1
|
Gupta K, Tian Y, Eudes A, Scheller HV, Singh AK, Adams PD, Andeer PF, Northen TR. EcoFAB 3.0: a sterile system for studying sorghum that replicates previous field and greenhouse observations. FRONTIERS IN PLANT SCIENCE 2024; 15:1440728. [PMID: 39435021 PMCID: PMC11491363 DOI: 10.3389/fpls.2024.1440728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/12/2024] [Indexed: 10/23/2024]
Abstract
Introduction Studying plant-microbe interactions is one of the key elements in understanding the path to sustainable agricultural practices. These interactions play a crucial role in ensuring survival of healthy plants, soil and microbial communities. Many platforms have been developed over the years to isolate these highly complex interactions however, these are designed for small model plants. This creates a need for complementary devices for larger plants, such as sorghum. Methods This work introduces a novel platform, EcoFAB 3.0, which is designed to enable studying bioenergy plants such as sorghum for up to 4 weeks in a controlled sterile environment. Several other advantages of this platform such as dark root chambers and user-friendly assembly are also discussed in this work. Results and discussion EcoFAB 3.0 was found to replicate previous greenhouse and field observations when comparing an engineered sorghum line overproducing 4-hydroxybenzoic acid (4-HBA) and wildtype (variety BTx430). Consistent with greenhouse and field observations, it was found that the engineered line of sorghum grown in EcoFAB 3.0 had a higher 4-HBA content and a lower dry biomass.
Collapse
Affiliation(s)
- Kshitiz Gupta
- Technology Division, Joint BioEnergy Institute, Emeryville, CA, United States
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Yang Tian
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, United States
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Aymerick Eudes
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, United States
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Henrik V. Scheller
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, United States
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Anup K. Singh
- Technology Division, Joint BioEnergy Institute, Emeryville, CA, United States
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Paul D. Adams
- Technology Division, Joint BioEnergy Institute, Emeryville, CA, United States
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Peter F. Andeer
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Trent R. Northen
- Technology Division, Joint BioEnergy Institute, Emeryville, CA, United States
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
2
|
Hanusch M, He X, Böll L, Junker RR. Testing the sequence of successional processes in miniature ecosystems. Microbiol Spectr 2024; 12:e0122724. [PMID: 39190635 PMCID: PMC11448199 DOI: 10.1128/spectrum.01227-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/12/2024] [Indexed: 08/29/2024] Open
Abstract
Dispersal, environmental filtering, and biotic interactions define the species inventory of local communities. Along successional gradients, these assembly processes are predicted to sequentially vary in their relative importance with dispersal as the dominating process early in succession, followed by environmental filtering and biotic interactions at later stages. While observational data from field studies supported this prediction, controlled experiments confirming a sequence of successional processes are still lacking. We designed miniature ecosystems to explicitly test these assumptions under controlled laboratory conditions. Our "Ecosystems on a Plate" (EsoaP) are 3D-printed customized microplates with 24 connected wells allowing us to track dispersal, niche filtering, and biotic interactions among bacteria and plants in time and space. Within EsoaPs, we created heterogeneous habitat landscapes by well-specific nutrient levels or by providing plant seedlings as mutualistic partners in a checkerboard pattern. Bacteria of a single strain were released in one well and subsequently distributed themselves within the plates. We measured the spatial distribution of bacterial abundances at two time points as a function of abiotic or biotic heterogeneity. Bacterial abundance distribution confirmed a shift from initial dispersal-dominated processes to later niche filtering and biotic interactions as more important processes. Our approach follows the principles of open science as the affordable availability of 3D printers as well as shared STL files makes EsoaPs disseminatable and accessible to all levels of society, facilitating future experimental research. IMPORTANCE Hypotheses regarding the underlying processes of ecological successions have primarily emerged from and have been tested in observational studies, lacking substantial support through controlled experiments. The design of such experiments should focus on testing contemporary ecological theories at the intersection of community assembly and successional research. To achieve this, we developed and employed 3D-printed "Ecosystems on a Plate" (EsoaP) within controlled laboratory settings. EsoaPs surmount several limitations of nanoscale instruments that had hindered their application in ecologically meaningful research. By sharing 3D printing designs, experimental protocols, and data openly, we facilitate reproducibility of our experiments by researchers across diverse ecological disciplines. Moreover, our approach facilitates cost-effective replication of experiments, democratizing access to tools for ecological research, and thus holds the potential to serve as a model for future studies and educational purposes.
Collapse
Affiliation(s)
- Maximilian Hanusch
- Evolutionary Ecology of Plants, Department of Biology, Philipps-University Marburg, Marburg, Germany
- Department of Environment and Biodiversity, Paris-Lodron-University Salzburg, Salzburg, Austria
| | - Xie He
- Department of Environment and Biodiversity, Paris-Lodron-University Salzburg, Salzburg, Austria
| | - Laura Böll
- Department of Environment and Biodiversity, Paris-Lodron-University Salzburg, Salzburg, Austria
| | - Robert R. Junker
- Evolutionary Ecology of Plants, Department of Biology, Philipps-University Marburg, Marburg, Germany
- Department of Environment and Biodiversity, Paris-Lodron-University Salzburg, Salzburg, Austria
| |
Collapse
|
3
|
Voigtländer A, Houssais M, Bacik KA, Bourg IC, Burton JC, Daniels KE, Datta SS, Del Gado E, Deshpande NS, Devauchelle O, Ferdowsi B, Glade R, Goehring L, Hewitt IJ, Jerolmack D, Juanes R, Kudrolli A, Lai CY, Li W, Masteller C, Nissanka K, Rubin AM, Stone HA, Suckale J, Vriend NM, Wettlaufer JS, Yang JQ. Soft matter physics of the ground beneath our feet. SOFT MATTER 2024. [PMID: 39012310 DOI: 10.1039/d4sm00391h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The soft part of the Earth's surface - the ground beneath our feet - constitutes the basis for life and natural resources, yet a general physical understanding of the ground is still lacking. In this critical time of climate change, cross-pollination of scientific approaches is urgently needed to better understand the behavior of our planet's surface. The major topics in current research in this area cross different disciplines, spanning geosciences, and various aspects of engineering, material sciences, physics, chemistry, and biology. Among these, soft matter physics has emerged as a fundamental nexus connecting and underpinning many research questions. This perspective article is a multi-voice effort to bring together different views and approaches, questions and insights, from researchers that work in this emerging area, the soft matter physics of the ground beneath our feet. In particular, we identify four major challenges concerned with the dynamics in and of the ground: (I) modeling from the grain scale, (II) near-criticality, (III) bridging scales, and (IV) life. For each challenge, we present a selection of topics by individual authors, providing specific context, recent advances, and open questions. Through this, we seek to provide an overview of the opportunities for the broad Soft Matter community to contribute to the fundamental understanding of the physics of the ground, strive towards a common language, and encourage new collaborations across the broad spectrum of scientists interested in the matter of the Earth's surface.
Collapse
Affiliation(s)
- Anne Voigtländer
- German Research Centre for Geosciences (GFZ), Geomorphology, Telegrafenberg, 14473 Potsdam, Germany.
- Lawrence Berkeley National Laboratory (LBNL), Energy Geosciences Division, 1 Cyclotron Rd, Berkeley, CA 94720, USA
| | - Morgane Houssais
- Department of Physics, Clark University, 950 Main St, Worcester, MA 01610, USA
| | - Karol A Bacik
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Ian C Bourg
- Civil and Environmental Engineering (CEE) and High Meadows Environmental Institute (HMEI), Princeton University, E208 EQuad, Princeton, NJ 08540, USA
| | - Justin C Burton
- Department of Physics, Emory University, 400 Dowman Dr, Atlanta, GA 30033, USA
| | - Karen E Daniels
- North Carolina State University, 2401 Stinson Dr, Raleigh, NC 27607, USA
| | - Sujit S Datta
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Emanuela Del Gado
- Department of Physics, Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, DC, USA
| | - Nakul S Deshpande
- North Carolina State University, 2401 Stinson Dr, Raleigh, NC 27607, USA
| | - Olivier Devauchelle
- Institut de Physique du Globe de Paris, Université Paris Cité, 1 rue Jussieu, CNRS, F-75005 Paris, France
| | - Behrooz Ferdowsi
- Department of Civil and Environmental Engineering, jUniversity of Houston, Houston, TX 77204, USA
| | - Rachel Glade
- Earth & Environmental Sciences Department and Mechanical Engineering Department, University of Rochester, 227 Hutchison Hall, P.O. Box 270221, Rochester, NY 14627, USA
| | - Lucas Goehring
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Ian J Hewitt
- Mathematical Institute, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK
| | - Douglas Jerolmack
- Department of Earth & Environmental Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ruben Juanes
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Arshad Kudrolli
- Department of Physics, Clark University, 950 Main St, Worcester, MA 01610, USA
| | - Ching-Yao Lai
- Department of Geophysics, Stanford University, Stanford, CA 94305, USA
| | - Wei Li
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Stony Brook University, Department of Civil Engineering, Stony Brook, NY 11794, USA
| | - Claire Masteller
- Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Kavinda Nissanka
- Department of Physics, Emory University, 400 Dowman Dr, Atlanta, GA 30033, USA
| | - Allan M Rubin
- Department of Geosciences, Princeton University, Princeton, NJ 08544, USA
| | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Jenny Suckale
- Computational and Mathematical Engineering, and Environmental Engineering, Stanford University, Stanford, CA 94305, USA
| | - Nathalie M Vriend
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - John S Wettlaufer
- Departments of Earth & Planetary Sciences, Mathematics and Physics, Yale University, New Haven, CT 06520, USA
- Nordic Institute for Theoretical Physics, 106 91, Stockholm, Sweden
| | - Judy Q Yang
- Saint Anthony Falls Laboratory and Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
4
|
Salek MM, Carrara F, Zhou J, Stocker R, Jimenez‐Martinez J. Multiscale Porosity Microfluidics to Study Bacterial Transport in Heterogeneous Chemical Landscapes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310121. [PMID: 38445967 PMCID: PMC11132056 DOI: 10.1002/advs.202310121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Indexed: 03/07/2024]
Abstract
Microfluidic models are proving to be powerful systems to study fundamental processes in porous media, due to their ability to replicate topologically complex environments while allowing detailed, quantitative observations at the pore scale. Yet, while porous media such as living tissues, geological substrates, or industrial systems typically display a porosity that spans multiple scales, most microfluidic models to date are limited to a single porosity or a small range of pore sizes. Here, a novel microfluidic system with multiscale porosity is presented. By embedding polyacrylamide (PAAm) hydrogel structures through in-situ photopolymerization in a landscape of microfabricated polydimethylsiloxane (PDMS) pillars with varying spacing, micromodels with porosity spanning several orders of magnitude, from nanometers to millimeters are created. Experiments conducted at different porosity patterns demonstrate the potential of this approach to characterize fundamental and ubiquitous biological and geochemical transport processes in porous media. Accounting for multiscale porosity allows studies of the resulting heterogeneous fluid flow and concentration fields of transported chemicals, as well as the biological behaviors associated with this heterogeneity, such as bacterial chemotaxis. This approach brings laboratory studies of transport in porous media a step closer to their natural counterparts in the environment, industry, and medicine.
Collapse
Affiliation(s)
- M. Mehdi Salek
- Department of Biological Engineering, School of EngineeringMassachusetts Institute of TechnologyCambridgeMAUSA
- Department of CivilEnvironmental and Geomatic EngineeringInstitute of Environmental EngineeringETH ZurichZurichSwitzerland
| | - Francesco Carrara
- Department of CivilEnvironmental and Geomatic EngineeringInstitute of Environmental EngineeringETH ZurichZurichSwitzerland
| | - Jiande Zhou
- Department of CivilEnvironmental and Geomatic EngineeringInstitute of Environmental EngineeringETH ZurichZurichSwitzerland
- Microsystems LaboratoryInstitute of MicroengineeringSchool of EngineeringEPFLLausanneSwitzerland
| | - Roman Stocker
- Department of CivilEnvironmental and Geomatic EngineeringInstitute of Environmental EngineeringETH ZurichZurichSwitzerland
| | - Joaquin Jimenez‐Martinez
- Department of CivilEnvironmental and Geomatic EngineeringInstitute of Environmental EngineeringETH ZurichZurichSwitzerland
- Department of Water Resources and Drinking WaterEawagDubendorfSwitzerland
| |
Collapse
|
5
|
Aryal P, Hefner C, Martinez B, Henry CS. Microfluidics in environmental analysis: advancements, challenges, and future prospects for rapid and efficient monitoring. LAB ON A CHIP 2024; 24:1175-1206. [PMID: 38165815 DOI: 10.1039/d3lc00871a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Microfluidic devices have emerged as advantageous tools for detecting environmental contaminants due to their portability, ease of use, cost-effectiveness, and rapid response capabilities. These devices have wide-ranging applications in environmental monitoring of air, water, and soil matrices, and have also been applied to agricultural monitoring. Although several previous reviews have explored microfluidic devices' utility, this paper presents an up-to-date account of the latest advancements in this field for environmental monitoring, looking back at the past five years. In this review, we discuss devices for prominent contaminants such as heavy metals, pesticides, nutrients, microorganisms, per- and polyfluoroalkyl substances (PFAS), etc. We cover numerous detection methods (electrochemical, colorimetric, fluorescent, etc.) and critically assess the current state of microfluidic devices for environmental monitoring, highlighting both their successes and limitations. Moreover, we propose potential strategies to mitigate these limitations and offer valuable insights into future research and development directions.
Collapse
Affiliation(s)
- Prakash Aryal
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
| | - Claire Hefner
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
| | - Brandaise Martinez
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
| | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
6
|
Ahkami AH, Qafoku O, Roose T, Mou Q, Lu Y, Cardon ZG, Wu Y, Chou C, Fisher JB, Varga T, Handakumbura P, Aufrecht JA, Bhattacharjee A, Moran JJ. Emerging sensing, imaging, and computational technologies to scale nano-to macroscale rhizosphere dynamics - Review and research perspectives. SOIL BIOLOGY & BIOCHEMISTRY 2024; 189:109253. [PMID: 39238778 PMCID: PMC11376622 DOI: 10.1016/j.soilbio.2023.109253] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The soil region influenced by plant roots, i.e., the rhizosphere, is one of the most complex biological habitats on Earth and significantly impacts global carbon flow and transformation. Understanding the structure and function of the rhizosphere is critically important for maintaining sustainable plant ecosystem services, designing engineered ecosystems for long-term soil carbon storage, and mitigating the effects of climate change. However, studying the biological and ecological processes and interactions in the rhizosphere requires advanced integrated technologies capable of decoding such a complex system at different scales. Here, we review how emerging approaches in sensing, imaging, and computational modeling can advance our understanding of the complex rhizosphere system. Particularly, we provide our perspectives and discuss future directions in developing in situ rhizosphere sensing technologies that could potentially correlate local-scale interactions to ecosystem scale impacts. We first review integrated multimodal imaging techniques for tracking inorganic elements and organic carbon flow at nano- to microscale in the rhizosphere, followed by a discussion on the use of synthetic soil and plant habitats that bridge laboratory-to-field studies on the rhizosphere processes. We then describe applications of genetically encoded biosensors in monitoring nutrient and chemical exchanges in the rhizosphere, and the novel nanotechnology-mediated delivery approaches for introducing biosensors into the root tissues. Next, we review the recent progress and express our vision on field-deployable sensing technologies such as planar optodes for quantifying the distribution of chemical and analyte gradients in the rhizosphere under field conditions. Moreover, we provide perspectives on the challenges of linking complex rhizosphere interactions to ecosystem sensing for detecting biological traits across scales, which arguably requires using the best-available model predictions including the model-experiment and image-based modeling approaches. Experimental platforms relevant to field conditions like SMART (Sensors at Mesoscales with Advanced Remote Telemetry) soils testbed, coupled with ecosystem sensing and predictive models, can be effective tools to explore coupled ecosystem behavior and responses to environmental perturbations. Finally, we envision that with the advent of novel high-resolution imaging capabilities at nano- to macroscale, and remote biosensing technologies, combined with advanced computational models, future studies will lead to detection and upscaling of rhizosphere processes toward ecosystem and global predictions.
Collapse
Affiliation(s)
- Amir H Ahkami
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, 99454, USA
| | - Odeta Qafoku
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, 99454, USA
| | - Tiina Roose
- Bioengineering Sciences Research Group, Faculty of Engineering and Environment, University of Southampton, University Road, Southampton, England, SO17 1BJ
| | - Quanbing Mou
- Department of Chemistry, The University of Texas at Austin, 105 East 24 Street, Austin, TX 78712, USA
| | - Yi Lu
- Department of Chemistry, The University of Texas at Austin, 105 East 24 Street, Austin, TX 78712, USA
| | - Zoe G Cardon
- Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Yuxin Wu
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720 USA
| | - Chunwei Chou
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720 USA
| | - Joshua B Fisher
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, CA, 92866, USA
| | - Tamas Varga
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, 99454, USA
| | - Pubudu Handakumbura
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, 99454, USA
| | - Jayde A Aufrecht
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, 99454, USA
| | - Arunima Bhattacharjee
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, 99454, USA
| | - James J Moran
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, 99454, USA
- Michigan State University, Department of Integrative Biology and Department of Plant, Soil, and Microbial Sciences, East Lansing, MI, 48824, USA
| |
Collapse
|
7
|
Mafla-Endara PM, Meklesh V, Beech JP, Ohlsson P, Pucetaite M, Hammer EC. Exposure to polystyrene nanoplastics reduces bacterial and fungal biomass in microfabricated soil models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166503. [PMID: 37633381 DOI: 10.1016/j.scitotenv.2023.166503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/04/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
Nanoplastics have been proven to induce toxicity in diverse organisms, yet their effect on soil microbes like bacteria and fungi remains largely unexplored. In this paper, we used micro-engineered soil models to investigate the effect of polystyrene (PS) nanospheres on Pseudomonas putida and Coprinopsis cinerea. Specifically, we explored the effects of increasing concentrations of 60 nm carboxylated bovine serum albumin (BSA) coated nanospheres (0, 0.5, 2, and 10 mg/L) on these bacterial and fungal model organisms respectively, over time. We found that both microorganisms could disperse through the PS solution, but long-distance dispersal was reduced by high concentrations. Microbial biomass decreased in all treatments, in which bacteria showed a linear dose response with the strongest effect at 10 mg/L concentration, and fungi showed a non-linear response with the strongest effect at 2 mg/L concentration. At the highest nanoplastics concentration, the first colonizing fungal hyphae adsorbed most of the PS nanospheres present in their vicinity, in a process that we termed the 'vacuum cleaner effect'. As a result, the toxicity effect of the original treatment on subsequently growing fungal hyphae was reduced to a growth level indistinguishable from the control. We did not find evidence that nanoplastics are able to penetrate bacterial nor fungal cell walls. Overall, our findings provide evidence that nanoplastics can cause a direct negative effect on soil microbes and highlight the need for further studies that can explain how the microbial stress response might affect soil functions.
Collapse
Affiliation(s)
- Paola M Mafla-Endara
- Centre for Environmental and Climate Science (CEC), Lund University, Lund, Sweden; Department of Biology, Lund University, Lund, Sweden.
| | - Viktoriia Meklesh
- Centre for Environmental and Climate Science (CEC), Lund University, Lund, Sweden; Physical Chemistry Division, Department of Chemistry, Lund University, Lund, Sweden
| | - Jason P Beech
- Division of Solid State Physics, Department of Physics and NanoLund, Lund University, Lund, Sweden
| | - Pelle Ohlsson
- Department of Biomedical Engineering, Faculty of Engineering (LTH), Lund University, Lund, Sweden
| | | | - Edith C Hammer
- Centre for Environmental and Climate Science (CEC), Lund University, Lund, Sweden; Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
8
|
Lacroix EM, Aeppli M, Boye K, Brodie E, Fendorf S, Keiluweit M, Naughton HR, Noël V, Sihi D. Consider the Anoxic Microsite: Acknowledging and Appreciating Spatiotemporal Redox Heterogeneity in Soils and Sediments. ACS EARTH & SPACE CHEMISTRY 2023; 7:1592-1609. [PMID: 37753209 PMCID: PMC10519444 DOI: 10.1021/acsearthspacechem.3c00032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/07/2023] [Accepted: 07/21/2023] [Indexed: 09/28/2023]
Abstract
Reduction-oxidation (redox) reactions underlie essentially all biogeochemical cycles. Like most soil properties and processes, redox is spatiotemporally heterogeneous. However, unlike other soil features, redox heterogeneity has yet to be incorporated into mainstream conceptualizations of soil biogeochemistry. Anoxic microsites, the defining feature of redox heterogeneity in bulk oxic soils and sediments, are zones of oxygen depletion in otherwise oxic environments. In this review, we suggest that anoxic microsites represent a critical component of soil function and that appreciating anoxic microsites promises to advance our understanding of soil and sediment biogeochemistry. In sections 1 and 2, we define anoxic microsites and highlight their dynamic properties, specifically anoxic microsite distribution, redox gradient magnitude, and temporality. In section 3, we describe the influence of anoxic microsites on several key elemental cycles, organic carbon, nitrogen, iron, manganese, and sulfur. In section 4, we evaluate methods for identifying and characterizing anoxic microsites, and in section 5, we highlight past and current approaches to modeling anoxic microsites. Finally, in section 6, we suggest steps for incorporating anoxic microsites and redox heterogeneities more broadly into our understanding of soils and sediments.
Collapse
Affiliation(s)
- Emily M. Lacroix
- Institut
des Dynamiques de la Surface Terrestre (IDYST), Université de Lausanne, 1015 Lausanne, Switzerland
- Department
of Earth System Science, Stanford University, Stanford, California 94305, United States
| | - Meret Aeppli
- Institut
d’ingénierie de l’environnement (IIE), École Polytechnique Fédérale
de Lausanne, 1015 Lausanne, Switzerland
| | - Kristin Boye
- Environmental
Geochemistry Group, SLAC National Accelerator
Laboratory, Menlo Park, California 94025, United States
| | - Eoin Brodie
- Lawrence
Berkeley Laboratory, Earth and Environmental
Sciences Area, Berkeley, California 94720, United States
| | - Scott Fendorf
- Department
of Earth System Science, Stanford University, Stanford, California 94305, United States
| | - Marco Keiluweit
- Institut
des Dynamiques de la Surface Terrestre (IDYST), Université de Lausanne, 1015 Lausanne, Switzerland
| | - Hannah R. Naughton
- Lawrence
Berkeley Laboratory, Earth and Environmental
Sciences Area, Berkeley, California 94720, United States
| | - Vincent Noël
- Environmental
Geochemistry Group, SLAC National Accelerator
Laboratory, Menlo Park, California 94025, United States
| | - Debjani Sihi
- Department
of Environmental Sciences, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
9
|
Anilkumar A, Batra A, Talukder S, Sharma R. Microfluidics based bioimaging with cost-efficient fabrication of multi-level micrometer-sized trenches. BIOMICROFLUIDICS 2023; 17:034103. [PMID: 37334275 PMCID: PMC10275646 DOI: 10.1063/5.0151868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/31/2023] [Indexed: 06/20/2023]
Abstract
Microfluidic devices, through their vast applicability as tools for miniaturized experimental setups, have become indispensable for cutting edge research and diagnostics. However, the high operational cost and the requirement of sophisticated equipment and clean room facility for the fabrication of these devices make their use unfeasible for many research laboratories in resource limited settings. Therefore, with the aim of increasing accessibility, in this article, we report a novel, cost-effective micro-fabrication technique for fabricating multi-layer microfluidic devices using only common wet-lab facilities, thereby significantly lowering the cost. Our proposed process-flow-design eliminates the need for a mastermold, does not require any sophisticated lithography tools, and can be executed successfully outside a clean room. In this work, we also optimized the critical steps (such as spin coating and wet etching) of our fabrication process and validated the process flow and the device by trapping and imaging Caenorhabditis elegans. The fabricated devices are effective in conducting lifetime assays and flushing out larvae, which are, in general, manually picked from Petri dishes or separated using sieves. Our technique is not only cost effective but also scalable, as it can be used to fabricate devices with multiple layers of confinements ranging from 0.6 to more than 50 μ m, thus enabling the study of unicellular and multicellular organisms. This technique, therefore, has the potential to be adopted widely by many research laboratories for a variety of applications.
Collapse
Affiliation(s)
- Anand Anilkumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal 462066, Madhya Pradesh, India
| | - Abhilasha Batra
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal 462066, Madhya Pradesh, India
| | - Santanu Talukder
- Department of Electrical Engineering and Computer Science, Indian Institute of Science Education and Research (IISER), Bhopal 462066, Madhya Pradesh, India
| | - Rati Sharma
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal 462066, Madhya Pradesh, India
| |
Collapse
|
10
|
Kaiser CF, Perilli A, Grossmann G, Meroz Y. Studying root-environment interactions in structured microdevices. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad122. [PMID: 37042515 PMCID: PMC10353529 DOI: 10.1093/jxb/erad122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Indexed: 06/19/2023]
Abstract
In negotiating with the environment, plant roots integrate sensory information over space and time, as the basis of decision making in roots under non-uniform conditions. The complexity and dynamic properties of soil across spatial and temporal scales pose a significant technical challenge for research on mechanisms that drive metabolism, growth and development in roots, as well as on inter-organismal networks in the rhizosphere. Synthetic environments, combining microscopic access and manipulation capabilities with soil-like heterogeneity, are needed to elucidate the intriguing tug-of-war that characterises subsurface ecosystems. Microdevices have provided opportunities for innovative approaches to observe, analyse and manipulate plant roots and advanced our understanding of their development, physiology and interactions with the environment. Initially conceived as perfusion platforms for root cultivation under hydroponic conditions, microdevice design has, in recent years, increasingly shifted to better reflect the complex growth conditions in soil. Heterogeneous micro-environments have been created through co-cultivation with microbes, laminar flow-based local stimulation and physical obstacles and constraints. As such, structured microdevices provide an experimental entry point to the complex network behaviour of soil communities.
Collapse
Affiliation(s)
- Christian-Frederic Kaiser
- Institute of Cell and Interaction Biology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
- CEPLAS - Cluster of Excellence on Plant Sciences, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Alessia Perilli
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Guido Grossmann
- Institute of Cell and Interaction Biology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
- CEPLAS - Cluster of Excellence on Plant Sciences, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Yasmine Meroz
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
11
|
Boulais E, Gervais T. The 2D microfluidics cookbook - modeling convection and diffusion in plane flow devices. LAB ON A CHIP 2023; 23:1967-1980. [PMID: 36884010 DOI: 10.1039/d2lc01033j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A growing number of microfluidic systems operate not through networks of microchannels but instead through using 2D flow fields. While the design rules for channel networks are already well-known and exposed in microfluidics textbooks, the knowledge underlying transport in 2D microfluidics remains scattered piecemeal and is not easily accessible to experimentalists and engineers. In this tutorial review, we formulate a unified framework for understanding, analyzing and designing 2D microfluidic technologies. We first show how a large number of seemingly different devices can all be modelled using the same concepts, namely flow and diffusion in a Hele-Shaw cell. We then expose a handful of mathematical tools, accessible to any engineer with undergraduate level mathematics knowledge, namely potential flow, superposition of charges, conformal transforms and basic convection-diffusion. We show how these tools can be combined to obtain a simple "recipe" that models almost any imaginable 2D microfluidic system. We end by pointing to more advanced topics beyond 2D microfluidics, namely interface problems and flow and diffusion in the third dimension. This forms the basis of a complete theory allowing for the design and operation of new microfluidic systems.
Collapse
Affiliation(s)
- Etienne Boulais
- Polytechnique Montreal, 2500 Chemin de Polytechnique, Montréal, QC H3T 1J4, Canada.
| | - Thomas Gervais
- Polytechnique Montreal, 2500 Chemin de Polytechnique, Montréal, QC H3T 1J4, Canada.
- Institut du Cancer de Montréal (ICM) and Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Canada
| |
Collapse
|
12
|
Mishra R, Julius LA, Condon J, Pavelskopfa P, Early PL, Dorrian M, Mrvova K, Henihan G, Mangwanya F, Dreo T, Ducrée J, Macdonald NP, Schoen C, Kinahan DJ. Plant pathogen detection on a lab-on-a-disc using solid-phase extraction and isothermal nucleic acid amplification enabled by digital pulse-actuated dissolvable film valves. Anal Chim Acta 2023; 1258:341070. [PMID: 37087288 DOI: 10.1016/j.aca.2023.341070] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/21/2023]
Abstract
By virtue of its ruggedness, portability, rapid processing times, and ease-of-use, academic and commercial interest in centrifugal microfluidic systems has soared over the last decade. A key advantage of the LoaD platform is the ability to automate laboratory unit operations (LUOs) (mixing, metering, washing etc.) to support direct translation of 'on-bench' assays to 'on-chip'. Additionally, the LoaD requires just a low-cost spindle motor rather than specialized and expensive microfluidic pumps. Furthermore, when flow control (valves) is implemented through purely rotational changes in this same spindle motor (rather than using additional support instrumentation), the LoaD offers the potential to be a truly portable, low-cost and accessible platform. Current rotationally controlled valves are typically opened by sequentially increasing the disc spin-rate to a specific opening frequency. However, due lack of manufacturing fidelity these specific opening frequencies are better described as spin frequency 'bands'. With low-cost motors typically having a maximum spin-rate of 6000 rpm (100 Hz), using this 'analogue' approach places a limitation on the number of valves, which can be serially actuated thus limiting the number of LUOs that can be automated. In this work, a novel flow control scheme is presented where the sequence of valve actuation is determined by architecture of the disc while its timing is governed by freely programmable 'digital' pulses in its spin profile. This paradigm shift to 'digital' flow control enables automation of multi-step assays with high reliability, with full temporal control, and with the number of LUOs theoretically only limited by available space on the disc. We first describe the operational principle of these valves followed by a demonstration of the capability of these valves to automate complex assays by screening tomato leaf samples against plant pathogens. Reagents and lysed sample are loaded on-disc and then, in a fully autonomous fashion using only spindle-motor control, the complete assay is automated. Amplification and fluorescent acquisition take place on a custom spin-stand enabling the generation of real-time LAMP amplification curves using custom software. To prevent environmental contamination, the entire discs are sealed from atmosphere following loading with internal venting channels permitting easy movement of liquids about the disc. The disc was successfully used to detect the presence of thermally inactivated Clavibacter michiganensis. Michiganensis (CMM) bacterial pathogen on tomato leaf samples.
Collapse
Affiliation(s)
- Rohit Mishra
- Fraunhofer Project Centre at Dublin City University, Dublin City University, Glasnevin, Dublin, Ireland; School of Physical Sciences, Dublin City University, Dublin, Ireland; National Centre for Sensor Research (NCSR), Dublin City University, Dublin, Ireland; Biodesign Europe, Dublin City University, Dublin, Ireland.
| | - Lourdes An Julius
- Fraunhofer Project Centre at Dublin City University, Dublin City University, Glasnevin, Dublin, Ireland
| | - Jack Condon
- Fraunhofer Project Centre at Dublin City University, Dublin City University, Glasnevin, Dublin, Ireland
| | - Patricija Pavelskopfa
- Fraunhofer Project Centre at Dublin City University, Dublin City University, Glasnevin, Dublin, Ireland
| | - Philip L Early
- Fraunhofer Project Centre at Dublin City University, Dublin City University, Glasnevin, Dublin, Ireland; School of Physical Sciences, Dublin City University, Dublin, Ireland; School of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin, Dublin, Ireland
| | - Matthew Dorrian
- Fraunhofer Project Centre at Dublin City University, Dublin City University, Glasnevin, Dublin, Ireland
| | - Katarina Mrvova
- Fraunhofer Project Centre at Dublin City University, Dublin City University, Glasnevin, Dublin, Ireland
| | - Grace Henihan
- Fraunhofer Project Centre at Dublin City University, Dublin City University, Glasnevin, Dublin, Ireland
| | - Faith Mangwanya
- Fraunhofer Project Centre at Dublin City University, Dublin City University, Glasnevin, Dublin, Ireland
| | - Tanya Dreo
- National Institute of Biology, Ljubljana, Slovenia
| | - Jens Ducrée
- School of Physical Sciences, Dublin City University, Dublin, Ireland
| | - Niall P Macdonald
- Fraunhofer Project Centre at Dublin City University, Dublin City University, Glasnevin, Dublin, Ireland
| | - Cor Schoen
- Wageningen University Research, Wageningen, the Netherlands
| | - David J Kinahan
- Fraunhofer Project Centre at Dublin City University, Dublin City University, Glasnevin, Dublin, Ireland; National Centre for Sensor Research (NCSR), Dublin City University, Dublin, Ireland; Biodesign Europe, Dublin City University, Dublin, Ireland; School of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin, Dublin, Ireland.
| |
Collapse
|
13
|
Anguita-Maeso M, Navas-Cortés JA, Landa BB. Insights into the Methodological, Biotic and Abiotic Factors Influencing the Characterization of Xylem-Inhabiting Microbial Communities of Olive Trees. PLANTS (BASEL, SWITZERLAND) 2023; 12:912. [PMID: 36840260 PMCID: PMC9967459 DOI: 10.3390/plants12040912] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Vascular pathogens are the causal agents of some of the most devastating plant diseases in the world, which can cause, under specific conditions, the destruction of entire crops. These plant pathogens activate a range of physiological and immune reactions in the host plant following infection, which may trigger the proliferation of a specific microbiome to combat them by, among others, inhibiting their growth and/or competing for space. Nowadays, it has been demonstrated that the plant microbiome can be modified by transplanting specific members of the microbiome, with exciting results for the control of plant diseases. However, its practical application in agriculture for the control of vascular plant pathogens is hampered by the limited knowledge of the plant endosphere, and, in particular, of the xylem niche. In this review, we present a comprehensive overview of how research on the plant microbiome has evolved during the last decades to unravel the factors and complex interactions that affect the associated microbial communities and their surrounding environment, focusing on the microbial communities inhabiting the xylem vessels of olive trees (Olea europaea subsp. europaea), the most ancient and important woody crop in the Mediterranean Basin. For that purpose, we have highlighted the role of xylem composition and its associated microorganisms in plants by describing the methodological approaches explored to study xylem microbiota, starting from the methods used to extract xylem microbial communities to their assessment by culture-dependent and next-generation sequencing approaches. Additionally, we have categorized some of the key biotic and abiotic factors, such as the host plant niche and genotype, the environment and the infection with vascular pathogens, that can be potential determinants to critically affect olive physiology and health status in a holobiont context (host and its associated organisms). Finally, we have outlined future directions and challenges for xylem microbiome studies based on the recent advances in molecular biology, focusing on metagenomics and culturomics, and bioinformatics network analysis. A better understanding of the xylem olive microbiome will contribute to facilitate the exploration and selection of specific keystone microorganisms that can live in close association with olives under a range of environmental/agronomic conditions. These microorganisms could be ideal targets for the design of microbial consortia that can be applied by endotherapy treatments to prevent or control diseases caused by vascular pathogens or modify the physiology and growth of olive trees.
Collapse
|
14
|
Microbial-Based Products to Control Soil-Borne Pathogens: Methods to Improve Efficacy and to Assess Impacts on Microbiome. Microorganisms 2023; 11:microorganisms11010224. [PMID: 36677516 PMCID: PMC9867489 DOI: 10.3390/microorganisms11010224] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/30/2022] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
Microbial-based products (either as biopesticide or biofertilizers) have a long history of application, though their use is still limited, mainly due to a perceived low and inconsistent efficacy under field conditions. However, their efficacy has always been compared to chemical products, which have a completely different mechanism of action and production process, following the chemical paradigm of agricultural production. This paradigm has also been applied to regulatory processes, particularly for biopesticides, making the marketing of microbial-based formulations difficult. Increased knowledge about bioinocula behavior after application to the soil and their impact on soil microbiome should foster better exploitation of microbial-based products in a complex environment such as the soil. Moreover, the multifunctional capacity of microbial strains with regard to plant growth promotion and protection should also be considered in this respect. Therefore, the methods utilized for these studies are key to improving the knowledge and understanding of microbial-based product activity and improving their efficacy, which, from farmers' point of view, is the parameter to assess the usefulness of a treatment. In this review, we are thus addressing aspects related to the production and formulation process, highlighting the methods that can be used to evaluate the functioning and impact of microbial-based products on soil microbiome, as tools supporting their use and marketing.
Collapse
|
15
|
Couttenier E, Bachellier-Bassi S, d'Enfert C, Villard C. Bending stiffness of Candida albicans hyphae as a proxy of cell wall properties. LAB ON A CHIP 2022; 22:3898-3909. [PMID: 36094162 PMCID: PMC9552746 DOI: 10.1039/d2lc00219a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
The cell wall is a key component of fungi. It constitutes a highly regulated viscoelastic shell which counteracts internal cell turgor pressure. Its mechanical properties thus contribute to define cell morphology. Measurements of the elastic moduli of the fungal cell wall have been carried out in many species including Candida albicans, a major human opportunistic pathogen. They mainly relied on atomic force microscopy, and mostly considered the yeast form. We developed a parallelized pressure-actuated microfluidic device to measure the bending stiffness of hyphae. We found that the cell wall stiffness lies in the MPa range. We then used three different ways to disrupt cell wall physiology: inhibition of beta-glucan synthesis, a key component of the inner cell wall; application of a hyperosmotic shock triggering a sudden decrease of the hyphal diameter; deletion of two genes encoding GPI-modified cell wall proteins resulting in reduced cell wall thickness. The bending stiffness values were affected to different extents by these environmental stresses or genetic modifications. Overall, our results support the elastic nature of the cell wall and its ability to remodel at the scale of the entire hypha over minutes.
Collapse
Affiliation(s)
- Elodie Couttenier
- Université PSL, Physico-Chimie Curie, CNRS UMR168, F-75005 Paris, France.
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité Fongiques, F-75015 Paris, France
| | - Sophie Bachellier-Bassi
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité Fongiques, F-75015 Paris, France
| | - Christophe d'Enfert
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité Fongiques, F-75015 Paris, France
| | - Catherine Villard
- Université PSL, Physico-Chimie Curie, CNRS UMR168, F-75005 Paris, France.
| |
Collapse
|
16
|
Bacterial culturing is crucial to boost sustainable agriculture. Trends Microbiol 2022. [DOI: 10.1016/j.tim.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Richter F, Bindschedler S, Calonne-Salmon M, Declerck S, Junier P, Stanley CE. Fungi-on-a-Chip: microfluidic platforms for single-cell studies on fungi. FEMS Microbiol Rev 2022; 46:6674677. [PMID: 36001464 PMCID: PMC9779915 DOI: 10.1093/femsre/fuac039] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 01/07/2023] Open
Abstract
This review highlights new advances in the emerging field of 'Fungi-on-a-Chip' microfluidics for single-cell studies on fungi and discusses several future frontiers, where we envisage microfluidic technology development to be instrumental in aiding our understanding of fungal biology. Fungi, with their enormous diversity, bear essential roles both in nature and our everyday lives. They inhabit a range of ecosystems, such as soil, where they are involved in organic matter degradation and bioremediation processes. More recently, fungi have been recognized as key components of the microbiome in other eukaryotes, such as humans, where they play a fundamental role not only in human pathogenesis, but also likely as commensals. In the food sector, fungi are used either directly or as fermenting agents and are often key players in the biotechnological industry, where they are responsible for the production of both bulk chemicals and antibiotics. Although the macroscopic fruiting bodies are immediately recognizable by most observers, the structure, function, and interactions of fungi with other microbes at the microscopic scale still remain largely hidden. Herein, we shed light on new advances in the emerging field of Fungi-on-a-Chip microfluidic technologies for single-cell studies on fungi. We discuss the development and application of microfluidic tools in the fields of medicine and biotechnology, as well as in-depth biological studies having significance for ecology and general natural processes. Finally, a future perspective is provided, highlighting new frontiers in which microfluidic technology can benefit this field.
Collapse
Affiliation(s)
- Felix Richter
- Department of Bioengineering, Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Saskia Bindschedler
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Maryline Calonne-Salmon
- Laboratory of Mycology, Université catholique de Louvain, Place Croix du Sud 2, B-1348 Louvain-la-Neuve, Belgium
| | - Stéphane Declerck
- Laboratory of Mycology, Université catholique de Louvain, Place Croix du Sud 2, B-1348 Louvain-la-Neuve, Belgium
| | - Pilar Junier
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Claire E Stanley
- Corresponding author: Department of Bioengineering, Imperial College London, South Kensington Campus, Exhibition Road, London, SW7 2AZ, United Kingdom. E-mail:
| |
Collapse
|
18
|
Bello-Bello E, López-Arredondo D, Rico-Chambrón TY, Herrera-Estrella L. Conquering compacted soils: uncovering the molecular components of root soil penetration. TRENDS IN PLANT SCIENCE 2022; 27:814-827. [PMID: 35525799 DOI: 10.1016/j.tplants.2022.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Global agriculture and food security face paramount challenges due to climate change and land degradation. Human-induced soil compaction severely affects soil fertility, impairing root system development and crop yield. There is a need to design compaction-resilient crops that can thrive in degraded soils and maintain high yields. To address plausible solutions to this challenging scenario, we discuss current knowledge on plant root penetration ability and delineate potential approaches based on root-targeted genetic engineering (RGE) and genomics-assisted breeding (GAB) for developing crops with enhanced root system penetrability (RSP) into compacted soils. Such approaches could lead to crops with improved resilience to climate change and marginal soils, which can help to boost CO2 sequestration and storage in deeper soil strata.
Collapse
Affiliation(s)
- Elohim Bello-Bello
- Unidad de Genómica Avanzada/LANGEBIO, Centro de Investigación y de Estudios Avanzados, Irapuato, México
| | - Damar López-Arredondo
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Thelma Y Rico-Chambrón
- Unidad de Genómica Avanzada/LANGEBIO, Centro de Investigación y de Estudios Avanzados, Irapuato, México
| | - Luis Herrera-Estrella
- Unidad de Genómica Avanzada/LANGEBIO, Centro de Investigación y de Estudios Avanzados, Irapuato, México; Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
19
|
Lei W, Lu X, Wu T, Yang H, Wang M. High-performance displacement by microgel-in-oil suspension in heterogeneous porous media: Microscale visualization and quantification. J Colloid Interface Sci 2022; 627:848-861. [PMID: 35901564 DOI: 10.1016/j.jcis.2022.07.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/15/2022] [Accepted: 07/19/2022] [Indexed: 11/28/2022]
Abstract
HYPOTHESIS Preferential flow in porous media is commonly encountered and decreases the multiphase displacement efficiency. Here, we synthesized microgel-in-oil in suspension and demonstrated that microgel-in-oil as a novel additive could present self-adaptive transport behavior and introduce a novel multiphase displacement mode for improving displacement efficiency in heterogeneous porous media. EXPERIMENTS We investigated the microgel-in-oil formation process and characterized their morphology with fluorescence microscopy and Cryo-SEM. The suspension displacement performance in heterogeneous porous media was evaluated using a microfluidic chip containing a preferential flow pathway (PFP) and a parallel matrix region. The displacement results of microgel-in-oil were compared to plain microgel particles and analyzed from pore-scale particle transport behavior to macroscopic multiphase flow patterns. FINDINGS The results show that suspension with moderate microgel-in-oil yields the optimal displacement efficiency. Fewer microgel-in-oil cannot alter the flow direction, while too many microgel-in-oil would block the PFP region. The topological analysis identified that suspensions with moderate microgel-in-oil content could achieve the strongest sweeping and carrying abilities that contribute to the highest displacement efficiency. The synergistic transport of microgel-in-oil and plain microgel particles would result in local pressure fluctuations to divert displacing fluid from PFP into the matrix region, which explains the above flow behavior.
Collapse
Affiliation(s)
- Wenhai Lei
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Xukang Lu
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Tianjiang Wu
- Changqing Oilfield, PetroChina, Xi'an, Shaanxi 710018, China
| | - Haien Yang
- Changqing Oilfield, PetroChina, Xi'an, Shaanxi 710018, China
| | - Moran Wang
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
20
|
Smercina D, Zambare N, Hofmockel K, Sadler N, Bredeweg EL, Nicora C, Markillie LM, Aufrecht J. Synthetic Soil Aggregates: Bioprinted Habitats for High-Throughput Microbial Metaphenomics. Microorganisms 2022; 10:microorganisms10050944. [PMID: 35630387 PMCID: PMC9146112 DOI: 10.3390/microorganisms10050944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/20/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
The dynamics of microbial processes are difficult to study in natural soil, owing to the small spatial scales on which microorganisms operate and to the opacity and chemical complexity of the soil habitat. To circumvent these challenges, we have created a 3D-bioprinted habitat that mimics aspects of natural soil aggregates while providing a chemically defined and translucent alternative culturing method for soil microorganisms. Our Synthetic Soil Aggregates (SSAs) retain the porosity, permeability, and patchy resource distribution of natural soil aggregates—parameters that are expected to influence emergent microbial community interactions. We demonstrate the printability and viability of several different microorganisms within SSAs and show how the SSAs can be integrated into a multi-omics workflow for single SSA resolution genomics, metabolomics, proteomics, lipidomics, and biogeochemical assays. We study the impact of the structured habitat on the distribution of a model co-culture microbial community and find that it is significantly different from the spatial organization of the same community in liquid culture, indicating a potential for SSAs to reproduce naturally occurring emergent community phenotypes. The SSAs have the potential as a tool to help researchers quantify microbial scale processes in situ and achieve high-resolution data from the interplay between environmental properties and microbial ecology.
Collapse
|
21
|
|
22
|
Bourguignon N, Kamat V, Perez M, Mathee K, Lerner B, Bhansali S. New dynamic microreactor system to mimic biofilm formation and test anti-biofilm activity of nanoparticles. Appl Microbiol Biotechnol 2022; 106:2729-2738. [PMID: 35325273 DOI: 10.1007/s00253-022-11855-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/21/2022] [Accepted: 02/26/2022] [Indexed: 11/26/2022]
Abstract
Microbial biofilms are composed of surface-adhered microorganisms enclosed in extracellular polymeric substances. The biofilm lifestyle is the intrinsic drug resistance imparted to bacterial cells protected by the matrix. So far, conventional drug susceptibility tests for biofilm are reagent and time-consuming, and most of them are in static conditions. Rapid and easy-to-use methods for biofilm formation and antibiotic activity testing need to be developed to accelerate the discovery of new antibiofilm strategies. Herein, a Lab-On-Chip (LOC) device is presented that provides optimal microenvironmental conditions closely mimicking real-life clinical biofilm status. This new device allows homogeneous attachment and immobilization of Pseudomonas aeruginosa PA01-EGFP cells, and the biofilms grown can be monitored by fluorescence microscopy. P. aeruginosa is an opportunistic pathogen known as a model for drug screening biofilm studies. The influence of flow rates on biofilms growth was analyzed by flow simulations using COMSOL® 5.2. Significant cell adhesion to the substrate and biofilm formation inside the microchannels were observed at higher flow rates > 100 µL/h. After biofilm formation, the effectiveness of silver nanoparticles (SNP), chitosan nanoparticles (CNP), and a complex of chitosan-coated silver nanoparticles (CSNP) to eradicate the biofilm under a continuous flow was explored. The most significant loss of biofilm was seen with CSNP with a 65.5% decrease in average live/dead cell signal in biofilm compared to the negative controls. Our results demonstrate that this system is a user-friendly tool for antibiofilm drug screening that could be simply applied in clinical laboratories.Key Points• A continuous-flow microreactor that mimics real-life clinical biofilm infections was developed.• The antibiofilm activity of three nano drugs was evaluated in dynamic conditions.• The highest biofilm reduction was observed with chitosan-silver nanoparticles.
Collapse
Affiliation(s)
- Natalia Bourguignon
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL, 33174, USA
- IREN Center, National Technological University, Haedo, 1706, Buenos Aires, Argentina
| | - Vivek Kamat
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL, 33174, USA
| | - Maximiliano Perez
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL, 33174, USA
- IREN Center, National Technological University, Haedo, 1706, Buenos Aires, Argentina
| | - Kalai Mathee
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA.
| | - Betiana Lerner
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL, 33174, USA.
- IREN Center, National Technological University, Haedo, 1706, Buenos Aires, Argentina.
| | - Shekhar Bhansali
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL, 33174, USA
| |
Collapse
|
23
|
Aufrecht J, Khalid M, Walton CL, Tate K, Cahill JF, Retterer ST. Hotspots of root-exuded amino acids are created within a rhizosphere-on-a-chip. LAB ON A CHIP 2022; 22:954-963. [PMID: 35089295 DOI: 10.1039/d1lc00705j] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The rhizosphere is a challenging ecosystem to study from a systems biology perspective due to its diverse chemical, physical, and biological characteristics. In the past decade, microfluidic platforms (e.g. plant-on-a-chip) have created an alternative way to study whole rhizosphere organisms, like plants and microorganisms, under reduced-complexity conditions. However, in reducing the complexity of the environment, it is possible to inadvertently alter organism phenotype, which biases laboratory data compared to in situ experiments. To build back some of the complexity of the rhizosphere in a fully-defined, parameterized approach we have developed a rhizosphere-on-a-chip platform that mimics the physical structure of soil. We demonstrate, through computational simulation, how this synthetic soil structure can influence the emergence of molecular "hotspots" and "hotmoments" that arise naturally from the plant's exudation of labile carbon compounds. We establish the amenability of the rhizosphere-on-a-chip for long-term culture of Brachypodium distachyon, and experimentally validate the presence of exudate hotspots within the rhizosphere-on-a-chip pore spaces using liquid microjunction surface sampling probe mass spectrometry.
Collapse
Affiliation(s)
- Jayde Aufrecht
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Muneeba Khalid
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Courtney L Walton
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Kylee Tate
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - John F Cahill
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Scott T Retterer
- Center for Nanophase Materials Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| |
Collapse
|
24
|
Zhu X, Wang K, Yan H, Liu C, Zhu X, Chen B. Microfluidics as an Emerging Platform for Exploring Soil Environmental Processes: A Critical Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:711-731. [PMID: 34985862 DOI: 10.1021/acs.est.1c03899] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Investigating environmental processes, especially those occurring in soils, calls for innovative and multidisciplinary technologies that can provide insights at the microscale. The heterogeneity, opacity, and dynamics make the soil a "black box" where interactions and processes are elusive. Recently, microfluidics has emerged as a powerful research platform and experimental tool which can create artificial soil micromodels, enabling exploring soil processes on a chip. Micro/nanofabricated microfluidic devices can mimic some of the key features of soil with highly controlled physical and chemical microenvironments at the scale of pores, aggregates, and microbes. The combination of various techniques makes microfluidics an integrated approach for observation, reaction, analysis, and characterization. In this review, we systematically summarize the emerging applications of microfluidic soil platforms, from investigating soil interfacial processes and soil microbial processes to soil analysis and high-throughput screening. We highlight how innovative microfluidic devices are used to provide new insights into soil processes, mechanisms, and effects at the microscale, which contribute to an integrated interrogation of the soil systems across different scales. Critical discussions of the practical limitations of microfluidic soil platforms and perspectives of future research directions are summarized. We envisage that microfluidics will represent the technological advances toward microscopic, controllable, and in situ soil research.
Collapse
Affiliation(s)
- Xiangyu Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Kun Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Huicong Yan
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Congcong Liu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Xiaoying Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
25
|
Bahnemann J, Grünberger A. Microfluidics in Biotechnology: Overview and Status Quo. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022; 179:1-16. [DOI: 10.1007/10_2022_206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
26
|
Karasz DC, Weaver AI, Buckley DH, Wilhelm RC. Conditional filamentation as an adaptive trait of bacteria and its ecological significance in soils. Environ Microbiol 2021; 24:1-17. [PMID: 34929753 DOI: 10.1111/1462-2920.15871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 11/30/2022]
Abstract
Bacteria can regulate cell morphology in response to environmental conditions, altering their physiological and metabolic characteristics to improve survival. Conditional filamentation, in which cells suspend division while continuing lateral growth, is a strategy with a range of adaptive benefits. Here, we review the causes and consequences of conditional filamentation with respect to bacterial physiology, ecology and evolution. We describe four major benefits from conditional filamentation: stress tolerance, surface colonization, gradient spanning and the facilitation of biotic interactions. Adopting a filamentous growth habit involves fitness trade-offs which are also examined. We focus on the role of conditional filamentation in soil habitats, where filamentous morphotypes are highly prevalent and where environmental heterogeneity can benefit a conditional response. To illustrate the use of information presented in our review, we tested the conditions regulating filamentation by the forest soil isolate Paraburkholderia elongata 5NT . Filamentation by P. elongata was induced at elevated phosphate concentrations, and was associated with the accumulation of intracellular polyphosphate, highlighting the role of filamentation in a phosphate-solubilizing bacterium. Conditional filamentation enables bacteria to optimize their growth and metabolism in environments that are highly variable, a trait that can impact succession, symbioses, and biogeochemistry in soil environments.
Collapse
Affiliation(s)
- David C Karasz
- School of Integrative Plant Science, Bradfield Hall, Cornell University, Ithaca, New York, 14853, USA
| | - Anna I Weaver
- Department of Microbiology, Wing Hall, Cornell University, Ithaca, New York, 14853, USA.,Weill Institute for Cell and Molecular Biology, Weill Hall, Cornell University, Ithaca, New York, 14853, USA
| | - Daniel H Buckley
- School of Integrative Plant Science, Bradfield Hall, Cornell University, Ithaca, New York, 14853, USA
| | - Roland C Wilhelm
- School of Integrative Plant Science, Bradfield Hall, Cornell University, Ithaca, New York, 14853, USA
| |
Collapse
|
27
|
Kerk YJ, Jameel A, Xing X, Zhang C. Recent advances of integrated microfluidic suspension cell culture system. ENGINEERING BIOLOGY 2021; 5:103-119. [PMID: 36970555 PMCID: PMC9996741 DOI: 10.1049/enb2.12015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 11/19/2022] Open
Abstract
Microfluidic devices with superior microscale fluid manipulation ability and large integration flexibility offer great advantages of high throughput, parallelisation and multifunctional automation. Such features have been extensively utilised to facilitate cell culture processes such as cell capturing and culturing under controllable and monitored conditions for cell-based assays. Incorporating functional components and microfabricated configurations offered different levels of fluid control and cell manipulation strategies to meet diverse culture demands. This review will discuss the advances of single-phase flow and droplet-based integrated microfluidic suspension cell culture systems and their applications for accelerated bioprocess development, high-throughput cell selection, drug screening and scientific research to insight cell biology. Challenges and future prospects for this dynamically developing field are also highlighted.
Collapse
Affiliation(s)
- Yi Jing Kerk
- Institute of Biochemical EngineeringDepartment of Chemical Engineering, Tsinghua UniversityBeijingChina
| | - Aysha Jameel
- Institute of Biochemical EngineeringDepartment of Chemical Engineering, Tsinghua UniversityBeijingChina
- MOE Key Laboratory of Industrial BiocatalysisDepartment of Chemical Engineering, Tsinghua UniversityBeijingChina
| | - Xin‐Hui Xing
- Institute of Biochemical EngineeringDepartment of Chemical Engineering, Tsinghua UniversityBeijingChina
- MOE Key Laboratory of Industrial BiocatalysisDepartment of Chemical Engineering, Tsinghua UniversityBeijingChina
- Center for Synthetic and Systems BiologyTsinghua UniversityBeijingChina
| | - Chong Zhang
- Institute of Biochemical EngineeringDepartment of Chemical Engineering, Tsinghua UniversityBeijingChina
- MOE Key Laboratory of Industrial BiocatalysisDepartment of Chemical Engineering, Tsinghua UniversityBeijingChina
- Center for Synthetic and Systems BiologyTsinghua UniversityBeijingChina
| |
Collapse
|
28
|
Yanagisawa N, Kozgunova E, Grossmann G, Geitmann A, Higashiyama T. Microfluidics-Based Bioassays and Imaging of Plant Cells. PLANT & CELL PHYSIOLOGY 2021; 62:1239-1250. [PMID: 34027549 PMCID: PMC8579190 DOI: 10.1093/pcp/pcab067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/13/2021] [Accepted: 05/23/2021] [Indexed: 05/03/2023]
Abstract
Many plant processes occur in the context of and in interaction with a surrounding matrix such as soil (e.g. root growth and root-microbe interactions) or surrounding tissues (e.g. pollen tube growth through the pistil), making it difficult to study them with high-resolution optical microscopy. Over the past decade, microfabrication techniques have been developed to produce experimental systems that allow researchers to examine cell behavior in microstructured environments that mimic geometrical, physical and/or chemical aspects of the natural growth matrices and that cannot be generated using traditional agar plate assays. These microfabricated environments offer considerable design flexibility as well as the transparency required for high-resolution, light-based microscopy. In addition, microfluidic platforms have been used for various types of bioassays, including cellular force assays, chemoattraction assays and electrotropism assays. Here, we review the recent use of microfluidic devices to study plant cells and organs, including plant roots, root hairs, moss protonemata and pollen tubes. The increasing adoption of microfabrication techniques by the plant science community may transform our approaches to investigating how individual plant cells sense and respond to changes in the physical and chemical environment.
Collapse
Affiliation(s)
- Naoki Yanagisawa
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Elena Kozgunova
- Department of Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Schänzlestr. 1, Freiburg, Baden-Württemberg 79104, Germany
| | - Guido Grossmann
- Institute of Cell and Interaction Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, Düsseldorf 40225, Germany
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Baden-Württemberg 69120, Germany
| | - Anja Geitmann
- Department of Plant Science, Faculty of Agricultural and Environmental Sciences, McGill University, Québec H9X 3V9, Canada
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo City, Tokyo 113-0033, Japan
| |
Collapse
|
29
|
Abstract
Collecting real-time data on physical and chemical parameters of the soil is a prerequisite for resource-efficient and environmentally sustainable agriculture. For continuous in situ measurement of soil nutrients such as nitrate or phosphate, a lab-on-chip approach combined with wireless remote readout is promising. For this purpose, the soil solution, i.e., the water in the soil with nutrients, needs to be extracted into a microfluidic chip. Here, we present a soil-solution extraction unit based on combining a porous ceramic filter with a microfluidic channel with a 12 µL volume. The microfluidic chip was fabricated from polydimethylsiloxane, had a size of 1.7 cm × 1.7 cm × 0.6 cm, and was bonded to a glass substrate. A hydrophilic aluminum oxide ceramic with approximately 37 Vol.-% porosity and an average pore size of 1 µm was integrated at the inlet. Soil water was extracted successfully from three types of soil—silt, garden soil, and sand—by creating suction with a pump at the other end of the microfluidic channel. For garden soil, the extraction rate at approximately 15 Vol.-% soil moisture was 1.4 µL/min. The amount of extracted water was investigated for 30 min pump intervals for the three soil types at different moisture levels. For garden soil and sand, water extraction started at around 10 Vol.-% soil moisture. Silt showed the highest water-holding capacity, with water extraction starting at approximately 13 Vol.-%.
Collapse
|
30
|
Smercina DN, Bailey VL, Hofmockel KS. Micro on a macroscale: relating microbial-scale soil processes to global ecosystem function. FEMS Microbiol Ecol 2021; 97:6315324. [PMID: 34223869 DOI: 10.1093/femsec/fiab091] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/01/2021] [Indexed: 11/13/2022] Open
Abstract
Soil microorganisms play a key role in driving major biogeochemical cycles and in global responses to climate change. However, understanding and predicting the behavior and function of these microorganisms remains a grand challenge for soil ecology due in part to the microscale complexity of soils. It is becoming increasingly clear that understanding the microbial perspective is vital to accurately predicting global processes. Here, we discuss the microbial perspective including the microbial habitat as it relates to measurement and modeling of ecosystem processes. We argue that clearly defining and quantifying the size, distribution and sphere of influence of microhabitats is crucial to managing microbial activity at the ecosystem scale. This can be achieved using controlled and hierarchical sampling designs. Model microbial systems can provide key data needed to integrate microhabitats into ecosystem models, while adapting soil sampling schemes and statistical methods can allow us to collect microbially-focused data. Quantifying soil processes, like biogeochemical cycles, from a microbial perspective will allow us to more accurately predict soil functions and address long-standing unknowns in soil ecology.
Collapse
Affiliation(s)
- Darian N Smercina
- Biological Sciences Division, Earth and Biological Sciences Directorate, 3335 Innovation Blvd, Richland, WA, 99354, USA
| | - Vanessa L Bailey
- Biological Sciences Division, Earth and Biological Sciences Directorate, 3335 Innovation Blvd, Richland, WA, 99354, USA
| | - Kirsten S Hofmockel
- Biological Sciences Division, Earth and Biological Sciences Directorate, 3335 Innovation Blvd, Richland, WA, 99354, USA.,Department of Agronomy, Iowa State University, 716 Farm House Ln, Ames, IA 50011, USA
| |
Collapse
|
31
|
Mafla-Endara PM, Arellano-Caicedo C, Aleklett K, Pucetaite M, Ohlsson P, Hammer EC. Microfluidic chips provide visual access to in situ soil ecology. Commun Biol 2021; 4:889. [PMID: 34285323 PMCID: PMC8292388 DOI: 10.1038/s42003-021-02379-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
Microbes govern most soil functions, but investigation of these processes at the scale of their cells has been difficult to accomplish. Here we incubate microfabricated, transparent 'soil chips' with soil, or bury them directly in the field. Both soil microbes and minerals enter the chips, which enables us to investigate diverse community interdependences, such as inter-kingdom and food-web interactions, and feedbacks between microbes and the pore space microstructures. The presence of hyphae ('fungal highways') strongly and frequently increases the dispersal range and abundance of water-dwelling organisms such as bacteria and protists across air pockets. Physical forces such as water movements, but also organisms and especially fungi form new microhabitats by altering the pore space architecture and distribution of soil minerals in the chip. We show that soil chips hold a large potential for studying in-situ microbial interactions and soil functions, and to interconnect field microbial ecology with laboratory experiments.
Collapse
Affiliation(s)
- Paola Micaela Mafla-Endara
- grid.4514.40000 0001 0930 2361Department of Biology, Lund University, Lund, Sweden ,grid.4514.40000 0001 0930 2361Centre for Environmental and Climate Science, CEC, Lund University, Lund, Sweden
| | | | - Kristin Aleklett
- grid.4514.40000 0001 0930 2361Department of Biology, Lund University, Lund, Sweden ,grid.6341.00000 0000 8578 2742Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Milda Pucetaite
- grid.4514.40000 0001 0930 2361Department of Biology, Lund University, Lund, Sweden
| | - Pelle Ohlsson
- grid.4514.40000 0001 0930 2361Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Edith C. Hammer
- grid.4514.40000 0001 0930 2361Department of Biology, Lund University, Lund, Sweden ,grid.4514.40000 0001 0930 2361Centre for Environmental and Climate Science, CEC, Lund University, Lund, Sweden
| |
Collapse
|
32
|
Aleklett K, Ohlsson P, Bengtsson M, Hammer EC. Fungal foraging behaviour and hyphal space exploration in micro-structured Soil Chips. THE ISME JOURNAL 2021; 15:1782-1793. [PMID: 33469165 PMCID: PMC8163874 DOI: 10.1038/s41396-020-00886-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 01/30/2023]
Abstract
How do fungi navigate through the complex microscopic maze-like structures found in the soil? Fungal behaviour, especially at the hyphal scale, is largely unknown and challenging to study in natural habitats such as the opaque soil matrix. We monitored hyphal growth behaviour and strategies of seven Basidiomycete litter decomposing species in a micro-fabricated "Soil Chip" system that simulates principal aspects of the soil pore space and its micro-spatial heterogeneity. The hyphae were faced with micrometre constrictions, sharp turns and protruding obstacles, and the species examined were found to have profoundly different responses in terms of foraging range and persistence, spatial exploration and ability to pass obstacles. Hyphal behaviour was not predictable solely based on ecological assumptions, and our results obtained a level of trait information at the hyphal scale that cannot be fully explained using classical concepts of space exploration and exploitation such as the phalanx/guerrilla strategies. Instead, we propose a multivariate trait analysis, acknowledging the complex trade-offs and microscale strategies that fungal mycelia exhibit. Our results provide novel insights about hyphal behaviour, as well as an additional understanding of fungal habitat colonisation, their foraging strategies and niche partitioning in the soil environment.
Collapse
Affiliation(s)
- Kristin Aleklett
- Department of Biology, Lund University, Lund, Sweden.
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, SLU, Alnarp, Sweden.
| | - Pelle Ohlsson
- Department of Biomedical Engineering, LTH, Lund University, Lund, Sweden
| | - Martin Bengtsson
- Department of Biomedical Engineering, LTH, Lund University, Lund, Sweden
| | | |
Collapse
|
33
|
Yee MO, Kim P, Li Y, Singh AK, Northen TR, Chakraborty R. Specialized Plant Growth Chamber Designs to Study Complex Rhizosphere Interactions. Front Microbiol 2021; 12:625752. [PMID: 33841353 PMCID: PMC8032546 DOI: 10.3389/fmicb.2021.625752] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/19/2021] [Indexed: 01/19/2023] Open
Abstract
The rhizosphere is a dynamic ecosystem shaped by complex interactions between plant roots, soil, microbial communities and other micro- and macro-fauna. Although studied for decades, critical gaps exist in the study of plant roots, the rhizosphere microbiome and the soil system surrounding roots, partly due to the challenges associated with measuring and parsing these spatiotemporal interactions in complex heterogeneous systems such as soil. To overcome the challenges associated with in situ study of rhizosphere interactions, specialized plant growth chamber systems have been developed that mimic the natural growth environment. This review discusses the currently available lab-based systems ranging from widely known rhizotrons to other emerging devices designed to allow continuous monitoring and non-destructive sampling of the rhizosphere ecosystems in real-time throughout the developmental stages of a plant. We categorize them based on the major rhizosphere processes it addresses and identify their unique challenges as well as advantages. We find that while some design elements are shared among different systems (e.g., size exclusion membranes), most of the systems are bespoke and speaks to the intricacies and specialization involved in unraveling the details of rhizosphere processes. We also discuss what we describe as the next generation of growth chamber employing the latest technology as well as the current barriers they face. We conclude with a perspective on the current knowledge gaps in the rhizosphere which can be filled by innovative chamber designs.
Collapse
Affiliation(s)
- Mon Oo Yee
- Climate and Ecosystem Sciences, Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Peter Kim
- CBRN Defense and Energy Technologies, Sandia National Laboratories, Livermore, CA, United States
| | - Yifan Li
- Climate and Ecosystem Sciences, Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Anup K. Singh
- CBRN Defense and Energy Technologies, Sandia National Laboratories, Livermore, CA, United States
| | - Trent R. Northen
- The DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Romy Chakraborty
- Climate and Ecosystem Sciences, Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
34
|
Hao Z, Lv H, Tan R, Yang X, Liu Y, Xia YL. A Three-Dimensional Microfluidic Device for Monitoring Cancer and Chemotherapy-Associated Platelet Activation. ACS OMEGA 2021; 6:3164-3172. [PMID: 33553932 PMCID: PMC7860090 DOI: 10.1021/acsomega.0c05572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/13/2021] [Indexed: 05/04/2023]
Abstract
Platelet activation and the risk of thrombosis are increased in cancer patients, especially after chemotherapy. Our previous studies indicated that chemotherapy-induced platelet activation is largely due to endothelial cell damage. Thus, simple in vitro tests, such as aggregometry, are not desirable tests to predict platelet responsiveness to different chemotherapeutic agents because other contributory factors, such as tumor cells, endothelial cells, and the flow rate of platelets, also contribute to the formation of cancer-associated thrombosis. Therefore, developing a platelet detection system, which includes all possible risk parameters, is necessary. In the present study, we described a microengineered microfluidic system that contained a drug concentration generator, cancer cell culture chip, and three-dimensional (3D) circular microvascular model covered with a confluent endothelial layer and perfused with human platelets at a stable flow rate. Doxorubicin was injected through two injection sites. Endothelial cell injury was evaluated by counting, cell cytoskeleton observation, and the level of IACM1 and ET-1 in endothelial cells or a culture medium. Prestained platelets were perfused into the artificial blood vessel, and platelet-endothelial cell adhesion was measured. We found that (i) MCF7 cell-released factors had a cytotoxicity effect on both endothelial cells and platelets. (ii) We confirmed that doxorubicin-induced platelet activation was endothelial cell-dependent. (iii) A lower dosage of doxorubicin (0-2.0 μM) induced platelet activation, while a higher dosage of doxorubicin (2.0-4.0 μM) led to platelet death. Our findings indicated that platelet-endothelial cell adhesion could be used as a diagnostic marker of platelet activation, providing a simple and rapid detective way to predict platelet responsiveness before or during chemotherapy.
Collapse
Affiliation(s)
- Zhujing Hao
- Institute
of Cardiovascular Diseases, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
| | - Haichen Lv
- Department
of Cardiology, The First Affiliated Hospital
of Dalian Medical University, Dalian 116000, China
| | - Ruopeng Tan
- Institute
of Cardiovascular Diseases, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
| | - Xiaolei Yang
- Institute
of Cardiovascular Diseases, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
| | - Yang Liu
- Institute
of Cardiovascular Diseases, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- . Tel: 86-411-83635963-2287
| | - Yun-Long Xia
- Institute
of Cardiovascular Diseases, The First Affiliated
Hospital of Dalian Medical University, Dalian 116000, China
- Department
of Cardiology, The First Affiliated Hospital
of Dalian Medical University, Dalian 116000, China
- . Tel: 86-411-83635963-3004
| |
Collapse
|
35
|
4D imaging reveals mechanisms of clay-carbon protection and release. Nat Commun 2021; 12:622. [PMID: 33504777 PMCID: PMC7840981 DOI: 10.1038/s41467-020-20798-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/07/2020] [Indexed: 11/09/2022] Open
Abstract
Soil absorbs about 20% of anthropogenic carbon emissions annually, and clay is one of the key carbon-capture materials. Although sorption to clay is widely assumed to strongly retard the microbial decomposition of soil organic matter, enhanced degradation of clay-associated organic carbon has been observed under certain conditions. The conditions in which clay influences microbial decomposition remain uncertain because the mechanisms of clay-organic carbon interactions are not fully understood. Here we reveal the spatiotemporal dynamics of carbon sorption and release within model clay aggregates and the role of enzymatic decomposition by directly imaging a transparent smectite clay on a microfluidic chip. We demonstrate that clay-carbon protection is due to the quasi-irreversible sorption of high molecular-weight sugars within clay aggregates and the exclusion of bacteria from these aggregates. We show that this physically-protected carbon can be enzymatically broken down into fragments that are released into solution. Further, we suggest improvements relevant to soil carbon models.
Collapse
|
36
|
Microfluidics in Biotechnology: Quo Vadis. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 179:355-380. [PMID: 33495924 DOI: 10.1007/10_2020_162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The emerging technique of microfluidics offers new approaches for precisely controlling fluidic conditions on a small scale, while simultaneously facilitating data collection in both high-throughput and quantitative manners. As such, the so-called lab-on-a-chip (LOC) systems have the potential to revolutionize the field of biotechnology. But what needs to happen in order to truly integrate them into routine biotechnological applications? In this chapter, some of the most promising applications of microfluidic technology within the field of biotechnology are surveyed, and a few strategies for overcoming current challenges posed by microfluidic LOC systems are examined. In addition, we also discuss the intensifying trend (across all biotechnology fields) of using point-of-use applications which is being facilitated by new technological achievements.
Collapse
|
37
|
Tsao CW, Huang QZ, You CY, Hilpert M, Hsu SY, Lamorski K, Chang LC, Sławiński C. The effect of channel aspect ratio on air entrapment during imbibition in soil-on-a-chip micromodels with 2D and 2.5D pore structures. LAB ON A CHIP 2021; 21:385-396. [PMID: 33315024 DOI: 10.1039/d0lc01029d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We developed a low-cost method for fabricating "soil-on-a-chip" micromodels with 2D and 2.5D pore structures by stacking layers made with a conventional low-cost tabletop CNC router followed by tape bonding. The pore structure was extracted from an X-ray micro-computed tomography scanning image of a medium-grain sandstone sample. The imbibition experiments performed in the 2D and 2.5D micromodels showed the trends of the residual saturation versus capillary number (Ca). The channels showed opposing trends for low-aspect-ratio 2D and high-aspect-ratio 2.5D micromodels. As the channel aspect ratio increased, the location of air entrapment changed from dead-end pores to transport pores. The sizes of trapped air bubbles in the transport pores decreased as the injection flow rates increased. To show the relationship between the air trapped size and Ca, we derived equations that described the competition between the bulk menisci and the corner flow in the channels for different Ca based on the "supply principle." The relative contributions of the piston displacement and corner film flow, which were dependent on the cross-sectional shapes of the pores and Ca, determined the size and location of the air bubbles trapped in the 2.5D micromodel.
Collapse
Affiliation(s)
- Chia-Wen Tsao
- Department of Mechanical Engineering, National Central University, Taoyuan City 32001, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Li W, Shi C, Yu Y, Ruan Y, Kong D, Lv X, Xu P, Awasthi MK, Dong M. Interrelationships between tetracyclines and nitrogen cycling processes mediated by microorganisms: A review. BIORESOURCE TECHNOLOGY 2021; 319:124036. [PMID: 33032187 DOI: 10.1016/j.biortech.2020.124036] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
Due to their broad-spectrum antibacterial activity and low cost, tetracyclines (TCs) are a class of antibiotics widely used for human and veterinary medical purposes and as a growth-promoting agent for aquaculture. Interrelationships between TCs and nitrogen cycling have attracted scientific attention due to the complicated processes mediated by microorganisms. TCs negatively impact the nitrogen cycling; however, simultaneous degradation of TCs during nitrogen cycling mediated by microorganisms can be achieved. This review encapsulates the background and distribution of TCs in the environment. Additionally, the main nitrogen cycling process mediated by microorganisms were retrospectively examined. Furthermore, effects of TCs on the nitrogen cycling processes, namely nitrification, denitrification, and anammox, have been summarized. Finally, the pathway and microbial mechanism of degradation of TCs accompanied by nitrogen cycling processes were reviewed, along with the scope for prospective studies.
Collapse
Affiliation(s)
- Wenbing Li
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Changze Shi
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yanwen Yu
- Zhejiang Water Healer Environmental Technology Co., Ltd, Hangzhou 311121, China
| | - Yunjie Ruan
- Institute of Agricultural Bio-Environmental Engineering, College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Dedong Kong
- Agricultural Experiment Station, Zhejiang University, Hangzhou 310058, China
| | - Xiaofei Lv
- Department of Environmental Engineering, China Jiliang University, Hangzhou, China
| | - Ping Xu
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden.
| | - Ming Dong
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
39
|
Yang D, Fan R, Greet C, Priest C. Microfluidic Screening to Study Acid Mine Drainage. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14000-14006. [PMID: 33084306 DOI: 10.1021/acs.est.0c02901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Acid mine drainage (AMD) is the most significant environmental pollution problem associated with the mining industry. Case-specific testing is widely applied and established in the mining and consulting businesses for AMD prediction, and any improvements in its efficiency, while reducing its environmental impact, are of utmost societal importance. In this study, we develop a microfluidic screening method as a useful tool in the prediction and, potentially, prevention and remediation of AMD. The new approach offers key advantages including high throughput screening of reaction conditions, better spatiotemporal control over the process, and ability to conduct field-based measurements, which will account for specific interactions between mineral ores and their environment. Reagent and sample consumptions are greatly reduced to mL and mg levels, compared with those in conventional bulk-scale screening. Parallel (multichip) screening of ferric ion concentration gradients (0-40 mM) and temperature (23-75 °C) is demonstrated here, showing that the dissolution rate of pyrite significantly changes with the pH, temperature, and the ferric ion concentration, consistent with previous bulk-scale studies. To verify the robustness of the method, a mine waste rock was also tested in the microchip with natural waters. This study demonstrates the application of microfluidic screening to the challenging issue of AMD and, more generally, forecasting and optimization of mineral leaching in industry.
Collapse
Affiliation(s)
- Die Yang
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Rong Fan
- CSIRO Mineral Resources, Private Bag 10, Clayton South, VIC 3169, Australia
| | - Christopher Greet
- Magotteaux Australia PTY Ltd, 31 Cormack Road, Wingfield SA 5013, Australia
| | - Craig Priest
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
- UniSA STEM, University of South Australia, Mawson Lakes, SA 5095, Australia
| |
Collapse
|
40
|
Baranger C, Fayeulle A, Le Goff A. Microfluidic monitoring of the growth of individual hyphae in confined environments. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191535. [PMID: 32968492 PMCID: PMC7481688 DOI: 10.1098/rsos.191535] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 08/05/2020] [Indexed: 06/11/2023]
Abstract
Soil fungi have the ability to form large mycelial networks. They rely on the resources available in the soil to produce biomass and are able to degrade complex biomolecules. Some of them can even degrade recalcitrant organic pollutants and are considered as promising candidates for soil bioremediation strategies. However, the success of this approach depends on the ability of fungi to colonize the soil matrix, where they encounter spatial and temporal variations of confinement, humidity and nutrient concentration. In this paper, we present a study of fungal growth at the scale of single hyphae in a microfluidic device, allowing fine control of nutrient and water supply. Time-lapse microscopy allowed simultaneous monitoring of the growth of dozens of hyphae of Talaromyces helicus, a soil isolate, and of the model fungus Neurospora crassa through parallel microchannels. The distributions of growth velocity obtained for each strain were compared with measurements obtained in macroscopic solid culture. For the two strains used in the study, confinement caused the growth velocity to drop in comparison with unconfined experiments. In addition, N. crassa was also limited in its growth by the nutrient supply, while the microfluidic culture conditions seemed better suited for T. helicus. Qualitative observations of fungi growing in microfluidic chambers without lateral confinement also revealed that side walls influence the branching behaviour of hyphae. This study is one of the first to consider the confinement degree within soil microporosities as a key factor of fungal growth, and to address its effect, along with physicochemical parameters, on soil colonization, notably for bioremediation purposes.
Collapse
Affiliation(s)
- Claire Baranger
- Université de technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Biomechanics and Bioengineering, Centre de recherche Royallieu - CS 60 319 - 60 203 Compiègne Cedex, France
| | - Antoine Fayeulle
- Université de technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Biomechanics and Bioengineering, Centre de recherche Royallieu - CS 60 319 - 60 203 Compiègne Cedex, France
| | - Anne Le Goff
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu - CS 60 319 - 60 203 Compiègne Cedex, France
| |
Collapse
|
41
|
Chen P, Li S, Guo Y, Zeng X, Liu BF. A review on microfluidics manipulation of the extracellular chemical microenvironment and its emerging application to cell analysis. Anal Chim Acta 2020; 1125:94-113. [PMID: 32674786 DOI: 10.1016/j.aca.2020.05.065] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/22/2022]
Abstract
Spatiotemporal manipulation of extracellular chemical environments with simultaneous monitoring of cellular responses plays an essential role in exploring fundamental biological processes and expands our understanding of underlying mechanisms. Despite the rapid progress and promising successes in manipulation strategies, many challenges remain due to the small size of cells and the rapid diffusion of chemical molecules. Fortunately, emerging microfluidic technology has become a powerful approach for precisely controlling the extracellular chemical microenvironment, which benefits from its integration capacity, automation, and high-throughput capability, as well as its high resolution down to submicron. Here, we summarize recent advances in microfluidics manipulation of the extracellular chemical microenvironment, including the following aspects: i) Spatial manipulation of chemical microenvironments realized by convection flow-, diffusion-, and droplet-based microfluidics, and surface chemical modification; ii) Temporal manipulation of chemical microenvironments enabled by flow switching/shifting, moving/flowing cells across laminar flows, integrated microvalves/pumps, and droplet manipulation; iii) Spatiotemporal manipulation of chemical microenvironments implemented by a coupling strategy and open-space microfluidics; and iv) High-throughput manipulation of chemical microenvironments. Finally, we briefly present typical applications of the above-mentioned technical advances in cell-based analyses including cell migration, cell signaling, cell differentiation, multicellular analysis, and drug screening. We further discuss the future improvement of microfluidics manipulation of extracellular chemical microenvironments to fulfill the needs of biological and biomedical research and applications.
Collapse
Affiliation(s)
- Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shunji Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yiran Guo
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xuemei Zeng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
42
|
Kunoh T, Morinaga K, Sugimoto S, Miyazaki S, Toyofuku M, Iwasaki K, Nomura N, Utada AS. Polyfunctional Nanofibril Appendages Mediate Attachment, Filamentation, and Filament Adaptability in Leptothrix cholodnii. ACS NANO 2020; 14:5288-5297. [PMID: 31804801 DOI: 10.1021/acsnano.9b04663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Leptothrix is a species of Fe/Mn-oxidizing bacteria known to form long filaments composed of chains of cells that eventually produce a rigid tube surrounding the filament. Prior to the formation of this brittle microtube, Leptothrix cells secrete hair-like structures from the cell surface, called nanofibrils, which develop into a soft sheath that surrounds the filament. To clarify the role of nanofibrils in filament formation in L. cholodnii SP-6, we analyze the behavior of individual cells and multicellular filaments in high-aspect ratio microfluidic chambers using time-lapse and intermittent in situ fluorescent staining of nanofibrils, complemented with atmospheric scanning electron microscopy. We show that in SP-6 nanofibrils are important for attachment and their distribution on young filaments post-attachment is correlated to the directionality of filament elongation. Elongating filaments demonstrate a surprising ability to adapt to their physical environment by changing direction when they encounter obstacles: they bend or reverse direction depending on the angle of the collision. We show that the forces involved in the collision can be used to predict the behavior of filament. Finally, we show that as filaments grow in length, the older region becomes confined by the sheath, while the newly secreted nanofibrils at the leading edge of the filament form a loose, divergent, structure from which cells periodically escape.
Collapse
Affiliation(s)
| | | | - Shinya Sugimoto
- Department of Bacteriology and Jikei Center for Biofilm Research and Technology, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Zhang Y, Khorshidian H, Mohammadi M, Sanati-Nezhad A, Hejazi SH. Functionalized multiscale visual models to unravel flow and transport physics in porous structures. WATER RESEARCH 2020; 175:115676. [PMID: 32193027 DOI: 10.1016/j.watres.2020.115676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 02/18/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
The fluid flow, species transport, and chemical reactions in geological formations are the chief mechanisms in engineering the exploitation of fossil fuels and geothermal energy, the geological storage of carbon dioxide (CO2), and the disposal of hazardous materials. Porous rock is characterized by a wide surface area, where the physicochemical fluid-solid interactions dominate the multiphase flow behavior. A variety of visual models with differences in dimensions, patterns, surface properties, and fabrication techniques have been widely utilized to simulate and directly visualize such interactions in porous media. This review discusses the six categories of visual models used in geological flow applications, including packed beds, Hele-Shaw cells, synthesized microchips (also known as microfluidic chips or micromodels), geomaterial-dominated microchips, three-dimensional (3D) microchips, and nanofluidics. For each category, critical technical points (such as surface chemistry and geometry) and practical applications are summarized. Finally, we discuss opportunities and provide a framework for the development of custom-built visual models.
Collapse
Affiliation(s)
- Yaqi Zhang
- Interfacial Flows and Porous Media Laboratory, Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Hossein Khorshidian
- Interfacial Flows and Porous Media Laboratory, Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Mehdi Mohammadi
- Interfacial Flows and Porous Media Laboratory, Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; Biological Sciences, University of Calgary, Canada
| | - Amir Sanati-Nezhad
- Interfacial Flows and Porous Media Laboratory, Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; Centre for Bioengineering Research and Education, University of Calgary, Calgary, Canada
| | - S Hossein Hejazi
- Interfacial Flows and Porous Media Laboratory, Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
44
|
Clark NM, Van den Broeck L, Guichard M, Stager A, Tanner HG, Blilou I, Grossmann G, Iyer-Pascuzzi AS, Maizel A, Sparks EE, Sozzani R. Novel Imaging Modalities Shedding Light on Plant Biology: Start Small and Grow Big. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:789-816. [PMID: 32119794 DOI: 10.1146/annurev-arplant-050718-100038] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The acquisition of quantitative information on plant development across a range of temporal and spatial scales is essential to understand the mechanisms of plant growth. Recent years have shown the emergence of imaging methodologies that enable the capture and analysis of plant growth, from the dynamics of molecules within cells to the measurement of morphometricand physiological traits in field-grown plants. In some instances, these imaging methods can be parallelized across multiple samples to increase throughput. When high throughput is combined with high temporal and spatial resolution, the resulting image-derived data sets could be combined with molecular large-scale data sets to enable unprecedented systems-level computational modeling. Such image-driven functional genomics studies may be expected to appear at an accelerating rate in the near future given the early success of the foundational efforts reviewed here. We present new imaging modalities and review how they have enabled a better understanding of plant growth from the microscopic to the macroscopic scale.
Collapse
Affiliation(s)
- Natalie M Clark
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA; ,
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50010, USA;
| | - Lisa Van den Broeck
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA; ,
| | - Marjorie Guichard
- Center for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany; , ,
- CellNetworks Cluster of Excellence, Heidelberg University, 69120 Heidelberg, Germany
| | - Adam Stager
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware 19711, USA; ,
| | - Herbert G Tanner
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware 19711, USA; ,
| | - Ikram Blilou
- Department of Plant Cell and Developmental Biology, Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia;
| | - Guido Grossmann
- Center for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany; , ,
- CellNetworks Cluster of Excellence, Heidelberg University, 69120 Heidelberg, Germany
| | - Anjali S Iyer-Pascuzzi
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907, USA;
| | - Alexis Maizel
- Center for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany; , ,
| | - Erin E Sparks
- Department of Plant and Soil Sciences and the Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711, USA;
| | - Rosangela Sozzani
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA; ,
| |
Collapse
|
45
|
Podwin A, Lizanets D, Przystupski D, Kubicki W, Śniadek P, Kulbacka J, Wymysłowski A, Walczak R, Dziuban JA. Lab-on-Chip Platform for Culturing and Dynamic Evaluation of Cells Development. MICROMACHINES 2020; 11:E196. [PMID: 32074950 PMCID: PMC7074672 DOI: 10.3390/mi11020196] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 12/12/2022]
Abstract
This paper presents a full-featured microfluidic platform ensuring long-term culturing and behavioral analysis of the radically different biological micro-objects. The platform uses all-glass lab-chips and MEMS-based components providing dedicated micro-aquatic habitats for the cells, as well as their intentional disturbances on-chip. Specially developed software was implemented to characterize the micro-objects metrologically in terms of population growth and cells' size, shape, or migration activity. To date, the platform has been successfully applied for the culturing of freshwater microorganisms, fungi, cancer cells, and animal oocytes, showing their notable population growth, high mobility, and taxis mechanisms. For instance, circa 100% expansion of porcine oocytes cells, as well as nearly five-fold increase in E. gracilis population, has been achieved. These results are a good base to conduct further research on the platform versatile applications.
Collapse
Affiliation(s)
- Agnieszka Podwin
- Faculty of Microsystem Electronics and Photonics, Wrocław University of Science and Technology, 50-370 Wrocław, Poland; (D.L.); (W.K.); (P.Ś.); (A.W.); (R.W.); (J.A.D.)
| | - Danylo Lizanets
- Faculty of Microsystem Electronics and Photonics, Wrocław University of Science and Technology, 50-370 Wrocław, Poland; (D.L.); (W.K.); (P.Ś.); (A.W.); (R.W.); (J.A.D.)
| | - Dawid Przystupski
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wrocław Medical University, 50-367 Wrocław, Poland; (D.P.); (J.K.)
| | - Wojciech Kubicki
- Faculty of Microsystem Electronics and Photonics, Wrocław University of Science and Technology, 50-370 Wrocław, Poland; (D.L.); (W.K.); (P.Ś.); (A.W.); (R.W.); (J.A.D.)
| | - Patrycja Śniadek
- Faculty of Microsystem Electronics and Photonics, Wrocław University of Science and Technology, 50-370 Wrocław, Poland; (D.L.); (W.K.); (P.Ś.); (A.W.); (R.W.); (J.A.D.)
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wrocław Medical University, 50-367 Wrocław, Poland; (D.P.); (J.K.)
| | - Artur Wymysłowski
- Faculty of Microsystem Electronics and Photonics, Wrocław University of Science and Technology, 50-370 Wrocław, Poland; (D.L.); (W.K.); (P.Ś.); (A.W.); (R.W.); (J.A.D.)
| | - Rafał Walczak
- Faculty of Microsystem Electronics and Photonics, Wrocław University of Science and Technology, 50-370 Wrocław, Poland; (D.L.); (W.K.); (P.Ś.); (A.W.); (R.W.); (J.A.D.)
| | - Jan A. Dziuban
- Faculty of Microsystem Electronics and Photonics, Wrocław University of Science and Technology, 50-370 Wrocław, Poland; (D.L.); (W.K.); (P.Ś.); (A.W.); (R.W.); (J.A.D.)
| |
Collapse
|
46
|
Horowitz LF, Rodriguez AD, Ray T, Folch A. Microfluidics for interrogating live intact tissues. MICROSYSTEMS & NANOENGINEERING 2020; 6:69. [PMID: 32879734 PMCID: PMC7443437 DOI: 10.1038/s41378-020-0164-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 05/08/2023]
Abstract
The intricate microarchitecture of tissues - the "tissue microenvironment" - is a strong determinant of tissue function. Microfluidics offers an invaluable tool to precisely stimulate, manipulate, and analyze the tissue microenvironment in live tissues and engineer mass transport around and into small tissue volumes. Such control is critical in clinical studies, especially where tissue samples are scarce, in analytical sensors, where testing smaller amounts of analytes results in faster, more portable sensors, and in biological experiments, where accurate control of the cellular microenvironment is needed. Microfluidics also provides inexpensive multiplexing strategies to address the pressing need to test large quantities of drugs and reagents on a single biopsy specimen, increasing testing accuracy, relevance, and speed while reducing overall diagnostic cost. Here, we review the use of microfluidics to study the physiology and pathophysiology of intact live tissues at sub-millimeter scales. We categorize uses as either in vitro studies - where a piece of an organism must be excised and introduced into the microfluidic device - or in vivo studies - where whole organisms are small enough to be introduced into microchannels or where a microfluidic device is interfaced with a live tissue surface (e.g. the skin or inside an internal organ or tumor) that forms part of an animal larger than the device. These microfluidic systems promise to deliver functional measurements obtained directly on intact tissue - such as the response of tissue to drugs or the analysis of tissue secretions - that cannot be obtained otherwise.
Collapse
Affiliation(s)
- Lisa F. Horowitz
- Department of Bioengineering, University of Washington, Seattle, WA 98195 USA
| | - Adán D. Rodriguez
- Department of Bioengineering, University of Washington, Seattle, WA 98195 USA
| | - Tyler Ray
- Department of Mechanical Engineering, University of Hawaiʻi at Mānoa, Honolulu, HI 96822 USA
| | - Albert Folch
- Department of Bioengineering, University of Washington, Seattle, WA 98195 USA
| |
Collapse
|
47
|
O’Callaghan FE, Neilson R, MacFarlane SA, Dupuy LX. Dynamic biospeckle analysis, a new tool for the fast screening of plant nematicide selectivity. PLANT METHODS 2019; 15:155. [PMID: 31889979 PMCID: PMC6921579 DOI: 10.1186/s13007-019-0523-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/09/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Plant feeding, free-living nematodes cause extensive damage to plant roots by direct feeding and, in the case of some trichodorid and longidorid species, through the transmission of viruses. Developing more environmentally friendly, target-specific nematicides is currently impeded by slow and laborious methods of toxicity testing. Here, we developed a bioactivity assay based on the dynamics of light 'speckle' generated by living cells and we demonstrate its application by assessing chemicals' toxicity to different nematode trophic groups. RESULTS Free-living nematode populations extracted from soil were exposed to methanol and phenyl isothiocyanate (PEITC). Biospeckle analysis revealed differing behavioural responses as a function of nematode feeding groups. Trichodorus nematodes were less sensitive than were bacterial feeding nematodes or non-trichodorid plant feeding nematodes. Following 24 h of exposure to PEITC, bioactivity significantly decreased for plant and bacterial feeders but not for Trichodorus nematodes. Decreases in movement for plant and bacterial feeders in the presence of PEITC also led to measurable changes to the morphology of biospeckle patterns. CONCLUSIONS Biospeckle analysis can be used to accelerate the screening of nematode bioactivity, thereby providing a fast way of testing the specificity of potential nematicidal compounds. With nematodes' distinctive movement and activity levels being visible in the biospeckle pattern, the technique has potential to screen the behavioural responses of diverse trophic nematode communities. The method discriminates both behavioural responses, morphological traits and activity levels and hence could be used to assess the specificity of nematicidal compounds.
Collapse
Affiliation(s)
| | - Roy Neilson
- The James Hutton Institute, Invergowrie, Dundee, D2 5DA Scotland, UK
| | | | - Lionel X. Dupuy
- The James Hutton Institute, Invergowrie, Dundee, D2 5DA Scotland, UK
| |
Collapse
|
48
|
Microfluidic cultivation and analysis tools for interaction studies of microbial co-cultures. Curr Opin Biotechnol 2019; 62:106-115. [PMID: 31715386 DOI: 10.1016/j.copbio.2019.09.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/20/2019] [Accepted: 09/02/2019] [Indexed: 12/11/2022]
Abstract
Microbial consortia are fascinating yet barely understood biological systems with an elusive intrinsic complexity. Studying microbial consortia and the interactions of their members is of major importance for the understanding, engineering and control of synthetic and natural microbial consortia. Microfluidic cultivation and analysis devices are versatile tools for the study of microbial interactions at the single-cell level. While there is a vast amount of literature on microfluidics for the investigation of monocultures only few studies on co-cultures have been conducted in this context. Here we give an overview of different microfluidic single-cell cultivation tools for the analysis of microbial consortia with a focus on their physiology, growth dynamics and cellular interactions. Finally, central challenges and perspectives for the future application of microfluidic tools for microbial consortia investigations will be given.
Collapse
|
49
|
Ghanem N, Stanley CE, Harms H, Chatzinotas A, Wick LY. Mycelial Effects on Phage Retention during Transport in a Microfluidic Platform. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11755-11763. [PMID: 31532190 DOI: 10.1021/acs.est.9b03502] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phages (i.e., viruses that infect bacteria) have been considered as good tracers for the hydrological transport of colloids and (pathogenic) viruses. However, little is known about interactions of phages with (fungal) mycelia as the prevalent soil microbial biomass. Forming extensive and dense networks, mycelia provide significant surfaces for phage-hyphal interactions. Here, for the first time, we quantified the mycelial retention of phages in a microfluidic platform that allowed for defined fluid exchange around hyphae. Two common lytic tracer phages (Escherichia coli phage T4 and marine phage PSA-HS2) and two mycelia of differing surface properties (Coprinopsis cinerea and Pythium ultimum) were employed. Phage-hyphal interaction energies were approximated by the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) approach of colloidal interaction. Our data show initial hyphal retention of phages of up to ≈4 × 107 plaque-forming unit (PFU) mm-2 (≈2550 PFU mm-2 s-1) with a retention efficiency depending on the hyphal and, to a lesser extent, the phage surface properties. Experimental data were supported by XDLVO calculations, which revealed the highest attractive forces for the interaction between hydrophobic T4 phages and hydrophobic C. cinerea surfaces. Our data suggest that mycelia may be relevant for the retention of phages in the subsurface and need to be considered in subsurface phage tracer studies. Mycelia-phage interactions may further be exploited for the development of novel strategies to reduce or hinder the transport of undesirable (bio) colloidal entities in environmental filter systems.
Collapse
Affiliation(s)
- Nawras Ghanem
- Department of Environmental Microbiology , Helmholtz Centre for Environmental Research - UFZ , Permoserstraße 15 , 04318 Leipzig , Germany
| | - Claire E Stanley
- Agroecology and Environment Research Division , Agroscope , Reckenholzstrasse 191 , 8046 Zurich , Switzerland
| | - Hauke Harms
- Department of Environmental Microbiology , Helmholtz Centre for Environmental Research - UFZ , Permoserstraße 15 , 04318 Leipzig , Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig , Deutscher Platz 5e , 04103 Leipzig , Germany
| | - Antonis Chatzinotas
- Department of Environmental Microbiology , Helmholtz Centre for Environmental Research - UFZ , Permoserstraße 15 , 04318 Leipzig , Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig , Deutscher Platz 5e , 04103 Leipzig , Germany
| | - Lukas Y Wick
- Department of Environmental Microbiology , Helmholtz Centre for Environmental Research - UFZ , Permoserstraße 15 , 04318 Leipzig , Germany
| |
Collapse
|
50
|
Macagno J, Lescano MR, Berli CLA. Milli-channel array for direct and quick reading of root elongation bioassays. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 178:51-57. [PMID: 30991247 DOI: 10.1016/j.ecoenv.2019.04.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
A novel platform to perform systematic analysis and direct reading of root elongation bioassays is presented. The device was designed to include multiplexed microenvironments for the germination and growth of individual seeds, which allows observation by the naked eye or by optical systems, notably cellphone cameras. Prototypes were fabricated by laser micromachining on a highly transparent material that is fully compatible with biological systems. The effectiveness of the milli-channel array was verified against the conventional system (Petri dish). Lactuca sativa was chosen as a model species and glyphosate as a typical toxic agent. All tests were run according to standardized procedures and data analysis was carried out through different statistical indicators such as the root elongation and germination indexes. Results attained in the milli-channel array were identical to those in Petri dish, with the remarkable benefit that several steps required in the conventional system were avoided, which enormously decreases the operation time and the possibility of experimental errors. Further advantages of the milli-channel array are also reported, such as the capability to achieve live imaging of plant organs growth through a simple experiment. The developed device has been proven to be effective, versatile, easy-to-use, and integrable to cellphones, which naturally provide facilities for data recording, analysis, and networking. These improvements open the route to novel applications of bioassays in the wide field of ecotoxicology and environmental studies.
Collapse
Affiliation(s)
- Joana Macagno
- INTEC (Universidad Nacional del Litoral-CONICET), Predio CCT-CONICET, RN 168, 3000, Santa Fe, Argentina
| | - Maia R Lescano
- INTEC (Universidad Nacional del Litoral-CONICET), Predio CCT-CONICET, RN 168, 3000, Santa Fe, Argentina
| | - Claudio L A Berli
- INTEC (Universidad Nacional del Litoral-CONICET), Predio CCT-CONICET, RN 168, 3000, Santa Fe, Argentina.
| |
Collapse
|