tools for phytopathogen control.
Collapse
Affiliation(s)
- Leandro Pereira-Dias
- iB(2) Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022, Valencia, Spain.
| | - Paulo R Oliveira-Pinto
- iB(2) Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Juliana O Fernandes
- iB(2) Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Laura Regalado
- iB(2) Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Rafael Mendes
- iB(2) Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Cátia Teixeira
- LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Nuno Mariz-Ponte
- iB(2) Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Paula Gomes
- LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Conceição Santos
- iB(2) Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
26
|
Wu H, Sun Z, Li X. N,O-Benzylidene Acetal Dipeptides (NBDs) Enable the Synthesis of Difficult Peptides via a Kinked Backbone Strategy. Angew Chem Int Ed Engl 2023; 62:e202310624. [PMID: 37694822 DOI: 10.1002/anie.202310624] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 09/12/2023]
Abstract
Proteins with highly hydrophobic regions or aggregation-prone sequences are typically difficult targets for chemical synthesis at the current stage, as obtaining such type of peptides via solid-phase peptide synthesis requires sophisticated operations. Herein, we report N,O-benzylidene acetal dipeptides (NBDs) as robust and effective building blocks to allow the direct synthesis of difficult peptides and proteins via a kinked backbone strategy. The effectiveness and easy accessibility of NBDs have been well demonstrated in our chemical syntheses of various challenging peptides and proteins, including chemokine, therapeutic hormones, histone, and glycosylated erythropoietin.
Collapse
Affiliation(s)
- Hongxiang Wu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Zhenquan Sun
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, P. R. China
| |
Collapse
|
27
|
Perez Mellor AF, Brazard J, Kozub S, Bürgi T, Szweda R, Adachi TBM. Unveiling the Configurational Landscape of Carbamate: Paving the Way for Designing Functional Sequence-Defined Polymers. J Phys Chem A 2023; 127:7309-7322. [PMID: 37624607 PMCID: PMC10493977 DOI: 10.1021/acs.jpca.3c02442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/11/2023] [Indexed: 08/26/2023]
Abstract
Carbamate is an emerging class of a polymer backbone for constructing sequence-defined, abiotic polymers. It is expected that new functional materials can be de novo designed by controlling the primary polycarbamate sequence. While amino acids have been actively studied as building blocks for protein folding and peptide self-assembly, carbamates have not been widely investigated from this perspective. Here, we combined infrared (IR), vibrational circular dichroism (VCD), and nuclear magnetic resonance (NMR) spectroscopy with density functional theory (DFT) calculations to understand the conformation of carbamate monomer units in a nonpolar, aprotic environment (chloroform). Compared with amino acid building blocks, carbamates are more rigid, presumably due to the extended delocalization of π-electrons on the backbones. Cis configurations of the amide bond can be energetically stable in carbamates, whereas peptides often assume trans configurations at low energies. This study lays an essential foundation for future developments of carbamate-based sequence-defined polymer material design.
Collapse
Affiliation(s)
- Ariel F. Perez Mellor
- Department
of Physical Chemistry, Sciences II, University
of Geneva, 30, Quai Ernest Ansermet, Geneva 1211, Switzerland
| | - Johanna Brazard
- Department
of Physical Chemistry, Sciences II, University
of Geneva, 30, Quai Ernest Ansermet, Geneva 1211, Switzerland
| | - Sara Kozub
- Łukasiewicz
Research Network − PORT Polish Center for Technology Development, Stabłowicka 147, Wrocław 54-066, Poland
| | - Thomas Bürgi
- Department
of Physical Chemistry, Sciences II, University
of Geneva, 30, Quai Ernest Ansermet, Geneva 1211, Switzerland
| | - Roza Szweda
- Łukasiewicz
Research Network − PORT Polish Center for Technology Development, Stabłowicka 147, Wrocław 54-066, Poland
| | - Takuji B. M. Adachi
- Department
of Physical Chemistry, Sciences II, University
of Geneva, 30, Quai Ernest Ansermet, Geneva 1211, Switzerland
| |
Collapse
|
28
|
Zhou Y, Li H, Huang Y, Li J, Deng G, Chen G, Xi Z, Zhou C. Suppression of alpha-carbon racemization in peptide synthesis based on a thiol-labile amino protecting group. Nat Commun 2023; 14:5324. [PMID: 37658053 PMCID: PMC10474026 DOI: 10.1038/s41467-023-41115-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023] Open
Abstract
In conventional solid-phase peptide synthesis (SPPS), α-amino groups are protected with alkoxycarbonyl groups (e.g., 9-fluorenylmethoxycarbonyl [Fmoc]). However, during SPPS, inherent side reactions of the protected amino acids (e.g., α-C racemization and aspartimide formation) generate by-products that are hard to remove. Herein, we report a thiol-labile amino protecting group for SPPS, the 2,4-dinitro-6-phenyl-benzene sulfenyl (DNPBS) group, which is attached to the α-amino group via a S-N bond and can be quantitatively removed in minutes under nearly neutral conditions (1 M p-toluenethiol/pyridine). The use of DNPBS greatly suppresses the main side reactions observed during conventional SPPS. Although DNPBS SPPS is not as efficient as Fmoc SPPS, especially for synthesis of long peptides, DNPBS and Fmoc are orthogonal protecting groups; and thus DNPBS SPPS and Fmoc SPPS can be combined to synthesize peptides that are otherwise difficult to obtain.
Collapse
Affiliation(s)
- Yifei Zhou
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Hongjun Li
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yi Huang
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jiahui Li
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Guiyu Deng
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Gong Chen
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chuanzheng Zhou
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
29
|
Zhang B, Zheng Y, Chu G, Deng X, Wang T, Shi W, Zhou Y, Tang S, Zheng JS, Liu L. Backbone-Installed Split Intein-Assisted Ligation for the Chemical Synthesis of Mirror-Image Proteins. Angew Chem Int Ed Engl 2023; 62:e202306270. [PMID: 37357888 DOI: 10.1002/anie.202306270] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 06/27/2023]
Abstract
Membrane-associated D-proteins are an important class of synthetic molecules needed for D-peptide drug discovery, but their chemical synthesis using canonical ligation methods such as native chemical ligation is often hampered by the poor solubility of their constituent peptide segments. Here, we describe a Backbone-Installed Split Intein-Assisted Ligation (BISIAL) method for the synthesis of these proteins, wherein the native L-forms of the N- and C-intein fragments of the unique consensus-fast (Cfa) (i.e. L-CfaN and L-CfaC ) are separately installed onto the two D-peptide segments to be ligated via a removable backbone modification. The ligation proceeds smoothly at micromolar (μM) concentrations under strongly chaotropic conditions (8.0 M urea), and the subsequent removal of the backbone modification groups affords the desired D-proteins without leaving any "ligation scar" on the products. The effectiveness and practicality of the BISIAL method are exemplified by the synthesis of the D-enantiomers of the extracellular domains of T cell immunoglobulin and ITIM domain (TIGIT) and tropomyosin receptor kinase C (TrkC). The BISIAL method further expands the chemical protein synthesis ligation toolkit and provides practical access to challenging D-protein targets.
Collapse
Affiliation(s)
- Baochang Zhang
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yupeng Zheng
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Guochao Chu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xiangyu Deng
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Tongyue Wang
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Weiwei Shi
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yongkang Zhou
- The First Affiliated Hospital of USTC, MOE Key Laboratory of Cellular Dynamics, and Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Shan Tang
- The First Affiliated Hospital of USTC, MOE Key Laboratory of Cellular Dynamics, and Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Ji-Shen Zheng
- The First Affiliated Hospital of USTC, MOE Key Laboratory of Cellular Dynamics, and Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
30
|
Coppa C, Bazzoli A, Barkhordari M, Contini A. Accelerated Molecular Dynamics for Peptide Folding: Benchmarking Different Combinations of Force Fields and Explicit Solvent Models. J Chem Inf Model 2023; 63:3030-3042. [PMID: 37163419 DOI: 10.1021/acs.jcim.3c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Accelerated molecular dynamics (aMD) protocols were assessed on predicting the secondary structure of eight peptides, of which two are helical, three are β-hairpins, and three are disordered. Protocols consisted of combinations of three force fields (ff99SB, ff14SB, ff19SB) and two explicit solvation models (TIP3P and OPC), and were evaluated in two independent aMD simulations, one starting from an extended conformation, the other starting from a misfolded conformation. The results of these analyses indicate that all three combinations performed well on helical peptides. As for β-hairpins, ff19SB performed well with both solvation methods, with a slight preference for the TIP3P solvation model, even though performance was dependent on both peptide sequence and initial conformation. The ff19SB/OPC combination had the best performance on intrinsically disordered peptides. In general, ff14SB/TIP3P suffered the strongest helical bias.
Collapse
Affiliation(s)
- Crescenzo Coppa
- Dipartimento di Scienze Farmaceutiche - Sezione di Chimica Generale e Organica "Alessandro Marchesini", Università degli Studi di Milano, Via Venezian, 21, 20133 Milano, Italy
| | - Andrea Bazzoli
- Dipartimento di Scienze Farmaceutiche - Sezione di Chimica Generale e Organica "Alessandro Marchesini", Università degli Studi di Milano, Via Venezian, 21, 20133 Milano, Italy
| | - Maral Barkhordari
- Dipartimento di Scienze Farmaceutiche - Sezione di Chimica Generale e Organica "Alessandro Marchesini", Università degli Studi di Milano, Via Venezian, 21, 20133 Milano, Italy
| | - Alessandro Contini
- Dipartimento di Scienze Farmaceutiche - Sezione di Chimica Generale e Organica "Alessandro Marchesini", Università degli Studi di Milano, Via Venezian, 21, 20133 Milano, Italy
| |
Collapse
|
31
|
Wu H, Tan Y, Ngai WL, Li X. Total synthesis of interleukin-2 via a tunable backbone modification strategy. Chem Sci 2023; 14:1582-1589. [PMID: 36794182 PMCID: PMC9906654 DOI: 10.1039/d2sc05660g] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/06/2023] [Indexed: 01/08/2023] Open
Abstract
Chemical synthesis of hydrophobic proteins presents a formidable task as they are often difficultly achieved via peptide synthesis, purification, and peptide ligation. Thus, peptide solubilizing strategies are needed to integrate with peptide ligation to achieve protein total synthesis. Herein, we report a tunable backbone modification strategy, taking advantage of the tunable stability of the Cys/Pen ligation intermediate, which allows for readily introducing a solubilizing tag for both peptide purification and ligation processes. The effectiveness of this strategy was demonstrated by the chemical synthesis of interleukin-2.
Collapse
Affiliation(s)
- Hongxiang Wu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Hong Kong SAR P. R. China
| | - Yi Tan
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Hong Kong SAR P. R. China
| | - Wai Lok Ngai
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Hong Kong SAR P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Hong Kong SAR P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology Qingdao 266237 P. R. China
| |
Collapse
|
32
|
Hohmann T, Chowdhary S, Ataka K, Er J, Dreyhsig GH, Heberle J, Koksch B. Introducing Aliphatic Fluoropeptides: Perspectives on Folding Properties, Membrane Partition and Proteolytic Stability. Chemistry 2023; 29:e202203860. [PMID: 36722398 DOI: 10.1002/chem.202203860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/02/2023]
Abstract
A de novo designed class of peptide-based fluoropolymers composed of fluorinated aliphatic amino acids as main components is reported. Structural characterization provided insights into fluorine-induced alterations on β-strand to α-helix transition upon an increase in SDS content and revealed the unique formation of PPII structures for trifluorinated fluoropeptides. A combination of circular dichroism, fluorescence-based leaking assays and surface enhanced infrared absorption spectroscopy served to examine the insertion and folding processes into unilamellar vesicles. While partitioning into lipid bilayers, the degree of fluorination conducts a decrease in α-helical content. Furthermore, this study comprises a report on the proteolytic stability of peptides exclusively built up by fluorinated amino acids and proved all sequences to be enzymatically degradable despite the degree of fluorination. Herein presented fluoropeptides as well as the distinctive properties of these artificial and polyfluorinated foldamers with enzyme-degradable features will play a crucial role in the future development of fluorinated peptide-based biomaterials.
Collapse
Affiliation(s)
- Thomas Hohmann
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 20, 14195, Berlin, Germany
| | - Suvrat Chowdhary
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 20, 14195, Berlin, Germany
| | - Kenichi Ataka
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Jasmin Er
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 20, 14195, Berlin, Germany
| | - Gesa Heather Dreyhsig
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 20, 14195, Berlin, Germany
| | - Joachim Heberle
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Beate Koksch
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 20, 14195, Berlin, Germany
| |
Collapse
|
33
|
Manne SR, Rustler K, Bruckdorfer T, de la Torre BG, Albericio F. Incorporation of pseudoproline monomer (Fmoc-Thr[ψMe,Mepro]–OH) facilitates efficient solid-phase synthesis of difficult peptides. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Cui J, Chen J, Ni Z, Dong W, Chen M, Shi D. High-Sensitivity Flexible Sensor Based on Biomimetic Strain-Stiffening Hydrogel. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47148-47156. [PMID: 36205693 DOI: 10.1021/acsami.2c15203] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Recently, flexible wearable and implantable electronic devices have attracted enormous interest in biomedical applications. However, current bioelectronic systems have not solved the problem of mechanical mismatch of tissue-electrode interfaces. Therefore, the biomimetic hydrogel with tissue-like mechanical properties is highly desirable for flexible electronic devices. Herein, we propose a strategy to fabricate a biomimetic hydrogel with strain-stiffening property via regional chain entanglements. The strain-stiffening property of the biomimetic hydrogel is realized by embedding highly swollen poly(acrylate sodium) microgels to act as the microregions of dense entanglement in the soft polyacrylamide matrix. In addition, poly(acrylate sodium) microgels can release Na+ ions, endowing hydrogel with electrical signals to serve as strain sensors for detecting different human movements. The resultant sensors own a low Young's modulus (22.61-112.45 kPa), high nominal tensile strength (0.99 MPa), and high sensitivity with a gauge factor up to 6.77 at strain of 300%. Based on its simple manufacture process, well mechanical matching suitability, and high sensitivity, the as-prepared sensor might have great potential for a wide range of large-scale applications such as wearable and implantable electronic devices.
Collapse
Affiliation(s)
- Jianbing Cui
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi214122, China
| | - Jiwei Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi214122, China
| | - Zhongbin Ni
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi214122, China
| | - Weifu Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi214122, China
| | - Mingqing Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi214122, China
| | - Dongjian Shi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi214122, China
| |
Collapse
|
35
|
Huppelschoten Y, Elhebieshy AF, Hameed DS, Sapmaz A, Buchardt J, Nielsen TE, Ovaa H, van der Heden van Noort GJ. Total Chemical Synthesis of a Functionalized GFP Nanobody. Chembiochem 2022; 23:e202200304. [PMID: 35920208 PMCID: PMC9804225 DOI: 10.1002/cbic.202200304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Indexed: 01/05/2023]
Abstract
Chemical protein synthesis has proven to be a powerful tool to access homogenously modified proteins. The chemical synthesis of nanobodies (Nb) would create possibilities to design tailored Nbs with a range of chemical modifications such as tags, linkers, reporter groups, and subsequently, Nb-drug conjugates. Herein, we describe the total chemical synthesis of a 123 amino-acid Nb against GFP. A native chemical ligation- desulfurization strategy was successfully applied for the synthesis of this GFP Nb, modified with a propargyl (PA) moiety for on-demand functionalization. Biophysical characterization indicated that the synthetic GFP Nb-PA was correctly folded after internal disulfide bond formation. The synthetic Nb-PA was functionalized with a biotin or a sulfo-cyanine5 dye by copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC), resulting in two distinct probes used for functional in vitro validation in pull-down and confocal microscopy settings.
Collapse
Affiliation(s)
- Yara Huppelschoten
- Oncode Institute and Dept. Cell and Chemical BiologyLeiden University Medical CentreEinthovenweg 22333 ZCLeidenThe Netherlands
- Global Research Technologies, Novo NordiskNovo Nordisk Park2760MåløvDenmark
| | - Angela F. Elhebieshy
- Oncode Institute and Dept. Cell and Chemical BiologyLeiden University Medical CentreEinthovenweg 22333 ZCLeidenThe Netherlands
| | - Dharjath S. Hameed
- Oncode Institute and Dept. Cell and Chemical BiologyLeiden University Medical CentreEinthovenweg 22333 ZCLeidenThe Netherlands
| | - Aysegul Sapmaz
- Oncode Institute and Dept. Cell and Chemical BiologyLeiden University Medical CentreEinthovenweg 22333 ZCLeidenThe Netherlands
| | - Jens Buchardt
- Global Research Technologies, Novo NordiskNovo Nordisk Park2760MåløvDenmark
| | - Thomas E. Nielsen
- Global Research Technologies, Novo NordiskNovo Nordisk Park2760MåløvDenmark
| | - Huib Ovaa
- Oncode Institute and Dept. Cell and Chemical BiologyLeiden University Medical CentreEinthovenweg 22333 ZCLeidenThe Netherlands
| | | |
Collapse
|
36
|
Rennie CC, Edkins RM. Targeted cancer phototherapy using phthalocyanine-anticancer drug conjugates. Dalton Trans 2022; 51:13157-13175. [PMID: 36018269 DOI: 10.1039/d2dt02040h] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phototherapy, the use of light to selectively ablate cancerous tissue, is a compelling prospect. Phototherapy is divided into two major domains: photodynamic and photothermal, whereby photosensitizer irradiation generates reactive oxygen species or heat, respectively, to disrupt the cancer microenvironment. Phthalocyanines (Pcs) are prominent phototherapeutics due to their desirable optical properties and structural versatility. Targeting of Pc photosensitizers historically relied on the enhanced permeation and retention effect, but the weak specificity engendered by this approach has hindered bench-to-clinic translation. To improve specificity, antibody and peptide active-targeting groups have been employed to some effect. An alternative targeting method exploits the binding of anticancer drugs to direct the photosensitizer close to essential cellular components, allowing for precise, synergistic phototherapy. This Perspective explores the use of Pc-drug conjugates as targeted anticancer phototherapeutic systems with examples of Pc-platin, Pc-kinase, and Pc-anthracycline conjugates discussed in detail.
Collapse
Affiliation(s)
- Christopher C Rennie
- WestCHEM Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK.
| | - Robert M Edkins
- WestCHEM Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK.
| |
Collapse
|
37
|
Manne S, Chakraborty A, Rustler K, Bruckdorfer T, de la Torre BG, Albericio F. Solid-Phase Synthesis of an "Inaccessible" hGH-Derived Peptide Using a Pseudoproline Monomer and SIT-Protection for Cysteine. ACS OMEGA 2022; 7:28487-28492. [PMID: 35990446 PMCID: PMC9386842 DOI: 10.1021/acsomega.2c03261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The solid-phase peptide synthesis (SPPS) of the C-terminal sequence of hGH with one extra Tyr attached to its N-terminus (total of 16 residues with a disulfide bridge) has been accomplished for the first time by optimizing several synthetic parameters. First of all, the two Ser residues (positions 9 and 13 of the molecule) have been introduced as a single amino acid, Fmoc-Ser(ψMe,Mepro)-OH, demonstrating that the acylation of these hindered moieties is possible. This allows us to avoid the use of the corresponding dipeptides, Fmoc-AA-Ser(ψMe,Mepro)-OH, which are very often not commercially available or very costly. The second part of the sequence has been elongated via a double coupling approach using two of the most effective coupling methods (DIC-OxymaPure and HATU-DIEA). Finally, the disulfide bridging has been carried out very smoothly by a chemoselective thiol-disulfide interchange reaction between a SIT (sec-isoamyl mercaptan)-protected Cys residue and the free thiol of the second Cys. The synthesis of this short peptide has evidenced that SPPS is a multifactorial process which should be optimized in each case.
Collapse
Affiliation(s)
- Srinivasa
Rao Manne
- Peptide
Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Westville, 4000 Durban, South Africa
| | - Amit Chakraborty
- Peptide
Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Westville, 4000 Durban, South Africa
| | - Karin Rustler
- Iris
Biotech GmbH, Adalbert-Zoellner-Str. 1, 95615 Marktredwitz, Germany
| | - Thomas Bruckdorfer
- Iris
Biotech GmbH, Adalbert-Zoellner-Str. 1, 95615 Marktredwitz, Germany
| | - Beatriz G. de la Torre
- KwaZulu-Natal
Research Innovation and Sequencing Platform (KRISP), School of Laboratory
Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Fernando Albericio
- Peptide
Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Westville, 4000 Durban, South Africa
- Institute
for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
- CIBER-BBN,
Networking Centre on Bioengineering, Biomaterials and Nanomedicine,
and Department of Organic Chemistry, University
of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
38
|
Wu H, Wei T, Ngai WL, Zhou H, Li X. Ligation Embedding Aggregation Disruptor Strategy Enables the Chemical Synthesis of PD-1 Immunoglobulin and Extracellular Domains. J Am Chem Soc 2022; 144:14748-14757. [PMID: 35918891 DOI: 10.1021/jacs.2c05350] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Chemical synthesis of proteins with aggregable or colloidal peptide segments presents a formidable task, as such peptides prove to be difficult for both solid-phase peptide synthesis and peptide ligation. To address this issue, we have developed ligation embedding aggregation disruptor (LEAD) as an effective strategy for the chemical synthesis of difficult-to-obtain proteins. The N,O/S-benzylidene acetals generated from Ser/Thr ligation and Cys/Pen ligation are found to effectively disrupt peptide aggregation, and they can be carried for sequential ligations toward protein synthesis. The effectiveness and generality of this strategy have been demonstrated with total syntheses of programmed cell death protein 1 immunoglobulin like V-type domain and extracellular domain.
Collapse
Affiliation(s)
- Hongxiang Wu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Tongyao Wei
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Wai Lok Ngai
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Haiyan Zhou
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| |
Collapse
|
39
|
Noki S, Brasil E, Zhang H, Bruckdorfer T, de la Torre BG, Albericio F. Solid-Phase Peptide Synthesis Using a Four-Dimensional (Safety-Catch) Protecting Group Scheme. J Org Chem 2022; 87:9443-9453. [PMID: 35816389 DOI: 10.1021/acs.joc.2c01056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptides of importance to both academia and industry are mostly synthesized in the solid-phase mode using a two-dimensional scheme. The so-called Fmoc/tBu strategy, where the groups are removed by piperidine and TFA, respectively, is currently the method of choice for peptide synthesis. However, as the molecular diversity of cyclic and branched peptides becomes a challenging interest, a high level of orthogonal dimensionality is required, such as through triorthogonal protection schemes. Here we present a fourth category of orthogonal protecting groups that are stable under cleavage conditions, including the TFA treatment that removes the tBu-based groups. At the end of the synthetic process and upon some chemical manipulation, the groups in this fourth category were removed with TFA. This new concept of protecting groups could facilitate the synthesis and manipulation of difficult peptides.
Collapse
Affiliation(s)
- Sikabwe Noki
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Westville, KwaZulu-Natal 4000, South Africa.,KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, KwaZulu-Natal 4041, South Africa
| | - Edikarlos Brasil
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Westville, KwaZulu-Natal 4000, South Africa
| | - Haixiang Zhang
- Iris Biotech Laboratoris GmbH, Adalbert-Zoellner-Straße 1, Marktredwitz 95615, Germany
| | - Thomas Bruckdorfer
- Iris Biotech Laboratoris GmbH, Adalbert-Zoellner-Straße 1, Marktredwitz 95615, Germany
| | - Beatriz G de la Torre
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, KwaZulu-Natal 4041, South Africa
| | - Fernando Albericio
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Westville, KwaZulu-Natal 4000, South Africa.,Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona 08034, Spain.,CIBER-BBN, Networking Centre on Bioengineering, Biomaterials, and Nanomedicine, Department of Organic Chemistry, University of Barcelona, Barcelona 08028, Spain
| |
Collapse
|
40
|
Maiti S, Li Y, Sasmal S, Guin S, Bhattacharya T, Lahiri GK, Paton RS, Maiti D. Expanding chemical space by para-C-H arylation of arenes. Nat Commun 2022; 13:3963. [PMID: 35803905 PMCID: PMC9270437 DOI: 10.1038/s41467-022-31506-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 06/17/2022] [Indexed: 11/09/2022] Open
Abstract
Biaryl scaffolds are privileged templates used in the discovery and design of therapeutics with high affinity and specificity for a broad range of protein targets. Biaryls are found in the structures of therapeutics, including antibiotics, anti-inflammatory, analgesic, neurological and antihypertensive drugs. However, existing synthetic routes to biphenyls rely on traditional coupling approaches that require both arenes to be prefunctionalized with halides or pseudohalides with the desired regiochemistry. Therefore, the coupling of drug fragments may be challenging via conventional approaches. As an attractive alternative, directed C−H activation has the potential to be a versatile tool to form para-substituted biphenyl motifs selectively. However, existing C–H arylation protocols are not suitable for drug entities as they are hindered by catalyst deactivation by polar and delicate functionalities present alongside the instability of macrocyclic intermediates required for para-C−H activation. To address this challenge, we have developed a robust catalytic system that displays unique efficacy towards para-arylation of highly functionalized substrates such as drug entities, giving access to structurally diversified biaryl scaffolds. This diversification process provides access to an expanded chemical space for further exploration in drug discovery. Further, the applicability of the transformation is realized through the synthesis of drug molecules bearing a biphenyl fragment. Computational and experimental mechanistic studies further provide insight into the catalytic cycle operative in this versatile C−H arylation protocol. Biaryls are privileged structural motif used in the discovery and design of therapeutics with high affinity and specificity for a broad range of protein targets. Herein, the authors develop a robust strategy for para-C–H arylation of arenes with a range of (het)aryl iodides, including bioactive molecules.
Collapse
Affiliation(s)
- Sudip Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Yingzi Li
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| | - Sheuli Sasmal
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Srimanta Guin
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Trisha Bhattacharya
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| | - Robert S Paton
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India. .,IDP in Climate Studies, Indian Institute of Technology Bombay, 400076, Mumbai, India.
| |
Collapse
|
41
|
Yeboue Y, Rguioueg N, Subra G, Martinez J, Lamaty F, Métro T. Gram‐Scale Synthesis of a Hexapeptide by Fragment Coupling in a Ball Mill. European J Org Chem 2022. [DOI: 10.1002/ejoc.202100839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yves Yeboue
- IBMM, Univ Montpellier CNRS ENSCM Montpellier France
| | | | - Gilles Subra
- IBMM, Univ Montpellier CNRS ENSCM Montpellier France
| | - Jean Martinez
- IBMM, Univ Montpellier CNRS ENSCM Montpellier France
| | | | | |
Collapse
|
42
|
Ma W, Deng Y, Xu Z, Liu X, Chapla DG, Moremen KW, Wen L, Li T. Integrated Chemoenzymatic Approach to Streamline the Assembly of Complex Glycopeptides in the Liquid Phase. J Am Chem Soc 2022; 144:9057-9065. [PMID: 35544340 DOI: 10.1021/jacs.2c01819] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Glycosylation of proteins is a complicated post-translational modification. Despite the significant progress in glycoproteomics, accurate functions of glycoproteins are still ambiguous owing to the difficulty in obtaining homogeneous glycopeptides or glycoproteins. Here, we describe a streamlined chemoenzymatic method to prepare complex glycopeptides by integrating hydrophobic tag-supported chemical synthesis and enzymatic glycosylations. The hydrophobic tag is utilized to facilitate peptide chain elongation in the liquid phase and expeditious product separation. After removal of the tag, a series of glycans are installed on the peptides via efficient glycosyltransferase-catalyzed reactions. The general applicability and robustness of this approach are exemplified by efficient preparation of 16 well-defined SARS-CoV-2 O-glycopeptides, 4 complex MUC1 glycopeptides, and a 31-mer glycosylated glucagon-like peptide-1. Our developed approach will open up a new range of easy access to various complex glycopeptides of biological importance.
Collapse
Affiliation(s)
- Wenjing Ma
- Shanghai Institute of Materia Medica, CAS, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaqi Deng
- Shanghai Institute of Materia Medica, CAS, Shanghai 201203, China
| | - Zhuojia Xu
- Shanghai Institute of Materia Medica, CAS, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingbang Liu
- Shanghai Institute of Materia Medica, CAS, Shanghai 201203, China
| | - Digantkumar G Chapla
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Liuqing Wen
- Shanghai Institute of Materia Medica, CAS, Shanghai 201203, China
| | - Tiehai Li
- Shanghai Institute of Materia Medica, CAS, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
43
|
Gabryelczyk B, Alag R, Philips M, Low K, Venkatraman A, Kannaian B, Shi X, Linder M, Pervushin K, Miserez A. In vivo liquid-liquid phase separation protects amyloidogenic and aggregation-prone peptides during overexpression in Escherichia coli. Protein Sci 2022; 31:e4292. [PMID: 35481658 PMCID: PMC8994509 DOI: 10.1002/pro.4292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/03/2022] [Accepted: 02/22/2022] [Indexed: 12/13/2022]
Abstract
Studying pathogenic effects of amyloids requires homogeneous amyloidogenic peptide samples. Recombinant production of these peptides is challenging due to their susceptibility to aggregation and chemical modifications. Thus, chemical synthesis is primarily used to produce amyloidogenic peptides suitable for high-resolution structural studies. Here, we exploited the shielded environment of protein condensates formed via liquid-liquid phase separation (LLPS) as a protective mechanism against premature aggregation. We designed a fusion protein tag undergoing LLPS in Escherichia coli and linked it to highly amyloidogenic peptides, including β amyloids. We find that the fusion proteins form membraneless organelles during overexpression and remain fluidic-like. We also developed a facile purification method of functional Aβ peptides free of chromatography steps. The strategy exploiting LLPS can be applied to other amyloidogenic, hydrophobic, and repetitive peptides that are otherwise difficult to produce.
Collapse
Affiliation(s)
- Bartosz Gabryelczyk
- Biological and Biomimetic Materials Laboratory (BBML), Center for Sustainable Materials (SusMat), School of Materials Science and EngineeringNanyang Technological University (NTU)Singapore
- Department of Bioproducts and Biosystems, School of Chemical EngineeringAalto UniversityEspooFinland
| | - Reema Alag
- School of Biological SciencesNTUSingapore
| | | | | | | | - Bhuvaneswari Kannaian
- Biological and Biomimetic Materials Laboratory (BBML), Center for Sustainable Materials (SusMat), School of Materials Science and EngineeringNanyang Technological University (NTU)Singapore
| | - Xiangyan Shi
- Department of BiologyShenzhen MSU‐BIT UniversityShenzhenChina
| | - Markus Linder
- Department of Bioproducts and Biosystems, School of Chemical EngineeringAalto UniversityEspooFinland
| | | | - Ali Miserez
- Biological and Biomimetic Materials Laboratory (BBML), Center for Sustainable Materials (SusMat), School of Materials Science and EngineeringNanyang Technological University (NTU)Singapore
- School of Biological SciencesNTUSingapore
| |
Collapse
|
44
|
Therapeutic peptides: current applications and future directions. Signal Transduct Target Ther 2022; 7:48. [PMID: 35165272 PMCID: PMC8844085 DOI: 10.1038/s41392-022-00904-4] [Citation(s) in RCA: 527] [Impact Index Per Article: 263.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 02/08/2023] Open
Abstract
Peptide drug development has made great progress in the last decade thanks to new production, modification, and analytic technologies. Peptides have been produced and modified using both chemical and biological methods, together with novel design and delivery strategies, which have helped to overcome the inherent drawbacks of peptides and have allowed the continued advancement of this field. A wide variety of natural and modified peptides have been obtained and studied, covering multiple therapeutic areas. This review summarizes the efforts and achievements in peptide drug discovery, production, and modification, and their current applications. We also discuss the value and challenges associated with future developments in therapeutic peptides.
Collapse
|
45
|
Jacobsen MT, Spaltenstein P, Giesler RJ, Chou DHC, Kay MS. Improved Handling of Peptide Segments Using Side Chain-Based "Helping Hand" Solubilizing Tools. Methods Mol Biol 2022; 2530:81-107. [PMID: 35761044 DOI: 10.1007/978-1-0716-2489-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Maintaining high, or even sufficient, solubility of every peptide segment in chemical protein synthesis (CPS) remains a critical challenge; insolubility of just a single peptide segment can thwart a total synthesis venture. Multiple approaches have been used to address this challenge, most commonly by employing a chemical tool to temporarily improve peptide solubility. In this chapter, we discuss chemical tools for introducing semipermanent solubilizing sequences (termed helping hands) at the side chains of Lys and Glu residues. We describe the synthesis, incorporation by Fmoc-SPPS, and cleavage conditions for utilizing these two tools. For Lys sites, we discuss the Fmoc-Ddap-OH dimedone-based linker, which is achiral, synthesized in one step, can be introduced directly at primary amines, and is removed using hydroxylamine (or hydrazine). For Glu sites, we detail the new Fmoc-SPPS building block, Fmoc-Glu(AlHx)-OH, which can be prepared in an efficient process over two purifications. Solubilizing sequences are introduced directly on-resin and later cleaved with palladium-catalyzed transfer under aqueous conditions to restore a native Glu side chain. These two chemical tools are straightforward to prepare and implement, and we anticipate continued usage in "difficult" peptide segments following the protocols described herein.
Collapse
Affiliation(s)
- Michael T Jacobsen
- Division of Diabetes and Endocrinology, Department of Pediatrics, Stanford University, Palo Alto, CA, USA
| | - Paul Spaltenstein
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Riley J Giesler
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Danny Hung-Chieh Chou
- Division of Diabetes and Endocrinology, Department of Pediatrics, Stanford University, Palo Alto, CA, USA
| | - Michael S Kay
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
46
|
Liu J, Wei T, Tan Y, Liu H, Li X. Enabling chemical protein (semi)synthesis via reducible solubilizing tags (RSTs). Chem Sci 2022; 13:1367-1374. [PMID: 35222920 PMCID: PMC8809390 DOI: 10.1039/d1sc06387a] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/27/2021] [Indexed: 01/11/2023] Open
Abstract
The reducible solubilizing tag strategy served as a simple and powerful method for the chemical synthesis and semi-synthesis via Ser/Thr ligation and Cys/Pen ligation of extensive self-assembly peptides, membrane proteins with poor solubility.
Collapse
Affiliation(s)
- Jiamei Liu
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong, Hong Kong
| | - Tongyao Wei
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong, Hong Kong
| | - Yi Tan
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong, Hong Kong
| | - Heng Liu
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong, Hong Kong
| | - Xuechen Li
- Department of Chemistry, State Key Lab of Synthetic Chemistry, The University of Hong Kong, Hong Kong
| |
Collapse
|
47
|
Apostol CR, Bernard K, Tanguturi P, Molnar G, Bartlett MJ, Szabò L, Liu C, Ortiz JB, Saber M, Giordano KR, Green TRF, Melvin J, Morrison HW, Madhavan L, Rowe RK, Streicher JM, Heien ML, Falk T, Polt R. Design and Synthesis of Brain Penetrant Glycopeptide Analogues of PACAP With Neuroprotective Potential for Traumatic Brain Injury and Parkinsonism. FRONTIERS IN DRUG DISCOVERY 2022; 1. [PMID: 35237767 PMCID: PMC8887546 DOI: 10.3389/fddsv.2021.818003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is an unmet clinical need for curative therapies to treat neurodegenerative disorders. Most mainstay treatments currently on the market only alleviate specific symptoms and do not reverse disease progression. The Pituitary adenylate cyclase-activating polypeptide (PACAP), an endogenous neuropeptide hormone, has been extensively studied as a potential regenerative therapeutic. PACAP is widely distributed in the central nervous system (CNS) and exerts its neuroprotective and neurotrophic effects via the related Class B GPCRs PAC1, VPAC1, and VPAC2, at which the hormone shows roughly equal activity. Vasoactive intestinal peptide (VIP) also activates these receptors, and this close analogue of PACAP has also shown to promote neuronal survival in various animal models of acute and progressive neurodegenerative diseases. However, PACAP's poor pharmacokinetic profile (non-linear PK/PD), and more importantly its limited blood-brain barrier (BBB) permeability has hampered development of this peptide as a therapeutic. We have demonstrated that glycosylation of PACAP and related peptides promotes penetration of the BBB and improves PK properties while retaining efficacy and potency in the low nanomolar range at its target receptors. Furthermore, judicious structure-activity relationship (SAR) studies revealed key motifs that can be modulated to afford compounds with diverse selectivity profiles. Most importantly, we have demonstrated that select PACAP glycopeptide analogues (2LS80Mel and 2LS98Lac) exert potent neuroprotective effects and anti-inflammatory activity in animal models of traumatic brain injury and in a mild-toxin lesion model of Parkinson's disease, highlighting glycosylation as a viable strategy for converting endogenous peptides into robust and efficacious drug candidates.
Collapse
Affiliation(s)
- Christopher R Apostol
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| | - Kelsey Bernard
- Graduate Interdisciplinary Program in Physiological Sciences, The University of Arizona, Tucson, AZ, United States
| | | | - Gabriella Molnar
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Mitchell J Bartlett
- Department of Neurology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Lajos Szabò
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| | - Chenxi Liu
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| | - J Bryce Ortiz
- Barrow Neurological Institute at Phoenix Children's Hospital, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Phoenix Veteran Affairs Health Care System, Phoenix, AZ, United States
| | - Maha Saber
- Barrow Neurological Institute at Phoenix Children's Hospital, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - Katherine R Giordano
- Barrow Neurological Institute at Phoenix Children's Hospital, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Phoenix Veteran Affairs Health Care System, Phoenix, AZ, United States
| | - Tabitha R F Green
- Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - James Melvin
- Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Biological Sciences, University of Bath, Bath, United Kingdom
| | - Helena W Morrison
- College of Nursing, University of Arizona, Tucson, AZ, United States
| | - Lalitha Madhavan
- Graduate Interdisciplinary Program in Physiological Sciences, The University of Arizona, Tucson, AZ, United States.,Department of Neurology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Rachel K Rowe
- Barrow Neurological Institute at Phoenix Children's Hospital, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - John M Streicher
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Michael L Heien
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| | - Torsten Falk
- Graduate Interdisciplinary Program in Physiological Sciences, The University of Arizona, Tucson, AZ, United States.,Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States.,Department of Neurology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Robin Polt
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| |
Collapse
|
48
|
Abstract
Self-assembling peptides (SAPs), which form hydrogels through physical cross-linking of soluble structures, are an intriguing class of materials that have been applied as tissue engineering scaffolds and drug delivery vehicles. For feasible application of these tissue mimetics via minimally invasive delivery, their bulk mechanical properties must be compatible with current delivery strategies. However, injectable SAPs which possess shear-thinning capacity, as well as the ability to reassemble after cessation of shearing can be technically challenging to generate. Many SAPs either clog the high-gauge needle/catheter at high concentration during delivery or are incapable of reassembly following delivery. In this chapter, we provide a detailed protocol for topological control of enzyme-responsive peptide-based hydrogels that enable the user to access both advantages. These materials are formulated as sterically constrained cyclic peptide progelators to temporarily disrupt self-assembly during injection-based delivery, which avoids issues with clogging of needles and catheters as well as nearby vasculature. Proteolytic cleavage by enzymes produced at the target tissue induces progelator linearization and hydrogelation. The scope of this approach is demonstrated by their ability to flow through a catheter without clogging and activated gelation upon exposure to target enzymes.
Collapse
Affiliation(s)
- Andrea S Carlini
- Department of Chemistry, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
- Department of Materials Science & Engineering, Northwestern University, Evanston, IL, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Department of Pharmacology, Northwestern University, Evanston, IL, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA
- Simpson Querrey Institute, Northwestern University, Evanston, IL, USA
| | - Mary F Cassidy
- Department of Chemistry, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
- Department of Materials Science & Engineering, Northwestern University, Evanston, IL, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Department of Pharmacology, Northwestern University, Evanston, IL, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA
- Simpson Querrey Institute, Northwestern University, Evanston, IL, USA
| | - Nathan C Gianneschi
- Department of Chemistry, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.
- Department of Materials Science & Engineering, Northwestern University, Evanston, IL, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Pharmacology, Northwestern University, Evanston, IL, USA.
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA.
- Simpson Querrey Institute, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
49
|
Liu D, Wei Q, Xia W, He C, Zhang Q, Huang L, Wang X, Sun Y, Ma Y, Zhang X, Wang Y, Shi X, Liu C, Dong S. O-Glycosylation Induces Amyloid-β To Form New Fibril Polymorphs Vulnerable for Degradation. J Am Chem Soc 2021; 143:20216-20223. [PMID: 34841862 DOI: 10.1021/jacs.1c08607] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Brain accumulation of amyloid-β (Aβ) peptides (resulting from a disrupted balance between biosynthesis and clearance) occurs during the progression of Alzheimer's disease (AD). Aβ peptides have diverse posttranslational modifications (PTMs) that variously modulate Aβ aggregation into fibrils, but understanding the mechanistic roles of PTMs in these processes remains a challenge. Here, we chemically synthesized three homogeneously modified isoforms of Aβ (1-42) peptides bearing Tyr10 O-glycosylation, an unusual PTM initially identified from the cerebrospinal fluid samples of AD patients. We discovered that O-glycans significantly affect both the aggregation and degradation of Aβ42. By combining cryo-EM and various biochemical assays, we demonstrate that a Galβ1-3GalNAc modification redirects Aβ42 to form a new fibril polymorphic structure that is less stable and more vulnerable to Aβ-degrading enzymes (e.g., insulin-degrading enzyme). Thus, beyond showing how particular O-glycosylation modifications affect Aβ42 aggregation at the molecular level, our study provides powerful experimental tools to support further investigations about how PTMs affect Aβ42 fibril aggregation and AD-related neurotoxicity.
Collapse
Affiliation(s)
- Dangliang Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China.,Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qijia Wei
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China.,Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wencheng Xia
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Shijingshan District, Beijing 100149, China
| | - Changdong He
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China.,Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qikai Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China.,Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Lu Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China.,Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaoya Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China.,Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yunpeng Sun
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Shijingshan District, Beijing 100149, China
| | - Yeyang Ma
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Shijingshan District, Beijing 100149, China
| | - Xiaohui Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Yuan Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Xiaomeng Shi
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Shijingshan District, Beijing 100149, China
| | - Suwei Dong
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China.,Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
50
|
Ultrasonication Improves Solid Phase Synthesis of Peptides Specific for Fibroblast Growth Factor Receptor and for the Protein-Protein Interface RANK-TRAF6. Molecules 2021; 26:molecules26237349. [PMID: 34885928 PMCID: PMC8659051 DOI: 10.3390/molecules26237349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 11/18/2022] Open
Abstract
Considering our interest in the use of peptides as potential target-specific drugs or as delivery vectors of metallodrugs for various biomedical applications, it is crucial to explore improved synthetic methodologies to accomplish the highest peptide crude purity in the shortest time possible. Therefore, we compared “classical” fluorenylmethoxycarbonyl (Fmoc)-solid phase peptide synthesis (SPPS) with ultrasound(US)-assisted SPPS based on the preparation of three peptides, namely the fibroblast growth factor receptor 3(FGFR3)-specific peptide Pep1 (VSPPLTLGQLLS-NH2) and the novel peptides Pep2 (RQMATADEA-NH2) and Pep3 (AAVALLPAVLLALLAPRQMATADEA-NH2), which are being developed aimed at interfering with the intracellular protein-protein interaction(PPI) RANK-TRAF6. Our results demonstrated that US-assisted SPPS led to a 14-fold (Pep1) and 4-fold time reduction (Pep2) in peptide assembly compared to the “classical” method. Interestingly, US-assisted SPPS yielded Pep1 in higher purity (82%) than the “classical” SPPS (73%). The significant time reduction combined with high crude peptide purity attained prompted use to apply US-assisted SPPS to the large peptide Pep3, which displays a high number of hydrophobic amino acids and homooligo-sequences. Remarkably, the synthesis of this 25-mer peptide was attained during a “working day” (347 min) in moderate purity (approx. 49%). In conclusion, we have reinforced the importance of using US-SPPS towards facilitating the production of peptides in shorter time with increased efficacy in moderate to high crude purity. This is of special importance for long peptides such as the case of Pep3.
Collapse
|