1
|
Kakizuka T, Natsume T, Nagai T. Compact lens-free imager using a thin-film transistor for long-term quantitative monitoring of stem cell culture and cardiomyocyte production. LAB ON A CHIP 2024. [PMID: 39436381 DOI: 10.1039/d4lc00528g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
With advancements in human induced pluripotent stem cell (hiPSC) technology, there is an increasing demand for quality control techniques to manage the long-term process of target cell production effectively. While monitoring systems designed for use within incubators are promising for assessing culture quality, existing systems still face challenges in terms of compactness, throughput, and available metrics. To address these limitations, we have developed a compact and high-throughput lens-free imaging device named INSPCTOR. The device is as small as a standard culture plate, which allows for the installation of multiple units within an incubator. INSPCTOR utilises a large thin-film transistor image sensor, enabling simultaneous observation of six independent culture environments, each approximately 1 cm2. With this device, we successfully monitored the confluency of hiPSC cultures and identified the onset timing of epithelial-to-mesenchymal transition during mesodermal induction. Additionally, we quantified the beating frequency and conduction of hiPSC-derived cardiomyocytes by using high-speed imaging modes. This enabled us to identify the onset of spontaneous beating during differentiation and assess chronotropic responses in drug evaluations. Moreover, by tracking beating frequency over 10 days of cardiomyocyte maturation, we identified week-scale and daily-scale fluctuations, the latter of which correlated with cellular metabolic activity. The metrics derived from this device would enhance the reproducibility and quality of target cell production.
Collapse
Affiliation(s)
- Taishi Kakizuka
- SANKEN, The University of Osaka, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan.
- Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, The University of Osaka, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
| | - Tohru Natsume
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, 2-3-26 Aoumi, Koto-ku, Tokyo 135-0064, Japan
| | - Takeharu Nagai
- SANKEN, The University of Osaka, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan.
- Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, The University of Osaka, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
| |
Collapse
|
2
|
Carvalho DJ, Kip AM, Tegel A, Stich M, Krause C, Romitti M, Branca C, Verhoeven B, Costagliola S, Moroni L, Giselbrecht S. A Modular Microfluidic Organoid Platform Using LEGO-Like Bricks. Adv Healthc Mater 2024; 13:e2303444. [PMID: 38247306 PMCID: PMC11481080 DOI: 10.1002/adhm.202303444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/12/2024] [Indexed: 01/23/2024]
Abstract
The convergence of organoid and organ-on-a-chip (OoC) technologies is urgently needed to overcome limitations of current 3D in vitro models. However, integrating organoids in standard OoCs faces several technical challenges, as it is typically laborious, lacks flexibility, and often results in even more complex and less-efficient cell culture protocols. Therefore, specifically adapted and more flexible microfluidic platforms need to be developed to facilitate the incorporation of complex 3D in vitro models. Here, a modular, tubeless fluidic circuit board (FCB) coupled with reversibly sealed cell culture bricks for dynamic culture of embryonic stem cell-derived thyroid follicles is developed. The FCB is fabricated by milling channels in a polycarbonate (PC) plate followed by thermal bonding against another PC plate. LEGO-like fluidic interconnectors allow plug-and-play connection between a variety of cell culture bricks and the FCB. Lock-and-play clamps are integrated in the organoid brick to enable easy (un)loading of organoids. A multiplexed perfusion experiment is conducted with six FCBs, where thyroid organoids are transferred on-chip within minutes and cultured up to 10 d without losing their structure and functionality, thus validating this system as a flexible, easy-to-use platform, capable of synergistically combining organoids with advanced microfluidic platforms.
Collapse
Affiliation(s)
- Daniel J. Carvalho
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Anna M. Kip
- Department of Complex Tissue RegenerationMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Andreas Tegel
- PreSens Precision Sensing GmbHAm Biopark 1193053RegensburgGermany
| | - Matthias Stich
- PreSens Precision Sensing GmbHAm Biopark 1193053RegensburgGermany
| | - Christian Krause
- PreSens Precision Sensing GmbHAm Biopark 1193053RegensburgGermany
| | - Mírian Romitti
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM)Université Libre de Bruxelles808 route de LennikAnderlecht1070Belgium
| | - Carlotta Branca
- Department of Complex Tissue RegenerationMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Bart Verhoeven
- IDEE Instrument Development Engineering and Evaluation – Research EngineeringUniversiteitssingel 50Maastricht6200 MDThe Netherlands
| | - Sabine Costagliola
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM)Université Libre de Bruxelles808 route de LennikAnderlecht1070Belgium
| | - Lorenzo Moroni
- Department of Complex Tissue RegenerationMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Stefan Giselbrecht
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| |
Collapse
|
3
|
Khodadadi R, Eghbal M, Ofoghi H, Balaei A, Tamayol A, Abrinia K, Sanati-Nezhad A, Samandari M. An integrated centrifugal microfluidic strategy for point-of-care complete blood counting. Biosens Bioelectron 2024; 245:115789. [PMID: 37979545 DOI: 10.1016/j.bios.2023.115789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/26/2023] [Accepted: 10/24/2023] [Indexed: 11/20/2023]
Abstract
Centrifugal microfluidics holds the potential to revolutionize point-of-care (POC) testing by simplifying laboratory tests through automating fluid and cell manipulation within microfluidic channels. This technology can facilitate blood testing, the most frequent clinical test, at the POC. However, an integrated centrifugal microfluidic device for complete blood counting (CBC) has not yet been fully realized. To address this, we propose an integrated portable system comprising a centrifuge and a hybrid microfluidic disc specifically designed for CBC analysis at the POC. The disc enables the implementation of various spin profiles in different stages of CBC to facilitate in-situ cell separation, solution metering and mixing, and differential cell counting. Furthermore, our system is coupled with a custom script that automates the process and ensures precise quantification of cells using light and fluorescent images captured from the detection chamber of the disc. We demonstrate a close correlation between the proposed method and the hematology analyzer, considered the gold standard, for quantifying hematocrit (R2 = 0.99), white blood cell count (R2 = 0.98), white blood cell differential count (granulocyte/agranulocyte; R2 = 0.89), red blood cell count (R2 = 0.97), and mean corpuscular volume (R2 = 0.94). The integration of our portable system offers significant advantages, enabling more accessible and affordable CBC testing at the POC. Considering the simplicity, affordability (∼$250 capital cost and <$2 operational cost per test), as well as low power consumption (>100 tests using a typical 24 V/10 Ah battery), this system has the potential to enhance healthcare delivery, particularly in resource-limited settings and remote areas where access to traditional laboratory facilities is limited.
Collapse
Affiliation(s)
- Reza Khodadadi
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Manouchehr Eghbal
- Biotechnology Department, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Hamideh Ofoghi
- Biotechnology Department, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Alireza Balaei
- Biotechnology Department, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Karen Abrinia
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Amir Sanati-Nezhad
- Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.
| | - Mohamadmahdi Samandari
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA.
| |
Collapse
|
4
|
Li Z, Zhang R, Xu F, Yang J, Zhou L, Mao H. A Cell State Monitoring System with Integrated In Situ Imaging and pH Detection. SENSORS (BASEL, SWITZERLAND) 2023; 23:9340. [PMID: 38067713 PMCID: PMC10708649 DOI: 10.3390/s23239340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/29/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023]
Abstract
Cell models are one of the most widely used basic models in biological research, and a variety of in vitro cell culture techniques and models have been developed recently to simulate the physiological microenvironment in vivo. However, regardless of the technique or model, cell culture is the most fundamental but crucial component. As a result, we have developed a cell culture monitoring system to assess the functional status of cells within a biochip. This article focuses on a mini-microscope made from a readily available camera for in situ continuous observation of cell growth within a biochip and a pH sensor based on optoelectronic sensing for measuring pH. With the aid of this monitoring system, scientists can keep an eye on cell growth in real time and learn how the pH of the culture medium affects it. This study offers a new approach for tracking cells on biochips and serves as a valuable resource for enhancing cell culture conditions.
Collapse
Affiliation(s)
- Zening Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (Z.L.); (F.X.); (L.Z.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongtao Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (R.Z.); (J.Y.)
| | - Fangliang Xu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (Z.L.); (F.X.); (L.Z.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Yang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (R.Z.); (J.Y.)
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Lin Zhou
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (Z.L.); (F.X.); (L.Z.)
| | - Hongju Mao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (Z.L.); (F.X.); (L.Z.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Chen Q, Son J, Jia S. Implementation of miniaturized modular-array fluorescence microscopy for long-term live-cell imaging. APPLIED OPTICS 2023; 62:2456-2461. [PMID: 37132792 DOI: 10.1364/ao.483279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Fluorescence microscopy imaging of live cells has provided consistent monitoring of dynamic cellular activities and interactions. However, because current live-cell imaging systems are limited in their adaptability, portable cell imaging systems have been adapted by a variety of strategies, including miniaturized fluorescence microscopy. Here, we provide a protocol for the construction and operational process of miniaturized modular-array fluorescence microscopy (MAM). The MAM system is built in a portable size (15c m×15c m×3c m) and provides in situ cell imaging inside an incubator with a subcellular lateral resolution (∼3µm). We demonstrated the improved stability of the MAM system with fluorescent targets and live HeLa cells, enabling long-term imaging for 12 h without the need for external support or post-processing. We believe the protocol could guide scientists to construct a compact portable fluorescence imaging system and perform time-lapse in situ single-cell imaging and analysis.
Collapse
|
6
|
Sabaté Del Río J, Ro J, Yoon H, Park TE, Cho YK. Integrated technologies for continuous monitoring of organs-on-chips: Current challenges and potential solutions. Biosens Bioelectron 2023; 224:115057. [PMID: 36640548 DOI: 10.1016/j.bios.2022.115057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Organs-on-chips (OoCs) are biomimetic in vitro systems based on microfluidic cell cultures that recapitulate the in vivo physicochemical microenvironments and the physiologies and key functional units of specific human organs. These systems are versatile and can be customized to investigate organ-specific physiology, pathology, or pharmacology. They are more physiologically relevant than traditional two-dimensional cultures, can potentially replace the animal models or reduce the use of these models, and represent a unique opportunity for the development of personalized medicine when combined with human induced pluripotent stem cells. Continuous monitoring of important quality parameters of OoCs via a label-free, non-destructive, reliable, high-throughput, and multiplex method is critical for assessing the conditions of these systems and generating relevant analytical data; moreover, elaboration of quality predictive models is required for clinical trials of OoCs. Presently, these analytical data are obtained by manual or automatic sampling and analyzed using single-point, off-chip traditional methods. In this review, we describe recent efforts to integrate biosensing technologies into OoCs for monitoring the physiologies, functions, and physicochemical microenvironments of OoCs. Furthermore, we present potential alternative solutions to current challenges and future directions for the application of artificial intelligence in the development of OoCs and cyber-physical systems. These "smart" OoCs can learn and make autonomous decisions for process optimization, self-regulation, and data analysis.
Collapse
Affiliation(s)
- Jonathan Sabaté Del Río
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Jooyoung Ro
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea; Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Heejeong Yoon
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Tae-Eun Park
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - Yoon-Kyoung Cho
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea; Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
7
|
Gonzalez-Suarez AM, Long A, Huang X, Revzin A. A Compact Control System to Enable Automated Operation of Microfluidic Bioanalytical Assays. BIOSENSORS 2022; 12:1160. [PMID: 36551127 PMCID: PMC9775492 DOI: 10.3390/bios12121160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
We describe a control system for operating valve-enabled microfluidic devices and leverage this control system to carry out a complex workflow of plasma separation from 8 μL of whole blood followed by on-chip mixing of plasma with assay reagents for biomarker detection. The control system incorporates pumps, digital pressure sensors, a microcontroller, solenoid valves and off-the-shelf components to deliver high and low air pressure in the desired temporal sequence to meter fluid flow and actuate microvalves. Importantly, our control system is portable, which is suitable for operating the microvalve-enabled microfluidic devices in the point-of-care setting.
Collapse
Affiliation(s)
| | - Alexander Long
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biology, St. Olaf College, Northfield, MN 55057, USA
| | - XuHai Huang
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Alexander Revzin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
8
|
Sandmeyer A, Wang L, Hübner W, Müller M, Chen BK, Huser T. Cost-effective high-speed, three-dimensional live-cell imaging of HIV-1 transfer at the T cell virological synapse. iScience 2022; 25:105468. [PMID: 36388970 PMCID: PMC9663902 DOI: 10.1016/j.isci.2022.105468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 05/16/2022] [Accepted: 10/26/2022] [Indexed: 11/12/2022] Open
Abstract
The availability of cost-effective, highly portable, and easy to use high-resolution live-cell imaging systems could present a significant technological break-through in challenging environments, such as high-level biosafety laboratories or sites where new viral outbreaks are suspected. We describe and demonstrate a cost-effective high-speed fluorescence microscope enabling the live tracking of virus particles across virological synapses that form between infected and uninfected T cells. The dynamics of HIV-1 proteins studied at the cellular level and the formation of virological synapses in living T cells reveals mechanisms by which cell-cell interactions facilitate infection between immune cells. Dual-color 3D fluorescence deconvolution microscopy of HIV-1 particles at frames rates of 100 frames per second allows us to follow the transfer of HIV-1 particles across the T cell virological synapse between living T cells. We also confirm the successful transfer of virus by imaging T cell samples fixed at specific time points during cell-cell virus transfer by super-resolution structured illumination microscopy.
Collapse
Affiliation(s)
- Alice Sandmeyer
- Biomolecular Photonics, Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| | - Lili Wang
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Wolfgang Hübner
- Biomolecular Photonics, Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| | - Marcel Müller
- Biomolecular Photonics, Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| | - Benjamin K. Chen
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Thomas Huser
- Biomolecular Photonics, Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
9
|
Tyagi A, Khaware N, Tripathi BS, Jeet T, Balasubramanian P, Elangovan R. i-scope: A Compact automated fluorescence microscope for cell counting applications in low resource settings. Methods Appl Fluoresc 2022; 10. [PMID: 36063812 DOI: 10.1088/2050-6120/ac8f84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/05/2022] [Indexed: 11/11/2022]
Abstract
Fluorescence microscopy has widespread applications across biological sciences. It has been routinely used for cell counting, which provides a preliminary diagnostic test for many infectious diseases. Conventional fluorescence microscopes are bulky, expensive, time-intensive and laborious. They often require trained operators to acquire and analyze data. We report a compact automated digital fluorescence microscopy system, i-scope, for cell counting applications. The i-scope employs a total internal reflection fluorescence (TIRF) mode of sample illumination, along with a brightfield mode. It has a magnification of 30X, an optical resolution of ~0.2 µm/pixel and offers sample scanning over 20 mm x 20 mm. A custom-written program enables automated image acquisition and analysis, thereby enhancing ease of operation. It has a compact form-factor and has been developed into a standalone system with a processing unit, screen, and other accessories to offer a portable and economic point-of-care diagnostic solution in low-resource settings. We analysed the performance of the i-scope for milk somatic cell enumeration and benchmarked it against that of a conventional fluorescence microscope.
Collapse
Affiliation(s)
- Arti Tyagi
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Room 335, Block 1, IIT Delhi, Hauz Khas, New Delhi, 110016, INDIA
| | - Neha Khaware
- School of Interdisciplinary Research, Indian Institute of Technology Delhi, IIT Delhi, Hauz Khas, New Delhi, 110016, INDIA
| | - Bramha Swaroop Tripathi
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, IIT Delhi, Hauz Khas, New Delhi, 110016, INDIA
| | - Tushar Jeet
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, IIT Delhi, Hauz Khas, New Delhi, 110016, INDIA
| | - Prabhu Balasubramanian
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, IIT Delhi, Hauz Khas, New Delhi, 110016, INDIA
| | - Ravikrishnan Elangovan
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, IIT Delhi, Hauz Khas, New Delhi, 110016, INDIA
| |
Collapse
|
10
|
Yu C, Li S, Wei C, Dai S, Liang X, Li J. A Cost-Effective Nucleic Acid Detection System Using a Portable Microscopic Device. MICROMACHINES 2022; 13:mi13060869. [PMID: 35744483 PMCID: PMC9227208 DOI: 10.3390/mi13060869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/22/2022]
Abstract
A fluorescence microscope is one of the most important tools for biomedical research and laboratory diagnosis. However, its high cost and bulky size hinder the application of laboratory microscopes in space-limited and low-resource applications. Here, in this work, we proposed a portable and cost-effective fluorescence microscope. Assembled from a set of 3D print components and a webcam, it consists of a three-degree-of-freedom sliding platform and a microscopic imaging system. The microscope is capable of bright-field and fluorescence imaging with micron-level resolution. The resolution and field of view of the microscope were evaluated. Compared with a laboratory-grade inverted fluorescence microscope, the portable microscope shows satisfactory performance, both in the bright-field and fluorescence mode. From the configurations of local resources, the microscope costs around USD 100 to assemble. To demonstrate the capability of the portable fluorescence microscope, we proposed a quantitative polymerase chain reaction experiment for meat product authenticating applications. The portable and low-cost microscope platform demonstrates the benefits in space-constrained environments and shows high potential in telemedicine, point-of-care testing, and more.
Collapse
Affiliation(s)
- Chengzhuang Yu
- Hebei Key Laboratory of Smart Sensing and Human-Robot Interactions, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China; (C.Y.); (C.W.)
| | - Shanshan Li
- Hebei Key Laboratory of Smart Sensing and Human-Robot Interactions, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China; (C.Y.); (C.W.)
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
- Correspondence: (S.L.); (S.D.); (J.L.)
| | - Chunyang Wei
- Hebei Key Laboratory of Smart Sensing and Human-Robot Interactions, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China; (C.Y.); (C.W.)
| | - Shijie Dai
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
- Correspondence: (S.L.); (S.D.); (J.L.)
| | - Xinyi Liang
- Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China;
| | - Junwei Li
- Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China;
- Correspondence: (S.L.); (S.D.); (J.L.)
| |
Collapse
|
11
|
Guo W, Tao Y, Liu W, Song C, Zhou J, Jiang H, Ren Y. A visual portable microfluidic experimental device with multiple electric field regulation functions. LAB ON A CHIP 2022; 22:1556-1564. [PMID: 35352749 DOI: 10.1039/d2lc00152g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
High portability and miniaturization are two of the most important objectives pursued by microfluidic methods. However, there remain many challenges for the design of portable and visual microfluidic devices (e.g., electrokinetic experiments) due to the use of a microscope and power supply. To this end, we report a visual portable microfluidic experimental device (PMED) with multiple electric field regulation functions, which can realize the electric field regulation functions of various basic microfluidic experiments through modular design. The internal reaction process of the microfluidic chip is displayed by a smartphone, and the experimental results are analyzed using a mobile phone application (APP). Taking the induced-charge electroosmosis (ICEO) particle focusing phenomenon as an example, we carried out detailed experiments on PMED and obtained conclusions consistent with numerical simulations. In addition to ICEO experiments, other functions such as alternating electroosmosis (ACEO), thermal buoyancy convection, and dielectrophoresis (DEP) can be realized by replacing module-specific covers. The device expands the application of microfluidic experiments and provides a certain reference for the further integration and portability of subsequent microfluidic experiment devices.
Collapse
Affiliation(s)
- Wenshang Guo
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Ye Tao
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
- School of Engineering and Applied Sciences and Department of Physics Harvard University, 9 Oxford Street, Cambridge, MA 02138, USA
| | - Weiyu Liu
- Chang'an University, Middle-Section of Nan'er Huan Road, Xi'an 710000, China
| | - Chunlei Song
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Jian Zhou
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Hongyuan Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology, West Da-zhi Street 92, Harbin 150001, People's Republic of China
| | - Yukun Ren
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| |
Collapse
|
12
|
Lube V, Noyan MA, Przybysz A, Salama K, Blilou I. MultipleXLab: A high-throughput portable live-imaging root phenotyping platform using deep learning and computer vision. PLANT METHODS 2022; 18:38. [PMID: 35346267 PMCID: PMC8958799 DOI: 10.1186/s13007-022-00864-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Profiling the plant root architecture is vital for selecting resilient crops that can efficiently take up water and nutrients. The high-performance imaging tools available to study root-growth dynamics with the optimal resolution are costly and stationary. In addition, performing nondestructive high-throughput phenotyping to extract the structural and morphological features of roots remains challenging. RESULTS We developed the MultipleXLab: a modular, mobile, and cost-effective setup to tackle these limitations. The system can continuously monitor thousands of seeds from germination to root development based on a conventional camera attached to a motorized multiaxis-rotational stage and custom-built 3D-printed plate holder with integrated light-emitting diode lighting. We also developed an image segmentation model based on deep learning that allows the users to analyze the data automatically. We tested the MultipleXLab to monitor seed germination and root growth of Arabidopsis developmental, cell cycle, and auxin transport mutants non-invasively at high-throughput and showed that the system provides robust data and allows precise evaluation of germination index and hourly growth rate between mutants. CONCLUSION MultipleXLab provides a flexible and user-friendly root phenotyping platform that is an attractive mobile alternative to high-end imaging platforms and stationary growth chambers. It can be used in numerous applications by plant biologists, the seed industry, crop scientists, and breeding companies.
Collapse
Affiliation(s)
- Vinicius Lube
- Laboratory of Plant Cell and Developmental Biology (LPCDB), Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | | | - Alexander Przybysz
- Sensors Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer, Electrical and Mathematical Science and Engineering (CEMSE), KAUST, Thuwal, Saudi Arabia
| | - Khaled Salama
- Sensors Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer, Electrical and Mathematical Science and Engineering (CEMSE), KAUST, Thuwal, Saudi Arabia
| | - Ikram Blilou
- Laboratory of Plant Cell and Developmental Biology (LPCDB), Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
13
|
Mohd Asri MA, Nordin AN, Ramli N. Low-cost and cleanroom-free prototyping of microfluidic and electrochemical biosensors: Techniques in fabrication and bioconjugation. BIOMICROFLUIDICS 2021; 15:061502. [PMID: 34777677 PMCID: PMC8577868 DOI: 10.1063/5.0071176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/22/2021] [Indexed: 05/18/2023]
Abstract
Integrated microfluidic biosensors enable powerful microscale analyses in biology, physics, and chemistry. However, conventional methods for fabrication of biosensors are dependent on cleanroom-based approaches requiring facilities that are expensive and are limited in access. This is especially prohibitive toward researchers in low- and middle-income countries. In this topical review, we introduce a selection of state-of-the-art, low-cost prototyping approaches of microfluidics devices and miniature sensor electronics for the fabrication of sensor devices, with focus on electrochemical biosensors. Approaches explored include xurography, cleanroom-free soft lithography, paper analytical devices, screen-printing, inkjet printing, and direct ink writing. Also reviewed are selected surface modification strategies for bio-conjugates, as well as examples of applications of low-cost microfabrication in biosensors. We also highlight several factors for consideration when selecting microfabrication methods appropriate for a project. Finally, we share our outlook on the impact of these low-cost prototyping strategies on research and development. Our goal for this review is to provide a starting point for researchers seeking to explore microfluidics and biosensors with lower entry barriers and smaller starting investment, especially ones from low resource settings.
Collapse
Affiliation(s)
- Mohd Afiq Mohd Asri
- Department of Electrical and Computer Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, 53100 Gombak, Selangor, Malaysia
| | - Anis Nurashikin Nordin
- Department of Electrical and Computer Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, 53100 Gombak, Selangor, Malaysia
- Author to whom correspondence should be addressed:
| | - Nabilah Ramli
- Department of Mechanical Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, 53100 Gombak, Selangor, Malaysia
| |
Collapse
|
14
|
Ly VT, Baudin PV, Pansodtee P, Jung EA, Voitiuk K, Rosen YM, Willsey HR, Mantalas GL, Seiler ST, Selberg JA, Cordero SA, Ross JM, Rolandi M, Pollen AA, Nowakowski TJ, Haussler D, Mostajo-Radji MA, Salama SR, Teodorescu M. Picroscope: low-cost system for simultaneous longitudinal biological imaging. Commun Biol 2021; 4:1261. [PMID: 34737378 PMCID: PMC8569150 DOI: 10.1038/s42003-021-02779-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/05/2021] [Indexed: 01/02/2023] Open
Abstract
Simultaneous longitudinal imaging across multiple conditions and replicates has been crucial for scientific studies aiming to understand biological processes and disease. Yet, imaging systems capable of accomplishing these tasks are economically unattainable for most academic and teaching laboratories around the world. Here, we propose the Picroscope, which is the first low-cost system for simultaneous longitudinal biological imaging made primarily using off-the-shelf and 3D-printed materials. The Picroscope is compatible with standard 24-well cell culture plates and captures 3D z-stack image data. The Picroscope can be controlled remotely, allowing for automatic imaging with minimal intervention from the investigator. Here, we use this system in a range of applications. We gathered longitudinal whole organism image data for frogs, zebrafish, and planaria worms. We also gathered image data inside an incubator to observe 2D monolayers and 3D mammalian tissue culture models. Using this tool, we can measure the behavior of entire organisms or individual cells over long-time periods.
Collapse
Affiliation(s)
- Victoria T Ly
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA.
| | - Pierre V Baudin
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Pattawong Pansodtee
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Erik A Jung
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Kateryna Voitiuk
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Yohei M Rosen
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Gary L Mantalas
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Spencer T Seiler
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - John A Selberg
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Sergio A Cordero
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Jayden M Ross
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Marco Rolandi
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Alex A Pollen
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Tomasz J Nowakowski
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA, 94143, USA
| | - David Haussler
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Mohammed A Mostajo-Radji
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, 94143, USA
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Sofie R Salama
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Mircea Teodorescu
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA.
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95060, USA.
| |
Collapse
|
15
|
Dai M, Xiao G, Fiondella L, Shao M, Zhang YS. Deep Learning-Enabled Resolution-Enhancement in Mini- and Regular Microscopy for Biomedical Imaging. SENSORS AND ACTUATORS. A, PHYSICAL 2021; 331:112928. [PMID: 34393376 PMCID: PMC8362924 DOI: 10.1016/j.sna.2021.112928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Artificial intelligence algorithms that aid mini-microscope imaging are attractive for numerous applications. In this paper, we optimize artificial intelligence techniques to provide clear, and natural biomedical imaging. We demonstrate that a deep learning-enabled super-resolution method can significantly enhance the spatial resolution of mini-microscopy and regular-microscopy. This data-driven approach trains a generative adversarial network to transform low-resolution images into super-resolved ones. Mini-microscopic images and regular-microscopic images acquired with different optical microscopes under various magnifications are collected as our experimental benchmark datasets. The only input to this generative-adversarial-network-based method are images from the datasets down-sampled by the Bicubic interpolation. We use independent test set to evaluate this deep learning approach with other deep learning-based algorithms through qualitative and quantitative comparisons. To clearly present the improvements achieved by this generative-adversarial-network-based method, we zoom into the local features to explore and highlight the qualitative differences. We also employ the peak signal-to-noise ratio and the structural similarity, to quantitatively compare alternative super-resolution methods. The quantitative results illustrate that super-resolution images obtained from our approach with interpolation parameter α=0.25 more closely match those of the original high-resolution images than to those obtained by any of the alternative state-of-the-art method. These results are significant for fields that use microscopy tools, such as biomedical imaging of engineered living systems. We also utilize this generative adversarial network-based algorithm to optimize the resolution of biomedical specimen images and then generate three-dimensional reconstruction, so as to enhance the ability of three-dimensional imaging throughout the entire volumes for spatial-temporal analyses of specimen structures.
Collapse
Affiliation(s)
- Manna Dai
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Gao Xiao
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Lance Fiondella
- Department of Electrical and Computer Engineering, College of Engineering, University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA
| | - Ming Shao
- Department of Computer and Information Science, College of Engineering, University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| |
Collapse
|
16
|
Luo Y, Joung HA, Esparza S, Rao J, Garner O, Ozcan A. Quantitative particle agglutination assay for point-of-care testing using mobile holographic imaging and deep learning. LAB ON A CHIP 2021; 21:3550-3558. [PMID: 34292287 DOI: 10.1039/d1lc00467k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Particle agglutination assays are widely adopted immunological tests that are based on antigen-antibody interactions. Antibody-coated microscopic particles are mixed with a test sample that potentially contains the target antigen, as a result of which the particles form clusters, with a size that is a function of the antigen concentration and the reaction time. Here, we present a quantitative particle agglutination assay that combines mobile lens-free microscopy and deep learning for rapidly measuring the concentration of a target analyte; as its proof-of-concept, we demonstrate high-sensitivity C-reactive protein (hs-CRP) testing using human serum samples. A dual-channel capillary lateral flow device is designed to host the agglutination reaction using 4 μL of serum sample with a material cost of 1.79 cents per test. A mobile lens-free microscope records time-lapsed inline holograms of the lateral flow device, monitoring the agglutination process over 3 min. These captured holograms are processed, and at each frame the number and area of the particle clusters are automatically extracted and fed into shallow neural networks to predict the CRP concentration. 189 measurements using 88 unique patient serum samples were utilized to train, validate and blindly test our platform, which matched the corresponding ground truth concentrations in the hs-CRP range (0-10 μg mL-1) with an R2 value of 0.912. This computational sensing platform was also able to successfully differentiate very high CRP concentrations (e.g., >10-500 μg mL-1) from the hs-CRP range. This mobile, cost-effective and quantitative particle agglutination assay can be useful for various point-of-care sensing needs and global health related applications.
Collapse
Affiliation(s)
- Yi Luo
- Electrical & Computer Engineering Department, University of California, Los Angeles, California 90095, USA.
- California NanoSystems Institute (CNSI), University of California, Los Angeles, California 90095, USA
- Bioengineering Department, University of California, Los Angeles, California 90095, USA
| | - Hyou-Arm Joung
- Electrical & Computer Engineering Department, University of California, Los Angeles, California 90095, USA.
- California NanoSystems Institute (CNSI), University of California, Los Angeles, California 90095, USA
- Bioengineering Department, University of California, Los Angeles, California 90095, USA
| | - Sarah Esparza
- Bioengineering Department, University of California, Los Angeles, California 90095, USA
| | - Jingyou Rao
- Computer Science Department, University of California, Los Angeles, California 90095, USA
| | - Omai Garner
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California 90095, USA
| | - Aydogan Ozcan
- Electrical & Computer Engineering Department, University of California, Los Angeles, California 90095, USA.
- California NanoSystems Institute (CNSI), University of California, Los Angeles, California 90095, USA
- Bioengineering Department, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
17
|
Polidoro MA, Ferrari E, Marzorati S, Lleo A, Rasponi M. Experimental liver models: From cell culture techniques to microfluidic organs-on-chip. Liver Int 2021; 41:1744-1761. [PMID: 33966344 DOI: 10.1111/liv.14942] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022]
Abstract
The liver is one of the most studied organs of the human body owing to its central role in xenobiotic and drug metabolism. In recent decades, extensive research has aimed at developing in vitro liver models able to mimic liver functions to study pathophysiological clues in high-throughput and reproducible environments. Two-dimensional (2D) models have been widely used in screening potential toxic compounds but have failed to accurately reproduce the three-dimensionality (3D) of the liver milieu. To overcome these limitations, improved 3D culture techniques have been developed to recapitulate the hepatic native microenvironment. These models focus on reproducing the liver architecture, representing both parenchymal and nonparenchymal cells, as well as cell interactions. More recently, Liver-on-Chip (LoC) models have been developed with the aim of providing physiological fluid flow and thus achieving essential hepatic functions. Given their unprecedented ability to recapitulate critical features of the liver cellular environments, LoC have been extensively adopted in pathophysiological modelling and currently represent a promising tool for tissue engineering and drug screening applications. In this review, we discuss the evolution of experimental liver models, from the ancient 2D hepatocyte models, widely used for liver toxicity screening, to 3D and LoC culture strategies adopted for mirroring a more physiological microenvironment for the study of liver diseases.
Collapse
Affiliation(s)
- Michela Anna Polidoro
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Erika Ferrari
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Simona Marzorati
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Ana Lleo
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.,Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|
18
|
Wang Y, Wang J, Wang T, Wang C. Simultaneous Detection of Viability and Concentration of Microalgae Cells Based on Chlorophyll Fluorescence and Bright Field Dual Imaging. MICROMACHINES 2021; 12:896. [PMID: 34442519 PMCID: PMC8398499 DOI: 10.3390/mi12080896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022]
Abstract
Ship ballast water contains high concentration of plankton, bacteria, and other microorganisms. If the huge amount of ballast water is discharged without being inactivated, it will definitely spell disaster to the marine environment. Microalgae is the most common species exiting in ballast water, so the detection of the concentration and viability of microalgae is a very important issue. The traditional methods of detecting microalgae in ballast water were costly and need the help of bulky equipment. Herein, a novel method based on microalgae cell intracellular chlorophyll fluorescence (CF) imaging combines with cell bright field (BF) microscopy was proposed. The geometric features of microalgae cells were obtained by BF image, and the cell viability was obtained by CF image. The two images were fused through the classic image registration algorithm to achieve simultaneous detection of the viability and concentration of microalgae cells. Furthermore, a low-cost, miniaturized CF/BF microscopy imaging prototype system based on the above principles was designed. In order to verify the effectiveness of the proposed method, four typical microalgae in ballast water (Platymonas, Pyramimonas sp., Chrysophyta, and Prorocentrum lima) were selected as the samples. The experimental results show that the self-developed prototype can quickly and accurately determine the concentration and the viability of microalgae cells in ship ballast water based on the dual images of BF and CF, and the detection accuracy is equivalent to that of commercial microscope. It was the first time to simultaneously detect the viability and concentration of microalgae cells in ship ballast water using the method that combining the fluorescence and bright field images; moreover, a miniaturized microscopic imaging prototype was developed. Those findings expected to contribute to the microalgae detection and ship ballast water management.
Collapse
Affiliation(s)
- Yanjuan Wang
- Software Institute, Dalian Jiaotong University, Dalian 116028, China; (Y.W.); (T.W.); (C.W.)
- Center of Microfluidic Optoelectronic Sensing, Dalian Maritime University, Dalian 116026, China
- College of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
| | - Junsheng Wang
- Center of Microfluidic Optoelectronic Sensing, Dalian Maritime University, Dalian 116026, China
- College of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
| | - Tianqi Wang
- Software Institute, Dalian Jiaotong University, Dalian 116028, China; (Y.W.); (T.W.); (C.W.)
- Center of Microfluidic Optoelectronic Sensing, Dalian Maritime University, Dalian 116026, China
| | - Chengxiao Wang
- Software Institute, Dalian Jiaotong University, Dalian 116028, China; (Y.W.); (T.W.); (C.W.)
| |
Collapse
|
19
|
Yang L, Pijuan-Galito S, Rho HS, Vasilevich AS, Eren AD, Ge L, Habibović P, Alexander MR, de Boer J, Carlier A, van Rijn P, Zhou Q. High-Throughput Methods in the Discovery and Study of Biomaterials and Materiobiology. Chem Rev 2021; 121:4561-4677. [PMID: 33705116 PMCID: PMC8154331 DOI: 10.1021/acs.chemrev.0c00752] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Indexed: 02/07/2023]
Abstract
The complex interaction of cells with biomaterials (i.e., materiobiology) plays an increasingly pivotal role in the development of novel implants, biomedical devices, and tissue engineering scaffolds to treat diseases, aid in the restoration of bodily functions, construct healthy tissues, or regenerate diseased ones. However, the conventional approaches are incapable of screening the huge amount of potential material parameter combinations to identify the optimal cell responses and involve a combination of serendipity and many series of trial-and-error experiments. For advanced tissue engineering and regenerative medicine, highly efficient and complex bioanalysis platforms are expected to explore the complex interaction of cells with biomaterials using combinatorial approaches that offer desired complex microenvironments during healing, development, and homeostasis. In this review, we first introduce materiobiology and its high-throughput screening (HTS). Then we present an in-depth of the recent progress of 2D/3D HTS platforms (i.e., gradient and microarray) in the principle, preparation, screening for materiobiology, and combination with other advanced technologies. The Compendium for Biomaterial Transcriptomics and high content imaging, computational simulations, and their translation toward commercial and clinical uses are highlighted. In the final section, current challenges and future perspectives are discussed. High-throughput experimentation within the field of materiobiology enables the elucidation of the relationships between biomaterial properties and biological behavior and thereby serves as a potential tool for accelerating the development of high-performance biomaterials.
Collapse
Affiliation(s)
- Liangliang Yang
- University
of Groningen, W. J. Kolff Institute for Biomedical Engineering and
Materials Science, Department of Biomedical Engineering, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Sara Pijuan-Galito
- School
of Pharmacy, Biodiscovery Institute, University
of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Hoon Suk Rho
- Department
of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Aliaksei S. Vasilevich
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Aysegul Dede Eren
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Lu Ge
- University
of Groningen, W. J. Kolff Institute for Biomedical Engineering and
Materials Science, Department of Biomedical Engineering, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Pamela Habibović
- Department
of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Morgan R. Alexander
- School
of Pharmacy, Boots Science Building, University
of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Jan de Boer
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Aurélie Carlier
- Department
of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Patrick van Rijn
- University
of Groningen, W. J. Kolff Institute for Biomedical Engineering and
Materials Science, Department of Biomedical Engineering, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Qihui Zhou
- Institute
for Translational Medicine, Department of Stomatology, The Affiliated
Hospital of Qingdao University, Qingdao
University, Qingdao 266003, China
| |
Collapse
|
20
|
Son J, Mandracchia B, Jia S. Miniaturized modular-array fluorescence microscopy. BIOMEDICAL OPTICS EXPRESS 2020; 11:7221-7235. [PMID: 33408992 PMCID: PMC7747904 DOI: 10.1364/boe.410605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 05/20/2023]
Abstract
Fluorescence live-cell imaging allows for continuous interrogation of cellular behaviors, and the recent development of portable live-cell imaging platforms has rapidly transformed conventional schemes with high adaptability, cost-effective functionalities and easy accessibility to cell-based assays. However, broader applications remain restrictive due to compatibility with conventional cell culture workflow and biochemical sensors, accessibility to up-right physiological imaging, or parallelization of data acquisition. Here, we introduce miniaturized modular-array fluorescence microscopy (MAM) for compact live-cell imaging in flexible formats. We advance the current miniscopy technology to devise an up-right modular architecture, each combining a gradient-index (GRIN) objective and individually-addressed illumination and acquisition components. Parallelization of an array of such modular devices allows for multi-site data acquisition in situ using conventional off-the-shelf cell chambers. Compared with existing methods, the device offers a high fluorescence sensitivity and efficiency, exquisite spatiotemporal resolution (∼3 µm and up to 60 Hz), a configuration compatible with conventional cell culture assays and physiological imaging, and an effective parallelization of data acquisition. The system has been demonstrated using various calibration and biological samples and experimental conditions, representing a promising solution to time-lapse in situ single-cell imaging and analysis.
Collapse
|
21
|
Beck CL, Hickman CJ, Kunze A. Low-cost calcium fluorometry for long-term nanoparticle studies in living cells. Sci Rep 2020; 10:12568. [PMID: 32724093 PMCID: PMC7387557 DOI: 10.1038/s41598-020-69412-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/10/2020] [Indexed: 01/21/2023] Open
Abstract
Calcium fluorometry is critical to determine cell homeostasis or to reveal communication patterns in neuronal networks. Recently, characterizing calcium signalling in neurons related to interactions with nanomaterials has become of interest due to its therapeutic potential. However, imaging of neuronal cell activity under stable physiological conditions can be either very expensive or limited in its long-term capability. Here, we present a low-cost, portable imaging system for long-term, fast-scale calcium fluorometry in neurons. Using the imaging system, we revealed temperature-dependent changes in long-term calcium signalling in kidney cells and primary cortical neurons. Furthermore, we introduce fast-scale monitoring of synchronous calcium activity in neuronal cultures in response to nanomaterials. Through graph network analysis, we found that calcium dynamics in neurons are temperature-dependent when exposed to chitosan-coated nanoparticles. These results give new insights into nanomaterial-interaction in living cultures and tissues based on calcium fluorometry and graph network analysis.
Collapse
Affiliation(s)
- Connor L Beck
- Department of Electrical and Computer Engineering, Montana State University, Bozeman, Montana, 59717, USA
| | - Clark J Hickman
- Department of Electrical and Computer Engineering, Montana State University, Bozeman, Montana, 59717, USA
- Department of Physics, North Carolina State University, Raleigh, NC, 27695, USA
| | - Anja Kunze
- Department of Electrical and Computer Engineering, Montana State University, Bozeman, Montana, 59717, USA.
| |
Collapse
|
22
|
Paolini A, Battafarano G, D'Oria V, Mura F, Sennato S, Mussi V, Risoluti R, Materazzi S, Del Fattore A, Masotti A. A 3D-Printed Multi-Chamber Device Allows Culturing Cells On Buckypapers Coated With PAMAM Dendrimer And Obtain Innovative Materials For Biomedical Applications. Int J Nanomedicine 2019; 14:9295-9306. [PMID: 31819431 PMCID: PMC6890209 DOI: 10.2147/ijn.s224819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/08/2019] [Indexed: 01/15/2023] Open
Abstract
Background The advent of 3D printing technology allowed the realization of custom devices that can be used not only in the everyday life but also in the nanotechnology and biomedical fields. In nanotechnology, the use of bi-dimensional nanostructures based on carbon nanotubes, generally referred as buckypapers, have received considerable attention for their versatility and potential application in many biomedical fields. Unfortunately, buckypapers are extremely hydrophobic and cannot be used in aqueous media to culture cells. Methods A polymeric device able to accommodate buckypapers and facilitate cell growth was fabricated by using 3D printing technology. We imparted hydrophilicity to buckypapers by coating them with polyamidoamine (PAMAM) dendrimers. Results We found that by using novel techniques such as polymer coating the buckypaper hydrophilicity increased, whereas the use of 3D printing technology allowed us to obtain custom devices that have been used to culture cells on buckypapers for many days. We characterized in details the morphology of these structures and studied for the first time the kinetic of cell proliferation. We found that these scaffolds, if properly functionalized, are suitable materials to grow cells for long time and potentially employable in the biomedical field. Conclusion Although these materials are cytotoxic under certain circumstances, we have found a suitable coating and specific experimental conditions that encourage using buckypapers as novel scaffolds for cell growth and for potential applications in tissue repair and regeneration.
Collapse
Affiliation(s)
- Alessandro Paolini
- Bambino Gesù Children's Hospital, IRCCS, Research Laboratories, Rome 00146, Italy
| | - Giulia Battafarano
- Bambino Gesù Children's Hospital, IRCCS, Research Laboratories, Rome 00146, Italy
| | - Valentina D'Oria
- Bambino Gesù Children's Hospital, IRCCS, Research Laboratories, Rome 00146, Italy
| | - Francesco Mura
- Center for Nanotechnology for Engineering (CNIS), Sapienza University of Rome, Rome 00185, Italy
| | - Simona Sennato
- CNR-ISC UOS Sapienza and Physics Department, Sapienza University of Rome, Rome 00185, Italy
| | - Valentina Mussi
- National Research Council, Institute for Microelectronics and Microsystems IMM-CNR, Roma 00133, Italy
| | - Roberta Risoluti
- Department of Chemistry, Sapienza University of Rome, Rome 00185, Italy
| | - Stefano Materazzi
- Department of Chemistry, Sapienza University of Rome, Rome 00185, Italy
| | - Andrea Del Fattore
- Bambino Gesù Children's Hospital, IRCCS, Research Laboratories, Rome 00146, Italy
| | - Andrea Masotti
- Bambino Gesù Children's Hospital, IRCCS, Research Laboratories, Rome 00146, Italy
| |
Collapse
|
23
|
Tristan-Landin SB, Gonzalez-Suarez AM, Jimenez-Valdes RJ, Garcia-Cordero JL. Facile assembly of an affordable miniature multicolor fluorescence microscope made of 3D-printed parts enables detection of single cells. PLoS One 2019; 14:e0215114. [PMID: 31600202 PMCID: PMC6786622 DOI: 10.1371/journal.pone.0215114] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 09/20/2019] [Indexed: 11/18/2022] Open
Abstract
Fluorescence microscopy is one of the workhorses of biomedical research and laboratory diagnosis; however, their cost, size, maintenance, and fragility has prevented their adoption in developing countries or low-resource settings. Although significant advances have decreased their size, cost and accessibility, their designs and assembly remain rather complex. Here, inspired on the simple mechanism from a nut and a bolt, we report the construction of a portable fluorescence microscope that operates in bright-field mode and in three fluorescence channels: UV, green, and red. It is assembled in under 10 min from only six 3D printed parts, basic electronic components, a microcomputer (Raspberry Pi) and a camera, all of which can be readily purchased in most locations or online for US $122. The microcomputer was programmed in Python language to capture time-lapse images and videos. Resolution and illumination conditions of the microscope were characterized, and its performance was compared with a high-end fluorescence microscope in bright-field and fluorescence mode. We demonstrate that our miniature microscope can resolve and track single cells in both modes. The instructions on how to assemble the microscope are shown in a video, and the software to control it and the design files of the 3D-printed parts are freely available online. Our portable microscope is ideal in applications where space is at a premium, such as lab-on-a-chips or space missions, and can find applications in basic and clinical research, diagnostics, telemedicine and in educational settings.
Collapse
Affiliation(s)
- Samuel B. Tristan-Landin
- Unidad Monterrey, Centro de Investigación y de Estudios Avanzados del IPN, Parque PIIT, Apodaca, Nuevo León, Mexico
| | - Alan M. Gonzalez-Suarez
- Unidad Monterrey, Centro de Investigación y de Estudios Avanzados del IPN, Parque PIIT, Apodaca, Nuevo León, Mexico
| | - Rocio J. Jimenez-Valdes
- Unidad Monterrey, Centro de Investigación y de Estudios Avanzados del IPN, Parque PIIT, Apodaca, Nuevo León, Mexico
| | - Jose L. Garcia-Cordero
- Unidad Monterrey, Centro de Investigación y de Estudios Avanzados del IPN, Parque PIIT, Apodaca, Nuevo León, Mexico
| |
Collapse
|
24
|
Duchamp M, Liu T, van Genderen AM, Kappings V, Oklu R, Ellisen LW, Zhang YS. Sacrificial Bioprinting of a Mammary Ductal Carcinoma Model. Biotechnol J 2019; 14:e1700703. [PMID: 30963705 PMCID: PMC6844259 DOI: 10.1002/biot.201700703] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/15/2019] [Indexed: 12/11/2022]
Abstract
Cancer tissue engineering has remained challenging due to the limitations of the conventional biofabrication techniques to model the complex tumor microenvironment. Here, the utilization of a sacrificial bioprinting strategy is reported to generate the biomimetic mammary duct-like structure within a hydrogel matrix, which is further populated with breast cancer cells, to model the genesis of ductal carcinoma and its subsequent outward invasion. This bioprinted mammary ductal carcinoma model provides a proof-of-concept demonstration of the value of using the sacrificial bioprinting technique for engineering biologically relevant cancer models, which may be possibly extended to other cancer types where duct-like structures are involved.
Collapse
Affiliation(s)
- Margaux Duchamp
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Department of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Tingting Liu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Center of Clinical Experiments, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Anne Metje van Genderen
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Vanessa Kappings
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Rahmi Oklu
- Division of Vascular & Interventional Radiology, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Leif W. Ellisen
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| |
Collapse
|
25
|
Gordon P, Venancio VP, Mertens-Talcott SU, Coté G. Portable bright-field, fluorescence, and cross-polarized microscope toward point-of-care imaging diagnostics. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-8. [PMID: 31564071 PMCID: PMC6997630 DOI: 10.1117/1.jbo.24.9.096502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/04/2019] [Indexed: 05/16/2023]
Abstract
Emerging technologies are enabling the feasibility of new types of point-of-care diagnostic devices. A portable, multimodal microscopy platform intended for use in remote diagnostic applications is presented. Use of such a system could bring high-quality microscopy to field use for diseases such as malaria, allowing better diagnostic and surveillance information to be gathered. The microscope was designed using off-the-shelf components and a manual filter selection to generate bright-field, fluorescent, and cross-polarized images of samples mounted to microscopy slides. Design parameters for the system are discussed, and characterization is performed using standardized imaging targets, multimodal phantoms, and blood smears simulating those used in malaria diagnosis. The microscope is shown to be able to image below element 9-3 of a 1951 U.S. Air Force target, indicating that the system is capable of resolving features < 775 nm. Morphological indicators of Plasmodium falciparum can be visualized in images from each modality and combined into high-contrast composite images. To optimize parasitic feature contrast across all three imaging modes, several different staining techniques were compared, with results indicating that use of a single nucleic acid binding fluorophore is preferable.
Collapse
Affiliation(s)
- Paul Gordon
- Texas A&M University, Department of Biomedical Engineering, Optical Biosensing Laboratory, College Station, Texas, United States
| | - Vinicius Paula Venancio
- Texas A&M University, Department of Nutrition and Food Science, College Station, Texas, United States
| | | | - Gerard Coté
- Texas A&M University, Department of Biomedical Engineering, Optical Biosensing Laboratory, College Station, Texas, United States
- Texas A&M Engineering Experiment Station, Center for Remote Health Technologies and Systems, College Station, Texas, United States
- Address all correspondence to Gerard Coté, E-mail:
| |
Collapse
|
26
|
Martens KJA, van Beljouw SPB, van der Els S, Vink JNA, Baas S, Vogelaar GA, Brouns SJJ, van Baarlen P, Kleerebezem M, Hohlbein J. Visualisation of dCas9 target search in vivo using an open-microscopy framework. Nat Commun 2019; 10:3552. [PMID: 31391532 PMCID: PMC6685946 DOI: 10.1038/s41467-019-11514-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/19/2019] [Indexed: 02/07/2023] Open
Abstract
CRISPR-Cas9 is widely used in genomic editing, but the kinetics of target search and its relation to the cellular concentration of Cas9 have remained elusive. Effective target search requires constant screening of the protospacer adjacent motif (PAM) and a 30 ms upper limit for screening was recently found. To further quantify the rapid switching between DNA-bound and freely-diffusing states of dCas9, we developed an open-microscopy framework, the miCube, and introduce Monte-Carlo diffusion distribution analysis (MC-DDA). Our analysis reveals that dCas9 is screening PAMs 40% of the time in Gram-positive Lactoccous lactis, averaging 17 ± 4 ms per binding event. Using heterogeneous dCas9 expression, we determine the number of cellular target-containing plasmids and derive the copy number dependent Cas9 cleavage. Furthermore, we show that dCas9 is not irreversibly bound to target sites but can still interfere with plasmid replication. Taken together, our quantitative data facilitates further optimization of the CRISPR-Cas toolbox.
Collapse
Affiliation(s)
- Koen J A Martens
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
- Laboratory of Bionanotechnology, Wageningen University and Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Sam P B van Beljouw
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Simon van der Els
- Host-Microbe Interactomics Group, Animal Sciences, Wageningen University and Research, De Elst 1, 6708 WD, Wageningen, The Netherlands
- NIZO food research, Kernhemseweg 2, 6718 ZB, Ede, The Netherlands
| | - Jochem N A Vink
- Kavli Institute of Nanoscience, Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Sander Baas
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - George A Vogelaar
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Stan J J Brouns
- Kavli Institute of Nanoscience, Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Peter van Baarlen
- Host-Microbe Interactomics Group, Animal Sciences, Wageningen University and Research, De Elst 1, 6708 WD, Wageningen, The Netherlands
| | - Michiel Kleerebezem
- Host-Microbe Interactomics Group, Animal Sciences, Wageningen University and Research, De Elst 1, 6708 WD, Wageningen, The Netherlands
| | - Johannes Hohlbein
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
- Microspectroscopy Research Facility, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| |
Collapse
|
27
|
Young AT, Rivera KR, Erb PD, Daniele MA. Monitoring of Microphysiological Systems: Integrating Sensors and Real-Time Data Analysis toward Autonomous Decision-Making. ACS Sens 2019; 4:1454-1464. [PMID: 30964652 DOI: 10.1021/acssensors.8b01549] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Microphysiological systems replicate human organ function and are promising technologies for discovery of translatable biomarkers, pharmaceuticals, and regenerative therapies. Because microphysiological systems require complex microscale anatomical structures and heterogeneous cell populations, a major challenge remains to manufacture and operate these products with reproducible and standardized function. In this Perspective, three stages of microphysiological system monitoring, including process, development, and function, are assessed. The unique features and remaining technical challenges for the required sensors are discussed. Monitoring of microphysiological systems requires nondestructive, continuous biosensors and imaging techniques. With such tools, the extent of cellular and tissue development, as well as function, can be autonomously determined and optimized by correlating physical and chemical sensor outputs with markers of physiological performance. Ultimately, data fusion and analyses across process, development, and function monitors can be implemented to adopt microphysiological systems for broad research and commercial applications.
Collapse
Affiliation(s)
- Ashlyn T. Young
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina, Chapel Hill, 911 Oval Drive, Raleigh, North Carolina 27695, United States
| | - Kristina R. Rivera
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina, Chapel Hill, 911 Oval Drive, Raleigh, North Carolina 27695, United States
| | - Patrick D. Erb
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina, Chapel Hill, 911 Oval Drive, Raleigh, North Carolina 27695, United States
| | - Michael A. Daniele
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina, Chapel Hill, 911 Oval Drive, Raleigh, North Carolina 27695, United States
- Department of Electrical & Computer Engineering, North Carolina State University, 890 Oval Drive, Raleigh, North Carolina 27695, United States
| |
Collapse
|
28
|
Rivera KR, Yokus MA, Erb PD, Pozdin VA, Daniele M. Measuring and regulating oxygen levels in microphysiological systems: design, material, and sensor considerations. Analyst 2019; 144:3190-3215. [PMID: 30968094 PMCID: PMC6564678 DOI: 10.1039/c8an02201a] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
As microfabrication techniques and tissue engineering methods improve, microphysiological systems (MPS) are being engineered that recapitulate complex physiological and pathophysiological states to supplement and challenge traditional animal models. Although MPS provide unique microenvironments that transcend common 2D cell culture, without proper regulation of oxygen content, MPS often fail to provide the biomimetic environment necessary to activate and investigate fundamental pathways of cellular metabolism and sub-cellular level. Oxygen exists in the human body in various concentrations and partial pressures; moreover, it fluctuates dramatically depending on fasting, exercise, and sleep patterns. Regulating oxygen content inside MPS necessitates a sensitive biological sensor to quantify oxygen content in real-time. Measuring oxygen in a microdevice is a non-trivial requirement for studies focused on understanding how oxygen impacts cellular processes, including angiogenesis and tumorigenesis. Quantifying oxygen inside a microdevice can be achieved via an array of technologies, with each method having benefits and limitations in terms of sensitivity, limits of detection, and invasiveness that must be considered and optimized. This article will review oxygen physiology in organ systems and offer comparisons of organ-specific MPS that do and do not consider oxygen microenvironments. Materials used in microphysiological models will also be analyzed in terms of their ability to control oxygen. Finally, oxygen sensor technologies are critically compared and evaluated for use in MPS.
Collapse
Affiliation(s)
- Kristina R Rivera
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, 911 Oval Dr., Raleigh, NC 27695, USA.
| | | | | | | | | |
Collapse
|
29
|
Savoji H, Mohammadi MH, Rafatian N, Toroghi MK, Wang EY, Zhao Y, Korolj A, Ahadian S, Radisic M. Cardiovascular disease models: A game changing paradigm in drug discovery and screening. Biomaterials 2019; 198:3-26. [PMID: 30343824 PMCID: PMC6397087 DOI: 10.1016/j.biomaterials.2018.09.036] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/11/2018] [Accepted: 09/22/2018] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease is the leading cause of death worldwide. Although investment in drug discovery and development has been sky-rocketing, the number of approved drugs has been declining. Cardiovascular toxicity due to therapeutic drug use claims the highest incidence and severity of adverse drug reactions in late-stage clinical development. Therefore, to address this issue, new, additional, replacement and combinatorial approaches are needed to fill the gap in effective drug discovery and screening. The motivation for developing accurate, predictive models is twofold: first, to study and discover new treatments for cardiac pathologies which are leading in worldwide morbidity and mortality rates; and second, to screen for adverse drug reactions on the heart, a primary risk in drug development. In addition to in vivo animal models, in vitro and in silico models have been recently proposed to mimic the physiological conditions of heart and vasculature. Here, we describe current in vitro, in vivo, and in silico platforms for modelling healthy and pathological cardiac tissues and their advantages and disadvantages for drug screening and discovery applications. We review the pathophysiology and the underlying pathways of different cardiac diseases, as well as the new tools being developed to facilitate their study. We finally suggest a roadmap for employing these non-animal platforms in assessing drug cardiotoxicity and safety.
Collapse
Affiliation(s)
- Houman Savoji
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 170 College St, Toronto, Ontario, M5S 3G9, Canada; Toronto General Research Institute, University Health Network, University of Toronto, 200 Elizabeth St, Toronto, Ontario, M5G 2C4, Canada
| | - Mohammad Hossein Mohammadi
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 170 College St, Toronto, Ontario, M5S 3G9, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St, Toronto, Ontario, M5S 3E5, Canada; Toronto General Research Institute, University Health Network, University of Toronto, 200 Elizabeth St, Toronto, Ontario, M5G 2C4, Canada
| | - Naimeh Rafatian
- Toronto General Research Institute, University Health Network, University of Toronto, 200 Elizabeth St, Toronto, Ontario, M5G 2C4, Canada
| | - Masood Khaksar Toroghi
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St, Toronto, Ontario, M5S 3E5, Canada
| | - Erika Yan Wang
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 170 College St, Toronto, Ontario, M5S 3G9, Canada
| | - Yimu Zhao
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 170 College St, Toronto, Ontario, M5S 3G9, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St, Toronto, Ontario, M5S 3E5, Canada
| | - Anastasia Korolj
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 170 College St, Toronto, Ontario, M5S 3G9, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St, Toronto, Ontario, M5S 3E5, Canada
| | - Samad Ahadian
- Toronto General Research Institute, University Health Network, University of Toronto, 200 Elizabeth St, Toronto, Ontario, M5G 2C4, Canada
| | - Milica Radisic
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 170 College St, Toronto, Ontario, M5S 3G9, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St, Toronto, Ontario, M5S 3E5, Canada; Toronto General Research Institute, University Health Network, University of Toronto, 200 Elizabeth St, Toronto, Ontario, M5G 2C4, Canada.
| |
Collapse
|
30
|
Polat A, Hassan S, Yildirim I, Oliver LE, Mostafaei M, Kumar S, Maharjan S, Bourguet L, Cao X, Ying G, Eyvazi Hesar M, Zhang YS. A miniaturized optical tomography platform for volumetric imaging of engineered living systems. LAB ON A CHIP 2019; 19:550-561. [PMID: 30657153 PMCID: PMC6391727 DOI: 10.1039/c8lc01190g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Volumetric optical microscopy approaches that enable acquisition of three-dimensional (3D) information from a biological sample are attractive for numerous non-invasive imaging applications. The unprecedented structural details that these techniques provide have helped in our understanding of different aspects of architecture of cells, tissues, and organ systems as they occur in their natural states. Nonetheless, the instrumentation for most of these techniques is sophisticated, bulky, and costly, and is less affordable to most laboratory settings. Several miniature imagers based on webcams or low-cost sensors featuring easy assembly have been reported, for in situ imaging of biological structures at low costs. However, they have not been able to achieve the ability of 3D imaging throughout the entire volumes for spatiotemporal analyses of the structural changes in these specimens. Here we present a miniaturized optical tomography (mini-Opto) platform for low-cost, volumetric characterization of engineered living systems through hardware optimizations as well as applications of an optimized algebraic algorithm for image reconstruction.
Collapse
Affiliation(s)
- Adem Polat
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne St, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Vietz C, Schütte ML, Wei Q, Richter L, Lalkens B, Ozcan A, Tinnefeld P, Acuna GP. Benchmarking Smartphone Fluorescence-Based Microscopy with DNA Origami Nanobeads: Reducing the Gap toward Single-Molecule Sensitivity. ACS OMEGA 2019; 4:637-642. [PMID: 30775643 PMCID: PMC6372172 DOI: 10.1021/acsomega.8b03136] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 12/24/2018] [Indexed: 05/18/2023]
Abstract
Smartphone-based fluorescence microscopy has been rapidly developing over the last few years, enabling point-of-need detection of cells, bacteria, viruses, and biomarkers. These mobile microscopy devices are cost-effective, field-portable, and easy to use, and benefit from economies of scale. Recent developments in smartphone camera technology have improved their performance, getting closer to that of lab microscopes. Here, we report the use of DNA origami nanobeads with predefined numbers of fluorophores to quantify the sensitivity of a smartphone-based fluorescence microscope in terms of the minimum number of detectable molecules per diffraction-limited spot. With the brightness of a single dye molecule as a reference, we compare the performance of color and monochrome sensors embedded in state-of-the-art smartphones. Our results show that the monochrome sensor of a smartphone can achieve better sensitivity, with a detection limit of ∼10 fluorophores per spot. The use of DNA origami nanobeads to quantify the minimum number of detectable molecules of a sensor is broadly applicable to evaluate the sensitivity of various optical instruments.
Collapse
Affiliation(s)
- Carolin Vietz
- Institute
for Physical & Theoretical Chemistry, Braunschweig Integrated
Centre of Systems Biology (BRICS), and Laboratory for Emerging Nanometrology
(LENA), Braunschweig University of Technology, Rebenring 56, 38106 Braunschweig, Germany
| | - Max L. Schütte
- Institute
for Physical & Theoretical Chemistry, Braunschweig Integrated
Centre of Systems Biology (BRICS), and Laboratory for Emerging Nanometrology
(LENA), Braunschweig University of Technology, Rebenring 56, 38106 Braunschweig, Germany
| | - Qingshan Wei
- Department
of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Lars Richter
- Institute
for Physical & Theoretical Chemistry, Braunschweig Integrated
Centre of Systems Biology (BRICS), and Laboratory for Emerging Nanometrology
(LENA), Braunschweig University of Technology, Rebenring 56, 38106 Braunschweig, Germany
| | - Birka Lalkens
- Department
Chemie and Center for NanoScience, Ludwig-Maximilians-Universitaet
Muenchen, Butenandtstr.
5-13 Haus E, 81377 Muenchen, Germany
| | - Aydogan Ozcan
- Electrical
& Computer Engineering Department, Bioengineering Department,
California NanoSystems Institute (CNSI), and Department of Surgery, University of California, Los Angeles, Los Angeles, California 90095, United States
- E-mail: . Tel: +1 310 825 0915 (A.O.)
| | - Philip Tinnefeld
- Department
Chemie and Center for NanoScience, Ludwig-Maximilians-Universitaet
Muenchen, Butenandtstr.
5-13 Haus E, 81377 Muenchen, Germany
- E-mail: . Tel: +49 89 2180 77549. Fax: +49 89 2180 77548 (P.T.)
| | - Guillermo P. Acuna
- Institute
for Physical & Theoretical Chemistry, Braunschweig Integrated
Centre of Systems Biology (BRICS), and Laboratory for Emerging Nanometrology
(LENA), Braunschweig University of Technology, Rebenring 56, 38106 Braunschweig, Germany
- Department
of Physics, University of Fribourg, Chemin du Musée 3, Fribourg CH-1700, Switzerland
- E-mail: . Tel: +41 26 300 9631. Fax: +41 26 300 9030 (G.P.A.)
| |
Collapse
|
32
|
Yang K, Wu J, Santos S, Liu Y, Zhu L, Lin F. Recent development of portable imaging platforms for cell-based assays. Biosens Bioelectron 2019; 124-125:150-160. [DOI: 10.1016/j.bios.2018.10.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/06/2018] [Accepted: 10/13/2018] [Indexed: 12/22/2022]
|
33
|
Wang Z. Detection and Automation Technologies for the Mass Production of Droplet Biomicrofluidics. IEEE Rev Biomed Eng 2018; 11:260-274. [PMID: 29993645 DOI: 10.1109/rbme.2018.2826984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Droplet microfluidics utilizes two immiscible flows to generate small droplets with the diameter of a few to a few hundred micrometers. These droplets are promising tools for biomedical engineering because of the high throughput and the ease to finely tune the microenvironments. In addition to the great success of droplet biomicrofluidics in the proof-of-concept biosensing, regenerative medicine, and drug delivery, few droplet biomicrofluidic devices have a transformative impact on the industrial and clinical applications. The main issues are the low volume throughput and the lack of proper methods for quality control and automation. This review covers the methodologies for the mass production, detection, and automation of droplet generators. Recent advances in droplet mass production using parallelized devices and modified junction structures are discussed. Detection techniques, including optical and electrical detection methods, are comprehensively reviewed in detail. Newly emerged droplet closed-loop control systems are surveyed to highlight the progress in system integration and automation. Overall, with the advances in parallel droplet generation, highly sensitive detection, and robust closed-loop regulation, it is anticipated that the productivity and reliability of droplet biomicrofluidics will be significantly improved to meet the industrial and clinical needs.
Collapse
|
34
|
Lee Y, Kim B, Oh I, Choi S. Optofluidic Modular Blocks for On-Demand and Open-Source Prototyping of Microfluidic Systems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802769. [PMID: 30375722 DOI: 10.1002/smll.201802769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/17/2018] [Indexed: 05/24/2023]
Abstract
Rapid prototyping of microfluidic devices has advanced greatly, along with the development of 3D printing and micromachining technologies. However, peripheral systems for microfluidics still rely on conventional equipment, such as bench-top microscopy and syringe pumps, which limit system modification and further improvements. Herein, optofluidic modular blocks are presented as discrete elements to modularize peripheral optical and fluidic systems and are used for on-demand and open-source prototyping of whole microfluidic systems. Each modular block is fabricated by embedding optical or fluidic devices into the corresponding 3D-printed housing. The self-interlocking structure of the modular blocks enables easy assembly and reconfiguration of the blocks in an intuitive manner, while also providing precise optical and fluidic alignment between the blocks. With the library of standardized modular blocks developed here, how the blocks can be easily assembled to build whole microfluidic systems for blood compatibility testing, droplet microfluidics, and cell migration assays is demonstrated. Based on the simplicity of assembling the optofluidic blocks, the prototyping platform can be easily used for open-source sharing of digital design files, assembly and operation instructions, and block specifications, thereby making it easy for nonexperts to implement microfluidic ideas as physical systems.
Collapse
Affiliation(s)
- Yujin Lee
- Department of Biomedical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Byeongyeon Kim
- Department of Biomedical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Insung Oh
- Department of Biomedical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Sungyoung Choi
- Department of Biomedical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| |
Collapse
|
35
|
Ribas J, Pawlikowska J, Rouwkema J. Microphysiological systems: analysis of the current status, challenges and commercial future. ACTA ACUST UNITED AC 2018; 2. [PMID: 33898981 DOI: 10.21037/mps.2018.10.01] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The field of microphysiological systems (or organs-on-a-chip) experienced, in the past decade, a surge in publications and efforts towards commercialization. Such systems hold the promise to advance drug discovery, diagnostics, and many other areas. In this review we summarize and analyze the current status of the field, describe the commercial advances and discuss standing challenges and the commercial outlook of the field.
Collapse
Affiliation(s)
- João Ribas
- Doctoral Program in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | | | - Jeroen Rouwkema
- Department of Biomechanical Engineering, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| |
Collapse
|
36
|
Application of a webcam camera as a cost-effective sensor with image processing for dual electrochemical – colorimetric detection system. Talanta 2018; 185:160-165. [DOI: 10.1016/j.talanta.2018.03.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/15/2018] [Accepted: 03/17/2018] [Indexed: 11/20/2022]
|
37
|
Yu T, Wei Q. Plasmonic molecular assays: Recent advances and applications for mobile health. NANO RESEARCH 2018; 11:5439-5473. [PMID: 32218913 PMCID: PMC7091255 DOI: 10.1007/s12274-018-2094-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 05/15/2023]
Abstract
Plasmonics-based biosensing assays have been extensively employed for biomedical applications. Significant advancements in use of plasmonic assays for the construction of point-of-care (POC) diagnostic methods have been made to provide effective and urgent health care of patients, especially in resourcelimited settings. This rapidly progressive research area, centered on the unique surface plasmon resonance (SPR) properties of metallic nanostructures with exceptional absorption and scattering abilities, has greatly facilitated the development of cost-effective, sensitive, and rapid strategies for disease diagnostics and improving patient healthcare in both developed and developing worlds. This review highlights the recent advances and applications of plasmonic technologies for highly sensitive protein and nucleic acid biomarker detection. In particular, we focus on the implementation and penetration of various plasmonic technologies in conventional molecular diagnostic assays, and discuss how such modification has resulted in simpler, faster, and more sensitive alternatives that are suited for point-of-use. Finally, integration of plasmonic molecular assays with various portable POC platforms for mobile health applications are highlighted.
Collapse
Affiliation(s)
- Tao Yu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Campus Box 7905, Raleigh, NC 27695 USA
| | - Qingshan Wei
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Campus Box 7905, Raleigh, NC 27695 USA
| |
Collapse
|
38
|
Kim GA, Ginga NJ, Takayama S. Integration of Sensors in Gastrointestinal Organoid Culture for Biological Analysis. Cell Mol Gastroenterol Hepatol 2018; 6:123-131.e1. [PMID: 29928682 PMCID: PMC6007820 DOI: 10.1016/j.jcmgh.2018.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 03/19/2018] [Indexed: 12/11/2022]
Abstract
The gastrointestinal (GI) tract regulates physiologic responses in complex ways beyond facilitating nutrient entry into the circulatory system. Because of the anatomic location of the GI tract, studying in vivo physiology of the human gut, including host cell interaction with the microbiota, is limited. GI organoids derived from human stem cells are gaining interest as they recapitulate in vivo cellular phenotypes and functions. An underdeveloped capability that would further enhance the utility of these miniature models of the GI tract is to use sensors to quantitatively characterize the organoid systems with high spatiotemporal resolution. In this review, we first discuss tools to capture changes in the fluid milieu of organoid cultures both in the organoid exterior as well as the luminal side of the organoids. The subsequent section describes approaches to characterize barrier functions across the epithelial layer of the GI organoids directly or after transferring the epithelial cells to a 2-dimensional culture format in Transwells or compartmentalized microchannel devices. The final section introduces recently developed bioengineered bacterial sensors that sense intestinal inflammation-related small molecules in the lumen using lambda cI/Cro genetic elements or fluorescence as readouts. Considering the small size and cystic shape of GI organoids, sensors used in conventional macroscopic intestinal models are often not suitable, particularly for time-lapse monitoring. Unmet needs for GI organoid analysis provides many opportunities for the development of noninvasive and miniaturized biosensors.
Collapse
Key Words
- 2D, 2-dimensional
- 3D, 3-dimensional
- Bioengineered Sensor
- FITC, fluorescein isothiocyanate
- FITC-Dex, fluorescein isothiocyanate-dextran
- GI Organoids
- GI, gastrointestinal
- HIO, human intestinal organoid
- NO, nitric oxide
- Organoid Microenvironment
- RT-PCR, reverse-transcription polymerase chain reaction
- SNARF, seminaphtharhodafluor
- TCRS, 2-component regulatory system
- TEER, transepithelial/transendothelial electric resistance
Collapse
Affiliation(s)
- Ge-Ah Kim
- Department of Materials Science and Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia
| | - Nicholas J. Ginga
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia
| | - Shuichi Takayama
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
39
|
Karunakaran B, Tharion J, Dhawangale AR, Paul D, Mukherji S. Fabrication of miniature elastomer lenses with programmable liquid mold for smartphone microscopy: curing polydimethylsiloxane with in situ curvature control. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-14. [PMID: 29453846 DOI: 10.1117/1.jbo.23.2.025002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/18/2018] [Indexed: 06/08/2023]
Abstract
Miniature lenses can transform commercial imaging systems, e.g., smartphones and webcams, into powerful, low-cost, handheld microscopes. To date, the reproducible fabrication of polymer lenses is still a challenge as they require controlled dispensing of viscous liquid. This paper reports a reproducible lens fabrication technique using liquid mold with programmable curvature and off-the-shelf materials. The lens curvature is controlled during fabrication by tuning the curvature of an interface of two immiscible liquids [polydimethylsiloxane (PDMS) and glycerol]. The curvature control is implemented using a visual feedback system, which includes a software-based guiding system to produce lenses of desired curvature. The technique allows PDMS lens fabrication of a wide range of sizes and focal lengths, within 20 min. The fabrication of two lens diameters: 1 and 5 mm with focal lengths ranging between 1.2 and 11 mm are demonstrated. The lens surface and bulk quality check performed using X-ray microtomography and atomic force microscopy reveal that the lenses are suitable for optical imaging. Furthermore, a smartphone microscope with ∼1.4-μm resolution is developed using a self-assembly of a single high power fabricated lens and microaperture. The lenses have various potential applications, e.g., optofluidics, diagnostics, forensics, and surveillance.
Collapse
Affiliation(s)
- Bhuvaneshwari Karunakaran
- Indian Institute of Technology Bombay, Department of Biosciences and Bioengineering, Powai, Mumbai, India
| | - Joseph Tharion
- Indian Institute of Technology Bombay, Department of Chemistry, Powai, Mumbai, India
| | - Arvind Ramrao Dhawangale
- Indian Institute of Technology Bombay, Department of Biosciences and Bioengineering, Powai, Mumbai, India
| | - Debjani Paul
- Indian Institute of Technology Bombay, Department of Biosciences and Bioengineering, Powai, Mumbai, India
| | - Soumyo Mukherji
- Indian Institute of Technology Bombay, Department of Biosciences and Bioengineering, Powai, Mumbai, India
| |
Collapse
|
40
|
Yang K, Wu J, Peretz-Soroka H, Zhu L, Li Z, Sang Y, Hipolito J, Zhang M, Santos S, Hillier C, de Faria RL, Liu Y, Lin F. M kit: A cell migration assay based on microfluidic device and smartphone. Biosens Bioelectron 2018; 99:259-267. [PMID: 28772229 PMCID: PMC5585005 DOI: 10.1016/j.bios.2017.07.064] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 07/15/2017] [Accepted: 07/21/2017] [Indexed: 11/23/2022]
Abstract
Mobile sensing based on the integration of microfluidic device and smartphone, so-called MS2 technology, has enabled many applications over recent years, and continues to stimulate growing interest in both research communities and industries. In particular, it has been envisioned that MS2 technology can be developed for various cell functional assays to enable basic research and clinical applications. Toward this direction, in this paper, we describe the development of a MS2-based cell functional assay for testing cell migration (the Mkit). The system is constructed as an integrated test kit, which includes microfluidic chips, a smartphone-based imaging platform, the phone apps for image capturing and data analysis, and a set of reagent and accessories for performing the cell migration assay. We demonstrated that the Mkit can effectively measure purified neutrophil and cancer cell chemotaxis. Furthermore, neutrophil chemotaxis can be tested from a drop of whole blood using the Mkit with red blood cell (RBC) lysis. The effects of chemoattractant dose and gradient profile on neutrophil chemotaxis were also tested using the Mkit. In addition to research applications, we demonstrated the effective use of the Mkit for on-site test at the hospital and for testing clinical samples from chronic obstructive pulmonary disease patient. Thus, this developed Mkit provides an easy and integrated experimental platform for cell migration related research and potential medical diagnostic applications.
Collapse
Affiliation(s)
- Ke Yang
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China; Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, Canada
| | - Jiandong Wu
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, Canada
| | - Hagit Peretz-Soroka
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, Canada
| | - Ling Zhu
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China
| | - Zhigang Li
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China
| | - Yaoshuo Sang
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China
| | - Jolly Hipolito
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, Canada
| | | | - Susy Santos
- Victoria General Hospital and River Heights/Fort Garry Community areas, Winnipeg, MB, Canada
| | | | | | - Yong Liu
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China
| | - Francis Lin
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, Canada; Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, Canada; Department of Immunology, University of Manitoba, Winnipeg, MB, Canada; Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
41
|
Young AN, Moyle-Heyrman G, Kim JJ, Burdette JE. Microphysiologic systems in female reproductive biology. Exp Biol Med (Maywood) 2017; 242:1690-1700. [PMID: 29065798 PMCID: PMC5786365 DOI: 10.1177/1535370217697386] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Microphysiologic systems (MPS), including new organ-on-a-chip technologies, recapitulate tissue microenvironments by employing specially designed tissue or cell culturing techniques and microfluidic flow. Such systems are designed to incorporate physiologic factors that conventional 2D or even 3D systems cannot, such as the multicellular dynamics of a tissue-tissue interface or physical forces like fluid sheer stress. The female reproductive system is a series of interconnected organs that are necessary to produce eggs, support embryo development and female health, and impact the functioning of non-reproductive tissues throughout the body. Despite its importance, the human reproductive tract has received less attention than other organ systems, such as the liver and kidney, in terms of modeling with MPS. In this review, we discuss current gaps in the field and areas for technological advancement through the application of MPS. We explore current MPS research in female reproductive biology, including fertilization, pregnancy, and female reproductive tract diseases, with a focus on their clinical applications. Impact statement This review discusses existing microphysiologic systems technology that may be applied to study of the female reproductive tract, and those currently in development to specifically investigate gametes, fertilization, embryo development, pregnancy, and diseases of the female reproductive tract. We focus on the clinical applicability of these new technologies in fields such as assisted reproductive technologies, drug testing, disease diagnostics, and personalized medicine.
Collapse
Affiliation(s)
| | - Georgette Moyle-Heyrman
- College of Science & Technology, University of Wisconsin – Green Bay, Green Bay, WI 54311, USA
| | - J Julie Kim
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | |
Collapse
|
42
|
Lesher-Pérez SC, Kim GA, Kuo CH, Leung BM, Mong S, Kojima T, Moraes C, Thouless MD, Luker GD, Takayama S. Dispersible oxygen microsensors map oxygen gradients in three-dimensional cell cultures. Biomater Sci 2017; 5:2106-2113. [PMID: 28805850 PMCID: PMC5678941 DOI: 10.1039/c7bm00119c] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Phase fluorimetry, unlike the more commonly used intensity-based measurement, is not affected by differences in light paths from culture vessels or by optical attenuation through dense 3D cell cultures and hydrogels thereby minimizing dependence on signal intensity for accurate measurements. This work describes the use of phase fluorimetry on oxygen-sensor microbeads to perform oxygen measurements in different microtissue culture environments. In one example, cell spheroids were observed to deplete oxygen from the cell-culture medium filling the bottom of conventional microwells within minutes, whereas oxygen concentrations remained close to ambient levels for several days in hanging-drop cultures. By dispersing multiple oxygen microsensors in cell-laden hydrogels, we also mapped cell-generated oxygen gradients. The spatial oxygen mapping was sufficiently precise to enable the use of computational models of oxygen diffusion and uptake to give estimates of the cellular oxygen uptake rate and the half-saturation constant. The results show the importance of integrated design and analysis of 3D cell cultures from both biomaterial and oxygen supply aspects. While this paper specifically tests spheroids and cell-laden gel cultures, the described methods should be useful for measuring pericellular oxygen concentrations in a variety of biomaterials and culture formats.
Collapse
|
43
|
Wang Z, Boddeda A, Parker B, Samanipour R, Ghosh S, Menard F, Kim K. A High-Resolution Minimicroscope System for Wireless Real-Time Monitoring. IEEE Trans Biomed Eng 2017; 65:1524-1531. [PMID: 28880156 DOI: 10.1109/tbme.2017.2749040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Compact, cost-effective, and high-performance microscope that enables the real-time imaging of cells and lab-on-a-chip devices is highly demanded for cell biology and biomedical engineering. This paper aims to present the design and application of an inexpensive wireless minimicroscope with resolution up to 2592 × 1944 pixels and speed up to 90 f/s. METHODS The minimicroscope system was built on a commercial embedded system (Raspberry Pi). We modified a camera module and adopted an inverse dual lens system to obtain the clear field of view and appropriate magnification for tens of micrometer objects. RESULTS The system was capable of capturing time-lapse images and transferring image data wirelessly. The entire system can be operated wirelessly and cordlessly in a conventional cell culturing incubator. The developed minimicroscope was used to monitor the attachment and proliferation of NIH-3T3 and HEK 293 cells inside an incubator for 50 h. In addition, the minimicroscope was used to monitor a droplet generation process in a microfluidic device. The high-quality images captured by the minimicroscope enabled us an automated analysis of experimental parameters. CONCLUSION The successful applications prove the great potential of the developed minimicroscope for monitoring various biological samples and microfluidic devices. SIGNIFICANCE This paper presents the design of a high-resolution minimicroscope system that enables the wireless real-time imaging of cells inside the incubator. This system has been verified to be a useful tool to obtain high-quality images and videos for the automated quantitative analysis of biological samples and lab-on-a-chip devices in the long term.
Collapse
|
44
|
Skardal A, Murphy SV, Devarasetty M, Mead I, Kang HW, Seol YJ, Shrike Zhang Y, Shin SR, Zhao L, Aleman J, Hall AR, Shupe TD, Kleensang A, Dokmeci MR, Jin Lee S, Jackson JD, Yoo JJ, Hartung T, Khademhosseini A, Soker S, Bishop CE, Atala A. Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform. Sci Rep 2017; 7:8837. [PMID: 28821762 PMCID: PMC5562747 DOI: 10.1038/s41598-017-08879-x] [Citation(s) in RCA: 345] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/14/2017] [Indexed: 01/01/2023] Open
Abstract
Many drugs have progressed through preclinical and clinical trials and have been available - for years in some cases - before being recalled by the FDA for unanticipated toxicity in humans. One reason for such poor translation from drug candidate to successful use is a lack of model systems that accurately recapitulate normal tissue function of human organs and their response to drug compounds. Moreover, tissues in the body do not exist in isolation, but reside in a highly integrated and dynamically interactive environment, in which actions in one tissue can affect other downstream tissues. Few engineered model systems, including the growing variety of organoid and organ-on-a-chip platforms, have so far reflected the interactive nature of the human body. To address this challenge, we have developed an assortment of bioengineered tissue organoids and tissue constructs that are integrated in a closed circulatory perfusion system, facilitating inter-organ responses. We describe a three-tissue organ-on-a-chip system, comprised of liver, heart, and lung, and highlight examples of inter-organ responses to drug administration. We observe drug responses that depend on inter-tissue interaction, illustrating the value of multiple tissue integration for in vitro study of both the efficacy of and side effects associated with candidate drugs.
Collapse
Affiliation(s)
- Aleksander Skardal
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA. .,Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| | - Sean V Murphy
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Mahesh Devarasetty
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA.,Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Ivy Mead
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Hyun-Wook Kang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Young-Joon Seol
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Yu Shrike Zhang
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA.,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02139, USA
| | - Su-Ryon Shin
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA.,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02139, USA
| | - Liang Zhao
- Center for Alternatives to Animal Testing (CAAT), Bloomberg School of Public Health, Johns Hopkins University Baltimore, 615N Wolfe Street, Baltimore, MD, USA
| | - Julio Aleman
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA.,Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA.,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02139, USA
| | - Adam R Hall
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA.,Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Thomas D Shupe
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Andre Kleensang
- Center for Alternatives to Animal Testing (CAAT), Bloomberg School of Public Health, Johns Hopkins University Baltimore, 615N Wolfe Street, Baltimore, MD, USA
| | - Mehmet R Dokmeci
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA.,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02139, USA
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA.,Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - John D Jackson
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA.,Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Bloomberg School of Public Health, Johns Hopkins University Baltimore, 615N Wolfe Street, Baltimore, MD, USA.,Steinbeis CAAT-Europe, University of Konstanz, Universitätstr 10, Konstanz, Baden-Württemberg, Germany
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA.,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02139, USA.,Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul, 143-701, Republic of Korea.,Department of Physics, King Abdulaziz University, Jeddah, 21569, Saudi Arabia
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA.,Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Colin E Bishop
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA. .,Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
45
|
Kim B, Lee YJ, Park JG, Yoo D, Hahn YK, Choi S. A portable somatic cell counter based on a multi-functional counting chamber and a miniaturized fluorescence microscope. Talanta 2017; 170:238-243. [DOI: 10.1016/j.talanta.2017.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 10/19/2022]
|
46
|
Abstract
To curb the high cost of drug development, there is an urgent need to develop more predictive tissue models using human cells to determine drug efficacy and safety in advance of clinical testing. Recent insights gained through fundamental biological studies have validated the importance of dynamic cell environments and cellular communication to the expression of high fidelity organ function. Building on this knowledge, emerging organ-on-a-chip technology is poised to fill the gaps in drug screening by offering predictive human tissue models with methods of sophisticated tissue assembly. Organ-on-a-chip start-ups have begun to spawn from academic research to fill this commercial space and are attracting investment to transform the drug discovery industry. This review traces the history, examines the scientific foundation and envisages the prospect of these renowned organ-on-a-chip technologies. It serves as a guide for new members of this dynamic field to navigate the existing scientific and market space.
Collapse
Affiliation(s)
- Boyang Zhang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada.
| | | |
Collapse
|
47
|
Bolnick A, Awonuga AO, Yang Y, Abdulhasan M, Xie Y, Zhou S, Puscheck EE, Rappolee DA. Using stem cell oxygen physiology to optimize blastocyst culture while minimizing hypoxic stress. J Assist Reprod Genet 2017. [PMID: 28647787 DOI: 10.1007/s10815-017-0971-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This review is a response to the Fellows Forum on testing 2% oxygen for best culture of human blastocysts (J Ass Reprod Gen 34:303-8, 1; J Ass Reprod Gen 34:309-14, 2) prior to embryo transfer. It is a general analysis in support of the position that an understanding of stem cell physiology and responses to oxygen are necessary for optimization of blastocyst culture in IVF and to enhance reproductive success in fertile women.
Collapse
Affiliation(s)
- Alan Bolnick
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Department of Obstetrics and Gynecology, Kaleida Women's and Children's Hospital Buffalo New York, Buffalo, NY, USA
| | - Awoniyi O Awonuga
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Yu Yang
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Mohammed Abdulhasan
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Yufen Xie
- Fertility and Surgical Associates of California, Thousand Oaks, CA, 91361, USA
| | - Sichang Zhou
- University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Elizabeth E Puscheck
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Daniel A Rappolee
- CS Mott Center for Human Growth and Development, Department of Ob/Gyn, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, MI, 48201, USA. .,Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA. .,Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA. .,Institutes for Environmental Health Science, Wayne State University School of Medicine, Detroit, MI, USA. .,Department of Biology, University of Windsor, Windsor, ON, N9B 3P4, Canada. .,CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 East Hancock, Detroit, MI, 48201, USA.
| |
Collapse
|
48
|
Zhang YS, Santiago GTD, Alvarez MM, Schiff SJ, Boyden ES, Khademhosseini A. Expansion Mini-Microscopy: An Enabling Alternative in Point-of-Care Diagnostics. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2017; 1:45-53. [PMID: 29062977 DOI: 10.1016/j.cobme.2017.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Diagnostics play a significant role in health care. In the developing world and low-resource regions the utility for point-of-care (POC) diagnostics becomes even greater. This need has long been recognized, and diagnostic technology has seen tremendous progress with the development of portable instrumentation such as miniature imagers featuring low complexity and cost. However, such inexpensive devices have not been able to achieve a resolution sufficient for POC detection of pathogens at very small scales, such as single-cell parasites, bacteria, fungi, and viruses. To this end, expansion microscopy (ExM) is a recently developed technique that, by physically expanding preserved biological specimens through a chemical process, enables super-resolution imaging on conventional microscopes and improves imaging resolution of a given microscope without the need to modify the existing microscope hardware. Here we review recent advances in ExM and portable imagers, respectively, and discuss the rational combination of the two technologies, that we term expansion mini-microscopy (ExMM). In ExMM, the physical expansion of a biological sample followed by imaging on a mini-microscope achieves a resolution as high as that attainable by conventional high-end microscopes imaging non-expanded samples, at significant reduction in cost. We believe that this newly developed ExMM technique is likely to find widespread applications in POC diagnostics in resource-limited and remote regions by expanded-scale imaging of biological specimens that are otherwise not resolvable using low-cost imagers.
Collapse
Affiliation(s)
- Yu Shrike Zhang
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02139, MA, USA.,Harvard-MIT Division of Health Sciences and Technology, Cambridge 02139, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston 02115, MA, USA
| | - Grissel Trujillo-de Santiago
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02139, MA, USA.,Harvard-MIT Division of Health Sciences and Technology, Cambridge 02139, MA, USA.,Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, CP 64849, Monterrey, Nuevo León, México
| | - Mario Moisés Alvarez
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02139, MA, USA.,Harvard-MIT Division of Health Sciences and Technology, Cambridge 02139, MA, USA.,Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, CP 64849, Monterrey, Nuevo León, México
| | - Steven J Schiff
- Center for Neural Engineering, Departements of Engineering Science and Mechanics, Neurosurgery, and Physics, The Pennsylvania State University, University Park, 16802, PA, USA
| | - Edward S Boyden
- Media Lab, MIT, Cambridge 02139, MA, USA.,Department of Biological Engineering, MIT, Cambridge 02139, MA, USA.,McGovern Institute, MIT, Cambridge 02139, MA, USA.,Department of Brain and Cognitive Sciences, MIT, Cambridge 02139, MA, USA.,Center for Neurobiological Engineering, MIT, Cambridge 02139, MA, USA
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02139, MA, USA.,Harvard-MIT Division of Health Sciences and Technology, Cambridge 02139, MA, USA.,Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea.,Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| |
Collapse
|
49
|
Zhang YS, Aleman J, Shin SR, Kilic T, Kim D, Mousavi Shaegh SA, Massa S, Riahi R, Chae S, Hu N, Avci H, Zhang W, Silvestri A, Sanati Nezhad A, Manbohi A, De Ferrari F, Polini A, Calzone G, Shaikh N, Alerasool P, Budina E, Kang J, Bhise N, Ribas J, Pourmand A, Skardal A, Shupe T, Bishop CE, Dokmeci MR, Atala A, Khademhosseini A. Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors. Proc Natl Acad Sci U S A 2017; 114:E2293-E2302. [PMID: 28265064 PMCID: PMC5373350 DOI: 10.1073/pnas.1612906114] [Citation(s) in RCA: 459] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Organ-on-a-chip systems are miniaturized microfluidic 3D human tissue and organ models designed to recapitulate the important biological and physiological parameters of their in vivo counterparts. They have recently emerged as a viable platform for personalized medicine and drug screening. These in vitro models, featuring biomimetic compositions, architectures, and functions, are expected to replace the conventional planar, static cell cultures and bridge the gap between the currently used preclinical animal models and the human body. Multiple organoid models may be further connected together through the microfluidics in a similar manner in which they are arranged in vivo, providing the capability to analyze multiorgan interactions. Although a wide variety of human organ-on-a-chip models have been created, there are limited efforts on the integration of multisensor systems. However, in situ continual measuring is critical in precise assessment of the microenvironment parameters and the dynamic responses of the organs to pharmaceutical compounds over extended periods of time. In addition, automated and noninvasive capability is strongly desired for long-term monitoring. Here, we report a fully integrated modular physical, biochemical, and optical sensing platform through a fluidics-routing breadboard, which operates organ-on-a-chip units in a continual, dynamic, and automated manner. We believe that this platform technology has paved a potential avenue to promote the performance of current organ-on-a-chip models in drug screening by integrating a multitude of real-time sensors to achieve automated in situ monitoring of biophysical and biochemical parameters.
Collapse
Affiliation(s)
- Yu Shrike Zhang
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139;
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115
| | - Julio Aleman
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Su Ryon Shin
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115
| | - Tugba Kilic
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Izmir Katip Celebi University, Izmir 35620, Turkey
| | - Duckjin Kim
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
| | - Seyed Ali Mousavi Shaegh
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
- Orthopaedic Research Center, Mashhad University of Medical Sciences, Mashhad 9176699199, Iran
| | - Solange Massa
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
- Graduate School Program in Biomedicine, Universidad de los Andes, Santiago 7620001, Chile
| | - Reza Riahi
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
| | - Sukyoung Chae
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
| | - Ning Hu
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Huseyin Avci
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
- Metallurgical and Materials Engineering Department, Faculty of Engineering and Architecture, Eskisehir Osmangazi University, Eskisehir 26030, Turkey
| | - Weijia Zhang
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, People's Republic of China
| | - Antonia Silvestri
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
- Department of Electronics and Telecommunications, Polytechnic University of Turin, Turin 10129, Italy
| | - Amir Sanati Nezhad
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
- BioMEMS and Bioinspired Microfluidics Laboratory, Center for Bioengineering Research and Education, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Ahmad Manbohi
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
- Department of Marine Science, Iranian National Institute for Oceanography and Atmospheric Science, Tehran 1411813389, Iran
| | - Fabio De Ferrari
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
- Department of Electronics and Telecommunications, Polytechnic University of Turin, Turin 10129, Italy
| | - Alessandro Polini
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
| | - Giovanni Calzone
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
| | - Noor Shaikh
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
- Division of Engineering Science, Faculty of Applied Science and Engineering, University of Toronto, Toronto, ON, Canada M5S 1A4
| | - Parissa Alerasool
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
| | - Erica Budina
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
| | - Jian Kang
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
| | - Nupura Bhise
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
| | - João Ribas
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
- Doctoral Program in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, Institute for Interdisciplinary Research, University of Coimbra, Coimbra 3030-789, Portugal
| | - Adel Pourmand
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
- Department of Electrical Engineering, Sahand University of Technology, Tabriz 5331711111, Iran
| | - Aleksander Skardal
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Thomas Shupe
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Colin E Bishop
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Mehmet Remzi Dokmeci
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139;
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA 02139
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul 143-701, Republic of Korea
- Center for Nanotechnology, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| |
Collapse
|
50
|
Lin S, Wang W, Hu C, Yang G, Ko CN, Ren K, Leung CH, Ma DL. The application of a G-quadruplex based assay with an iridium(iii) complex to arsenic ion detection and its utilization in a microfluidic chip. J Mater Chem B 2017; 5:479-484. [DOI: 10.1039/c6tb02656g] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In this work, the iridium(iii) complex 1 was synthesized and employed in constructing an assay which is based on a G-quadruplex for detecting arsenic ions in aqueous solution.
Collapse
Affiliation(s)
- Sheng Lin
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
| | - Wanhe Wang
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
| | - Chong Hu
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
| | - Guanjun Yang
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macao
- China
| | - Chung-Nga Ko
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
| | - Kangning Ren
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macao
- China
| | - Dik-Lung Ma
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
| |
Collapse
|