1
|
Zhou Q, Hu H, Chen Z, Ren X, Ma D. Enhancing electrocatalytic hydrogen evolution via engineering unsaturated electronic structures in MoS 2. Chem Sci 2025; 16:1597-1616. [PMID: 39776652 PMCID: PMC11701923 DOI: 10.1039/d4sc07309f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
The search for efficient, earth-abundant electrocatalysts for the hydrogen evolution reaction (HER) has identified unsaturated molybdenum disulfide (MoS2) as a leading candidate. This review synthesises recent advancements in the engineering of MoS2 to enhance its electrocatalytic properties. It focuses on strategies for designing an unsaturated electronic structure on metal catalytic centers and their role in boosting the efficiency of the hydrogen evolution reaction (HER). It also considers how to optimize the electronic structures of unsaturated MoS2 for enhanced catalytic performance. This review commences with an examination of the fundamental crystal structure of MoS2; it elucidates the classical unsaturated electron configurations and the intrinsic factors that contribute to such electronic structures. Furthermore, it introduces popular strategies for constructing unsaturated electronic structures at the atomic level, such as nanostructure engineering, surface chemical modification and interlayer coupling engineering. It also discusses the challenges and future research directions in the study of MoS2 electronic structures, with the aim of broadening their application in sustainable hydrogen production.
Collapse
Affiliation(s)
- Qingqing Zhou
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Hao Hu
- College of Environment, Zhejiang University of Technology Hangzhou 310012 PR China
| | - Zhijie Chen
- School of Civil and Environmental Engineering, The University of New South Wales Sydney NSW 2052 Australia
| | - Xiao Ren
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| |
Collapse
|
2
|
Gao J, Shen Y, Sun Y, Feng Z, Shi P, Xie K, Lin L, Guo X, Zhang S. CrSe 2 based single-cluster catalysts with controllable charge states for the oxygen reduction and hydrogen evolution reactions. J Colloid Interface Sci 2025; 678:1122-1131. [PMID: 39341143 DOI: 10.1016/j.jcis.2024.09.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/14/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024]
Abstract
Development of affordable catalysts for the oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER) represents a central task for advancing electrochemical systems such as fuel cells and metal-air batteries. This study reported the ORR and HER performance of a set of single cluster catalysts (SCCs) with atomically dispersed 3d/4d/5d transition metal cluster (TM3) embedded in a two-dimensional (2D) defective CrSe2 substrate. Distinguishing from the conventional SCCs with positive charge active center, the unique electronegativity discrepancy between the metal clusters and the substrate renders the active center controllable charge states from negative to positive. Our investigations indicate that the TM3 cluster helps tuning the adsorption performance of the intermediates, and therefore enhancing the electrocatalytic activity of the SCCs. Among all the candidates, we demonstrated that the less reported elements of Ir and Ag exhibit the best performance of HER and ORR with low overpotentials of -0.059 and 0.61 V, respectively. Our work provides a prototype to rationally regulate the charge states of catalysts, which could potentially contribute to the development of new kinds of catalysts and serve as a valuable theoretical reference for the experimental rationalization of SCCs.
Collapse
Affiliation(s)
- Jie Gao
- Yellow River Conservancy Technical Institute, Kaifeng, Henan 475004, China
| | - Ye Shen
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China.
| | - Yadan Sun
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Zhiyan Feng
- Cultivating Base for Key Laboratory of Environment-Friendly Inorganic Materials in Henan Province, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Pei Shi
- Cultivating Base for Key Laboratory of Environment-Friendly Inorganic Materials in Henan Province, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Kun Xie
- Cultivating Base for Key Laboratory of Environment-Friendly Inorganic Materials in Henan Province, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Long Lin
- Cultivating Base for Key Laboratory of Environment-Friendly Inorganic Materials in Henan Province, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China.
| | - Xiangyu Guo
- School of Science, Constructor University, Bremen 28759, Germany.
| | - Shengli Zhang
- MIIT Key Laboratory of Advanced Display Materials and Devices Ministry of Industry and Information Technology, College of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
3
|
Muhammad Naeem Ullah H, Mushtaq N, Ur Rehman S, Tariq Z, Ali SS, Tahir M, Li C, Zhang X, Li J. Manganese doped tailored cobalt sulfide as an accelerated catalyst for oxygen evolution reaction. J Colloid Interface Sci 2025; 678:1087-1095. [PMID: 39341140 DOI: 10.1016/j.jcis.2024.09.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/10/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024]
Abstract
Developing an efficient, robust, and noble metal-free electrocatalyst that can catalyse oxygen evolution reactions (OER) remains a significant challenge. CoS2, a representative of pyrite form transition metal dichalcogenides, has recently been identified as an economical catalyst. Here, an incredibly quick and scalable technique for novel catalysts synthesized with the use of the microwave method was introduced. Manganese-doped cobalt sulphide (Mn-CoS2) showed outstanding OER with a very low overpotential of 227 mV at 10 mA cm-2. Exposure of surface atoms resulted in high electrochemical activity, where the defects facilitated charge and mass transfer along the nanostructure, allowing surface dependent electrochemical reactions to be performed more efficiently. The electronic properties of pristine and transition-metal-doped CoS2 structures were also investigated using density functional theory (DFT). To better understand transition metal's dependent impact on crystal structure, orbital electronic participation, charge density, and charge transformation in both pristine and Mn-dopedCoS2 frameworks were calculated and analysized. Our synthesis approach is primarily commercial and extensible, overcoming synthesis challenge of transition metal sulphide nanostructures with prime quality and implying a potential for commercial uses.
Collapse
Affiliation(s)
- Hafiz Muhammad Naeem Ullah
- School of Science, Minzu University of China, Beijing 100081, China; Optoelectronics Research Centre, Minzu University of China, Beijing 100081, China
| | - Nouraiz Mushtaq
- Institute of Functional Porous Materials, School of Material Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Sajid Ur Rehman
- School of Science, Minzu University of China, Beijing 100081, China; Optoelectronics Research Centre, Minzu University of China, Beijing 100081, China
| | - Zeeshan Tariq
- School of Science, Minzu University of China, Beijing 100081, China; Optoelectronics Research Centre, Minzu University of China, Beijing 100081, China
| | - S S Ali
- School of Physical Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Muhammad Tahir
- School of Chemical Engineering, University of Birmingham, UK
| | - Chuanbo Li
- School of Science, Minzu University of China, Beijing 100081, China; Optoelectronics Research Centre, Minzu University of China, Beijing 100081, China
| | - Xiaoming Zhang
- School of Science, Minzu University of China, Beijing 100081, China; Optoelectronics Research Centre, Minzu University of China, Beijing 100081, China.
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
4
|
Kaleem Shabbir M, Arif F, Asghar H, Irum Memon S, Khanum U, Akhtar J, Ali A, Ramzan Z, Aziz A, Memon AA, Hussain Thebo K. Two-Dimensional MXene-Based Electrocatalysts: Challenges and Opportunities. CHEM REC 2024; 24:e202400047. [PMID: 39042918 DOI: 10.1002/tcr.202400047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/22/2024] [Indexed: 07/25/2024]
Abstract
MXene, regarded as cutting-edge two-dimensional (2D) materials, have been widely explored in various applications due to their remarkable flexibility, high specific surface area, good mechanical strength, and interesting electrical conductivity. Recently, 2D MXene has served as a ideal platform for the design and development of electrocatalysts with high activity, selectivity, and stability. This review article provides a detailed description of the structural engineering of MXene-based electrocatalysts and summarizes the uses of 2D MXene in hydrogen evolution reactions, nitrogen reduction reactions, oxygen evolution reactions, oxygen reduction reactions, and methanol/ethanol oxidation. Then, key issues and prospects for 2D MXene as a next-generation platform in fundamental research and real-world electrocatalysis applications are discussed. Emphasis will be given to material design and enhancement techniques. Finally, future research directions are suggested to improve the efficiency of MXene-based electrocatalysts.
Collapse
Affiliation(s)
- Muhammad Kaleem Shabbir
- Functional nanomaterials Lab (FNL), Department of Chemistry Mirpur, University of Science and Technology (MUST), -10250 (AJK), Mirpur, Pakistan
- Department of Chemistry, University of Kotli, Kotli, AJK 11100, Pakistan
| | - Fozia Arif
- Functional nanomaterials Lab (FNL), Department of Chemistry Mirpur, University of Science and Technology (MUST), -10250 (AJK), Mirpur, Pakistan
- Government Graduate College for Women Jhelum, Jhelum, 49600, Pakistan
| | - Haleema Asghar
- Government Graduate College for Women Jhelum, Jhelum, 49600, Pakistan
| | - Sanam Irum Memon
- Department of Textile Engineering, Mehran University of Engineering and Technology, Jamshoro
| | - Urooj Khanum
- Functional nanomaterials Lab (FNL), Department of Chemistry Mirpur, University of Science and Technology (MUST), -10250 (AJK), Mirpur, Pakistan
| | - Javeed Akhtar
- Functional nanomaterials Lab (FNL), Department of Chemistry Mirpur, University of Science and Technology (MUST), -10250 (AJK), Mirpur, Pakistan
| | - Akbar Ali
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Zeeshan Ramzan
- Functional nanomaterials Lab (FNL), Department of Chemistry Mirpur, University of Science and Technology (MUST), -10250 (AJK), Mirpur, Pakistan
| | - Aliya Aziz
- Department of Chemistry, University of Kotli, Kotli, AJK 11100, Pakistan
| | - Ayaz Ali Memon
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| | - Khalid Hussain Thebo
- Functional nanomaterials Lab (FNL), Department of Chemistry Mirpur, University of Science and Technology (MUST), -10250 (AJK), Mirpur, Pakistan
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Wenhua Road, China
| |
Collapse
|
5
|
Mirzaei A, Alizadeh M, Ansari HR, Moayedi M, Kordrostami Z, Safaeian H, Lee MH, Kim TU, Kim JY, Kim HW, Kim SS. Resistive gas sensors for the detection of NH 3gas based on 2D WS 2, WSe 2, MoS 2, and MoSe 2: a review. NANOTECHNOLOGY 2024; 35:332002. [PMID: 38744265 DOI: 10.1088/1361-6528/ad4b22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
Transition metal dichalcogenides (TMDs) with a two-dimensional (2D) structure and semiconducting features are highly favorable for the production of NH3gas sensors. Among the TMD family, WS2, WSe2, MoS2, and MoSe2exhibit high conductivity and a high surface area, along with high availability, reasons for which they are favored in gas-sensing studies. In this review, we have discussed the structure, synthesis, and NH3sensing characteristics of pristine, decorated, doped, and composite-based WS2, WSe2, MoS2, and MoSe2gas sensors. Both experimental and theoretical studies are considered. Furthermore, both room temperature and higher temperature gas sensors are discussed. We also emphasized the gas-sensing mechanism. Thus, this review provides a reference for researchers working in the field of 2D TMD gas sensors.
Collapse
Affiliation(s)
- Ali Mirzaei
- Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz 71557-13876, Iran
| | - Morteza Alizadeh
- Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz 71557-13876, Iran
| | - Hamid Reza Ansari
- Department of Electrical Engineering, Shiraz University of Technology, Shiraz 71557-13876, Iran
| | - Mehdi Moayedi
- Department of Electrical Engineering, Shiraz University of Technology, Shiraz 71557-13876, Iran
| | - Zoheir Kordrostami
- Department of Electrical Engineering, Shiraz University of Technology, Shiraz 71557-13876, Iran
| | - Haniyeh Safaeian
- Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz 71557-13876, Iran
| | - Myoung Hoon Lee
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Tae-Un Kim
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Jin-Young Kim
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
- The Research Institute of Industrial Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyoun Woo Kim
- The Research Institute of Industrial Science, Hanyang University, Seoul 04763, Republic of Korea
- Division of Materials Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Sang Sub Kim
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
6
|
Yonas S, Gicha BB, Adhikari S, Sabir FK, Tran VT, Nwaji N, Gonfa BA, Tufa LT. Electric-Field-Assisted Synthesis of Cu/MoS 2 Nanostructures for Efficient Hydrogen Evolution Reaction. MICROMACHINES 2024; 15:495. [PMID: 38675306 PMCID: PMC11052344 DOI: 10.3390/mi15040495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/23/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024]
Abstract
Molybdenum sulfide-oxide (MoS2, MS) emerges as the prime electrocatalyst candidate demonstrating hydrogen evolution reaction (HER) activity comparable to platinum (Pt). This study presents a facile electrochemical approach for fabricating a hybrid copper (Cu)/MoS2 (CMS) nanostructure thin-film electrocatalyst directly onto nickel foam (NF) without a binder or template. The synthesized CMS nanostructures were characterized utilizing energy-dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), X-ray diffraction (XRD), and electrochemical methods. The XRD result revealed that the Cu metal coating on MS results in the creation of an extremely crystalline CMS nanostructure with a well-defined interface. The hybrid nanostructures demonstrated higher hydrogen production, attributed to the synergistic interplay of morphology and electron distribution at the interface. The nanostructures displayed a significantly low overpotential of -149 mV at 10 mA cm-2 and a Tafel slope of 117 mV dec-1, indicating enhanced catalytic activity compared to pristine MoS2.This research underscores the significant enhancement of the HER performance and conductivity achieved by CMS, showcasing its potential applications in renewable energy.
Collapse
Affiliation(s)
- Surra Yonas
- Department of Applied Chemistry, Adama Science and Technology University, Adama P.O. Box 1888, Ethiopia (F.K.S.)
| | - Birhanu Bayissa Gicha
- Research Institute of Materials Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea;
| | - Samir Adhikari
- Department of Physics, Chungnam National University, Daejeon 34134, Republic of Korea;
| | - Fedlu Kedir Sabir
- Department of Applied Chemistry, Adama Science and Technology University, Adama P.O. Box 1888, Ethiopia (F.K.S.)
| | - Van Tan Tran
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi 10000, Vietnam;
| | - Njemuwa Nwaji
- Institute of Fundamental Technological Research, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Bedasa Abdisa Gonfa
- Department of Applied Chemistry, Adama Science and Technology University, Adama P.O. Box 1888, Ethiopia (F.K.S.)
| | - Lemma Teshome Tufa
- Department of Applied Chemistry, Adama Science and Technology University, Adama P.O. Box 1888, Ethiopia (F.K.S.)
- Research Institute of Materials Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea;
| |
Collapse
|
7
|
Talebi P, Greco R, Yamamoto T, Zeynali M, Asgharizadeh S, Cao W. Hierarchical nickel carbonate hydroxide nanostructures for photocatalytic hydrogen evolution from water splitting. MATERIALS ADVANCES 2024; 5:2968-2973. [PMID: 38572482 PMCID: PMC10986478 DOI: 10.1039/d3ma00977g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/13/2024] [Indexed: 04/05/2024]
Abstract
Metal carbonate hydroxides have emerged as novel and promising candidates for water splitting due to their good electrochemical properties and eco-friendly features. In this study, the hierarchical mesoporous structure of nickel carbonate hydroxide hydrate (Ni2(CO3)(OH)2·4H2O) was synthesized by a one-pot facile hydrothermal method. It demonstrated photocatalytic properties for the first time, exhibiting a hydrogen evolution reaction yield of 10 μmol g-1 h-1 under white light irradiation with a nominal power of 0.495 W. This facile synthesis strategy and the good photocatalytic properties indicate that nickel carbonate hydroxide is a promising material for application in photocatalytic hydrogen evolution.
Collapse
Affiliation(s)
- Parisa Talebi
- Nano and Molecular Systems Research Unit, University of Oulu FIN-90014 Finland
| | - Rossella Greco
- Nano and Molecular Systems Research Unit, University of Oulu FIN-90014 Finland
| | - Takashi Yamamoto
- Department of Science and Technology, Tokushima University Tokushima 770-8506 Japan
| | - Mahdiyeh Zeynali
- Faculty of Physics, University of Tabriz Tabriz 5166616-471 Iran
| | | | - Wei Cao
- Nano and Molecular Systems Research Unit, University of Oulu FIN-90014 Finland
| |
Collapse
|
8
|
Ocuane N, Ge Y, Sandoval-Pauker C, Villagrán D. Bifunctional porphyrin-based metal-organic polymers for electrochemical water splitting. Dalton Trans 2024; 53:2306-2317. [PMID: 38204353 DOI: 10.1039/d3dt03371f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Electrochemical water splitting offers the potential for environmentally friendly hydrogen and oxygen gas generation. Here, we present the synthesis, characterization, and electrochemical analyses of four organic polymers where metalloporphyrins are the active center nodes. These materials were obtained from the polymerization reaction of poly(p-phenylene terephtalamide) (PPTA) with the respective amino-functionalized metalloporphyrins, where M = Fe, 1; Co, 2; Ni, 3; Cu, 4. Scanning and transmission electron microscopy images (SEM and TEM) show that these polymers exhibit a layer-type morphology, which is attributed to hydrogen bonding and π-π stacking between the metalloporphyrin nodes. The synthesized materials were characterized by X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), UV-Vis spectroscopy, and Fourier-transform infrared spectroscopy (FT-IR). Among the materials studied, the cobalt-based polymer, 2, demonstrates a bifunctional electrocatalytic activity for oxygen (OER) and hydrogen (HER) evolution reactions with overpotentials (η10) of 337 mV and 435 mV, respectively. The Fe, 1, and Ni, 2, polymers are less active for HER with maximum current densities (jmax) of 12.6 and 19.1 mA cm-2 and η10 678 mV, 644 mV. Polymer 2 achieves a jmax of 37.7 mA cm-2 for HER and 133 mA cm-2 for OER. The copper-based material, 4, on the other hand, shows selectivity towards HER with an overpotential (η) of 436 mV and a maximum current density (j) of 45.5 mA cm-2. The bifunctional electrocatalytic performance was tested in the overall water-splitting setup, where polymer 2 requires a cell voltage of 1.64 V at 10 mA cm-2. This work presents a novel approach to heterogenized molecular systems, providing materials with exceptional structural characteristics and enhanced electrocatalytic capabilities.
Collapse
Affiliation(s)
- Neidy Ocuane
- Department of Chemistry and Biochemistry, The University of Texas - El Paso, El Paso, Texas 79968, USA.
| | - Yulu Ge
- Department of Chemistry and Biochemistry, The University of Texas - El Paso, El Paso, Texas 79968, USA.
| | - Christian Sandoval-Pauker
- Department of Chemistry and Biochemistry, The University of Texas - El Paso, El Paso, Texas 79968, USA.
| | - Dino Villagrán
- Department of Chemistry and Biochemistry, The University of Texas - El Paso, El Paso, Texas 79968, USA.
| |
Collapse
|
9
|
Ali S, Ahmad Shah SS, Sufyan Javed M, Najam T, Parkash A, Khan S, Bajaber MA, Eldin SMM, Tayeb RA, Rahman MM, Qi J. Recent Advances of Transition Metal Dichalcogenides-Based Materials for Energy Storage Devices, in View of Monovalent to Divalent Ions. CHEM REC 2024; 24:e202300145. [PMID: 37358343 DOI: 10.1002/tcr.202300145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/08/2023] [Indexed: 06/27/2023]
Abstract
The fast growth of electrochemical energy storage (EES) systems necessitates using innovative, high-performance electrode materials. Among the various EES devices, rechargeable batteries (RBs) with potential features like high energy density and extensive lifetime are well suited to meet rapidly increasing energy demands. Layered transition metal dichalcogenides (TMDs), typical two dimensional (2D) nanomaterial, are considered auspicious materials for RBs because of their layered structures and large specific surface areas (SSA) that benefit quick ion transportation. This review summarizes and highlights recent advances in TMDs with improved performance for various RBs. Through novel engineering and functionalization used for high-performance RBs, we briefly discuss the properties, characterizations, and electrochemistry phenomena of TMDs. We summarised that engineering with multiple techniques, like nanocomposites used for TMDs receives special attention. In conclusion, the recent issues and promising upcoming research openings for developing TMDs-based electrodes for RBs are discussed.
Collapse
Affiliation(s)
- Salamat Ali
- School of Materials and Energy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Syed Shoaib Ahmad Shah
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Muhammad Sufyan Javed
- School of Physical Science and Technology Lanzhou University, Lanzhou, 730000, China
| | - Tayyaba Najam
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Anand Parkash
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830000, China
| | - Shaukat Khan
- Department of Chemical Engineering, College of Engineering, Dhofar University, 400021, Salalah 211, Sultanate of Oman
| | - Majed A Bajaber
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Sayed M M Eldin
- Faculty of Engineering and Technology, Future University in Egypt, New Cairo, 11835, Egypt
| | - Roaa A Tayeb
- Department of Chemistry, College of Science, University of Jeddah, Alfaisaliah, Jeddah, Saudi Arabia
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR)&Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Jing Qi
- School of Materials and Energy, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| |
Collapse
|
10
|
Kawashima K, Márquez RA, Smith LA, Vaidyula RR, Carrasco-Jaim OA, Wang Z, Son YJ, Cao CL, Mullins CB. A Review of Transition Metal Boride, Carbide, Pnictide, and Chalcogenide Water Oxidation Electrocatalysts. Chem Rev 2023. [PMID: 37967475 DOI: 10.1021/acs.chemrev.3c00005] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Transition metal borides, carbides, pnictides, and chalcogenides (X-ides) have emerged as a class of materials for the oxygen evolution reaction (OER). Because of their high earth abundance, electrical conductivity, and OER performance, these electrocatalysts have the potential to enable the practical application of green energy conversion and storage. Under OER potentials, X-ide electrocatalysts demonstrate various degrees of oxidation resistance due to their differences in chemical composition, crystal structure, and morphology. Depending on their resistance to oxidation, these catalysts will fall into one of three post-OER electrocatalyst categories: fully oxidized oxide/(oxy)hydroxide material, partially oxidized core@shell structure, and unoxidized material. In the past ten years (from 2013 to 2022), over 890 peer-reviewed research papers have focused on X-ide OER electrocatalysts. Previous review papers have provided limited conclusions and have omitted the significance of "catalytically active sites/species/phases" in X-ide OER electrocatalysts. In this review, a comprehensive summary of (i) experimental parameters (e.g., substrates, electrocatalyst loading amounts, geometric overpotentials, Tafel slopes, etc.) and (ii) electrochemical stability tests and post-analyses in X-ide OER electrocatalyst publications from 2013 to 2022 is provided. Both mono and polyanion X-ides are discussed and classified with respect to their material transformation during the OER. Special analytical techniques employed to study X-ide reconstruction are also evaluated. Additionally, future challenges and questions yet to be answered are provided in each section. This review aims to provide researchers with a toolkit to approach X-ide OER electrocatalyst research and to showcase necessary avenues for future investigation.
Collapse
Affiliation(s)
- Kenta Kawashima
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Raúl A Márquez
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Lettie A Smith
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Rinish Reddy Vaidyula
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Omar A Carrasco-Jaim
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ziqing Wang
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yoon Jun Son
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Chi L Cao
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - C Buddie Mullins
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Center for Electrochemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- H2@UT, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
11
|
Tekalgne M, Do HH, Nguyen TV, Le QV, Hong SH, Ahn SH, Kim SY. MXene Hybrid Nanosheet of WS 2/Ti 3C 2 for Electrocatalytic Hydrogen Evolution Reaction. ACS OMEGA 2023; 8:41802-41808. [PMID: 37970042 PMCID: PMC10634027 DOI: 10.1021/acsomega.3c06403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/04/2023] [Indexed: 11/17/2023]
Abstract
Designing low-cost hybrid electrocatalysts for hydrogen production is of significant importance. Recently, MXene-based materials are being increasingly employed in energy storage devices owing to their layered structure and high electrical conductivity. In this study, we propose a facile hydrothermal strategy for producing WS2/Ti3C2 nanosheets that function as electrocatalysts in the hydrogen evolution reaction (HER). WS2 provides a high surface area and active sites for electrocatalytic activity, whereas MXene Ti3C2 facilitates charge transfer. As a result, the synthesized WS2/Ti3C2 offers an increased surface area and exhibits an enhanced electrocatalytic activity in acidic media. The WS2/Ti3C2 (10%) catalyst exhibited a low onset potential of -150 mV versus RHE for the HER and a low Tafel slope of ∼62 mV dec-1. Moreover, WS2/Ti3C2 (10%) exhibited a double-layer capacitance of 1.2 mF/cm-2, which is 3 and 6 times greater than those of bare WS2 and Ti3C2, respectively. This catalyst also maintained a steady catalytic activity for the HER for over 1000 cycles.
Collapse
Affiliation(s)
- Mahider
Asmare Tekalgne
- Department
of Materials Science and Engineering, Institute of Green Manufacturing
Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ha Huu Do
- VKTech
Research Center, NTT Hi-Tech Institute,
Nguyen Tat Thanh University, Ho
Chi Minh City 700000, Vietnam
| | - Tuan Van Nguyen
- Department
of Materials Science and Engineering, Institute of Green Manufacturing
Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Quyet Van Le
- Department
of Materials Science and Engineering, Institute of Green Manufacturing
Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sung Hyun Hong
- Department
of Materials Science and Engineering, Institute of Green Manufacturing
Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sang Hyun Ahn
- School
of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Soo Young Kim
- Department
of Materials Science and Engineering, Institute of Green Manufacturing
Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
12
|
Bian Z, Nakano Y, Miyata K, Oya I, Nobuoka M, Tsutsui Y, Seki S, Suda M. Chiral Van Der Waals Superlattices for Enhanced Spin-Selective Transport and Spin-Dependent Electrocatalytic Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306061. [PMID: 37695880 DOI: 10.1002/adma.202306061] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/30/2023] [Indexed: 09/13/2023]
Abstract
The emergence of the chiral-induced spin-selectivity (CISS) effect offers a new avenue for chiral organic molecules to autonomously manipulate spin configurations, thereby opening up possibilities in spintronics and spin-dependent electrochemical applications. Despite extensive exploration of various chiral systems as spin filters, one often encounters challenges in achieving simultaneously high conductivity and high spin polarization (SP). In this study, a promising chiral van der Waals superlattice, specifically the chiral TiS2 crystal, is synthesized via electrochemical intercalation of chiral molecules into a metallic TiS2 single crystal. Multiple tunneling processes within the highly ordered chiral layered structure of chiral TiS2 superlattices result in an exceptionally high SP exceeding 90%. This remarkable observation of significantly high SP within the linear transport regime is unprecedented. Furthermore, the chiral TiS2 electrode exhibits enhanced catalytic activity for oxygen evolution reaction (OER) due to its remarkable spin-selectivity for triplet oxygen evolution. The OER performance of chiral TiS2 superlattice crystals presented here exhibits superior characteristics to previously reported chiral MoS2 catalysts, with an approximately tenfold increase in current density. The combination of metallic conductivity and high SP sets the stage for the development of a new generation of CISS materials, enabling a wide range of electron spin-based applications.
Collapse
Affiliation(s)
- Zhiyun Bian
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yuki Nakano
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Keisuke Miyata
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Ichiro Oya
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Masaki Nobuoka
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yusuke Tsutsui
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
- JST-PRESTO, Honcho 4-1-8, Kawaguchi, Saitama, 332-0012, Japan
| | - Shu Seki
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Masayuki Suda
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
- JST-PRESTO, Honcho 4-1-8, Kawaguchi, Saitama, 332-0012, Japan
- JST-FOREST, Honcho 4-1-8, Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
13
|
Suhag MH, Katsumata H, Tateishi I, Furukawa M, Kaneco S. Black Phosphorus-Doped Graphitic Carbon Nitride with Aromatic Benzene Rings for Efficient Photocatalytic Hydrogen Production. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13121-13131. [PMID: 37672653 DOI: 10.1021/acs.langmuir.3c01518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Graphitic carbon nitride (g-C3N4, abbreviated as g-CN) suffers from low visible-light-responsive photocatalytic efficiency. In this study, aromatic benzene rings and black phosphorus (BP) were successfully incorporated into g-CN photocatalysts (BP/A-CN), resulting in modified materials with improved properties. Structural analysis confirmed the successful integration of aromatic rings and BP into the g-CN framework, indicating the formation of a stable composite. Morphological characterization revealed that the introduction of aromatic rings and BP did not cause any significant changes in the nanosheet-like morphology of the g-CN photocatalysts. To evaluate the photocatalytic hydrogen production activity under visible-light irradiation, various compositions of aromatic benzene rings and BP were investigated. Specifically, the BP/A-CN composite exhibited an enhanced photocatalytic hydrogen production rate (860 μmol g-1 h-1), which was approximately 4.0 times higher than that of g-CN (210 μmol g-1 h-1). The improved hydrogen production rates observed in the modified g-CN photocatalysts can be attributed to several factors. First, the aromatic benzene rings and BP enhanced light absorption, thereby improving the efficient utilization of solar energy. Additionally, the presence of these components in the composite photocatalysts reduced electron-hole recombination, thereby facilitating improved charge transfer and separation efficiencies. Overall, this study demonstrates the potential of incorporating aromatic benzene rings and BP into g-CN photocatalysts for efficient solar energy conversion. These findings contribute to the development of novel photocatalytic materials with enhanced performance and highlight the versatility of g-CN-based composites for various applications in environmental and energy fields.
Collapse
Affiliation(s)
- Mahmudul Hassan Suhag
- Department of Applied Chemistry, Graduate School of Engineering, Mie University, Tsu, Mie 514-8507, Japan
- Department of Chemistry, University of Barishal, Barishal 8254, Bangladesh
| | - Hideyuki Katsumata
- Department of Applied Chemistry, Graduate School of Engineering, Mie University, Tsu, Mie 514-8507, Japan
| | - Ikki Tateishi
- Mie Global Environment Center for Education & Research, Mie University, Tsu, Mie 514-8507, Japan
| | - Mai Furukawa
- Department of Applied Chemistry, Graduate School of Engineering, Mie University, Tsu, Mie 514-8507, Japan
| | - Satoshi Kaneco
- Department of Applied Chemistry, Graduate School of Engineering, Mie University, Tsu, Mie 514-8507, Japan
| |
Collapse
|
14
|
Yu S, Wang P, Ye H, Tang H, Wang S, Wu Z, Pei C, Lu J, Li H. Transition Metal Dichalcogenides Nanoscrolls: Preparation and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2433. [PMID: 37686941 PMCID: PMC10490124 DOI: 10.3390/nano13172433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023]
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDCs) nanosheets have shown extensive applications due to their excellent physical and chemical properties. However, the low light absorption efficiency limits their application in optoelectronics. By rolling up 2D TMDCs nanosheets, the one-dimensional (1D) TMDCs nanoscrolls are formed with spiral tubular structure, tunable interlayer spacing, and opening ends. Due to the increased thickness of the scroll structure, the light absorption is enhanced. Meanwhile, the rapid electron transportation is confined along the 1D structure. Therefore, the TMDCs nanoscrolls show improved optoelectronic performance compared to 2D nanosheets. In addition, the high specific surface area and active edge site from the bending strain of the basal plane make them promising materials for catalytic reaction. Thus, the TMDCs nanoscrolls have attracted intensive attention in recent years. In this review, the structure of TMDCs nanoscrolls is first demonstrated and followed by various preparation methods of the TMDCs nanoscrolls. Afterwards, the applications of TMDCs nanoscrolls in the fields of photodetection, hydrogen evolution reaction, and gas sensing are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hai Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
15
|
Balan B, Xavier MM, Mathew S. MoS 2-Based Nanocomposites for Photocatalytic Hydrogen Evolution and Carbon Dioxide Reduction. ACS OMEGA 2023; 8:25649-25673. [PMID: 37521597 PMCID: PMC10373465 DOI: 10.1021/acsomega.3c02084] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023]
Abstract
Photocatalysis is a facile and sustainable approach for energy conversion and environmental remediation by generating solar fuels from water splitting. Due to their two-dimensional (2D) layered structure and excellent physicochemical properties, molybdenum disulfide (MoS2) has been effectively utilized in photocatalytic H2 evolution reaction (HER) and CO2 reduction. The photocatalytic efficiency of MoS2 greatly depends on the active edge sites present in their layered structure. Modifications like reducing the layer numbers, creating defective structures, and adopting different morphologies produce more unsaturated S atoms as active edge sites. Hence, MoS2 acts as a cocatalyst in nanocomposites/heterojunctions to facilitate the photogenerated electron transfer. This review highlights the role of MoS2 as a cocatalyst for nanocomposites in H2 evolution reaction and CO2 reduction. The H2 evolution activity has been described comprehensively as binary (with metal oxide, carbonaceous materials, metal sulfides, and metal-organic frameworks) and ternary composites of MoS2. Photocatalytic CO2 reduction is a more complex and challenging process that demands an efficient light-responsive semiconductor catalyst to tackle the thermodynamic and kinetic factors. Photocatalytic reduction of CO2 using MoS2 is an emerging topic and would be a cost-effective substitute for noble catalysts. Herein, we also exclusively envisioned the possibility of layered MoS2 and its composites in this area. This review is expected to furnish an understanding of the diverse roles of MoS2 in solar fuel generation, thus endorsing an interest in utilizing this unique layered structure to create nanostructures for future energy applications.
Collapse
Affiliation(s)
- Bhagyalakshmi Balan
- School
of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala 686 560, India
| | - Marilyn Mary Xavier
- School
of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala 686 560, India
| | - Suresh Mathew
- School
of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala 686 560, India
- Advanced
Molecular Materials Research Centre (AMMRC), Mahatma Gandhi University, Kottayam, Kerala 686 560, India
| |
Collapse
|
16
|
German E, Gebauer R. The Oxygen Evolution Reaction at MoS 2 Edge Sites: The Role of a Solvent Environment in DFT-Based Molecular Simulations. Molecules 2023; 28:5182. [PMID: 37446844 DOI: 10.3390/molecules28135182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Density functional theory (DFT) calculations are employed to study the oxygen evolution reaction (OER) on the edges of stripes of monolayer molybdenum disulfide. Experimentally, this material has been shown to evolve oxygen, albeit with low efficiency. Previous DFT studies have traced this low catalytic performance to the unfavourable adsorption energies of some reaction intermediates on the MoS2 edge sites. In this work, we study the effects of the aqueous liquid surrounding the active sites. A computational approach is used, where the solvent is modeled as a continuous medium providing a dielectric embedding of the catalyst and the reaction intermediates. A description at this level of theory can have a profound impact on the studied reactions: the calculated overpotential for the OER is lowered from 1.15 eV to 0.77 eV. It is shown that such variations in the reaction energetics are linked to the polar nature of the adsorbed intermediates, which leads to changes in the calculated electronic charge density when surrounded by water. These results underline the necessity to computationally account for solvation effects, especially in aqueous environments and when highly polar intermediates are present.
Collapse
Affiliation(s)
- Estefania German
- Department of Theoretical, Atomic and Optical Physics, University of Valladolid, 47011 Valladolid, Spain
| | - Ralph Gebauer
- The Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11, 34151 Trieste, Italy
| |
Collapse
|
17
|
Amin RS, Fetohi AE, Khater DZ, Lin J, Wang Y, Wang C, El-Khatib KM. Selenium-transition metal supported on a mixture of reduced graphene oxide and silica template for water splitting. RSC Adv 2023; 13:15856-15871. [PMID: 37250226 PMCID: PMC10209667 DOI: 10.1039/d3ra01945d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023] Open
Abstract
Exploration of economical, highly efficient, and environment friendly non-noble-metal-based electrocatalysts is necessary for hydrogen and oxygen evolution reactions (HER and OER) but challenging for cost-effective water splitting. Herein, metal selenium nanoparticles (M = Ni, Co & Fe) are anchored on the surface of reduced graphene oxide and a silica template (rGO-ST) through a simple one-pot solvothermal method. The resulting electrocatalyst composite can enhance mass/charge transfer and promote interaction between water molecules and electrocatalyst reactive sites. NiSe2/rGO-ST shows a remarkable overpotential (52.5 mV) at 10 mA cm-2 for the HER compared to the benchmark Pt/C E-TEK (29 mV), while the overpotential values of CoSeO3/rGO-ST and FeSe2/rGO-ST are 246 and 347 mV, respectively. The FeSe2/rGO-ST/NF shows a low overpotential (297 mV) at 50 mA cm-2 for the OER compared to RuO2/NF (325 mV), while the overpotentials of CoSeO3-rGO-ST/NF and NiSe2-rGO-ST/NF are 400 and 475 mV, respectively. Furthermore, all catalysts indicate negligible deterioration, indicating better stability during the process of HER and OER after a stability test of 60 h. The water splitting system composed of NiSe2-rGO-ST/NF||FeSe2-rGO-ST/NF electrodes requires only ∼1.75 V at 10 mA cm-2. Its performance is nearly close to that of a noble metal-based Pt/C/NF||RuO2/NF water splitting system.
Collapse
Affiliation(s)
- R S Amin
- Chemical Engineering Department, Engineering Research and Renewable Energy Institute, National Research Centre 33 El-Buhouth St., Dokki Cairo 12622 Egypt
| | - Amani E Fetohi
- Chemical Engineering Department, Engineering Research and Renewable Energy Institute, National Research Centre 33 El-Buhouth St., Dokki Cairo 12622 Egypt
| | - D Z Khater
- Chemical Engineering Department, Engineering Research and Renewable Energy Institute, National Research Centre 33 El-Buhouth St., Dokki Cairo 12622 Egypt
| | - Jin Lin
- School of Materials Science and Engineering, North University of China Taiyuan 030051 China
| | - Yanzhong Wang
- School of Materials Science and Engineering, North University of China Taiyuan 030051 China
| | - Chao Wang
- School of Materials Science and Engineering, North University of China Taiyuan 030051 China
| | - K M El-Khatib
- Chemical Engineering Department, Engineering Research and Renewable Energy Institute, National Research Centre 33 El-Buhouth St., Dokki Cairo 12622 Egypt
| |
Collapse
|
18
|
Muthukumar P, Nantheeswaran P, Mariappan M, Pannipara M, Al-Sehemi AG, Anthony SP. Enhancing the oxygen evolution reaction of cobalt hydroxide by fabricating nanocomposites with fluorine-doped graphene oxide. Dalton Trans 2023; 52:3877-3883. [PMID: 36876484 DOI: 10.1039/d2dt04169c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Fluorine and nitrogen codoped cobalt hydroxide-graphene oxide nanocomposites (N,F-Co(OH)2/GO) were synthesized by a simple hydrothermal method and demonstrated highly enhanced oxygen evolution activity in an alkaline medium. N,F-Co(OH)2/GO synthesized under optimized reaction conditions required an overpotential of 228 mV to produce the benchmark current density of 10 mA cm-2 (scan rate 1 mV s-1). In contrast, N,F-Co(OH)2 without GO and Co(OH)2/GO without fluorine required higher overpotentials (370 (N,F-Co(OH)2) and 325 mV (Co(OH)2/GO)) for producing the current density of 10 mA cm-2. The low Tafel slope (52.6 mV dec-1) and charge transfer resistance, and high electrochemical double layer capacitance of N,F-Co(OH)2/GO compared to N,F-Co(OH)2 indicate faster kinetics at the electrode-catalyst interface. The N,F-Co(OH)2/GO catalyst showed good stability over 30 h. High-resolution transmission electron microscope (HR-TEM) images showed good dispersion of polycrystalline Co(OH)2 nanoparticles in the GO matrix. X-ray photoelectron spectroscopic (XPS) analysis revealed the coexistence of Co2+/Co3+ and the doping of nitrogen and fluorine in N,F-Co(OH)2/GO. XPS further revealed the presence of F in its ionic state and being covalently attached to GO. The integration of highly electronegative F with GO stabilizes the Co2+ active centre along with improving the charge transfer and adsorption process that contributes to improved OER. Thus, the present work reports a facile method for preparing F-doped GO-Co(OH)2 electrocatalysts with enhanced OER activity under alkaline conditions.
Collapse
Affiliation(s)
- Pandi Muthukumar
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai-600077, Tamil Nadu, India
| | | | - Mariappan Mariappan
- Department of Chemistry, SRM IST, Kattankulathur, Chennai-603203, Tamil Nadu, India
| | - Mehboobali Pannipara
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
- Department of Chemistry, King Khalid University, Abha 61413, Saudi Arabia
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
- Department of Chemistry, King Khalid University, Abha 61413, Saudi Arabia
| | | |
Collapse
|
19
|
Muthukumar P, Nantheeswaran P, Mariappan M, Pannipara M, Al-Sehemi AG, Anthony SP. F and rare V 4+ doped cobalt hydroxide hybrid nanostructures: excellent OER activity with ultralow overpotential. Dalton Trans 2023; 52:4606-4615. [PMID: 36929846 DOI: 10.1039/d3dt00547j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Highly efficient and stable Earth abundant transition metal electrocatalysts are in great demand for the oxygen evolution reaction (OER), a bottleneck process involved in the water splitting reaction and metal-air batteries. Herein, we have demonstrated a single step direct fabrication of cobalt hydroxide (Co(OH)2) nanowires doped with vanadium(V) in a less stable +4 oxidation state and fluoride (F) ions (V-Co(OH)2) on a carbon cloth electrode that showed highly enhanced OER activity under alkaline conditions. V-Co(OH)2 nanowires synthesized under the optimized conditions produced excellent OER activity with an ultralow overpotential of 136 mV at 10 mA cm-2 (scan rate 1 mV s-1), a small Tafel slope (51.6 mV dec-1) and good stability over 72 h. To the best of our knowledge, this is the lowest overpotential reported for cobalt-based electrocatalysts to achieve a geometric current density of 10 mA cm-2. The controlled synthesis and HR-TEM studies revealed the formation of hybrid nanostructures (nanowires along with spherical assembly of nanoparticles) and codoping of V and F ions played an important role in enhancing the OER activity. The detailed chemical composition and oxidation state analysis by X-ray photoelectron spectroscopy (XPS) confirmed the doping of V4+ and ionic F in V-Co(OH)2 with mixed valence states of Co2+/Co3+ and a higher Co2+ ratio. The outstanding OER activity of V-Co(OH)2 is attributed to the formation of a spherical assembly of nanoparticles with nanowires, which provided a high number of catalytically active sites with enhanced charge transport, and doping of higher valence V4+ and strongly electronegative F in V-Co(OH)2 with a higher ratio of Co2+/Co3+ promoted OOH* intermediate generation and significantly boosted the OER activity. Overall, the present work highlights the possibility of achieving highly active Earth abundant OER electrocatalysts by controlling the mixed oxidation state of Co with a judicious choice of dopants along with maintaining optimal nanostructure morphologies.
Collapse
Affiliation(s)
- Pandi Muthukumar
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai-600077, Tamil Nadu, India
| | | | - Mariappan Mariappan
- Department of Chemistry, SRM IST, Kattankulathur, Chennai-603203, Tamil Nadu, India
| | - Mehboobali Pannipara
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia.,Department of Chemistry, King Khalid University, Abha 61413, Saudi Arabia
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia.,Department of Chemistry, King Khalid University, Abha 61413, Saudi Arabia
| | | |
Collapse
|
20
|
Wang F, Ma H, Ren F, Zhou Z, Zhang Z, Xu W, Min S. In situ self-exsolved ultrasmall Fe 2P quantum dots from attapulgite nanofibers as superior cocatalysts for solar hydrogen evolution. NANOSCALE 2023; 15:3366-3374. [PMID: 36722766 DOI: 10.1039/d2nr06607f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Developing highly active, stable, and cost-efficient cocatalysts for photocatalytic H2 evolution is pivotal in the area of renewable energy conversion. Herein, we present a straightforward, low-temperature phosphidation strategy for in situ exsolving doped Fe ions from natural attapulgite (ATP) nanofibers into a supported Fe2P cocatalyst for the photocatalytic H2 evolution reaction (HER). The resulting Fe2P QDs/ATP features highly dispersed Fe2P QDs with an average size of <2 nm and a strong interfacial interaction between self-exsolved Fe2P QDs and the ATP substrate, thus providing ample and stable active sites for the photocatalytic HER. When employed as a cocatalyst, Fe2P QDs/ATP exhibits superior catalytic activity and notable stability in a molecular system with low-cost xanthene dyes as the photosensitizer under visible light irradiation. More importantly, Fe2P QDs/ATP can also efficiently and stably catalyze the photocatalytic HER when simply combined with various semiconductor photocatalysts (g-C3N4, TiO2, and CdS). This strategy of exsolving transition metal ions from substrates is an effective yet simple approach for the development of highly active supported HER cocatalysts for renewable and clean energy conversion.
Collapse
Affiliation(s)
- Fang Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China.
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, P. R. China.
| | - Haihong Ma
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China.
| | - Fengmei Ren
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China.
| | - Zhengfa Zhou
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China.
| | - Zhengguo Zhang
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, P. R. China.
| | - Weibing Xu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China.
| | - Shixiong Min
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, P. R. China.
| |
Collapse
|
21
|
Liu C, Sun S, Yu M, Zhou Y, Zhang X, Niu J. Rapid photocatalytic degradation of tetrabromobisphenol A using synergistic p-n/Z-scheme dual heterojunction of black phosphorus nanosheets/FeSe2/g-C3N4. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
22
|
Shamloofard M, Shahrokhian S. Morphology Modulation and Phase Transformation of Manganese-Cobalt Carbonate Hydroxide Caused by Fluoride Doping and Its Effect on Boosting the Overall Water Electrolysis. Inorg Chem 2023; 62:1178-1191. [PMID: 36607645 DOI: 10.1021/acs.inorgchem.2c03529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Increasing demands for pollution-free energy resources have stimulated intense research on the design and fabrication of highly efficient, inexpensive, and stable non-noble earth-abundant metal catalysts with remarkable catalytic activity for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Morphology control of the catalysts is widely implemented as an effective strategy to change the surface atomic coordination and increase the catalytic behavior of the catalysts. In this study, we have designed a series of Mn-Co catalyts with different morphologies on the graphite paper substrate to enhance OER and HER activities in alkaline media. The prepared catalysts with different morphologies were successfully obtained by adjusting the amount of ammonium fluoride (NH4F) in the hydrothermal process. The electrochemical tests display that the cubic-like Mn-Co catalyst with pyramids on the faces at a concentration of 0.21 M NH4F exhibits the best activity toward both OER and HER. The cubic-like Mn-Co catalyst with pyramids on the faces showed overpotentials of 240 and 82 mV at a current density of 10 mA cm-2 for OER and HER, respectively. Also, the cubic-like Mn-Co catalyst with pyramids on the faces required overpotentials of 319 and 216 mV to reach the current density of 100 mA cm-2 for OER and HER, respectively. The current density of this catalyst at η = 0.32 V was 701.05 mA cm-2 for OER, and for HER, the current density of the catalyst was 422.89 mA cm-2 at η = 0.23 V. The Tafel slopes of the Mn-Co catalyst with cubic-like structures with pyramids on the faces were 78 and 121 mV dec-1 for OER and HER, respectively. A two-electrode overall water electrolysis system using this bifunctional Mn-Co catalyst exhibited low cell voltages of 1.60 in the alkaline electrolyte at the standard current density of 10 mA cm-2 with appropriate stability. These electrochemical merits exhibit the considerable potential of the cubic-like Mn-Co catalyst with pyramids on the faces for bifunctional OER and HER applications.
Collapse
Affiliation(s)
- Maryam Shamloofard
- Department of Chemistry, Sharif University of Technology, Tehran11155-9516, Iran
| | - Saeed Shahrokhian
- Department of Chemistry, Sharif University of Technology, Tehran11155-9516, Iran
| |
Collapse
|
23
|
Muddassir M, Alarifi A, Abduh NAY, Saeed WS, Karami AM, Afzal M. Ternary Copper Tungsten Sulfide (Cu 2WS 4) Nanoparticles Obtained through a Solvothermal Approach: A Bi-Functional Electrocatalyst for the Hydrogen Evolution Reaction (HER) and Oxygen Evolution Reaction (OER). MATERIALS (BASEL, SWITZERLAND) 2022; 16:299. [PMID: 36614637 PMCID: PMC9822453 DOI: 10.3390/ma16010299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
In this work, Cu2WS4 nanoparticles have been synthesized via a solvothermal decomposition approach using a heterobimetallic single source precursor, WCu2S4(PPh3)3. The single source precursor, WCu2S4(PPh3)3, has been characterized using multinuclear NMR spectroscopy, while Cu2WS4 nanoparticles have been characterized by powder X-ray diffraction (PXRD) for which Rietveld refinement has been performed to authenticate the lattice structure of the decomposed product, Cu2WS4. Furthermore, FESEM and EDAX analyses have been performed to assess the morphology and composition of Cu2WS4. An electrochemical study in acidic as well as basic media suggested that Cu2WS4 nanoparticles possess efficient bifunctional activity towards electrochemical hydrogen as well as oxygen evolution reactions. Linear sweep voltammetry (LSV) performed in 0.5 N H2SO4 indicates an onset potential for the HER of 462 mV and a Tafel slope of 140 mV dec-1. While LSV performed in 0.1 M KOH indicates an onset potential for the OER of 190 mV and a Tafel Slope of 117 mV dec-1.
Collapse
Affiliation(s)
- Mohd. Muddassir
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah Alarifi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naaser A. Y. Abduh
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Waseem Sharaf Saeed
- Restorative Dental Sciences Department, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| | | | - Mohd Afzal
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
24
|
Chiang CH, Yang YC, Lin JW, Lin YC, Chen PT, Dong CL, Lin HM, Chan KM, Kao YT, Suenaga K, Chiu PW, Chen CW. Bifunctional Monolayer WSe 2/Graphene Self-Stitching Heterojunction Microreactors for Efficient Overall Water Splitting in Neutral Medium. ACS NANO 2022; 16:18274-18283. [PMID: 36305475 DOI: 10.1021/acsnano.2c05986] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Developing efficient bifunctional electrocatalysts in neutral media to avoid the deterioration of electrodes or catalysts under harsh environments has become the ultimate goal in electrochemical water splitting. This work demonstrates the fabrication of an on-chip bifunctional two-dimensional (2D) monolayer (ML) WSe2/graphene heterojunction microreactor for efficient overall water splitting in a neutral medium (pH = 7). Through the synergistic atomic growth of the metallic Cr dopant and graphene stitching contact on the 2D ML WSe2, the bifunctional WSe2/graphene heterojunction microreactor consisting of a full-cell configuration demonstrates excellent performance for overall water splitting in a neutral medium. Atomic doping of metallic Cr atoms onto the 2D ML WSe2 effectively facilitates the charge transfer at the solid-liquid interface. In addition, the direct growth of the self-stitching graphene contact with the 2D WSe2 catalyst largely reduces the contact resistance of the microreactor and further improves the overall water splitting efficiency. A significant reduction of the overpotential of nearly 1000 mV at 10 mA cm-2 at the Cr-doped WSe2/graphene heterojunction microreactor compared to the ML pristine WSe2 counterpart is achieved. The bifunctional WSe2/graphene self-stitching heterojunction microreactor is an ideal platform to investigate the fundamental mechanism of emerging bifunctional 2D catalysts for overall water splitting in a neutral medium.
Collapse
Affiliation(s)
- Chun-Hao Chiang
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yueh-Chiang Yang
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Jia-Wei Lin
- Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Yung-Chang Lin
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
| | - Po-Tuan Chen
- Department of Vehicle Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Chung-Li Dong
- Department of Physics, Tamkang University, New Taipei City 25137, Taiwan
| | - Hung-Min Lin
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Kwun Man Chan
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Ting Kao
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Kazu Suenaga
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
- The Institute of Scientific and Industrial Research (ISIR-SANKEN), Osaka University, Osaka 567-0047, Japan
| | - Po-Wen Chiu
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Chun-Wei Chen
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
- Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan
- Center of Atomic Initiative for New Materials (AI-MAT), National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
25
|
Mubarak S, Dhamodharan D, Ghoderao PN, Byun HS. A systematic review on recent advances of metal–organic frameworks-based nanomaterials for electrochemical energy storage and conversion. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
26
|
Manyepedza T, Courtney JM, Snowden A, Jones CR, Rees NV. Impact Electrochemistry of MoS 2: Electrocatalysis and Hydrogen Generation at Low Overpotentials. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:17942-17951. [PMID: 36330166 PMCID: PMC9619928 DOI: 10.1021/acs.jpcc.2c06055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/07/2022] [Indexed: 06/16/2023]
Abstract
MoS2 materials have been extensively studied as hydrogen evolution reaction (HER) catalysts. In this study nanoparticulate MoS2 is explored as a HER catalyst through impact voltammetry. The onset potential was found to be -0.10 V (vs RHE) at pH 2, which was confirmed to be due to HER by scale-up of the impact experiment to generate and collect a sufficient volume of the gas to enable its identification as hydrogen via gas chromatography. This is in contrast to electrodeposited MoS2, which was found to be stable in pH 2 sulfuric acid solution with an onset potential of -0.29 V (vs RHE), in good agreement with literature. XPS was used to categorize the materials and confirm the chemical composition of both nanoparticles and electrodeposits, with XRD used to analyze the crystal structure of the nanoparticles. The early onset of HER was postulated from kinetic analysis to be due to the presence of nanoplatelets of about 1-3 trilayers participating in the impact reactions, and AFM imaging confirmed the presence of these platelets.
Collapse
|
27
|
Peera SG, Koutavarapu R, Chao L, Singh L, Murugadoss G, Rajeshkhanna G. 2D MXene Nanomaterials as Electrocatalysts for Hydrogen Evolution Reaction (HER): A Review. MICROMACHINES 2022; 13:1499. [PMID: 36144122 PMCID: PMC9500977 DOI: 10.3390/mi13091499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 05/27/2023]
Abstract
MXenes, a novel family of 2D transition metal carbide, nitride and carbonitride materials, have been gaining tremendous interest in recent days as potential electrocatalysts for various electrochemical reactions, including hydrogen evolution reaction (HER). MXenes are characterized by their etchable metal layers, excellent structural stability, versatility for heteroatoms doping, excellent electronic conductivity, unique surface functional groups and admirable surface area, suitable for the role of electrocatalyst/support in electrochemical reactions, such as HER. In this review article, we summarized recent developments in MXene-based electrocatalysts synthesis and HER performance in terms of the theoretical and experimental point of view. We systematically evaluated the superiority of the MXene-based catalysts over traditional Pt/C catalysts in terms of HER kinetics, Tafel slope, overpotential and stability, both in acidic and alkaline electrolytic environments. We also pointed out the motives behind the electro catalytic enhancements, the effect of synthesis conditions, heteroatom doping, the effect of surface terminations on the electrocatalytic active sites of various MXenes families. At the end, various possible approaches were recommended for a deeper understanding of the active sites and catalytic improvement of MXenes catalysts for HER.
Collapse
Affiliation(s)
- Shaik Gouse Peera
- Department of Environmental Science, Keimyung University, Dalseo-gu, Daegu 42601, Korea
| | - Ravindranadh Koutavarapu
- Department of Robotics Engineering, College of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Liu Chao
- Engineering Research Center for Hydrogen Energy Materials and Devices, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Lakhveer Singh
- Department of Chemistry, Sardar Patel University, Mandi 175001, Himachal Pradesh, India
- Department of Civil Engineering, Center for Research & Development, Chandigarh University, Mohali 140413, Punjab, India
| | - Govindhasamy Murugadoss
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai 600119, Tamilnadu, India
| | - Gaddam Rajeshkhanna
- Department of Chemistry, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| |
Collapse
|
28
|
Surface plasma–induced tunable nitrogen doping through precursors provides 1T-2H MoSe2/graphene sheet composites as electrocatalysts for the hydrogen evolution reaction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Zhang Y, Gu Z, Bi J, Jiao Y. Molybdenum-iron-cobalt oxyhydroxide with rich oxygen vacancies for the oxygen evolution reaction. NANOSCALE 2022; 14:10873-10879. [PMID: 35843210 DOI: 10.1039/d2nr02568j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The sluggish kinetics of the oxygen evolution reaction (OER) restrains the development of water splitting technologies and the efficiency of producing sustainable resources. To this end, the introduction of iron and molybdenum in catalytic systems has been employed as a crucial strategy for the enhancement of catalytic activity toward the oxygen evolution reaction (OER), but the relationship between catalyst components and catalytic performance is still evasive. In this study, by doping iron and molybdenum into cobalt hydroxide via a cation-exchange method, rich oxygen vacancies and active metal centers are introduced to the trimetallic oxyhydroxide, endowing the catalyst with a low overpotential of 223 mV at 10 mA cm-2, a low Tafel slope of 43.6 mV dec-1, and a long stable operation time (>50 h) in alkaline media, comparable to the current best OER catalyst. Moreover, it is demonstrated that the doping of iron favors the generation of oxygen vacancies. It is also found in this work that using a certain amount (5 mg) of iron dopant can alter the electronic structure of the catalyst by tuning the electronic density around the metal ions, thus optimizing the binding energy of intermediates. The present work unveils the doping effect of iron and molybdenum on the construction of trimetallic oxyhydroxide catalysts, and sheds light on the relationship between the catalyst components and catalytic performance of the OER.
Collapse
Affiliation(s)
- Yechuan Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.,School of Chemical Engineering and Advanced Materials, University of Adelaide, SA 5005, Australia.
| | - Zhengxiang Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingxiu Bi
- School of Chemical Engineering and Advanced Materials, University of Adelaide, SA 5005, Australia.
| | - Yan Jiao
- School of Chemical Engineering and Advanced Materials, University of Adelaide, SA 5005, Australia.
| |
Collapse
|
30
|
Sirati MM, Hussain D, Mahmood K, Chughtai AH, Yousaf-Ur-Rehman M, Malik WMA, Alomairy S, Ahmed SB, Al-Buriahi MS, Ashiq MN. Single-step hydrothermal synthesis of amine functionalized Ce-MOF for electrochemical water splitting. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2022. [DOI: 10.1080/16583655.2022.2079310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Dilshad Hussain
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi Pakistan, Karachi, Pakistan
| | - Khalid Mahmood
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | | | | | | | - Sultan Alomairy
- Department of Physics, College of Science, Taif University, Taif, Saudi Arabia
| | - Samia ben Ahmed
- Departement of Chemistry, College of Sciences, King Khalid University, Abha, Saudi Arabia
| | | | | |
Collapse
|
31
|
Xu B, Zhang Y, Li L, Shao Q, Huang X. Recent progress in low-dimensional palladium-based nanostructures for electrocatalysis and beyond. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214388] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
32
|
Wan K, Xiang Z, Liu W, Wei H, Fu Z, Liang Z. 过渡金属硫化物电解水析氢/析氧反应电催化剂研究进展. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Padma T, Gara DK, Reddy AN, Vattikuti SVP, Julien CM. MoSe 2-WS 2 Nanostructure for an Efficient Hydrogen Generation under White Light LED Irradiation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1160. [PMID: 35407278 PMCID: PMC9000479 DOI: 10.3390/nano12071160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/23/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023]
Abstract
In this work, MoSe2-WS2 nanocomposites consisting of WS2 nanoparticles covered with few MoSe2 nanosheets were successfully developed via an easy hydrothermal synthesis method. Their nanostructure and photocatalytic hydrogen evolution (PHE) performance are investigated by a series of characterization techniques. The PHE rate of MoSe2-WS2 is evaluated under the white light LED irradiation. Under LED illumination, the highest PHE of MoSe2-WS2 nanocomposite is 1600.2 µmol g-1 h-1. When compared with pristine WS2, the MoSe2-WS2 nanostructures demonstrated improved PHE rate, which is 10-fold higher than that of the pristine one. This work suggests that MoSe2-WS2 could be a promising photocatalyst candidate and might stimulate the further studies of other layered materials for energy conversion and storage.
Collapse
Affiliation(s)
- Tatiparti Padma
- Department of Electronics & Communications Engineering, Gokaraju Rangaraju Institute of Engineering and Technology, Kukatpally, Hyderabad 500090, Telangana, India;
| | - Dheeraj Kumar Gara
- Malla Reddy College of Engineering and Technology, Doolapally, Hyderabad 500100, Telangana, India; (D.K.G.); (A.N.R.)
| | - Amara Nadha Reddy
- Malla Reddy College of Engineering and Technology, Doolapally, Hyderabad 500100, Telangana, India; (D.K.G.); (A.N.R.)
| | | | - Christian M. Julien
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, CNRS-UMR 7590, 4 Place Jussieu, 75252 Paris, France
| |
Collapse
|
34
|
Xu Y, Fo Y, Lv H, Cui X, Liu G, Zhou X, Jiang L. Anderson-Type Polyoxometalate-Assisted Synthesis of Defect-Rich Doped 1T/2H-MoSe 2 Nanosheets for Efficient Seawater Splitting and Mg/Seawater Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10246-10256. [PMID: 35184551 DOI: 10.1021/acsami.1c20459] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Designing high-performance hydrogen evolution reaction (HER) catalysts is crucial for seawater splitting. Herein, we demonstrate a facile Anderson-type polyoxometalate-assisted synthesis route to prepare defect-rich doped 1T/2H-MoSe2 nanosheets. As demonstrated, the optimized defect-rich doped 1T/2H-MoSe2 nanosheets display low overpotentials of 116 and 274 mV to gain 10 mA cm-2 in acidic and simulated seawater for the HER, respectively. A magnesium (Mg)/seawater battery was fabricated with the defect-rich doped 1T/2H-MoSe2 nanosheet cathode, displaying the highest power density of up to 7.69 mW cm-2 and stable galvanostatic discharging over 24 h. The theoretical and experimental investigations show that the superior HER and battery performances of the heteroatom-doped MoSe2 nanosheets are attributed to both the improved intrinsic catalytic activity (effective activation of water and favorable subsequent hydrogen desorption) and the abundant active sites, benefiting from the favorable catalytic factors of the doped heteroatom, 1T phase, and defects. Our work presents an intriguing structural modulation strategy to design high-performance catalysts toward both HER and Mg/seawater batteries.
Collapse
Affiliation(s)
- Yingshuang Xu
- Nanomaterial & Electrocatalysis Laboratory, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yumeng Fo
- College of Environment and Chemical Engineering, Dalian University, Dalian 116622, P. R. China
| | - Honghao Lv
- Nanomaterial & Electrocatalysis Laboratory, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xuejing Cui
- Nanomaterial & Electrocatalysis Laboratory, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Guangbo Liu
- Nanomaterial & Electrocatalysis Laboratory, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xin Zhou
- College of Environment and Chemical Engineering, Dalian University, Dalian 116622, P. R. China
| | - Luhua Jiang
- Nanomaterial & Electrocatalysis Laboratory, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
35
|
Yuan L, Zhang Y, Chen J, Li Y, Ren X, Zhang P, Liu L, Zhang J, Sun L. MoS 2 nanosheets vertically grown on CoSe 2 hollow nanotube arrays as an efficient catalyst for the hydrogen evolution reaction. NANOSCALE 2022; 14:2490-2501. [PMID: 35103274 DOI: 10.1039/d1nr05941f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Although the design and synthesis of efficient electrocatalysts for the hydrogen evolution reaction (HER) are highly desirable, severe challenges still need to be addressed. Herein, ultrathin MoS2 nanosheets were vertically grown on CoSe2 hollow nanotube arrays via a simple three-step hydrothermal reaction by using carbon cloth (CC) as a substrate and were subsequently used as a highly efficient HER electrocatalyst (MoS2@CoSe2-CC hybrid). The MoS2 nanosheets uniformly self-assembled on conductive CoSe2 nanotube arrays exhibited a hierarchical and well-ordered structure. Such a unique structure may not only comprise more exposed active sites, but also enable fast electrolyte penetration and facilitate H+/electron transportation to accelerate the reduction and evolution of H2 during the electrocatalytic process. As an HER electrocatalyst with a novel three-dimensional hierarchical structure, the MoS2@CoSe2-CC hybrid exhibited an outstanding catalytic HER performance with a small Tafel slope of 67 mV dec-1 in alkaline media, while only requiring a low HER overpotential of 101 mV at 10 mA cm-2. Notably, the MoS2@CoSe2-CC hybrid also demonstrated exceptional electrochemical durability and structural stability even after 1000 cycles or 48 h of continuous electrolysis. Overall, this work presents a new approach for the design and synthesis of robust, highly active, and cost-effective electrocatalysts for hydrogen generation.
Collapse
Affiliation(s)
- Liang Yuan
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, P. R. China.
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, Guangdong, P. R. China
| | - Yingmeng Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, P. R. China.
| | - Jinhong Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, P. R. China.
| | - Yongliang Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, P. R. China.
| | - Xiangzhong Ren
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, P. R. China.
| | - Peixin Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, P. R. China.
| | - Liwei Liu
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, Guangdong, P. R. China
| | - Jinxiang Zhang
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou 521041, Guangdong, P. R. China
| | - Lingna Sun
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, P. R. China.
| |
Collapse
|
36
|
A Facile Design of Solution-Phase Based VS 2 Multifunctional Electrode for Green Energy Harvesting and Storage. NANOMATERIALS 2022; 12:nano12030339. [PMID: 35159681 PMCID: PMC8839757 DOI: 10.3390/nano12030339] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/10/2022]
Abstract
This work reports the fabrication of vanadium sulfide (VS2) microflower via one-step solvo-/hydro-thermal process. The impact of ethylene glycol on the VS2 morphology and crystal structure as well as the ensuing influences on electrocatalytic hydrogen evolution reaction (HER) and supercapacitor performance are explored and compared with those of the VS2 obtained from the standard pure-aqueous and pure-ethylene glycol solvents. The optimized VS2 obtained from the ethylene glycol and water mixed solvents exhibits a highly ordered unique assembly of petals resulting a highly open microflower structure. The electrode based on the optimized VS2 and exhibits a promising HER electrocatalysis in 0.5 M H2SO4 and 1 M KOH electrolytes, attaining a low overpotential of 161 and 197 mV, respectively, at 10 mA.cm-2 with a small Tafel slope 83 and 139 mVdec-1. In addition, the optimized VS2 based electrode exhibits an excellent electrochemical durability over 13 h. Furthermore, the superior VS2 electrode based symmetric supercapacitor delivers a specific capacitance of 139 Fg-1 at a discharging current density of 0.7 Ag-1 and exhibits an enhanced energy density of 15.63 Whkg-1 at a power density 0.304 kWkg-1. Notably, the device exhibits the capacity retention of 86.8% after 7000 charge/discharge cycles, demonstrating a high stability of the VS2 electrode.
Collapse
|
37
|
Lee W, Kim J, Kim H, Back S. Catalytic Activity Trends of Pyrite Transition Metal Dichalcogenides for Oxygen Reduction and Evolution. Phys Chem Chem Phys 2022; 24:19911-19918. [DOI: 10.1039/d2cp01518h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition metal dichalcogenides (TMDs) have been considered as promising materials for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) electrocatalysis. While there have been numerous studies focusing on layered...
Collapse
|
38
|
Ge Y, Lyu Z, Marcos-Hernández M, Villagrán D. Free-base porphyrin polymer for bifunctional electrochemical water splitting. Chem Sci 2022; 13:8597-8604. [PMID: 35974754 PMCID: PMC9337729 DOI: 10.1039/d2sc01250b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/02/2022] [Indexed: 11/21/2022] Open
Abstract
Water splitting is considered a promising approach for renewable and sustainable energy conversion. The development of water splitting electrocatalysts that have low-cost, long-lifetime, and high-performance is an important area of research for the sustainable generation of hydrogen and oxygen gas. Here, we report a metal-free porphyrin-based two-dimensional crystalline covalent organic polymer obtained from the condensation of terephthaloyl chloride and 5,10,15,20-tetrakis(4-aminophenyl) porphyrin which is stabilized by an extensive hydrogen bonding network. This material exhibits bifunctional electrocatalytic performance towards water splitting with onset overpotentials, η, of 36 mV and 110 mV for HER (in 0.5 M H2SO4) and OER (in 1.0 M KOH), respectively. The as-synthesized material is also able to perform water splitting in neutral phosphate buffer saline solution, with 294 mV for HER and 520 mV for OER, respectively. Characterized by electrochemical impedance spectroscopy (EIS) and chronoamperometry, the as-synthesized material also shows enhanced conductivity and stability compared to its molecular counterpart. Inserting a non-redox active zinc metal center in the porphyrin unit leads to a decrease in electrochemical activity towards both HER and OER, suggesting the four-nitrogen porphyrin core is the active site. The high performance of this metal-free material towards water splitting provides a sustainable alternative to the use of scarce and expensive metal electrocatalysts in energy conversion for industrial applications. Water splitting is considered a promising approach for renewable and sustainable energy conversion.![]()
Collapse
Affiliation(s)
- Yulu Ge
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Zhenhua Lyu
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Mariana Marcos-Hernández
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Dino Villagrán
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
39
|
Qi Y, Yang Z, Peng S, Dong Y, Wang M, Bao XQ, Li H, Xiong D. CoTe 2–NiTe 2 heterojunction directly grown on CoNi alloy foam for efficient oxygen evolution reaction. Inorg Chem Front 2022. [DOI: 10.1039/d1qi00902h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
One-step fabrication of a self-supported CoTe2–NiTe2 heterojunction electrocatalyst directly grown on CoNi foam for efficient and durable oxygen evolution reactions.
Collapse
Affiliation(s)
- Yu Qi
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P.R. China
| | - Zhi Yang
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P.R. China
| | - Shuai Peng
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P.R. China
| | - Youcong Dong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P.R. China
| | - Mingkui Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Xiao-Qing Bao
- State Key Laboratory of Optical Technologies on Nanofabrication and Microengineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, P.R. China
| | - Hong Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P.R. China
| | - Dehua Xiong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P.R. China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| |
Collapse
|
40
|
Ali M, Pervaiz E, Rabi O. Enhancing the Overall Electrocatalytic Water-Splitting Efficiency of Mo 2C Nanoparticles by Forming Hybrids with UiO-66 MOF. ACS OMEGA 2021; 6:34219-34228. [PMID: 34963908 PMCID: PMC8696999 DOI: 10.1021/acsomega.1c03115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/26/2021] [Indexed: 05/25/2023]
Abstract
For efficient electrocatalytic water-splitting, developing a nonprecious-metal-based stable and highly active material is the most challenging task. In this paper, we have devised a synthesis strategy for a hybrid catalyst composed of molybdenum carbide (Mo2C) and a Zr-based metal-organic framework (MOF) (UiO-66) via the solvothermal process. Synergistic effects between Mo2C and UiO-66 lead to a decrease in the hydrogen adsorption energy on the catalysts, and Mo2C/UiO-66 hybrids offer excellent catalytic activity in an alkaline environment for water-splitting. Particularly, the optimized Mo2C/UiO-66 hybrid, termed MCU-2 with 50:50 wt % of both components, displayed the best catalytic performance for both hydrogen and oxygen evolution reactions (HER/OER). It offered a small overpotential of 174.1 mV to attain a current density of 10 mA/cm2 and a Tafel plot value of 147 mV/dec for HER. It also offered a low overpotential of around 180 mV to attain a current density of 20 mA/cm2 and a Tafel plot value of 134 mV/dec for OER. Additionally, the catalyst was stable for over 24 h and ∼1000 cycles with a very minute shift in performance, and the electrolyzer indicates that a potential of ∼1.3 V is required to reach 10 mA/cm2 current density. It can be inferred from the results that the Mo2C/UiO-66 hybrid is a promising candidate as a nonexpensive and active catalyst for overall electrocatalytic water-splitting as the devised catalyst exhibits enhanced kinetics for both OER and HER, a more exposed surface area, faster electron transport, and enhanced diffusion of the electrolyte.
Collapse
|
41
|
Bae J, Kim M, Kang H, Kim T, Choi H, Kim B, Do HW, Shim W. Kinetic 2D Crystals via Topochemical Approach. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006043. [PMID: 34013602 DOI: 10.1002/adma.202006043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/06/2020] [Indexed: 06/12/2023]
Abstract
The designing of novel materials is a fascinating and innovative pathway in materials science. Particularly, novel layered compounds have tremendous influence in various research fields. Advanced fundamental studies covering various aspects, including reactants and synthetic methods, are required to obtain novel layered materials with unique physical and chemical properties. Among the promising synthetic techniques, topochemical approaches have afforded the platform for widening the extent of novel 2D materials. Notably, the synthesis of binary layered materials is considered as a major scientific breakthrough after the synthesis of graphene as they exhibit a wide spectrum of material properties with varied potential applicability. In this review, a comprehensive overview of the progress in the development of metastable layered compounds is presented. The various metastable layered compounds synthesized from layered ternary bulk materials through topochemical approaches are listed, followed by the descriptions of their mechanisms, structural analyses, characterizations, and potential applications. Finally, an essential research direction concerning the synthesis of new materials is indicated, wherein the possible application of topochemical approaches in unprecedented areas is explored.
Collapse
Affiliation(s)
- Jihong Bae
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, South Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, South Korea
| | - Minjung Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, South Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, South Korea
| | - Hyeonsoo Kang
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, South Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, South Korea
| | - Taeyoung Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, South Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, South Korea
| | - Hong Choi
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, South Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, South Korea
| | - Bokyeong Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, South Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, South Korea
| | - Hyung Wan Do
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, South Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, South Korea
| | - Wooyoung Shim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, South Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, South Korea
| |
Collapse
|
42
|
Jamdagni P, Pandey R, Tankeshwar K. First principles study of Janus WSeTe monolayer and its application in photocatalytic water splitting. NANOTECHNOLOGY 2021; 33:025703. [PMID: 34614482 DOI: 10.1088/1361-6528/ac2d46] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
By employing the state-of-the-art density functional theory method, we demonstrate that Janus WSeTe monolayer exhibits promising photocatalytic properties for solar water splitting. The results show that the monolayer possesses thermodynamic stability, suitable bandgap (∼1.89 eV), low excitons binding energy (∼0.19 eV) together with high hole mobility (∼103cm2V-1s-1). Notably, the results suggest that the oxygen evolution reaction can undergo spontaneously without any sacrificial reagents. In contrast, the overpotential of hydrogen evolution reaction can partially be overcome by the external potential under solar light irradiation. Furthermore, the intrinsic electric field induced by the symmetry breaking along the perpendicular direction of Janus WSeTe monolayer not only suppresses the electron-hole recombination but also contributes to the solar-to-hydrogen efficiency, which is calculated to be ∼19%. These characteristics make the Janus WSeTe monolayer to be a promising candidate for solar water splitting.
Collapse
Affiliation(s)
- Pooja Jamdagni
- Department of Physics, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
- Department of Physics, Central University of Haryana, Mahendragarh 123031, India
| | - Ravindra Pandey
- Department of Physics, Michigan Technological University, Houghton, MI 49931, United States of America
| | - K Tankeshwar
- Department of Physics, Central University of Haryana, Mahendragarh 123031, India
| |
Collapse
|
43
|
Kang SM, Kim M, Lee JB, Xu S, Clament Sagaya Selvam N, Yoo PJ. A NiCoP nanocluster-anchored porous Ti 3C 2T x monolayer as high performance hydrogen evolution reaction electrocatalysts. NANOSCALE 2021; 13:12854-12864. [PMID: 34477770 DOI: 10.1039/d1nr02601a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
MXenes have received much attention as promising candidates for noble metal-free hydrogen evolution reaction (HER) electrocatalysts due to their high electrical conductivity, surface hydrophilicity, abundant surface functional groups, and great potential for rational hybridization with other materials. Herein, a novel porous monolayered-Ti3C2Tx@NiCoP (P-Ti3C2Tx@NiCoP) nanostructure was synthesized with uniform distribution of bimetallic compounds for improved charge transfer capability and electrocatalytic activity. In experiments, H2O2-utilized oxidation formed a highly mesoporous structure with a maximized surface area of monolayered MXenes as the support. A subsequent solvothermal process followed by phosphidation enabled successful anchoring of highly HER-active NiCoP nanoclusters onto abundantly exposed terminal edges of the P-Ti3C2Tx support. The structural porosity of the P-Ti3C2Tx nanoflakes played an important role in creating additional room for embedding catalytically active species while stably imparting high electrical conductivity to accelerate charge transfer to NiCoP nanoclusters. With structural modification and effective hybridization, P-Ti3C2Tx@NiCoP showed highly enhanced HER activity with significantly lower overpotentials of 115 and 101 mV at a current density of -10 mA cm-2 in 0.5 M H2SO4 and 1.0 M KOH, respectively, along with showing long-term stability over 60 h. As such, our approach of designing structurally modified-Ti3C2Tx and hybridizing with other electrocatalytically active species would function as a solid platform for implementing Ti3C2Tx-based hetero-nanostructures to achieve state-of-the-art performance in next-generation energy conversion applications.
Collapse
Affiliation(s)
- Sung M Kang
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
44
|
Thermal Treatment of Polyvinyl Alcohol for Coupling MoS2 and TiO2 Nanotube Arrays toward Enhancing Photoelectrochemical Water Splitting Performance. Catalysts 2021. [DOI: 10.3390/catal11070857] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Solar-driven photoelectrochemical (PEC) water splitting, using semiconductor photoelectrodes, is considered a promising renewable energy source and solution for environmental sustainability. Herein, we report polyvinyl alcohol (PVA) as a binder material for combining MoS2 and TiO2 nanotube arrays (TNAs) to improve PEC water splitting ability. By a thermal treatment process, the formation of the π conjunction in the PVA structure enhanced the PEC performance of MoS2/TNAs, exhibiting linear sweeps in an anodic direction with the current density over 65 μA/cm2 at 0 V vs. Ag/AgCl. Besides, the photoresponse ability of MoS2/TNAs is approximately 6-fold more significant than that of individual TNAs. Moreover, a Tafel slope of 140.6 mV/decade has been obtained for the oxygen evolution reaction (OER) of MoS2/TNAs materials.
Collapse
|
45
|
Swain G, Sultana S, Parida K. A review on vertical and lateral heterostructures of semiconducting 2D-MoS 2 with other 2D materials: a feasible perspective for energy conversion. NANOSCALE 2021; 13:9908-9944. [PMID: 34038496 DOI: 10.1039/d1nr00931a] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fossil fuels as a double-edged sword are essential to daily life. However, the depletion of fossil fuel reservoirs has increased the search for alternative renewable energy sources to procure a more sustainable society. Accordingly, energy production through water splitting, CO2 reduction and N2 reduction via photocatalytic and electrocatalytic pathways is being contemplated as a greener methodology with zero environmental pollution. Owing to their atomic-level thickness, two-dimensional (2D) semiconductor catalysts have triggered the reawakening of interest in the field of energy and environmental applications. Among them, following the unconventional properties of graphene, 2D MoS2 has been widely investigated due to its outstanding optical and electronic properties. However, the photo/electrocatalytic performance of 2D-MoS2 is still unsatisfactory due to its low charge carrier density. Recently, the development of 2D/2D heterojunctions has evoked interdisciplinary research fascination in the scientific community, which can mitigate the shortcomings associated with 2D-MoS2. Following the recent research trends, the present review covers the recent findings and key aspects on the synthetic methods, fundamental properties and practical applications of semiconducting 2D-MoS2 and its heterostructures with other 2D materials such as g-C3N4, graphene, CdS, TiO2, MXene, black phosphorous, and boron nitride. Besides, this review details the viable application of these materials in the area of hydrogen energy production via the H2O splitting reaction, N2 fixation to NH3 formation and CO2 reduction to different value-added hydrocarbons and alcohol products through both photocatalysis and electrocatalysis. The crucial role of the interface together with the charge separation principle between two individual 2D structures towards achieving satisfactory activity for various applications is presented. Overall, the current studies provide a snapshot of the recent breakthroughs in the development of various 2D/2D-based catalysts in the field of energy production, delivering opportunities for future research.
Collapse
Affiliation(s)
- Gayatri Swain
- Centre for Nanoscience and Nanotechnology, Siksha 'O' Anusandhan (Deemed to be University), Jagamohan Nagar, Jagamara, Bhubaneswar-751030, Odisha, India.
| | | | | |
Collapse
|
46
|
Application of Pulsed Laser Deposition in the Preparation of a Promising MoS x/WSe 2/C(В) Photocathode for Photo-Assisted Electrochemical Hydrogen Evolution. NANOMATERIALS 2021; 11:nano11061461. [PMID: 34072952 PMCID: PMC8228423 DOI: 10.3390/nano11061461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/27/2021] [Accepted: 05/30/2021] [Indexed: 11/17/2022]
Abstract
We studied the possibility of using pulsed laser deposition (PLD) for the formation of a MoSx/WSe2 heterostructure on a dielectric substrate. The heterostructure can be employed for effective solar water splitting to produce hydrogen. The sapphire substrate with the conducting C(B) film (rear contact) helped increase the formation temperature of the WSe2 film to obtain the film consisting of 2H-WSe2 near-perfect nanocrystals. The WSe2 film was obtained by off-axis PLD in Ar gas. The laser plume from a WSe2 target was directed along the substrate surface. The preferential scattering of selenium on Ar molecules contributed to the effective saturation of the WSe2 film with chalcogen. Nano-structural WSe2 film were coated by reactive PLD with a nanofilm of catalytically active amorphous MoSx~4. It was established that the mutual arrangement of energy bands in the WSe2 and MoSx~4 films facilitated the separation of electrons and holes at the interface and electrons moved to the catalytically active MoSx~4. The current density during light-assisted hydrogen evolution was above ~3 mA/cm2 (at zero potential), whilst the onset potential reached 400 mV under irradiation with an intensity of 100 mW/cm2 in an acidic solution. Factors that may affect the HER performance of MoSx~4/WSe2/C(В) structure are discussed.
Collapse
|
47
|
Zhang Z, Jiang C, Li P, Yao K, Zhao Z, Fan J, Li H, Wang H. Benchmarking Phases of Ruthenium Dichalcogenides for Electrocatalysis of Hydrogen Evolution: Theoretical and Experimental Insights. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007333. [PMID: 33590693 DOI: 10.1002/smll.202007333] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/07/2021] [Indexed: 06/12/2023]
Abstract
The hydrogen evolution reaction (HER) is a significant cathode step in electrochemical devices, especially in water splitting, but developing efficient HER catalysts remains a great challenge. Herein, comprehensive density functional theory calculations are presented to explore the intrinsic HER behaviors of a series of ruthenium dichalcogenide crystals (RuX2 , X = S, Se, Te). In addition, a simple and easily scaled production strategy is proposed to synthesize RuX2 nanoparticles uniformly deposited on carbon nanotubes. Consistent with theoretical predictions, the RuX2 catalysts exhibit impressive HER catalytic behavior. In particular, marcasite-type RuTe2 (RuTe2 -M) achieves Pt-like activity (35.7 mV at 10 mA cm-2 ) in an acidic electrolyte, and pyrite-type RuSe2 presents outstanding HER performance in an alkaline media (29.5 mV at 10 mA cm-2 ), even superior to that of commercial Pt/C. More importantly, a RuTe2 -M-based proton exchange membrane (PEM) electrolyzer and a RuSe2 -based anion exchange membrane (AEM) electrolyzer are also carefully assembled, and their outstanding single-cell performance points to them being efficient cathode candidates for use in hydrogen production. This work makes a significant contribution to the exploration of a new class of transition metal dichalcogenides with remarkable activity toward water electrolysis.
Collapse
Affiliation(s)
- Zhen Zhang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Hydrogen Energy, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Cheng Jiang
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Hydrogen Energy, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Ping Li
- State Key Laboratory for Mechanical Behavior of Materials, Center for Spintronics and Quantum Systems, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shanxi, 710049, China
| | - Keguang Yao
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Hydrogen Energy, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Zhiliang Zhao
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Hydrogen Energy, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Jiantao Fan
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Hydrogen Energy, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Hui Li
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Hydrogen Energy, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Haijiang Wang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
48
|
Novčić KA, Iffelsberger C, Ng S, Pumera M. Local electrochemical activity of transition metal dichalcogenides and their heterojunctions on 3D-printed nanocarbon surfaces. NANOSCALE 2021; 13:5324-5332. [PMID: 33657197 DOI: 10.1039/d0nr06679f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Transition metal dichalcogenides (TMDs) have shown to be promising catalysts for the electrochemical hydrogen evolution reaction (HER) and 3D-printing enables fast prototyping and manufacturing of water splitting devices. However, the merging of TMDs with complex 3D-printed surfaces and nanostructures as well as their localized characterization remains challenging. In this work, electrodeposition of MoS2 and WS2 and their heterojunctions are used to modify thermally activated 3D-printed nanocarbon structures. Their electrochemical performance for the HER is investigated macroscopically by linear sweep voltammetry and microscopically by scanning electrochemical microscopy. This study demonstrates different local HER active sites of MoS2 and WS2 within the 3D-printed nanocarbon structure that are not solely located at the outer surface, but also in the interior up to ∼150 μm for MoS2 and ∼300 μm for WS2.
Collapse
Affiliation(s)
- Katarina A Novčić
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic.
| | - Christian Iffelsberger
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic.
| | - Siowwoon Ng
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic.
| | - Martin Pumera
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic. and Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic and Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea and Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan
| |
Collapse
|
49
|
Shi P, Cheng X, Lyu S. Efficient electrocatalytic oxygen evolution at ultra-high current densities over 3D Fe, N doped Ni(OH)2 nanosheets. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.09.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
50
|
Abstract
Layered MoS2 is considered as one of the most promising two-dimensional photocatalytic materials for hydrogen evolution and water splitting; however, the electronic structure at the MoS2-liquid interface is so far insufficiently resolved. Measuring and understanding the band offset at the surfaces of MoS2 are crucial for understanding catalytic reactions and to achieve further improvements in performance. Herein, the heterogeneous charge transfer behavior of MoS2 flakes of various layer numbers and sizes is addressed with high spatial resolution in organic solutions using the ferrocene/ferrocenium (Fc/Fc+) redox pair as a probe in near-field scanning electrochemical microscopy, i.e. in close nm probe-sample proximity. Redox mapping reveals an area and layer dependent reactivity for MoS2 with a detailed insight into the local processes as band offset and confinement of the faradaic current obtained. In combination with additional characterization methods, we deduce a band alignment occurring at the liquid-solid interface. Here, high-resolution atomic force microscopy and scanning electrochemical microscopy are used to investigate the electron transfer behaviour of layered MoS2 flakes in organic solutions, offering insights on the electronic band alignment at the solid-liquid interface.
Collapse
|