1
|
Aqilah Zahirah Norazmi N, Hafizah Mukhtar N, Ravindar L, Suhaily Saaidin A, Huda Abd Karim N, Hamizah Ali A, Kartini Agustar H, Ismail N, Yee Ling L, Ebihara M, Izzaty Hassan N. Exploring antimalarial potential: Conjugating organometallic moieties with organic fragments for enhanced efficacy. Bioorg Chem 2024; 149:107510. [PMID: 38833991 DOI: 10.1016/j.bioorg.2024.107510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/10/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
In the search for novel ligands with efficacy against various diseases, particularly parasitic diseases, molecular hybridization of organometallic units into biologically active scaffolds has been hailed as an appealing strategy in medicinal chemistry. The conjugation to organometallic fragments can be achieved by an appropriate linker or by directly coordinating the existing drugs to a metal. The success of Ferroquine (FQ, SR97193), an effective chloroquine-ferrocene conjugate currently undergoing the patient-exploratory phase as a combination therapy with the novel triaminopyrimidine ZY-19489 for malaria, has sparked intense interest in organometallic compound drug discovery. We present the evolution of organometallic antimalarial agents over the last decade, focusing on the parent moiety's class and the type of organometallics involved. Four main organometallic antimalarial compounds have been chosen based on conjugated organic moieties: existing antimalarial drugs, other clinical drugs, hybrid drugs, and promising scaffolds of thiosemicarbazones, benzimidazoles, and chalcones, in particular. The presented insights contribute to the ongoing discourse on organometallic compound drug development for malaria diseases.
Collapse
Affiliation(s)
- Nur Aqilah Zahirah Norazmi
- Department of Chemical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Nur Hafizah Mukhtar
- Department of Chemical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Lekkala Ravindar
- Department of Chemical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Aimi Suhaily Saaidin
- Center of Foundation Studies, Universiti Teknologi Mara, 43800 Dengkil, Selangor, Malaysia
| | - Nurul Huda Abd Karim
- Department of Chemical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Amatul Hamizah Ali
- Department of Chemical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Hani Kartini Agustar
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | - Norzila Ismail
- Department of Pharmacology, School of Medicinal Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Lau Yee Ling
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Masahiro Ebihara
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu City 501-1193, Japan
| | - Nurul Izzaty Hassan
- Department of Chemical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
| |
Collapse
|
2
|
Mandal A, Kushwaha R, Mandal AA, Bajpai S, Yadav AK, Banerjee S. Transition Metal Complexes as Antimalarial Agents: A Review. ChemMedChem 2023; 18:e202300326. [PMID: 37436090 DOI: 10.1002/cmdc.202300326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/13/2023]
Abstract
In antimalarial drug development research, overcoming drug resistance has been a major challenge for researchers. Nowadays, several drugs like chloroquine, mefloquine, sulfadoxine, and artemisinin are used to treat malaria. But increment in drug resistance has pushed researchers to find novel drugs to tackle drug resistance problems. The idea of using transition metal complexes with pharmacophores as ligands/ligand pendants to show enhanced antimalarial activity with a novel mechanism of action has gained significant attention recently. The advantages of metal complexes include tunable chemical/physical properties, redox activity, avoiding resistance factors, etc. Several recent reports have successfully demonstrated that the metal complexation of known organic antimalarial drugs can overcome drug resistance by showing enhanced activities than the parent drugs. This review has discussed the fruitful research works done in the past few years falling into this criterion. Based on transition metal series (3d, 4d, or 5d), the antimalarial metal complexes have been divided into three broad categories (3d, 4d, or 5d metal-based), and their activities have been compared with the similar control complexes as well as the parent drugs. Furthermore, we have also commented on the potential issues and their possible solution for translating these metal-based antimalarial complexes into the clinic.
Collapse
Affiliation(s)
- Apurba Mandal
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| | - Rajesh Kushwaha
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| | - Arif Ali Mandal
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| | - Sumit Bajpai
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| | - Ashish Kumar Yadav
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), 221005, Varanasi, India
| |
Collapse
|
3
|
Heteroleptic Rh(III) Phenylpyridyl Complexes Based on an Aminoquinoline-Benzimidazole Hybrid Scaffold: Antiplasmodial evaluation and mechanistic insights. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Scarim CB, de Farias RL, Chiba DE, Chin CM. Insight into Recent Drug Discoveries against Trypanosomatids and Plasmodium spp Parasites: New Metal-based Compounds. Curr Med Chem 2021; 29:2334-2381. [PMID: 34533436 DOI: 10.2174/0929867328666210917114912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 11/22/2022]
Abstract
Scaffolds of metal-based compounds can act as pharmacophore groups in several ligands to treat various diseases, including tropical infectious diseases (TID). In this review article, we investigate the contribution of these moieties to medicinal inorganic chemistry in the last seven years against TID, including American trypanosomiasis (Chagas disease), human African trypanosomiasis (HAT, sleeping sickness), leishmania, and malaria. The most potent metal-based complexes are displayed and highlighted in figures, tables and graphics; according to their pharmacological activities (IC50 > 10µM) against Trypanosomatids and Plasmodium spp parasites. We highlight the current progresses and viewpoints of these metal-based complexes, with a specific focus on drug discovery.
Collapse
Affiliation(s)
- Cauê Benito Scarim
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, 14800-903, Brazil
| | - Renan Lira de Farias
- Sao Paulo State University (UNESP), Institute of Chemistry, 14800-060, Araraquara-SP, Brazil
| | - Diego Eidy Chiba
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, 14800-903, Brazil
| | - Chung Man Chin
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, 14800-903, Brazil
| |
Collapse
|
5
|
Chellan P, Avery VM, Duffy S, Land KM, Tam CC, Kim JH, Cheng LW, Romero-Canelón I, Sadler PJ. Bioactive half-sandwich Rh and Ir bipyridyl complexes containing artemisinin. J Inorg Biochem 2021; 219:111408. [PMID: 33826972 DOI: 10.1016/j.jinorgbio.2021.111408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/21/2021] [Accepted: 02/21/2021] [Indexed: 02/06/2023]
Abstract
Reaction of dihydroartemisinin (DHA) with 4-methyl-4'-carboxy-2,2'-bipyridine yielded the new ester derivative L1. Six novel organometallic half-sandwich chlorido Rh(III) and Ir(III) complexes (1-6) containing pentamethylcyclopentadienyl, (Cp*), tetramethylphenylcyclopentadienyl (Cpxph), or tetramethylbiphenylcyclopentadienyl (Cpxbiph), and N,N-chelated bipyridyl group of L1, have been synthesized and characterized. The complexes were screened for inhibitory activity against the Plasmodium falciparum 3D7 (sensitive), Dd2 (multi-drug resistant) and NF54 late stage gametocytes (LSGNF54), the parasite strain Trichomonas vaginalis G3, as well as A2780 (human ovarian carcinoma), A549 (human alveolar adenocarcinoma), HCT116 (human colorectal carcinoma), MCF7 (human breast cancer) and PC3 (human prostate cancer) cancer cell lines. They show nanomolar antiplasmodial activity, outperforming chloroquine and artemisinin. Their activities were also comparable to dihydroartemisinin. As anticancer agents, several of the complexes showed high inhibitory effects, with Ir(III) complex 3, containing the tetramethylbiphenylcyclopentadienyl ligand, having similar IC50 values (concentration for 50% of maximum inhibition of cell growth) as the clinical drug cisplatin (1.06-9.23 μM versus 0.24-7.2 μM, respectively). Overall, the iridium complexes (1-3) are more potent compared to the rhodium derivatives (4-6), and complex 3 emerges as the most promising candidate for future studies.
Collapse
Affiliation(s)
- Prinessa Chellan
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Vicky M Avery
- Discovery Biology, Griffith University, Nathan, Queensland 4111, Australia
| | - Sandra Duffy
- Discovery Biology, Griffith University, Nathan, Queensland 4111, Australia
| | - Kirkwood M Land
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, United States of America
| | - Christina C Tam
- Foodborne Toxin Detection and Prevention Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, United States of America
| | - Jong H Kim
- Foodborne Toxin Detection and Prevention Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, United States of America
| | - Luisa W Cheng
- Foodborne Toxin Detection and Prevention Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, United States of America
| | | | - Peter J Sadler
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
6
|
Mbaba M, Golding TM, Smith GS. Recent Advances in the Biological Investigation of Organometallic Platinum-Group Metal (Ir, Ru, Rh, Os, Pd, Pt) Complexes as Antimalarial Agents. Molecules 2020; 25:molecules25225276. [PMID: 33198217 PMCID: PMC7698227 DOI: 10.3390/molecules25225276] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 01/06/2023] Open
Abstract
In the face of the recent pandemic and emergence of infectious diseases of viral origin, research on parasitic diseases such as malaria continues to remain critical and innovative methods are required to target the rising widespread resistance that renders conventional therapies unusable. The prolific use of auxiliary metallo-fragments has augmented the search for novel drug regimens in an attempt to combat rising resistance. The development of organometallic compounds (those containing metal-carbon bonds) as antimalarial drugs has been exemplified by the clinical development of ferroquine in the nascent field of Bioorganometallic Chemistry. With their inherent physicochemical properties, organometallic complexes can modulate the discipline of chemical biology by proffering different modes of action and targeting various enzymes. With the beneficiation of platinum group metals (PGMs) in mind, this review aims to describe recent studies on the antimalarial activity of PGM-based organometallic complexes. This review does not provide an exhaustive coverage of the literature but focusses on recent advances of bioorganometallic antimalarial drug leads, including a brief mention of recent trends comprising interactions with biomolecules such as heme and intracellular catalysis. This resource can be used in parallel with complementary reviews on metal-based complexes tested against malaria.
Collapse
|
7
|
Rigo GV, Tasca T. Vaginitis: Review on Drug Resistance. Curr Drug Targets 2020; 21:1672-1686. [PMID: 32753007 DOI: 10.2174/1389450121666200804112340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 11/22/2022]
Abstract
Female genital tract infections have a high incidence among different age groups and represent an important impact on public health. Among them, vaginitis refers to inflammation of the vulva and/or vagina due to the presence of pathogens that cause trichomoniasis, bacterial vaginosis, and vulvovaginal candidiasis. Several discomforts are associated with these infections, as well as pregnancy complications and the facilitation of HIV transmission and acquisition. The increasing resistance of microorganisms to drugs used in therapy is remarkable, since women report the recurrence of these infections and associated comorbidities. Different resistant mechanisms already described for the drugs used in the therapy against Trichomonas vaginalis, Candida spp., and Gardnerella vaginalis, as well as aspects related to pathogenesis and treatment, are discussed in this review. This study aims to contribute to drug design, avoiding therapy ineffectiveness due to drug resistance. Effective alternative therapies to treat vaginitis will reduce the recurrence of infections and, consequently, the high costs generated in the health system, improving women's well-being.
Collapse
Affiliation(s)
- Graziela Vargas Rigo
- Research Group on Trichomonas, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tiana Tasca
- Research Group on Trichomonas, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
8
|
Baartzes N, Jordaan A, Warner DF, Combrinck J, Taylor D, Chibale K, Smith GS. Antimicrobial evaluation of neutral and cationic iridium(III) and rhodium(III) aminoquinoline-benzimidazole hybrid complexes. Eur J Med Chem 2020; 206:112694. [PMID: 32861176 DOI: 10.1016/j.ejmech.2020.112694] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 10/23/2022]
Abstract
A series of neutral and cationic Ir(III) and Rh(III) aminoquinoline-benzimidazole hybrid complexes were synthesised and their inhibitory activities evaluated against Plasmodium falciparum and Mycobacterium tuberculosis. In general, the hybrid complexes display good activity against the chloroquine-sensitive NF54 strain of P. falciparum. The neutral Ir(III)- and Rh(III)-Cp∗ complexes were the most active (IC50 = 0.488 μM for IrIII), maintaining activity against the multidrug-resistant K1 strain. Low to no cytotoxicity against the Chinese hamster ovarian cell line was observed for the tested complexes. Selected active hybrid complexes demonstrated significant inhibition of β-haematin formation in a cell-free NP-40 assay, suggesting an effect on the host haemoglobin degradation pathway as a potential contributing mechanism of action. When tested against M. tuberculosis H37Rv, most hybrid complexes displayed moderate to good activity. Again, the neutral complexes outperformed the cationic complexes, with the neutral Ir(III)-Cp∗ complexes proving most active (MIC90 = 0.488-1.490 μM).
Collapse
Affiliation(s)
- Nadia Baartzes
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa
| | - Audrey Jordaan
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Clinical Laboratory Sciences, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa
| | - Digby F Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Clinical Laboratory Sciences, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Rondebosch, 7701, South Africa
| | - Jill Combrinck
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Dale Taylor
- Drug Discovery and Development Centre (H3D), Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory 7925, Cape Town, South Africa
| | - Kelly Chibale
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa; South African Medical Research Council, Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Gregory S Smith
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa.
| |
Collapse
|
9
|
Lee SM, Kim MS, Hayat F, Shin D. Recent Advances in the Discovery of Novel Antiprotozoal Agents. Molecules 2019; 24:E3886. [PMID: 31661934 PMCID: PMC6864685 DOI: 10.3390/molecules24213886] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/15/2019] [Accepted: 10/23/2019] [Indexed: 11/16/2022] Open
Abstract
Parasitic diseases have serious health, social, and economic impacts, especially in the tropical regions of the world. Diseases caused by protozoan parasites are responsible for considerable mortality and morbidity, affecting more than 500 million people worldwide. Globally, the burden of protozoan diseases is increasing and is been exacerbated because of a lack of effective medication due to the drug resistance and toxicity of current antiprotozoal agents. These limitations have prompted many researchers to search for new drugs against protozoan parasites. In this review, we have compiled the latest information (2012-2017) on the structures and pharmacological activities of newly developed organic compounds against five major protozoan diseases, giardiasis, leishmaniasis, malaria, trichomoniasis, and trypanosomiasis, with the aim of showing recent advances in the discovery of new antiprotozoal drugs.
Collapse
Affiliation(s)
- Seong-Min Lee
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea.
| | - Min-Sun Kim
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea.
| | - Faisal Hayat
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea.
| | - Dongyun Shin
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea.
| |
Collapse
|
10
|
Stringer T, Wiesner L, Smith GS. Ferroquine-derived polyamines that target resistant Plasmodium falciparum. Eur J Med Chem 2019; 179:78-83. [DOI: 10.1016/j.ejmech.2019.06.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/07/2019] [Accepted: 06/07/2019] [Indexed: 01/14/2023]
|
11
|
Stringer T, Melis DR, Smith GS. N,O-Chelating quinoline-based half-sandwich organorhodium and -iridium complexes: synthesis, antiplasmodial activity and preliminary evaluation as transfer hydrogenation catalysts for the reduction of NAD . Dalton Trans 2019; 48:13143-13148. [PMID: 31418441 DOI: 10.1039/c9dt02030f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two Rh(iii) and Ir(iii) half-sandwich quinoline-based complexes were synthesised and evaluated for their in vitro antiplasmodial activity against the chloroquine-sensitive NF54 and multi-drug resistant K1 strains of the human malaria parasite, Plasmodium falciparum. These half-sandwich organometallic complexes can also facilitate transfer hydrogenation, by converting β-nicotinamide adenine dinucleotide (NAD+) to its reduced form (NADH) in the presence of sodium formate. Co-administration of the iridium(iii) complex with sodium formate enhances the antiplasmodial activity in the chloroquine-resistant (K1) strain of Plasmodium falciparum, intimating that metal-mediated transfer hydrogenations can be achieved in malarial parasitic cells.
Collapse
Affiliation(s)
- Tameryn Stringer
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, South Africa.
| | - Diana R Melis
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, South Africa.
| | - Gregory S Smith
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, South Africa.
| |
Collapse
|
12
|
Stringer T, Quintero MAS, Wiesner L, Smith GS, Nordlander E. Evaluation of PTA-derived ruthenium(II) and iridium(III) quinoline complexes against chloroquine-sensitive and resistant strains of the Plasmodium falciparum malaria parasite. J Inorg Biochem 2019; 191:164-173. [DOI: 10.1016/j.jinorgbio.2018.11.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/15/2018] [Accepted: 11/25/2018] [Indexed: 10/27/2022]
|
13
|
Küng E, Fürnkranz U, Walochnik J. Chemotherapeutic options for the treatment of human trichomoniasis. Int J Antimicrob Agents 2018; 53:116-127. [PMID: 30612993 DOI: 10.1016/j.ijantimicag.2018.10.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/11/2018] [Accepted: 10/20/2018] [Indexed: 01/08/2023]
Abstract
Trichomonas vaginalis is the causative agent of the most common non-viral sexually transmitted disease worldwide. The infection may be associated with severe complications, including infertility, preterm labour, cancer and an increased risk of human immunodeficiency virus (HIV) transmission. Treatment remains almost exclusively based on 5-nitroimidazoles, but resistance is on the rise. This article provides an overview of clinically evaluated systemic and topical treatment options for human trichomoniasis and summarises the current state of knowledge on various herbal, semisynthetic and synthetic compounds evaluated for their anti-Trichomonas efficacy in vitro.
Collapse
Affiliation(s)
- Erik Küng
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, A-1090 Vienna, Austria
| | - Ursula Fürnkranz
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, A-1090 Vienna, Austria
| | - Julia Walochnik
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, A-1090 Vienna, Austria.
| |
Collapse
|
14
|
Cassells I, Stringer T, Hutton AT, Prince S, Smith GS. Impact of various lipophilic substituents on ruthenium(II), rhodium(III) and iridium(III) salicylaldimine-based complexes: synthesis, in vitro cytotoxicity studies and DNA interactions. J Biol Inorg Chem 2018; 23:763-774. [DOI: 10.1007/s00775-018-1567-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/28/2018] [Indexed: 12/31/2022]
|
15
|
Noritake SM, Liu J, Kanetake S, Levin CE, Tam C, Cheng LW, Land KM, Friedman M. Phytochemical-rich foods inhibit the growth of pathogenic trichomonads. Altern Ther Health Med 2017; 17:461. [PMID: 28903731 PMCID: PMC5598040 DOI: 10.1186/s12906-017-1967-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/05/2017] [Indexed: 12/29/2022]
Abstract
Background Plants produce secondary metabolites that often possess widespread bioactivity, and are then known as phytochemicals. We previously determined that several phytochemical-rich food-derived preparations were active against pathogenic foodborne bacteria. Trichomonads produce disease (trichomoniasis) in humans and in certain animals. Trichomonads are increasingly becoming resistant to conventional modes of treatment. It is of interest to test bioactive, natural compounds for efficacy against these pathogens. Methods Using a cell assay, black tea, green tea, grape, pomegranate, and jujube extracts, as well as whole dried jujube were tested against three trichomonads: Trichomonas vaginalis strain G3 (found in humans), Tritrichomonas foetus strain D1 (found in cattle), and Tritrichomonas foetus-like organism strain C1 (found in cats). The most effective of the test substances was subsequently tested against two metronidazole-resistant Trichomonas vaginalis strains, and on normal mucosal flora. Results Black tea extract inhibited all the tested trichomonads, but was most effective against the T. vaginalis organisms. Inhibition by black tea was correlated with the total and individual theaflavin content of the two tea extracts determined by HPLC. Metronidazole-resistant Trichomonas vaginalis strains were also inhibited by the black tea extract. The response of the organisms to the remaining preparations was variable and unique. We observed no effect of the black tea extract on common normal flora bacteria. Conclusions The results suggest that the black tea, and to a lesser degree green tea, grape seed, and pomegranate extracts might present possible natural alternative therapeutic agents to treat Trichomonas vaginalis infections in humans and the related trichomonad infections in animals, without negatively affecting the normal flora.
Collapse
|
16
|
Liu J, Kanetake S, Wu YH, Tam C, Cheng LW, Land KM, Friedman M. Antiprotozoal Effects of the Tomato Tetrasaccharide Glycoalkaloid Tomatine and the Aglycone Tomatidine on Mucosal Trichomonads. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:8806-8810. [PMID: 27934291 DOI: 10.1021/acs.jafc.6b04030] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The present study investigated the inhibitory effects of the commercial tetrasaccharide tomato glycoalkaloid tomatine and the aglycone tomatidine on three mucosal pathogenic protozoa that are reported to infect humans, cattle, and cats, respectively: Trichomonas vaginalis strain G3, Tritrichomonas foetus strain D1, and Tritrichomonas foetus strain C1. A preliminary screen showed that tomatine at 100 μM concentration completely inhibited the growth of all three trichomonads. In contrast, the inhibition of all three pathogens by tomatidine was much lower, suggesting the involvement of the lycotetraose carbohydrate side chain in the mechanism of inhibition. Midpoints of concentration-response sigmoid plots of tomatine on the three strains correspond to IC50 values, the concentration that inhibits 50% of growth of the pathogenic protozoa. The concentration data were used to calculate the IC50 values for G3, D1, and C1 of 7.9, 1.9, and 2.2 μM, respectively. The results show an approximately 4-fold variation from the lowest to the highest value (lowest activity). Although the inhibition by tomatine was not as effective as that of the medicinal drug metronidazole, the relatively low IC50 values for both T. vaginalis and T. foetus indicated tomatine as a possible natural alternative therapeutic for trichomoniasis in humans and food-producing (cattle and pigs) and domestic (cats) animals. Because tomatine has the potential to serve as a new antiprotozoan functional (medical) food, the distribution of this glycoalkaloid in tomatoes and suggestions for further research are discussed.
Collapse
Affiliation(s)
- Jenny Liu
- Department of Biological Sciences, University of the Pacific , Stockton, California 95211, United States
| | - Sierra Kanetake
- Department of Biological Sciences, University of the Pacific , Stockton, California 95211, United States
| | - Yun-Hsuan Wu
- Department of Biological Sciences, University of the Pacific , Stockton, California 95211, United States
| | - Christina Tam
- Foodborne Toxin Detection and Prevention, Agricultural Research Service, United States Department of Agriculture , Albany, California 94556, United States
| | - Luisa W Cheng
- Foodborne Toxin Detection and Prevention, Agricultural Research Service, United States Department of Agriculture , Albany, California 94556, United States
| | - Kirkwood M Land
- Department of Biological Sciences, University of the Pacific , Stockton, California 95211, United States
| | - Mendel Friedman
- Healthy Processed Foods Research, Agricultural Research Service, United States Department of Agriculture , Albany, California 94556, United States
| |
Collapse
|
17
|
Shin JW, Lee DW, Kim DW, Moon D. Crystal structure of di-chlorido-{2-methyl-2-[(pyridin-2-ylmeth-yl)amino]-propan-1-ol-κ 3N, N', O}copper(II) from synchrotron data. Acta Crystallogr E Crystallogr Commun 2016; 72:1400-1403. [PMID: 27746928 PMCID: PMC5050763 DOI: 10.1107/s2056989016013773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 08/29/2016] [Indexed: 06/01/2024]
Abstract
The title compound, [CuCl2(C10H16N2O)], has been synthesized and characterized by synchrotron single-crystal X-ray diffraction and FT-IR spectroscopy. The 2-methyl-2-[(pyridin-2-ylmeth-yl)amino]-propan-1-ol (mpmapOH) ligand, including pyridine, amine and hy-droxy groups, was synthesized by the reaction of 2-amino-2-methyl-propan-1-ol with pyridine-2-carbaldehyde and was characterized by NMR spectroscopy. In its CuII complex, the metal ion has a distorted square-pyramidal coordination geometry with two N and one O atom of the mpmapOH ligand and one chloride anion in the equatorial plane, and the second chloride in an axial position. The bond lengths involving the CuII ion range from 1.9881 (10) to 2.0409 (9) for the Cu-N and Cu-O bonds, and from 2.2448 (5) to 2.5014 (6) Å for the equatorial and axial Cu-Cl bonds, respectively. Inter-molecular hydrogen bonds (N-H⋯Cl and O-H⋯Cl) and face-to-face π-π inter-actions stabilize the mol-ecular structure and give rise to a two-dimensional supra-molecular structure extending parallel to (101).
Collapse
Affiliation(s)
- Jong Won Shin
- Daegu-Gyeongbuk Branch, Korea Institute of Science and Technology Information, 90 Yutongdanji-ro, Buk-gu, Daegu 41515, Republic of Korea
| | - Dong Won Lee
- Daegu-Gyeongbuk Branch, Korea Institute of Science and Technology Information, 90 Yutongdanji-ro, Buk-gu, Daegu 41515, Republic of Korea
| | - Dae-Woong Kim
- Beamline Department, Pohang Accelerator Laboratory, 80 Jigokro-127-beongil, Nam-Gu Pohang, Gyeongbuk 790-784, Republic of Korea
| | - Dohyun Moon
- Beamline Department, Pohang Accelerator Laboratory, 80 Jigokro-127-beongil, Nam-Gu Pohang, Gyeongbuk 790-784, Republic of Korea
| |
Collapse
|
18
|
Baartzes N, Stringer T, Chellan P, Combrinck JM, Smith PJ, Hutton AT, Smith GS. Synthesis, characterization, antiplasmodial evaluation and electrochemical studies of water-soluble heterobimetallic ferrocenyl complexes. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.02.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Jeena V, Jayram J. Synthesis of Quinoline Derivatives by an Improved Döebner-von Miller Reaction Using a Recyclable Ag(I)-Exchanged Montmorillonite K10 Catalyst. HETEROCYCLES 2016. [DOI: 10.3987/com-16-13564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Stringer T, De Kock C, Guzgay H, Okombo J, Liu J, Kanetake S, Kim J, Tam C, Cheng LW, Smith PJ, Hendricks DT, Land KM, Egan TJ, Smith GS. Mono- and multimeric ferrocene congeners of quinoline-based polyamines as potential antiparasitics. Dalton Trans 2016; 45:13415-26. [DOI: 10.1039/c6dt02685k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of mono- and multimeric polyamine-containing ferrocenyl complexes bearing a quinoline motif were prepared.
Collapse
|