1
|
Saratale RG, Ponnusamy VK, Piechota G, Igliński B, Shobana S, Park JH, Saratale GD, Shin HS, Banu JR, Kumar V, Kumar G. Green chemical and hybrid enzymatic pretreatments for lignocellulosic biorefineries: Mechanism and challenges. BIORESOURCE TECHNOLOGY 2023; 387:129560. [PMID: 37517710 DOI: 10.1016/j.biortech.2023.129560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
The greener chemical and enzymatic pretreatments for lignocellulosic biomasses are portraying a crucial role owing to their recalcitrant nature. Traditional pretreatments lead to partial degradation of lignin and hemicellulose moieties from the pretreated biomass. But it still restricts the enzyme accessibility for the digestibility towards the celluloses and the interaction of lignin-enzymes, nonproductively. Moreover, incursion of certain special chemical treatments and other lignin sulfonation techniques to the enzymatic pretreatment (hybrid enzymatic pretreatment) enhances the lignin structural modification, solubilization of the hemicelluloses and both saccharification and fermentation processes (SAF). This article concentrates on recent developments in various chemical and hybrid enzymatic pretreatments on biomass materials with their mode of activities. Furthermore, the issues on strategies of the existing pretreatments towards their industrial applications are highlighted, which could lead to innovative ideas to overcome the challenges and give guideline for the researchers towards the lignocellulosic biorefineries.
Collapse
Affiliation(s)
- Rijuta Ganesh Saratale
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung-807, Taiwan
| | - Grzegorz Piechota
- GPCHEM. Laboratory of Biogas Research and Analysis, ul. Legionów 40a/3, 87-100 Toruń, Poland
| | - Bartłomiej Igliński
- Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland
| | - S Shobana
- Green Technology and Sustainable Development in Construction Research Group, Van Lang School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Jeong-Hoon Park
- Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology (KITECH), Jeju, South Korea
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| | - Han Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| | - J Rajesh Banu
- Department of Biotechnology, Central University of Tamil Nadu, Neelakudi, Thiruvarur - 610005, Tamil Nadu, India
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, United Kingdom
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway; School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, South Korea.
| |
Collapse
|
2
|
Kumar Vaidyanathan V, Saikia K, Senthil Kumar P, Karanam Rathankumar A, Rangasamy G, Dattatraya Saratale G. Advances in enzymatic conversion of biomass derived furfural and 5-hydroxymethylfurfural to value-added chemicals and solvents. BIORESOURCE TECHNOLOGY 2023; 378:128975. [PMID: 36990330 DOI: 10.1016/j.biortech.2023.128975] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
The progress of versatile chemicals and bio-based fuels using renewable biomass has gained ample importance. Furfural and 5-hydroxymethylfurfural are biomass-derived compounds that serve as the cornerstone for high-value chemicals and have a myriad of industrial applications. Despite the significant research into several chemical processes for furanic platform chemicals conversion, the harsh reaction conditions and toxic by-products render their biological conversion an ideal alternative strategy. Although biological conversion confers an array of advantages, these processes have been reviewed less. This review explicates and evaluates notable improvements in the bioconversion of 5-hydroxymethylfurfural and furfural to comprehend the current developments in the biocatalytic transformation of furan. Enzymatic conversion of HMF and furfural to furanic derivative have been explored, while the latter has substantially overlooked a foretime. This discrepancy was reviewed along with the outlook on the potential usage of 5-hydroxymethylfurfural and furfural for the furan-based value-added products' synthesis.
Collapse
Affiliation(s)
- Vinoth Kumar Vaidyanathan
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Kongkona Saikia
- Department of Biochemistry, FASCM, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641021, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603 110, Tamil Nadu, India; School of Engineering, Lebanese American University, Byblos, Lebanon
| | - Abiram Karanam Rathankumar
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641021, India
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University, Ilsandong-gu, Goyang-si, Gyeonggido, Seoul 10326, South Korea.
| |
Collapse
|
3
|
Valorization of Lignin and Its Derivatives Using Yeast. Processes (Basel) 2022. [DOI: 10.3390/pr10102004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
As the third most plentiful biopolymer after other lignocellulosic derivates such as cellulose and hemicellulose, lignin carries abundant potential as a substitute for petroleum-based products. However, the efficient, practical, value-added product valorization of lignin remains quite challenging. Although several studies have reviewed the valorization of lignin by microorganisms, this present review covers recent studies on the valorization of lignin by employing yeast to obtain products such as single-cell oils (SCOs), enzymes, and other chemical compounds. The use of yeasts has been found to be suitable for the biological conversion of lignin and might provide new insights for future research to develop a yeast strain for lignin to produce other valuable chemical compounds.
Collapse
|
4
|
Zheng B, Yu S, Chen Z, Huo YX. A consolidated review of commercial-scale high-value products from lignocellulosic biomass. Front Microbiol 2022; 13:933882. [PMID: 36081794 PMCID: PMC9445815 DOI: 10.3389/fmicb.2022.933882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
For decades, lignocellulosic biomass has been introduced to the public as the most important raw material for the environmentally and economically sustainable production of high-valued bioproducts by microorganisms. However, due to the strong recalcitrant structure, the lignocellulosic materials have major limitations to obtain fermentable sugars for transformation into value-added products, e.g., bioethanol, biobutanol, biohydrogen, etc. In this review, we analyzed the recent trends in bioenergy production from pretreated lignocellulose, with special attention to the new strategies for overcoming pretreatment barriers. In addition, persistent challenges in developing for low-cost advanced processing technologies are also pointed out, illustrating new approaches to addressing the global energy crisis and climate change caused by the use of fossil fuels. The insights given in this study will enable a better understanding of current processes and facilitate further development on lignocellulosic bioenergy production.
Collapse
Affiliation(s)
- Bo Zheng
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Shengzhu Yu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhenya Chen
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
5
|
Valorization of Date Palm Waste for Plastic Reinforcement: Macro and Micromechanics of Flexural Strength. Polymers (Basel) 2021; 13:polym13111751. [PMID: 34071915 PMCID: PMC8198676 DOI: 10.3390/polym13111751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 12/16/2022] Open
Abstract
Date palm waste is an abundant agricultural residue in Tunisia and can be used for plastic reinforcement. Moreover, its use in plastic composites can help to reduce dependence on fossil resources for material production. In this work, the valorization of date palm residues was studied by employing high-yield processes following mechanical, chemical, and enzymatical treatments. Fibers obtained by soft chemical treatment with sodium hydroxide and enzymatic treatment with xylanases and pectinases were evaluated for their use in the reinforcement of plastic materials. The flexural strength property, truly relevant for structural, construction, automotive, or other market sectors, was adopted to assess the reinforcing potential of the fibers. Polypropylene was effectively reinforced with date palm fibers (60 wt.%), exhibiting a flexural strength increases of 80% (73.1 MPa), 93% (78.5 MPa), and 106% (83.9 MPa) for mechanical, chemical, and enzymatic fibers, respectively. The different treatments had an impact on the chemical composition of the fibers, and by extension on the final properties of the composites. The holocellulose content could provide good interfacial adhesion using a coupling agent, whereas the lignin content improved the dispersion of the phases. Two interesting outcomes were that the flexural performance of enzymatic fibers was like that of wood composites, whereas the specific flexural strength was comparable to that of glass fiber composites. Overall, the present work has shown the potential behind date palm waste in the composite sector when a specific property or application is desired. Novel treatments have been used for greater fiber compatibility, increasing the sustainability of the process, and improving the applicability of the palm residue.
Collapse
|
6
|
Liu T, Wang Y, Zhou J, Li M, Yue J. Preparation of Molded Fiber Products from Hydroxylated Lignin Compounded with Lewis Acid-Modified Fibers Its Analysis. Polymers (Basel) 2021; 13:1349. [PMID: 33919013 PMCID: PMC8122396 DOI: 10.3390/polym13091349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 11/24/2022] Open
Abstract
In this study, molded fiber products (MFPs) were prepared from lignin compounded with Lewis acid-modified fibers using enzymatic hydrolysis lignin (EHL) as a bio-phenol. The fibers were modified and compounded entirely through hot-pressing. To improve the reactivity of enzymatic lignin, hydroxylated enzymatic hydrolysis lignin (HEHL) was prepared by hydroxylation modification of purified EHL with hydrogen peroxide (H2O2) and ferrous hydroxide (Fe(OH)3). HEHL was mixed uniformly with Lewis acid-modified fibers on a pressure machine and modified during the molding process. The purpose of Lewis acid degradation of hemicellulose-converted furfural with HEHL was to generate a resin structure to improve the mechanical properties of a MFPs. The microstructure of the MFP was shown to be generated by resin structure, and it was demonstrated that HEHL was compounded on Lewis acid-modified fibers during the molding process. The thermal stability of the MFP with composite HEHL did not change significantly owing to the addition of lignin and had higher tensile strength (46.28 MPa) and flexural strength (65.26 MPa) compared to uncompounded and modified MFP. The results of this study are expected to promote the application of high lignin content fibers in molded fibers.
Collapse
Affiliation(s)
| | | | | | | | - Jinquan Yue
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin 150040, China; (T.L.); (Y.W.); (J.Z.); (M.L.)
| |
Collapse
|
7
|
Liao JJ, Latif NHA, Trache D, Brosse N, Hussin MH. Current advancement on the isolation, characterization and application of lignin. Int J Biol Macromol 2020; 162:985-1024. [DOI: 10.1016/j.ijbiomac.2020.06.168] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/21/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022]
|
8
|
Sewsynker-Sukai Y, Naomi David A, Gueguim Kana EB. Recent developments in the application of kraft pulping alkaline chemicals for lignocellulosic pretreatment: Potential beneficiation of green liquor dregs waste. BIORESOURCE TECHNOLOGY 2020; 306:123225. [PMID: 32241680 DOI: 10.1016/j.biortech.2020.123225] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 05/24/2023]
Abstract
Lignocellulosic waste has offered a cost-effective and food security-wise substrate for the generation of biofuels and value-added products. However, its recalcitrant properties necessitate pretreatment. Of the various pretreatment methods, alkaline techniques have gained prominence as efficient catalysts. The kraft pulping industry represents a major hub for the generation of white, black and green liquor alkaline solutions during the paper making process. Despite its well-known significance in the kraft pulping process, green liquor (GL) has been widely applied for lignocellulosic pretreatment. Recently, green liquor dregs (GLD), an alkaline waste generated from the kraft pulping industry has piqued interest. Therefore, this review outlines the general flow of the kraft pulping process and the alkaline chemicals derived. In addition, the extensively studied GL for lignocellulosic pretreatment is discussed. Subsequently, the potential beneficiation of GLD for lignocellulosic pretreatment is presented. Furthermore, the challenges and prospects of lignocellulosic pretreatments are highlighted.
Collapse
Affiliation(s)
- Yeshona Sewsynker-Sukai
- University of KwaZulu-Natal, School of Life Sciences, Pietermaritzburg, South Africa; SMRI/NRF SARChI Research Chair in Sugarcane Biorefining, Discipline of Chemical Engineering, University of KwaZulu-Natal, Durban, South Africa.
| | - Anthea Naomi David
- University of KwaZulu-Natal, School of Life Sciences, Pietermaritzburg, South Africa
| | - E B Gueguim Kana
- University of KwaZulu-Natal, School of Life Sciences, Pietermaritzburg, South Africa
| |
Collapse
|
9
|
Wang L, Cao Z, Zou J, Liu Z, Li Y, Wang Z. Urea-pretreated corn stover: Physicochemical characteristics, delignification kinetics, and methane production. BIORESOURCE TECHNOLOGY 2020; 306:123097. [PMID: 32192958 DOI: 10.1016/j.biortech.2020.123097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/23/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
Solids loading is a key factor in aqueous or gaseous ammonia production from urea. Methane production from urea-pretreated corn stover, as well as the physicochemical characteristics and delignification kinetics of the corn stover, were investigated with four solids loading values (10%-70%) and five ratios of urea to corn stover (1:100-7:10) at 35 °C for 6 weeks. A 1:20 ratio of urea to corn stover was optimal for achieving high lignin removal with ≤50% solids loading, and 7:10 was optimal with 70% solids loading. Under the two optimal conditions, 85.56% and 82.35% of cellulose and 85.76% and 85.49% of hemicellulose were retained. The maximum lignin removal rates of 69.67% and 68.27% and methane production of 294.70 and 292.56 L/kg volatile solids (VS) were achieved, respectively. The delignification kinetics of the urea-pretreated corn stover conformed to three first-order reactions. Most of the lignin was degraded within the first 3 weeks.
Collapse
Affiliation(s)
- Lili Wang
- College of Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Zhen Cao
- College of Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Jianyang Zou
- College of Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Zhuo Liu
- College of Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Yibo Li
- College of Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Zhongjiang Wang
- College of Engineering, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
10
|
Zhang Q, You S, Li Y, Qu X, Jiang H. Enhanced biohydrogen production from cotton stalk hydrolysate of Enterobacter cloacae WL1318 by overexpression of the formate hydrogen lyase activator gene. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:94. [PMID: 32489423 PMCID: PMC7245044 DOI: 10.1186/s13068-020-01733-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/16/2020] [Indexed: 05/29/2023]
Abstract
BACKGROUND Biohydrogen production from lignocellulose has become an important hydrogen production method due to its diversity, renewability, and cheapness. Overexpression of the formate hydrogen lyase activator (fhlA) gene is a promising tactic for enhancement of hydrogen production in facultative anaerobic Enterobacter. As a species of Enterobacter, Enterobacter cloacae was reported as a highly efficient hydrogen-producing bacterium. However, little work has been reported in terms of cloning and expressing the fhlA gene in E. cloacae for lignocellulose-based hydrogen production. RESULTS In this study, the formate hydrogen lyase activator (fhlA) gene was cloned and overexpressed in Enterobacter cloacae WL1318. We found that the recombinant strain significantly enhanced cumulative hydrogen production by 188% following fermentation of cotton stalk hydrolysate for 24 h, and maintained improved production above 30% throughout the fermentation process compared to the wild strain. Accordingly, overexpression of the fhlA gene resulted in an enhanced hydrogen production potential (P) and maximum hydrogen production rate (R m), as well as a shortened lag phase time (λ) for the recombinant strain. Additionally, the recombinant strain also displayed improved glucose (12%) and xylose (3.4%) consumption and hydrogen yield Y(H2/S) (37.0%) compared to the wild strain. Moreover, the metabolites and specific enzyme profiles demonstrated that reduced flux in the competitive branch, including succinic, acetic, and lactic acids, and ethanol generation, coupled with increased flux in the pyruvate node and formate splitting branch, benefited hydrogen synthesis. CONCLUSIONS The results conclusively prove that overexpression of fhlA gene in E. cloacae WL1318 can effectively enhance the hydrogen production from cotton stalk hydrolysate, and reduce the metabolic flux in the competitive branch. It is the first attempt to engineer the fhlA gene in the hydrogen-producing bacterium E. cloacae. This work provides a highly efficient engineered bacterium for biohydrogen production from fermentation of lignocellulosic hydrolysate in the future.
Collapse
Affiliation(s)
- Qin Zhang
- College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu, 241000 Anhui China
| | - Shaolin You
- College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu, 241000 Anhui China
| | - Yanbin Li
- College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu, 241000 Anhui China
| | - Xiaowei Qu
- College of Life Science, Tarim University, Alaer, 843300 Xinjiang China
| | - Hui Jiang
- College of Life Science, Tarim University, Alaer, 843300 Xinjiang China
| |
Collapse
|
11
|
Tanase-Opedal M, Espinosa E, Rodríguez A, Chinga-Carrasco G. Lignin: A Biopolymer from Forestry Biomass for Biocomposites and 3D Printing. MATERIALS 2019; 12:ma12183006. [PMID: 31527542 PMCID: PMC6766274 DOI: 10.3390/ma12183006] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/05/2019] [Accepted: 09/12/2019] [Indexed: 11/16/2022]
Abstract
Biopolymers from forestry biomass are promising for the sustainable development of new biobased materials. As such, lignin and fiber-based biocomposites are plausible renewable alternatives to petrochemical-based products. In this study, we have obtained lignin from Spruce biomass through a soda pulping process. The lignin was used for manufacturing biocomposite filaments containing 20% and 40% lignin and using polylactic acid (PLA) as matrix material. Dogbones for mechanical testing were 3D printed by fused deposition modelling. The lignin and the corresponding biocomposites were characterized in detail, including thermo-gravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction analysis (XRD), antioxidant capacity, mechanical properties, and scanning electron microscopy (SEM). Although lignin led to a reduction of the tensile strength and modulus, the reduction could be counteracted to some extent by adjusting the 3D printing temperature. The results showed that lignin acted as a nucleating agent and thus led to further crystallization of PLA. The radical scavenging activity of the biocomposites increased to roughly 50% antioxidant potential/cm2, for the biocomposite containing 40 wt % lignin. The results demonstrate the potential of lignin as a component in biocomposite materials, which we show are adequate for 3D printing operations.
Collapse
Affiliation(s)
| | - Eduardo Espinosa
- Chemical Engineering Department, Faculty of Science, Universidad de Córdoba, Building Marie-Curie, 14014 Campus de Rabanales, Spain.
| | - Alejandro Rodríguez
- Chemical Engineering Department, Faculty of Science, Universidad de Córdoba, Building Marie-Curie, 14014 Campus de Rabanales, Spain.
| | | |
Collapse
|
12
|
Dar MA, Pawar KD, Rajput BP, Rahi P, Pandit RS. Purification of a cellulase from cellulolytic gut bacterium, Bacillus tequilensis G9 and its evaluation for valorization of agro-wastes into added value byproducts. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101219] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Saratale RG, Saratale GD, Cho SK, Kim DS, Ghodake GS, Kadam A, Kumar G, Bharagava RN, Banu R, Shin HS. Pretreatment of kenaf (Hibiscus cannabinus L.) biomass feedstock for polyhydroxybutyrate (PHB) production and characterization. BIORESOURCE TECHNOLOGY 2019; 282:75-80. [PMID: 30851577 DOI: 10.1016/j.biortech.2019.02.083] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/16/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Kenaf biomass (KB) was employed as feedstock for the synthesis of polyhydroxybutyrate (PHB) using Ralstonia eutropha to replace conventional petroleum-derived polymers. Various pretreatments followed by enzymatic saccharification were applied to release monomeric sugars from KB for PHB production. The effects of increasing concentration of Na2CO3 + Na2SO3 (NaC + NaS) pretreated KB hydrolysates (20-40 g/L) on PHB production were investigated. NaC + NaS pretreated KB hydrolysates (30 g/L) exhibited maximum 70.0% PHA accumulation, with PHB titers of 10.10 g/L and PHB yields of about 0.488 g/g of reducing sugar produced within 36 h of fermentation. PHA accumulation, PHB yield and R. eutropha growth performance using KB hydrolysates were found to be comparable with those of synthetic sugar mixture. Characterization of the produced PHB in terms of crystalline structure, and thermal properties was done using various analytical techniques and results coincide with standard PHB. Thus, green liquor pretreated KB hydrolysates deliver a promising and economically feasible carbon substrate for PHB production.
Collapse
Affiliation(s)
- Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| | - Si Kyung Cho
- Department of Biological and Environmental Science, Dongguk University, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| | - Dong Su Kim
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Gajanan S Ghodake
- Department of Biological and Environmental Science, Dongguk University, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| | - Avinash Kadam
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| | - Gopalakrishanan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway
| | - Ram Naresh Bharagava
- Department of Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar 226 025, Uttar Pradesh, India
| | - Rajesh Banu
- Department of Civil Engineering, Anna University Regional Campus - Tirunelveli, Tamil Nadu 627007, India
| | - Han Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea.
| |
Collapse
|
14
|
Ponnusamy VK, Nguyen DD, Dharmaraja J, Shobana S, Banu JR, Saratale RG, Chang SW, Kumar G. A review on lignin structure, pretreatments, fermentation reactions and biorefinery potential. BIORESOURCE TECHNOLOGY 2019; 271:462-472. [PMID: 30270050 DOI: 10.1016/j.biortech.2018.09.070] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/11/2018] [Accepted: 09/13/2018] [Indexed: 05/11/2023]
Abstract
In recent years, lignin valorization is commercially an important and advanced sustainable process for lignocellulosic biomass-based industries, primarily through the depolymerization path. The conversion of the lignin moieties into biofuels and other high value-added products are still challenging to the researchers due to the heterogeneity and complex structure of lignin-containing biomass. Besides, the involvement of different microorganisms that carries varying metabolic and enzymatic complex systems towards degradation and conversion of the lignin moieties also discussed. These microorganisms are frequently short of the traits which are obligatory for the industrial application to achieve maximum yields and productivity. This review mainly focuses on the current progress and developments in the pretreatment routes for enhancing lignin degradation and also assesses the liquid and gaseous biofuel production by fermentation, gasification and hybrid technologies along with the biorefinery schemes which involves the synthesis of high value-added chemicals, biochar and other valuable products.
Collapse
Affiliation(s)
- Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Dinh Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, Suwon, Republic of Korea
| | - Jeyaprakash Dharmaraja
- Division of Chemistry, Faculty of Science and Humanities, Sree Sowdambika College of Engineering, Aruppukottai, Tamil Nadu, India
| | - Sutha Shobana
- Department of Chemistry and Research Centre, Aditanar College of Arts and Science, Virapandianpatnam, Tiruchendur, Tamil Nadu, India
| | - J Rajesh Banu
- Department of Civil Engineering, Regional Campus Anna University Tirunelveli, Tamilnadu, India
| | - Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University, Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Soon Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, Suwon, Republic of Korea
| | - Gopalakrishnan Kumar
- Green Processing, Bioremediation and Alternative Energies Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
15
|
Nan Y, Jia L, Yang M, Xin D, Qin Y, Zhang J. Simplified sodium chlorite pretreatment for carbohydrates retention and efficient enzymatic saccharification of silvergrass. BIORESOURCE TECHNOLOGY 2018; 261:223-231. [PMID: 29669312 DOI: 10.1016/j.biortech.2018.03.106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 06/08/2023]
Abstract
In this work, a simplified and cost-effective chlorite pretreatment method to improve the hydrolysabiliy of biomass was developed. Compared to common used sodium chlorite-acetic acid (SCA) pretreatment (18.1%), sodium chlorite (SC) pretreatment resulted in less xylan loss (7.8%), thus led more carbohydrates retention. Moreover, the Chinese silvergrass pretreated by SC for 2 h achieved higher glucose yield (70.5%) than the substrate pretreated by SCA under the same pretreatment conditions did (58.7%), after 48 h enzymatic hydrolysis by cellulase. By synergistic action of cellulase and xylanase, the glucose yield of SC pretreated (12 h) samples reached to 93.5% with 808.7 mg/g DM total reducing sugars yields. In addition, without the usage of acetic acid could decrease the process cost and result in less inhibitor generation in pretreatment process.
Collapse
Affiliation(s)
- Yufei Nan
- College of Forestry, Northwest A&F University, No. 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Lili Jia
- College of Forestry, Northwest A&F University, No. 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Ming Yang
- College of Forestry, Northwest A&F University, No. 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Donglin Xin
- College of Forestry, Northwest A&F University, No. 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Yujie Qin
- College of Forestry, Northwest A&F University, No. 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Junhua Zhang
- College of Forestry, Northwest A&F University, No. 3 Taicheng Road, Yangling 712100, Shaanxi, China.
| |
Collapse
|
16
|
Yuan Z, Wen Y, Kapu NS. Ethanol production from bamboo using mild alkaline pre-extraction followed by alkaline hydrogen peroxide pretreatment. BIORESOURCE TECHNOLOGY 2018; 247:242-249. [PMID: 28950132 DOI: 10.1016/j.biortech.2017.09.080] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/09/2017] [Accepted: 09/11/2017] [Indexed: 05/15/2023]
Abstract
A sequential two-stage pretreatment process comprising alkaline pre-extraction and alkaline hydrogen peroxide pretreatment (AHP) was investigated to convert bamboo carbohydrates into bioethanol. The results showed that mild alkaline pre-extraction using 8% (w/w) sodium hydroxide (NaOH) at 100°C for 180min followed by AHP pretreatment with 4% (w/w) hydrogen peroxide (H2O2) was sufficient to generate a substrate that could be efficiently digested with low enzyme loadings. Moreover, alkali pre-extraction enabled the use of lower H2O2 charges in AHP treatment. Two-stage pretreatment followed by enzymatic hydrolysis with only 9FPU/g cellulose led to the recovery of 87% of the original sugars in the raw feedstock. The use of the pentose-hexose fermenting Saccharomyces cerevisiae SR8u strain enabled the utilization of 95.7% sugars in the hydrolysate to reach 4.6%w/v ethanol titer. The overall process also enabled the recovery of 62.9% lignin and 93.8% silica at high levels of purity.
Collapse
Affiliation(s)
- Zhaoyang Yuan
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Yangbing Wen
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Nuwan Sella Kapu
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z4, Canada.
| |
Collapse
|
17
|
Saratale GD, Saratale RG, Ghodake GS, Jiang Y, Chang JS, Shin HS, Kumar G. Solid state fermentative lignocellulolytic enzymes production, characterization and its application in the saccharification of rice waste biomass for ethanol production: An integrated biotechnological approach. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.03.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Saratale RG, Kuppam C, Mudhoo A, Saratale GD, Periyasamy S, Zhen G, Koók L, Bakonyi P, Nemestóthy N, Kumar G. Bioelectrochemical systems using microalgae - A concise research update. CHEMOSPHERE 2017; 177:35-43. [PMID: 28284115 DOI: 10.1016/j.chemosphere.2017.02.132] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/22/2017] [Accepted: 02/25/2017] [Indexed: 06/06/2023]
Abstract
Excess consumption of energy by humans is compounded by environmental pollution, the greenhouse effect and climate change impacts. Current developments in the use of algae for bioenergy production offer several advantages. Algal biomass is hence considered a new bio-material which holds the promise to fulfil the rising demand for energy. Microalgae are used in effluents treatment, bioenergy production, high value added products synthesis and CO2 capture. This review summarizes the potential applications of algae in bioelectrochemically mediated oxidation reactions in fully biotic microbial fuel cells for power generation and removal of unwanted nutrients. In addition, this review highlights the recent developments directed towards developing different types of microalgae MFCs. The different process factors affecting the performance of microalgae MFC system and some technological bottlenecks are also addressed.
Collapse
Affiliation(s)
- Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Chandrasekar Kuppam
- School of Applied Biosciences, Kyungpook National University, Daegu, 702-701, Republic of Korea
| | - Ackmez Mudhoo
- Department of Chemical & Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit, 80837, Mauritius
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Sivagurunathan Periyasamy
- Center for Materials Cycles and Waste Management Research, National Institute for Environmental Studies, Tsukuba, Japan
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Dongchuan Rd. 500, Shanghai, 200241, China
| | - László Koók
- Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem ut 10, 8200, Veszprém, Hungary
| | - Péter Bakonyi
- Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem ut 10, 8200, Veszprém, Hungary
| | - Nándor Nemestóthy
- Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem ut 10, 8200, Veszprém, Hungary
| | - Gopalakrishnan Kumar
- Sustainable Management of Natural Resources and Environment Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
19
|
An S, Li W, Liu Q, Li M, Ma Q, Ma L, Chang HM. A two-stage pretreatment using acidic dioxane followed by dilute hydrochloric acid on sugar production from corn stover. RSC Adv 2017. [DOI: 10.1039/c7ra05280d] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A two-stage pretreatment method was developed to improve sugar recovery in this study.
Collapse
Affiliation(s)
- Shengxin An
- Laboratory of Basic Research in Biomass Conversion and Utilization
- Department of Thermal Science and Energy Engineering
- University of Science and Technology of China
- Hefei 230026
- PR China
| | - Wenzhi Li
- Laboratory of Basic Research in Biomass Conversion and Utilization
- Department of Thermal Science and Energy Engineering
- University of Science and Technology of China
- Hefei 230026
- PR China
| | - Qiyu Liu
- Laboratory of Basic Research in Biomass Conversion and Utilization
- Department of Thermal Science and Energy Engineering
- University of Science and Technology of China
- Hefei 230026
- PR China
| | - Minghao Li
- Laboratory of Basic Research in Biomass Conversion and Utilization
- Department of Thermal Science and Energy Engineering
- University of Science and Technology of China
- Hefei 230026
- PR China
| | - Qiaozhi Ma
- Laboratory of Basic Research in Biomass Conversion and Utilization
- Department of Thermal Science and Energy Engineering
- University of Science and Technology of China
- Hefei 230026
- PR China
| | - Longlong Ma
- Guangzhou Institute of Energy Conversion
- Chinese Academy of Sciences
- Guangzhou 510650
- PR China
| | - Hou-min Chang
- Department of Forest Biomaterials
- North Carolina State University
- Raleigh
- USA
| |
Collapse
|
20
|
Liu T, Li Z. An electrogenerated base for the alkaline oxidative pretreatment of lignocellulosic biomass to produce bioethanol. RSC Adv 2017. [DOI: 10.1039/c7ra08101d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Electrogenerated base (EGB), an alternative source for alkaline pretreatment, can achieve the same performance as NaOH.
Collapse
Affiliation(s)
- Tongjun Liu
- Department of Bioengineering
- Qilu University of Technology
- Jinan
- China
| | - Zhenglong Li
- Department of Chemical Engineering and Materials Science
- Michigan State University
- East Lansing
- USA
- Department of Biosystems and Agricultural Engineering
| |
Collapse
|
21
|
Saratale GD, Jung MY, Oh MK. Reutilization of green liquor chemicals for pretreatment of whole rice waste biomass and its application to 2,3-butanediol production. BIORESOURCE TECHNOLOGY 2016; 205:90-6. [PMID: 26820921 DOI: 10.1016/j.biortech.2016.01.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/05/2016] [Accepted: 01/06/2016] [Indexed: 05/06/2023]
Abstract
The performance of green liquor pretreatment using Na2CO3 and Na2SO3 and its optimization for whole rice waste biomass (RWB) was investigated. Incubation of Na2CO3-Na2SO3 at a 1:1 ratio (chemical charge 10%) for 12% RWB at 100°C for 6h resulted in maximum delignification (58.2%) with significant glucan yield (88%) and total sugar recovery (545mg/g of RWB) after enzymatic hydrolysis. Recovery and reusability of the resulting chemical spent wash were evaluated to treat RWB along with its compatibility for enzymatic digestibility. Significant hydrolysis and lignin removal were observed for up to three cycles; however, further reuse of Na2CO3 and Na2SO3 lowered their performance. Significant 2,3-butanediol (BDO) was produced by Klebsiella pneumoniae KMK-05 with the RWB enzymatic hydrolysate from each pretreatment cycle. BDO yield achieved using RWB-derived sugars was similar to those using laboratory-grade sugars. This pretreatment strategy constitutes an ecofriendly, cost-effective, and practical method for utilizing lignocellulosic biomass.
Collapse
Affiliation(s)
- Ganesh D Saratale
- Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul 136-713, South Korea
| | - Moo-Young Jung
- Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul 136-713, South Korea
| | - Min-Kyu Oh
- Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul 136-713, South Korea.
| |
Collapse
|
22
|
Abstract
Eruca sativa plant offers a great potential to utilized for multiple biofuel production through a biorefining prospective to maximize the biodiesel, biogas, and ethanol production yields.
Collapse
Affiliation(s)
- Hamed Bateni
- Department of Chemical Engineering
- Isfahan University of Technology
- Isfahan 84156-83111
- Iran
- Chemical and Biomolecular Engineering Department
| | - Keikhosro Karimi
- Department of Chemical Engineering
- Isfahan University of Technology
- Isfahan 84156-83111
- Iran
- Industrial Biotechnology Group
| |
Collapse
|