1
|
Shah LA, Subhan H, Alam S, Ye D, Ullah M. Bentonite clay reinforced alginate grafted composite hydrogel with remarkable sorptive performance toward removal of methylene green. Int J Biol Macromol 2024; 279:135600. [PMID: 39276899 DOI: 10.1016/j.ijbiomac.2024.135600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/25/2023] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
The rapid industrial progress in today's world has led to an alarming increase in water pollution caused by various contaminants such as synthetic dyes. To address this issue, a new hydrogel sorbent, BC-r-Na-Alg-g-p(NIPAm-co-AAc), was developed by combining bentonite clay, sodium alginate, and poly(N-isopropyl acrylamide-co-acrylic acid) through one-pot free radical polymerization at 60 °C. The developed sorbent was characterized using several analytical techniques including SEM, FTIR, TGA, UTM, and swelling studies. The swelling capacity of the sorbent was observed to increase remarkably with an increase in pH, reaching a maximum of 9664 % at pH 11. In batch mode sorption experiments, the sorbent's performance toward methylene green (MG) was investigated by analysing the effects of contact time, pH, temperature, and concentration. The experimental data were fitted to pseudo-second-order kinetic and Langmuir isotherm models, indicating chemisorption as the dominant interaction mode between the anionic sorbent and cationic MG. However, physisorption may also occur to a lesser extent, indicated by the significant R2 of the pseudo-first-order kinetic and Freundlich isotherm models. Additionally, the sorbent exhibited very little decrease (approximately 5 %) in sorptive performance for six sorption-desorption cycles. Overall, the facile fabrication, excellent swelling (9664 %), promising sorption performance (2573 mg.g-1), and good recyclability (6 cycles) make the developed sorbent a potential candidate for various industrial applications.
Collapse
Affiliation(s)
- Luqman Ali Shah
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, 25120, Pakistan.
| | - Hanif Subhan
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, 25120, Pakistan; Department of Chemistry, University of Malakand, KPK, Pakistan
| | - Sultan Alam
- Department of Chemistry, University of Malakand, KPK, Pakistan
| | - Daixin Ye
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Mohib Ullah
- Department of Chemistry, Balochistan university of Information Technology Engineering and Management Sciences (BUITEMS), Takatu Campus, Quetta 87300, Pakistan
| |
Collapse
|
2
|
El-Kholy SA. Environmentally Benign Freeze-dried Biopolymer-Based Cryogels for Textile Wastewater Treatments: A review. Int J Biol Macromol 2024; 276:133931. [PMID: 39032896 DOI: 10.1016/j.ijbiomac.2024.133931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/04/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Motivated by sustainability and environmental protection, great efforts have been paid towards water purification and attaining complete decolorization and detoxification of polluted water effluent. Textile effluent, the main participant in water pollution, is a complicated mixture of toxic pollutants which seriously impact human health and the entire ecosystem. Developing effective materials for potential removal of the water contaminants is urgent. Recently, cryogels have been applied in wastewater sectors due to their unique physiochemical attributes(e.g. high surface area, lightweight, porosity, swelling-deswelling, and high permeability). These features robustly affected the cryogel's performance, as adsorbent material, particularly in wastewater sectors. This review serves as a detailed reference to the cryogels derived from biopolymers and applied as adsorbents for the purification of textile drainage. We displayed an overview of: the existing contaminants in textile effluents (dyes and heavy metals), their sources, and toxicity; advantages and disadvantages of the most common treatment techniques (biodegradation, advanced chemical oxidation, membrane filtration, coagulation/flocculation, adsorption). A simple background about cryogels (definition, cryogelation technique, significant features as adsorbents, and the adsorption mechanisms) is also discussed. Finally, the bio-based cryogels dependent on biopolymers such as chitosan, xanthan, cellulose, PVA, and PVP, are fully discussed with evaluating their maximum adsorption capacity.
Collapse
Affiliation(s)
- Samar A El-Kholy
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El Koom 32511, Egypt.
| |
Collapse
|
3
|
Allahkarami E, Allahkarami E, Heydari M, Azadmehr A, Maghsoudi A. Assessment of chromite ore wastes for methylene blue adsorption: Isotherm, kinetic, thermodynamic studies, ANN, and statistical physics modeling. CHEMOSPHERE 2024; 358:142098. [PMID: 38677606 DOI: 10.1016/j.chemosphere.2024.142098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/17/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
This research investigates the adsorption potential of chrysotile and lizardite, two minerals derived from chromite ore wastes, for the uptake of Methylene Blue (MB) dye from waste streams. The characterization of these minerals involves XRD, XRF, FTIR, and SEM. Results confirm the dominance of polymorphic magnesium silicate minerals, specifically chrysotile and lizardite, in the samples. The FTIR spectra reveal characteristic vibration bands confirming the presence of these minerals. The SEM analysis depicts irregular surfaces with broken and bent edges, suggesting favorable morphologies for adsorption. N2 adsorption-desorption isotherms indicate mesoporous structures with Type IV pores in both adsorbents. The Central Composite Design approach is employed to optimize MB adsorption conditions, revealing the significance of contact time, adsorbent mass, and initial MB concentration. The proposed models exhibit high significance, with F-values and low p-values indicating the importance of the studied factors. Experimental validation confirms the accuracy of the models, and the optimum conditions for MB adsorption are determined. The influence of solution acidity on MB uptake is investigated, showing a significant enhancement at higher pH values. Isothermal studies indicate Langmuir and Freundlich models as suitable descriptions for MB adsorption onto chrysotile and lizardite. The maximum adsorption capacities of MB for chrysotile and lizardite were found to be 352.97 and 254.85, respectively. Kinetic studies reveal that the pseudo-first-order model best describes the adsorption process. Thermodynamic analysis suggests an exothermic and spontaneous process. Statistical physics models further elucidate the monolayer nature of adsorption. Additionally, an artificial neural network is developed, exhibiting high predictive capability during training and testing stages. The reusability of chrysotile and lizardite is demonstrated through multiple regeneration cycles, maintaining substantial adsorption potential. Therefore, this research provides comprehensive insights into the adsorption characteristics of chrysotile and lizardite, emphasizing their potential as effiective and reusable sorbents for MB uptake from wastewater.
Collapse
Affiliation(s)
- Esmaeil Allahkarami
- Department of Petroleum Engineering, Faculty of Petroleum, Gas and Petrochemical Engineering, Persian Gulf University, Bushehr, Iran
| | - Ebrahim Allahkarami
- Department of Chemical Technology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Majid Heydari
- Department of Mining Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Amirreza Azadmehr
- Department of Mining Engineering, Amirkabir University of Technology, Tehran, Iran.
| | - Abbas Maghsoudi
- Department of Mining Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
4
|
Aigbe UO, Lebepe TC, Oluwafemi OS, Osibote OA. Prediction and optimizing of methylene blue sequestration to activated charcoal/magnetic nanocomposites using artificial neutral network and response surface methodology. CHEMOSPHERE 2024; 355:141751. [PMID: 38522674 DOI: 10.1016/j.chemosphere.2024.141751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/18/2024] [Accepted: 03/16/2024] [Indexed: 03/26/2024]
Abstract
Green synthesized magnetic nanoparticles (MNPs) linked with activated charcoal (AC) (AC/Fe3O4 NCs) were exploited for methylene blue (MB) confiscation in this study. The AC/Fe3O4 NCs produced were characterized using TEM, FTIR, UV/Vis and XRD spectrometry. The Response-Surface-Methodology (RSM) was utilized to improve the experimental data for the MB sorption to AC/Fe3O4 NCs, with 20 experimental runs implemented through a central composite design (CCD) to assess the effect of sorption factors-initial MB concentration, pH and sorbent dosage effects on the response (removal-effectiveness). The quadratic model was discovered to ideally describe the sorption process, with an R2 value of 0.9857. The theoretical prediction of the experimental data using the Artificial-Neural-Network (ANN) model showed that the Levenberg-Marquardt (LM) had a better performance criterion. Comparison between the modelled experimental and predicted data showed also that the LM algorithm had a high R2 of 0.9922, which showed NN model applicability for defining the sorption of MB to AC/Fe3O4 NCs with practical precision. The results of the non-linear fitting (NLF) of both isotherm and kinetic models, showed that the sorption of MB to AC/Fe3O4 NCs was perfectly described using the pseudo-second-order (PSOM) and Freundlich (FRHM) models. The estimated optimum sorption capacity was 455 mg g-1. Thermodynamically, the sorption of MB to AC/Fe3O4 NCs was shown to be non-spontaneous and endothermic.
Collapse
Affiliation(s)
- Uyiosa Osagie Aigbe
- Department of Mathematics and Physics, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town, South Africa.
| | - Thabang Calvin Lebepe
- Department of Chemical Sciences (Formerly Applied Chemistry), University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa
| | - Oluwatobi Samuel Oluwafemi
- Department of Chemical Sciences (Formerly Applied Chemistry), University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa; Centre for Nanomaterials Science Research, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, Johannesburg, South Africa
| | - Otolorin Adelaja Osibote
- Department of Mathematics and Physics, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| |
Collapse
|
5
|
Ravankhah V, Fathi S. Structural simulation and performance evaluation of a novel synthesized ZIF in the adsorption of MO from aqueous solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30943-30958. [PMID: 38616223 DOI: 10.1007/s11356-024-33206-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/01/2024] [Indexed: 04/16/2024]
Abstract
Zeolitic imidazolate frameworks (ZIFs) are desirable materials widely applied as adsorbent for wastewater treatment. This study synthesizes and applies a novel structured ZIF with organic ligand of 2-methyl imidazole and metal salt of copper (II) sulfate as adsorbent. Its morphology and structure were investigated using Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscope, field emission scanning electron microscope, energy dispersive X-ray spectrometry, and mapping analysis. After structural analysis, the adsorbent structure was simulated and determined using Avogadro and Gaussian software. The removal efficiency of prepared ZIF in the removal of methyl orange from aqueous solution was evaluated. The effect of pH, the concentration of the dye in solution, dosage of the adsorbent, and the contact time between adsorbent and solution on the methyl orange removal were examined using central composite design of response surface methodology in five levels. The maximum dye removal of 99% was obtained for 2 g adsorbent/L, pH of 3.3, and initial dye concentration of 121 mg/L after 127 min contact time. In addition, to reduce the economic costs and energy consumption, the synthesis time was also reduced and used to show the applicability of the adsorbent prepared and understand its advantages and disadvantages in removing methyl orange dye from aqueous solutions. This molecular adsorbent is stable, and it can be stored for months. On the other hand, this ZIF can be easily recovered and reused many times. In this research, after five times of recovery, there was no significant change in the effectiveness of the adsorbent.
Collapse
Affiliation(s)
- Vida Ravankhah
- Chemical Engineering Department, Faculty of Engineering, Kermanshah University of Technology, Kermanshah, Iran
| | - Sohrab Fathi
- Chemical Engineering Department, Faculty of Engineering, Kermanshah University of Technology, Kermanshah, Iran.
| |
Collapse
|
6
|
Alarfaj N, Al Musayeib N, Amina M, El-Tohamy M. Synthesis and characterization of polysiphonia/cerium oxide/nickel oxide nanocomposites for the removal of toxins from contaminated water and antibacterial potential. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:17064-17096. [PMID: 38334931 DOI: 10.1007/s11356-024-32199-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/22/2024] [Indexed: 02/10/2024]
Abstract
Due to massive industrial development, organic and inorganic wastes are very common in most industrial effluents from the pharmaceutical industry. Even in low concentrations, they are very dangerous and harmful to humans and other living organisms. Antibiotics are frequently detected in surface waters, in soil, in wastewater from sewage treatment plants, and even in drinking water. The major environmental threat they pose has prompted to search for effective and environmentally friendly means of eliminating these toxins. The biogenic synthesis of nanomaterials using natural herbal extracts has attracted considerable attention due to their low-cost, environmentally friendly and non-toxic nature, and as a reversal of various physical and chemical processes. The ceria nanoparticles (CeO2 NPs), nickel oxide nanoparticles (NiO NPs), and CeO2/NiO nanocomposites (CeO2/NiO NCS) were successfully prepared by simple biosynthetic routes using Polysiphonia urceolata algae extract as green surfactants and tested for toxic ofloxacin removal efficiency. The formed nanostructures were identified and characterized by various microscopic (FESEM-EDX, TEM, XRD, BET, and XPS) and spectroscopic (UV-Vis, FTIR, and TGA) methods. The adsorption/desorption of ofloxacin (OFX) on the surface of the nanomaterials was investigated under optimized conditions (initial dose 20 mg/L, agitation speed 250 rpm, pH 12, adsorbent dose 0.5 mg/L, and contact time 120 min). The removal efficiencies were 78%, 86%, and 94% for CeO2 NPs, NiO NPs and CeO2/NiO NCS, respectively, where OFX removal was found to be spontaneous, followed by Freundlich isotherm and pseudo-second order kinetic reaction model. The OFX adsorption mechanism on the nanomaterials involved the surface complexation via specific electrostatic attraction and H-bonding. The biogenic nanomaterials were also tested for their antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus epidermidis and Staphylococcus aureus. The CeO2/NiO NCS exhibited the highest antibacterial activity with zone of inhibition (31.12 ± 0.59 mm) against S. epidermidis, followed by CeO2NPs and NiONPs with zones of inhibition (25.53 ± 1.2 mm) and (21.42 ± 0.6 mm) against P. aeruginosa and S. epidermidis, respectively. This study demonstrated the efficiency of the synthesized nanomaterials in removing toxins such as OFX from contaminated water and can serve as potential antibacterial and antioxidant agents. Notably, the heterogeneous nanomaterials demonstrated remarkable stability across a broad pH range, promising reusability and indicated tremendous potential of waste biomass reduction and OFX effluent treatment.
Collapse
Affiliation(s)
- Nawal Alarfaj
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, 11495, Riyadh, Saudi Arabia
| | - Nawal Al Musayeib
- Department of Pharmacognosy, Pharmacy College, King Saud University, P.O. Box 22452, 11495, Riyadh, Saudi Arabia
| | - Musarat Amina
- Department of Pharmacognosy, Pharmacy College, King Saud University, P.O. Box 22452, 11495, Riyadh, Saudi Arabia
| | - Maha El-Tohamy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, 11495, Riyadh, Saudi Arabia.
| |
Collapse
|
7
|
Yang X, Liu D, He H, Zou J, Wang D, Zhang L, Tang Y. Preparation and characterization of EI-Co/Zr@AC and the mechanisms underlying its removal for atrazine in aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:5116-5131. [PMID: 38112872 DOI: 10.1007/s11356-023-31544-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/10/2023] [Indexed: 12/21/2023]
Abstract
Atrazine, a widely used herbicide in agriculture, is detrimental to both the ecological environment and human health owing to its extensive use, poor degradability, and biotoxicity. The technology commonly used to remove atrazine from water is activated carbon adsorption, but it has the problems of difficult recovery, secondary contamination, and a low removal rate. To efficiently remove atrazine from agricultural wastewater, in this study, a new environmental material, embedding immobilization (EI)-Co- and Zr-modified activated carbon powder (Co/Zr@AC), was prepared by immobilizing the bimetallic Co/Zr@AC via EI technique and employed to remove atrazine. When preparing EI-Co/Zr@AC, the single-factor experiment was conducted and determined the optimal preparation conditions: sodium alginate 2.5% (wt), calcium chloride 4.0% (wt), Co/Zr@AC 1.0% (wt), and bentonite 2.0% (wt). The prepared EI-Co/Zr@AC has a three-dimensional mesh structure and many pores and also possesses good mass transfer performance and mechanical properties. The removal efficiency by EI-Co/Zr@AC for the removal of 5.0 mg/L atrazine from 50 mL was 94.1% at pH 7.0 and 25°C, with an EI-Co/Zr@AC dosage of 0.8 g. The mechanistic study showed that the pseudo-second-order kinetic model could describe the removal process better than the pseudo-first-order kinetic model, and the Freundlich isotherm model fit better than other isotherm models. Additionally, the synthesized EI-Co/Zr@AC spheres demonstrated good reusability, with the atrazine removal rate remaining 70.4% after five cycles, and the mechanical properties of the spheres were stable.
Collapse
Affiliation(s)
- Xiaolong Yang
- College of Environmental Science and Engineering, and Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| | - Danxia Liu
- College of Environmental Science and Engineering, and Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| | - Huijun He
- College of Environmental Science and Engineering, and Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China.
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China.
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology for Science and Education Combined With Science and Technology Innovation Base, Guilin University of Technology, Guilin, 541004, Guangxi, China.
| | - Jianmei Zou
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China
| | - Dunqiu Wang
- College of Environmental Science and Engineering, and Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology for Science and Education Combined With Science and Technology Innovation Base, Guilin University of Technology, Guilin, 541004, Guangxi, China
| | - Lin Zhang
- College of Environmental Science and Engineering, and Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| | - Yiyan Tang
- College of Environmental Science and Engineering, and Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| |
Collapse
|
8
|
Patil DJ, Behera SN. Synthesis and characterization of nanoparticles of cobalt and nickel ferrites for elimination of hazardous organic dyes from industrial wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53323-53338. [PMID: 36856998 DOI: 10.1007/s11356-023-26059-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
This study presents the results of synthesis and characterization of nanoparticles of cobalt ferrite (CoFe2O4) and nickel ferrite (NiFe2O4) using co-precipitation method followed by application for removal of hazardous organic textile dyes of thiazole yellow G (TYG) and alizarin yellow R (AYR). XRD analysis confirmed formation of cubic spinel structure with average crystallite sizes at 16.07 nm and 13.84 nm for CoFe2O4 and NiFe2O4, respectively. Field emission scanning electron microscopy (FESEM) analysis showed agglomeration of spherical shape morphology with uniformly distributed Co, Ni, Fe, and O elements. The surface area calculated from Brunauer-Emmett-Teller (BET) analysis was 64 m2/g and 62 m2/g for CoFe2O4 and NiFe2O4, respectively. Vibrating sample magnetometer (VSM) showed super-paramagnetic behavior for all samples with magnetic saturation (Ms) at 7.269 and 6.61 emu/g for CoFe2O4 and NiFe2O4, respectively. The adsorption influencing parameters such as pH of solution, quantity of adsorbent, and contact time on dye removal efficiency were thoroughly investigated. Overall, acidic condition of samples with pH at 4 favored the maximum removal efficiency by CoFe2O4 as 98, 97, and 93%, and by NiFe2O4 as 96, 93, and 92%, respectively, for TYG, AYR, and mixture sample. The Langmuir adsorption isotherm model describes the equilibrium of all samples with the best fit of coefficient of determination (R2). The adsorption results fitted well with a pseudo-second-order kinetic model for all samples. The regeneration-reuse ability of adsorbents and cost estimation analysis of the dye removal process suggested that the economic suitability of nano-adsorbents for remediation of textile effluents was favored. The estimated thermodynamic parameters inferred that the removal of organic dyes onto the surface of CoFe2O4 and NiFe2O4 is a spontaneous, favorable, and exothermic physical adsorption process.
Collapse
Affiliation(s)
- Dharmaraj J Patil
- Environmental Engineering Laboratory, Department of Civil Engineering, Shiv Nadar University, Gautam Buddha Nagar, Delhi-NCR, Greater Noida, Uttar Pradesh, 201314, India
| | - Sailesh N Behera
- Environmental Engineering Laboratory, Department of Civil Engineering, Shiv Nadar University, Gautam Buddha Nagar, Delhi-NCR, Greater Noida, Uttar Pradesh, 201314, India.
- Centre for Environmental Sciences and Engineering (CESE), Shiv Nadar University, Greater Noida, Gautam Buddha Nagar, Uttar Pradesh, 201314, India.
| |
Collapse
|
9
|
Huang Y, Zhou D, Wang L, Jiao G, Gou H, Li Z, Zhang G. Role of tailing colloid from vanadium-titanium magnetite in the adsorption and cotransport with vanadium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:34069-34084. [PMID: 36504302 DOI: 10.1007/s11356-022-24621-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
The geochemical cycling of vanadium (V) in mining areas has attracted much attention. However, little knowledge was about the effects of tailing colloids on the fate and transport of vanadium in tailing reservoirs which was ignored before. This study investigated the interactions of tailing colloids from vanadium-titanium magnetite with vanadium. Colloid characterization, tailing leaching, adsorption, and column experiments of single and cotransport of tailing colloid with V were conducted. Results show that 98.08% V in the vanadium-titanium magnetite tailing was in the residual state with limited leachable V under various conditions. The adsorption of V to the tailing colloid was via electrostatic attraction and surface complexation on the heterogeneously distributed sorption sites on the colloid surface. The adsorption control step was the diffusion of V into the tailing colloid pores. The increase in pH and the decrease in ionic strength (IS) promoted the single transport of tailing colloid and V in quartz sand columns. In cotransport scenarios, V promoted the transport of tailing colloids via the surface coating effect. In contrast, the transport of V was retarded by the adsorbed tailing colloid on the quartz sand surface. The pre-adsorbed V in the column enhanced the subsequent transport of tailing colloids by electrical repulsion, while the pre-adsorbed tailing colloids facilitated the subsequent transport of V via cotransport of the released colloids with V. The high mobility of the tailing colloid and V and their cotransport in the porous media highly demonstrated the potential V pollution pathways that need to be taken into account.
Collapse
Affiliation(s)
- Yi Huang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China
| | - Dan Zhou
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China.
| | - Li Wang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China
- Chongqing Academy of Metrology and Quality Inspection, Chongqing, 401121, China
| | - Ganghui Jiao
- College of Geosciences, Chengdu University of Technology, Chengdu, 610059, Sichuan, China
| | - Hang Gou
- College of Geosciences, Chengdu University of Technology, Chengdu, 610059, Sichuan, China
| | - Zijing Li
- College of Geosciences, Chengdu University of Technology, Chengdu, 610059, Sichuan, China
| | - Guanru Zhang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China
| |
Collapse
|
10
|
Natesan G, Rajappan K. GO-CuO nanocomposites assimilated into CA-PES polymer membrane in adsorptive removal of organic dyes from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:42658-42678. [PMID: 35821317 DOI: 10.1007/s11356-022-21821-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Textile industries are one of the leading environmental pollutants by releasing harmful dye effluents. In many textile distrts, the amount of excess color in treated textile effluent that exceeds regulatory limitations is still being a major concern. The combining usage of nanomaterials and polymer material to solve these issues using various techniques. In this research, graphene oxide-copper oxide (GO-CuO) nanomaterial have been incorporated into cellulose-acetate (CA), poly-ether sulfone (PES) blend polymer by using phase inversion process to fabricate thin film nanocomposite (TFN) membrane for removal of dye pollutant. The physiochemical properties of prepared TFN materials were studied by Fourier transform infra-red spectroscopy (FT-IR), X-ray diffractometer (XRD), field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), thermo gravimetric analysis (TGA), and mechanical strength analysis. Dye adsorption experiments were performed with four typical water-soluble organic dyes methylene blue (MB), rhodamine blue (Rh. B), methyl orange (MO) and Congo red (CR). After reaching adsorption equilibrium, the composite membrane final removal effectiveness for MB 92.42%, Rh. B 89.39%, CR 68.39%, and MO 58.82% respectively. As a result, the fabricated TFN material proves to be an effective adsorbent material for cationic dye molecules. Also, when the fabricated material was tested with textile industry effluent sample, all physio-chemical properties exhibited a considerable decrease in concentrations when compared to the real textile effluent concentration. The treated effluents permitted for a relatively greater growth and germination index of Tropical amaranth roots than the textile effluent, this demonstrates that phytotoxicity testing was also successful. The most effective temperature, concentration and pH were found to be 273 K, 1 × 10-5 M and pH 9. The fabricated TFN membrane material (GO-CuO @ CA-PES) can be recommended for water treatment applications.
Collapse
Affiliation(s)
- Gowriboy Natesan
- Department of Chemistry SRM Institute of Science & Technology, Kattankulathur, Chengalpattu, 603203, India
| | - Kalaivizhi Rajappan
- Department of Chemistry SRM Institute of Science & Technology, Kattankulathur, Chengalpattu, 603203, India.
| |
Collapse
|
11
|
Ji H, Liu Z, Jiang W. Transport behavior of nanoplastics in activated carbon column. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26256-26269. [PMID: 36355238 DOI: 10.1007/s11356-022-24056-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Nanoplastics can be produced directly from some artificial products, such as cosmetics, or indirectly from the breakup of large pieces of plastic waste. They have a small particle size, large specific surface area, and stable structure and can concentrate toxic compounds in water. The discharge of nanoplastics into the water environment through urban piping systems or surface runoff may lead to the contamination of surface water resources, which poses a great threat to the safety of drinking water. As a common adsorbent, granular activated carbon (GAC) is widely used in the advanced treatment of drinking water. However, most of the studies focused on the transport ability of nanoplastics in quartz sand, and there is a lack of research on the migration behavior of nanoplastics in activated carbon media. In this study, the stability and pore characteristics of GAC were studied, and its regeneration efficiency was investigated. The transport curves of PSNPs, which have a particle size of 98 ± 9 nm and specific surface area of about 67 m2/g, were compared under different ionic strengths, ionic species, flow rates, pH, and humic acid (HA) concentrations. And DLVO theory was used to analyze the transport behavior of nanoplastics in activated carbon column. All experiments were performed at room temperature to make the results generalizable. The results showed that GAC had stable pore structure and excellent adsorption capacity. The surface area and pore volume of GAC are 759 m2/g and 0.357 cm3/g, respectively. And the regeneration rate of GAC can reach 90% and 83.3% after the first two regeneration cycles. On the other hand, at high ionic strength and low pH, the repulsive barrier between PSNPs and activated carbon gradually disappeared; then, more PSNPs were deposited in the activated carbon media, and the concentration of PSNPs in the effluent water was lower. Both the flow rate and HA promoted the transport of PSNPs, but the breakthrough curves of PSNPs did not change significantly when the HA concentration was further increased. At the same ion concentration, PSNPs tend to deposit on the surface of activated carbon in the background solution of Ca2+ compared with Na+. This study reveals the migration mechanism of PSNPs in the activated carbon filter column, which is of great importance to ensure the safety of drinking water and human health.
Collapse
Affiliation(s)
- Hongliang Ji
- School of Resources and Environment, Nanchang University, No. 999 Xuefu Avenue, Honggutan District, Nanchang, 330031, Jiangxi, China
| | - Zhenzhong Liu
- School of Resources and Environment, Nanchang University, No. 999 Xuefu Avenue, Honggutan District, Nanchang, 330031, Jiangxi, China.
| | - Wen Jiang
- School of Resources and Environment, Nanchang University, No. 999 Xuefu Avenue, Honggutan District, Nanchang, 330031, Jiangxi, China
| |
Collapse
|
12
|
Khan H, Hussain S, Zahoor R, Arshad M, Umar M, Marwat MA, Khan A, Khan JR, Haleem MA. Novel modeling and optimization framework for Navy Blue adsorption onto eco-friendly magnetic geopolymer composite. ENVIRONMENTAL RESEARCH 2023; 216:114346. [PMID: 36170902 DOI: 10.1016/j.envres.2022.114346] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/15/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
The disproportionate potency of dyes in textile wastewater is a global concern that needs to be contended. The present study comprehensively investigates the adsorption of Navy-Blue dye (NB) onto bentonite clay based geopolymer/Fe3O4 nanocomposite (GFC) using novel statistical and machine learning frameworks in the following steps; (1) synthesis and characterization of GFC, (2) experimental testing and modelling of NB adsorption onto GFC following Box-Behnken design and three response surface prediction models namely stepwise regression analysis (SRA), Support vector regression (SVR) and Kriging (KR), (3) parametric, sensitivity, thermodynamic and kinetic analysis of pH, GFC dose and contact time on adsorption performance, and (4) finding global parametric solution of the process using Latin Hypercube, Sobol and Taguchi orthogonal array sampling and combining SRA-SVR-KR predictions with novel hybrid simulated annealing (SA)-desirability function (DF) approach. Under the given testing range, parametric/sensitivity analysis revealed the critical role of pH over others accounting ∼37% relative effect and primarily derived the NB adsorption. The statistical evaluation of models revealed that all models could be utilized for elucidating and predicting the NB removal using GFC, however, SVR accuracy was better among others for this particular work, as the overall computed root mean squared error was only 0.55 while the error frequency counts remained <1 for 90% predictions. GFC showed 86.29% NB removal for the given experimental matrix which can be elevated to 96.25% under optimum conditions. The NB adsorption was found to be physical, spontaneous, favorable and obeyed pseudo-2nd order kinetics. The results demonstrate the suitability of GFC as the promising cost-effective and efficient alternative for the decolourization of urban and drinking water streams and elucidate the potential of machine learning models for accurate prediction & elevation of adsorption processes with less experimentation in water purification applications.
Collapse
Affiliation(s)
- Hammad Khan
- Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi, Pakistan
| | - Sajjad Hussain
- Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi, Pakistan.
| | - Rehman Zahoor
- Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi, Pakistan
| | - Muhammad Arshad
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Muhammad Umar
- Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi, Pakistan
| | - Mohsin Ali Marwat
- Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi, Pakistan
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Javaid Rabbani Khan
- Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi, Pakistan
| | | |
Collapse
|
13
|
Adsorption properties of amine modified lignin-hydrogel composite for uranyl ions: Theoretical and experimental insights. J INDIAN CHEM SOC 2023. [DOI: 10.1016/j.jics.2023.100924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
14
|
El-Bindary M, El-Desouky M, El-Bindary A. Adsorption of industrial dye from aqueous solutions onto thermally treated green adsorbent: A complete batch system evaluation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117082] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
15
|
Arabkhani P, Javadian H, Asfaram A, Hosseini SN. A reusable mesoporous adsorbent for efficient treatment of hazardous triphenylmethane dye wastewater: RSM-CCD optimization and rapid microwave-assisted regeneration. Sci Rep 2021; 11:22751. [PMID: 34815470 PMCID: PMC8610993 DOI: 10.1038/s41598-021-02213-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 10/27/2021] [Indexed: 12/07/2022] Open
Abstract
In this research, mesoporous calcium aluminate nanostructures (meso-CaAl2O4) were synthesized using a citric acid-assisted sol-gel auto-combustion process as the potential adsorbent to eliminate toxic triphenylmethane dye malachite green (MG) from synthetic/real effluent. The surface morphology of meso-CaAl2O4 was highly porous with nanometric size and non-homogeneous surface. The specific surface area, total pore volume, and BJH pore diameter of meso-CaAl2O4 were 148.5 m2 g-1, 1.39 cm3 g-1, and 19 nm, respectively. The meso-CaAl2O4 also showed a very high heat resistance, due to losing only 7.95% of its weight up to 800 °C, which is mainly related to the moisture loss. The optimal adsorption conditions were obtained based on response surface methods (RSM)-central composite design (CCD) techniques. The Langmuir isotherm model was used for fitting the adsorption measurements, which presented 587.5 mg g-1 as the maximum adsorption capacity of the dye. The data obtained from the adsorption kinetics model were found to correspond to the pseudo-second-order model. Also, the thermodynamic parameters including enthalpy change (ΔH°), entropy change (ΔS°), and Gibbs free energy change (ΔG°) indicated that MG dye adsorption by the meso-CaAl2O4 was feasible, endothermic, and occurred spontaneously. Furthermore, the meso-CaAl2O4 was regenerated by microwave irradiation under 900 W at 6 min, and the MG dye removal efficiency was remained over 90% after the five cycles of microwave regeneration.
Collapse
Affiliation(s)
- Payam Arabkhani
- Department of Chemistry, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Hamedreza Javadian
- Chemistry & Chemical Engineering Research Center of Iran (CCERCI), P.O. Box 14335-186, Tehran, Iran
| | - Arash Asfaram
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | | |
Collapse
|
16
|
Al‐Wasidi AS, AlZahrani IIS, Naglah AM, El‐Desouky MG, Khalil MA, El‐Bindary AA, El‐Bindary MA. Effective Removal of Methylene Blue From Aqueous Solution Using Metal‐Organic Framework; Modelling Analysis, Statistical Physics Treatment and DFT Calculations. ChemistrySelect 2021. [DOI: 10.1002/slct.202102330] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Asma S. Al‐Wasidi
- Department of Chemistry College of Science Princess Nourah Bint Abdulrahman University Riyadh 11671 Saudi Arabia
| | - Ibtisam I. S. AlZahrani
- Department of Chemistry College of Science Princess Nourah Bint Abdulrahman University Riyadh 11671 Saudi Arabia
| | - Ahmed M. Naglah
- Department of Pharmaceutical Chemistry Drug Exploration & Development Chair (DEDC) College of Pharmacy King Saud University Riyadh 11451 Saudi Arabia
- Peptide Chemistry Department Chemical Industries Research Division National Research Centre 12622- Dokki Cairo Egypt
| | | | | | - Ashraf A. El‐Bindary
- Chemistry Department Faculty of Science Damietta University Damietta 34517 Egypt
| | - Mohamed A. El‐Bindary
- Basic Science Department Higher Institute of Engineering and Technology Damietta 34517 Egypt
| |
Collapse
|
17
|
Kiwaan HA, Sh. Mohamed F, El-Bindary AA, El-Ghamaz NA, Abo-Yassin HR, El-Bindary MA. Synthesis, identification and application of metal organic framework for removal of industrial cationic dyes. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117435] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Papaoikonomou L, Labanaris K, Kaderides K, Goula AM. Adsorption-desorption of phenolic compounds from olive mill wastewater using a novel low-cost biosorbent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:24230-24244. [PMID: 31865583 DOI: 10.1007/s11356-019-07277-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Several materials have been investigated for the adsorption of olive mill wastewater phenolic compounds. However, researchers have focused on the development of novel, low-cost, with high adsorption capacity adsorbents, originated from the food industry as by-products. The aim of this work was the investigation of the effectiveness of a juice industry by-product, pomegranate seed, for the adsorption of olive mill wastewater phenols. Furthermore, chemical activation and thermal activation of the adsorbent took place in order to improve total phenols uptake and afterwards, desorption process in hydrochloric acid was studied. After the determination of equilibrium time, the effects of temperature (20-60 °C), solution's pH (4.0-8.0), initial sorbate concentration (50-500 mg/L), sorbent mass concentration (0.01-0.05 g/mL OMW), and sorbent particle size (0.149-1.180 mm) on adsorption yield were studied performing batch experiments. The maximum phenols uptake observed was 92.8% after 10 min, at 30 °C and a pH of 5.0, with an initial sorbate concentration of 162.5 mg/L, a sorbent mass concentration of 0.02 g/mL, and a sorbent particle size of 0.922 mm. Langmuir, Freundlich, and Temkin isotherms were developed for the equilibrium description, while pseudo-first-order, pseudo-second-order, and intra-particle diffusion models were applied to investigate adsorption kinetics. The experimental data were best fitted to the Langmuir model, whereas the kinetic data followed the pseudo-first-order kinetic model. The results of the study were promising indicating that pomegranate seed could be used as a novel and low-cost biosorbent. Graphical abstract.
Collapse
Affiliation(s)
- Lygeri Papaoikonomou
- Department of Food Science and Technology, School of Agriculture, Forestry and Natural Environment, Aristotle University, 541 24, Thessaloniki, Greece
| | - Konstantinos Labanaris
- Department of Food Science and Technology, School of Agriculture, Forestry and Natural Environment, Aristotle University, 541 24, Thessaloniki, Greece
| | - Kyriakos Kaderides
- Department of Food Science and Technology, School of Agriculture, Forestry and Natural Environment, Aristotle University, 541 24, Thessaloniki, Greece
| | - Athanasia M Goula
- Department of Food Science and Technology, School of Agriculture, Forestry and Natural Environment, Aristotle University, 541 24, Thessaloniki, Greece.
| |
Collapse
|
19
|
Adsorption Thermodynamic and Kinetic Studies of Methyl Orange onto Sugar Scum Powder as a Low-Cost Inorganic Adsorbent. J CHEM-NY 2020. [DOI: 10.1155/2020/9165874] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In the present study, batch adsorption experiments were carried out to investigate the removal of methyl orange (MO) from aqueous solution using sugar scum powder as an effective inorganic adsorbent which is a cheap precursor and abundant. The characteristics of this material were determined using XRD, SEM/EDX, and FTIR. The adsorption performance of sugar scum powder was evaluated using MO as the model adsorbate. Effects of various parameters such as initial dye concentration, contact time, and adsorbent dose were studied. The adsorption process can be best described by the pseudo-second-order kinetic and Langmuir adsorption isotherm models. Maximum monolayer adsorption capacity for MO removal was found to be 15.24 mg/g at temperature 22°C and pH 7.2. Moreover, thermodynamic parameters suggested that the adsorption of MO onto sugar scum powder was a spontaneous and exothermic process. The results demonstrated that sugar scum is a suitable precursor for the preparation of efficient adsorbent for dye removal from wastewater.
Collapse
|
20
|
Sharifpour E, Ghaedi M, Asfaram A, Farsadrooh M, Dil EA, Javadian H. Modeling and optimization of ultrasound-assisted high performance adsorption of Basic Fuchsin by starch-capped zinc selenide nanoparticles/AC as a novel composite using response surface methodology. Int J Biol Macromol 2020; 152:913-921. [DOI: 10.1016/j.ijbiomac.2020.02.236] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 02/01/2023]
|
21
|
Dastkhoon M, Ghaedi M, Asfaram A, Alipanahpour Dil E. Comparative study of ability of sonochemistry combined ZnS:Ni nanoparticles-loaded activated carbon in reductive of organic pollutants from environmental water samples. Polyhedron 2020. [DOI: 10.1016/j.poly.2019.114341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Zheng X, Wang J, Xue X, Liu W, Kong Y, Cheng R, Yuan D. Facile synthesis of Fe 3O 4@MOF-100(Fe) magnetic microspheres for the adsorption of diclofenac sodium in aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:31705-31717. [PMID: 30209767 DOI: 10.1007/s11356-018-3134-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/03/2018] [Indexed: 06/08/2023]
Abstract
In this research, the adsorptive removal of diclofenac sodium, one of the representative pharmaceuticals and personal care products, from aqueous solution using Fe3O4@MOF-100(Fe) magnetic microspheres was studied for the first time. The Fe3O4@MOF-100(Fe) microspheres exhibit strong magnetism and stability, which were observed as a core-shell structure. The maximum adsorption capacity of Fe3O4@MOF-100(Fe) for diclofenac sodium can reach 377.36 mg L-1, which was higher than most of the adsorbents reported. The adsorption kinetics follows the pseudo-second-order kinetic equation. And the adsorption equilibrium of DCF can be described with Langmuir isotherm. In the cycle experiment, Fe3O4@MOF-100(Fe) material performed high adsorption efficiency for low-concentration diclofenac sodium solution, and the removal rate can still reach 80% after 5 cycles of adsorption without desorption. The mechanisms including electrostatic interaction, H-bond interaction, and π-π interaction that coexisted in the adsorption processes would be of benefit to enhance the adsorption capacity. The Fe3O4@MOF-100(Fe) magnetic microspheres offer exciting opportunities for further application.
Collapse
Affiliation(s)
- Xiang Zheng
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Jinlin Wang
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Xiaolong Xue
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wanxia Liu
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing Advanced Innovation Center for Future Urban Design, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Yadong Kong
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Rong Cheng
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China.
| | - Donghai Yuan
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing Advanced Innovation Center for Future Urban Design, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| |
Collapse
|
23
|
Li B, Wang Q, Guo JZ, Huan WW, Liu L. Sorption of methyl orange from aqueous solution by protonated amine modified hydrochar. BIORESOURCE TECHNOLOGY 2018; 268:454-459. [PMID: 30107359 DOI: 10.1016/j.biortech.2018.08.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 08/04/2018] [Accepted: 08/06/2018] [Indexed: 06/08/2023]
Abstract
The protonated amine modified hydrochar (PAMH) was synthesized by etherification, amination and protonated reaction with hydrochar, which was enriched with abundant protonated amine for methyl orange (MO) removal. PAMH was characterized by elemental analysis, scanning electron microscopy, nitrogen adsorption-desorption measurement, zeta potential and Fourier transform infrared. The sorption of MO from aqueous solution by PAMH was investigated by batch experiments. The results showed that sorption of MO was significantly influenced by the initial concentration of MO, temperature, contact time and ionic strength, while hardly affected by pH values ranging from 4 to 11. The pseudo-second-order and Langmuir equations were able to depict sorption kinetics and sorption isotherms, respectively. Thermodynamic analysis indicated that the sorption behavior was thermopositive and spontaneous. The maximum theoretical uptake computed by the Langmuir equation was 909.09 mg·g-1 at 303 K, which suggested that PAMH was an effective sorbent to eliminate anionic dye from aqueous solution.
Collapse
Affiliation(s)
- Bing Li
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A & F University, Lin'an, Zhejiang 311300, PR China; Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-efficiency Utilization, Zhejiang A & F University, Lin'an, Zhejiang 311300, PR China.
| | - Qian Wang
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A & F University, Lin'an, Zhejiang 311300, PR China
| | - Jian-Zhong Guo
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A & F University, Lin'an, Zhejiang 311300, PR China
| | - Wei-Wei Huan
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A & F University, Lin'an, Zhejiang 311300, PR China
| | - Li Liu
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A & F University, Lin'an, Zhejiang 311300, PR China
| |
Collapse
|
24
|
Cao L, Liang T, Zhang X, Liu W, Li J, Zhan X, Wang L. In-Situ pH-Sensitive Fibers via the Anchoring of Bromothymol Blue on Cellulose Grafted with Hydroxypropyltriethylamine Groups via Adsorption. Polymers (Basel) 2018; 10:polym10070709. [PMID: 30960634 PMCID: PMC6403565 DOI: 10.3390/polym10070709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/21/2018] [Accepted: 06/26/2018] [Indexed: 01/09/2023] Open
Abstract
In-situ pH-sensitive cellulose fibers (IS-pH-SCF) were prepared by anchoring bromothymol blue (BTB) onto cellulose fibers (CF) modified with hydroxypropyltriethylamine (HPTTL) groups. Fourier transform infrared and X-ray photoelectron spectrum analyses demonstrated that the HPTTL groups were grafted onto the CF. X-ray diffraction proved that cellulose I in the CF transformed into cellulose II after quaternization. Scanning electron microscopy suggested that the quaternized CF (QCF) surface was clean and uniformly ridged. The adsorption of BTB onto QCF was carried out via batch adsorption experiments. A kinetic study illustrated that the adsorption was a spontaneous process and described well by pseudo-second-order, Freundlich and Temkin isotherms. The activation energy for the BTB adsorption onto QCF was 52.89 kJ/mol, which proved that the BTB adsorption onto QCFs was chemically controlled. The pH response demonstrated that the IS-pH-SCF was highly sensitive to pH, with an obvious color change for pH 4 to 8. The release tests showed that BTB was anchored on QCFs and that no BTB was released. IS-pH-SCF has a potential use for indicating pH changes in food.
Collapse
Affiliation(s)
- Lele Cao
- Key Laboratory of Bio-Based Materials Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China.
- Research Center of Wood Bionic Intelligent Science, Northeast Forestry University, Harbin 150040, China.
| | - Tieqiang Liang
- Key Laboratory of Bio-Based Materials Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China.
- Research Center of Wood Bionic Intelligent Science, Northeast Forestry University, Harbin 150040, China.
| | - Xipeng Zhang
- School of Environment, Harbin institute of Technology, Harbin 150040, China.
| | - Wenbo Liu
- Key Laboratory of Bio-Based Materials Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Jian Li
- Key Laboratory of Bio-Based Materials Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China.
- Research Center of Wood Bionic Intelligent Science, Northeast Forestry University, Harbin 150040, China.
| | - Xianxu Zhan
- Dehua TB New Decoration Material CO., LTD, Deqing 313200, China.
| | - Lijuan Wang
- Key Laboratory of Bio-Based Materials Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China.
- Research Center of Wood Bionic Intelligent Science, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
25
|
Xu B, Zheng H, Wang Y, An Y, Luo K, Zhao C, Xiang W. Poly(2-acrylamido-2-methylpropane sulfonic acid) grafted magnetic chitosan microspheres: Preparation, characterization and dye adsorption. Int J Biol Macromol 2018; 112:648-655. [DOI: 10.1016/j.ijbiomac.2018.02.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/28/2018] [Accepted: 02/04/2018] [Indexed: 11/25/2022]
|
26
|
Masoudian N, Rajabi M, Ghaedi M, Asghari A. Highly efficient adsorption of Naphthol Green B and Phenol Red dye by Combination of Ultrasound wave and Copper-Doped Zinc Sulfide Nanoparticles Loaded on Pistachio-Nut Shell. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4369] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Navid Masoudian
- Department of Chemistry; Semnan University; Semnan 2333383-193 Iran
| | - Maryam Rajabi
- Department of Chemistry; Semnan University; Semnan 2333383-193 Iran
| | - Mehrorang Ghaedi
- Chemistry Department; Yasouj University; Yasouj 75918-74831 Iran
| | - Alireza Asghari
- Department of Chemistry; Semnan University; Semnan 2333383-193 Iran
| |
Collapse
|
27
|
Mudrinić TM, Ajduković MJ, Jović-Jovičić NP, Marinović SR, Mojović ZD, Milutinović-Nikolić AD, Banković PT. Al,Fe,Ni-pillared bentonite in the catalytic wet peroxide oxidation of the textile dye Acid Yellow 99. REACTION KINETICS MECHANISMS AND CATALYSIS 2018. [DOI: 10.1007/s11144-018-1386-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Mary Ealias A, Saravanakumar MP. Facile synthesis and characterisation of AlNs using Protein Rich Solution extracted from sewage sludge and its application for ultrasonic assisted dye adsorption: Isotherms, kinetics, mechanism and RSM design. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 206:215-227. [PMID: 29073580 DOI: 10.1016/j.jenvman.2017.10.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/10/2017] [Accepted: 10/12/2017] [Indexed: 05/22/2023]
Abstract
Protein Rich Solution (PRS) was prepared from the sewage sludge with ultrasonic assistance. With PRS, aluminium based nanosheet like materials (AlNs) were synthesised for the ultrasonic removal of Congo Red (CR) and Crystal Violet (CV) dyes. PRS was characterised by UV, EEM and NMR spectral analysis. AlNs were characterised by FTIR, XRD, TGA, BET, SEM, AFM, TEM and XPS analysis. The point of zero charge of AlNs was found to be 5.4. The BET analysis ensured that the average pore diameter and total pore volume of AlNs as 8.464 nm and 0.11417 cc/g respectively. The efficacy of AlNs for the removal of toxic dyes was tested by performing Response surface methodology (RSM) designed experiments. The effect of sonication time, dosage and initial concentration on dye removal was studied at an optimised pH value. Langmuir, Freundlich and Temkin isotherm models were examined. The maximum adsorption capacity was found to be 121.951 and 105.263 mg/g for CR and CV respectively. The kinetic models like pseudo-first order, pseudo-second order, Elovich and intra-particle diffusion were examined to understand the mechanism behind it. The results revealed that the use of ultrasonication enhanced the mass transfer. The experimental studies on the influence of ultrasound power indicated a positive relation with the removal efficiency. The results of thermodynamic study revealed that the process was spontaneous and exothermic for both the dyes. The increase in ionic strength increased the removal efficiency for both CR and CV. RSM predicted the optimum adsorbent dosages as 0.16 g for 50 mg/L of CR and 0.12 g for 100 mg/L of CV dye solutions. The values of half-life and fractional adsorption for both CR and CV suggested that the low cost AlNs has high potential to remove the toxic industrial dyes.
Collapse
Affiliation(s)
- Anu Mary Ealias
- School of Civil and Chemical Engineering, VIT University, Vellore 632014, India.
| | - M P Saravanakumar
- School of Civil and Chemical Engineering, VIT University, Vellore 632014, India.
| |
Collapse
|
29
|
Oxidation of benzalkonium chloride in aqueous solution by S2O82−/Fe2+ process: Degradation pathway, and toxicity evaluation. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Elwakeel K, El-Bindary A, El-Sonbati A, Hawas A. Magnetic alginate beads with high basic dye removal potential and excellent regeneration ability. CAN J CHEM 2017. [DOI: 10.1139/cjc-2016-0641] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The adsorption of crystal violet (CV) dye onto magnetic alginate (MAlg) composite from aqueous solutions was studied. Experiments were carried out as function of contact time, dosage, temperature, pH, and CV concentration in the solutions. Optimum CV uptake was observed at equilibrium pH 7 and most of the CV was sorbed within 30 min. The equilibrium adsorption data were analyzed using two common adsorption models: Langmuir and Freundlich. The results revealed that Langmuir isotherm fit the experimental results well. The maximum adsorption capacity obtained from Langmuir isotherm equation was 0.113 mmol g−1 at 298 ± 1 K. The kinetics adsorption of CV onto MAlg composite was investigated using the pseudo first-order and pseudo second-order kinetic models. The results showed that the adsorption of CV onto MAlg composite followed pseudo second-order kinetic model. Thermodynamic data indicated that the adsorption process is an endothermic and spontaneous reaction. Due to its outstanding adsorption capacities, MAlg composite is an excellent adsorbent for the removal of CV. The composite regeneration was greater than 98.6% with 0.01 mol/L HCl, and MAlg composite could be repeatedly utilized for CV removal with negligible loss in sorption capacity.
Collapse
Affiliation(s)
- K.Z. Elwakeel
- Chemistry Department, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
- Environmental Science Department, Faculty of Science, Port-Said University, Port-Said, Egypt
| | - A.A. El-Bindary
- Chemistry Department, Faculty of Science, Damietta University, Damietta 34517, Egypt
| | - A.Z. El-Sonbati
- Chemistry Department, Faculty of Science, Damietta University, Damietta 34517, Egypt
| | - A.R. Hawas
- Chemistry Department, Faculty of Science, Damietta University, Damietta 34517, Egypt
| |
Collapse
|
31
|
Pooralhossini J, Ghaedi M, Zanjanchi MA, Asfaram A. Ultrasonically assisted removal of Congo Red, Phloxine B and Fast green FCF in ternary mixture using novel nanocomposite following their simultaneous analysis by derivative spectrophotometry. ULTRASONICS SONOCHEMISTRY 2017; 37:452-463. [PMID: 28427656 DOI: 10.1016/j.ultsonch.2017.01.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 01/26/2017] [Accepted: 01/27/2017] [Indexed: 06/07/2023]
Abstract
In this study dependency of simultaneous adsorption of Congo Red (CR), Phloxine B (BP) and Fast green FCF (FG) onto CuS/ZnS nanocomposites loaded on activated carbon (CuS/ZnS-NCs-AC) to pH, adsorbent mass, sonication time and initial dyes concentration were modeled and optimized, while CuS/ZnS-NCs-AC was identified by XRD, FESEM and EDS analysis. CR, PB and FG concentration determination were undertaken by first and second order derivative spectrophotometry in ternary mixture. According to central composite design (CCD) based on desirability function (DF), the best experimental conditions was set as pH 6.0, 0.02g CuS/ZnS-NCs-AC, 5min sonication time, 15mgL-1 for PB and 10mgL-1 for other dyes. Conduction of experiments to above conditions lead to highest dyes removal efficiency of 99.72, 98.8 and 98.17 for CR, PB and FG, respectively. The adsorption data efficiently fitted by Langmuir isotherm model, while the order of maximum adsorption capacity (Qmax) for PB (128.21mgg-1)>CR (88.57mgg-1)>FG (73.40mgg-1) is related to their different structure and charges. Kinetics of process was efficiently explained according to pseudo-second-order kinetic in cooperation of Weber and Morris based on intraparticle diffusion.
Collapse
Affiliation(s)
- Jaleh Pooralhossini
- Department of Chemistry, University of Guilan, University Campus 2, Mellat St., Rasht, Iran
| | - Mehrorang Ghaedi
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran.
| | - Mohammad Ali Zanjanchi
- Department of Chemistry, University of Guilan, University Campus 2, Mellat St., Rasht, Iran; Department of Chemistry, Faculty of Science, University of Guilan, Rasht 41335-1914, Iran.
| | - Arash Asfaram
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran
| |
Collapse
|
32
|
Marković BM, Stefanović IS, Hercigonja RV, Pergal MV, Marković JP, Onjia AE, Nastasović AB. Novel hexamethylene diamine-functionalized macroporous copolymer for chromium removal from aqueous solutions. POLYM INT 2017. [DOI: 10.1002/pi.5306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bojana M Marković
- University of Belgrade, Institute of Chemistry Technology and Metallurgy; Department of Chemistry; Njegoševa 12 Belgrade Republic of Serbia
| | - Ivan S Stefanović
- University of Belgrade, Institute of Chemistry Technology and Metallurgy; Department of Chemistry; Njegoševa 12 Belgrade Republic of Serbia
| | - Radmila V Hercigonja
- University of Belgrade; Faculty of Physical Chemistry; Studentski trg 12-16 11001 Belgrade Republic of Serbia
| | - Marija V Pergal
- University of Belgrade, Institute of Chemistry Technology and Metallurgy; Department of Chemistry; Njegoševa 12 Belgrade Republic of Serbia
| | - Jelena P Marković
- University of Belgrade; Vinča Institute of Nuclear Sciences; PO Box 522 11001 Belgrade Republic of Serbia
| | - Antonije E Onjia
- University of Belgrade; Vinča Institute of Nuclear Sciences; PO Box 522 11001 Belgrade Republic of Serbia
| | - Aleksandra B Nastasović
- University of Belgrade, Institute of Chemistry Technology and Metallurgy; Department of Chemistry; Njegoševa 12 Belgrade Republic of Serbia
| |
Collapse
|
33
|
Bagheri AR, Ghaedi M, Asfaram A, Bazrafshan AA, Jannesar R. Comparative study on ultrasonic assisted adsorption of dyes from single system onto Fe 3O 4 magnetite nanoparticles loaded on activated carbon: Experimental design methodology. ULTRASONICS SONOCHEMISTRY 2017; 34:294-304. [PMID: 27773249 DOI: 10.1016/j.ultsonch.2016.05.047] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 05/30/2016] [Accepted: 05/30/2016] [Indexed: 05/15/2023]
Abstract
The present study the ultrasound assisted adsorption of dyes in single system onto Fe3O4 magnetite nanoparticles loaded on activated carbon (Fe3O4-MNPs-AC) was described following characterization and identification of this adsorbent by conventional techniques likes field emission scanning electron microscopy, transmission electron microscopy, particle-size distribution, X-ray diffraction and Fourier transform infrared spectroscopy. A central composite design in conjunction with a response surface methodology according to f-test and t-test for recognition and judgment about significant term led to construction of quadratic model which represent relation among responses and effective terms. This model has unique ability to predict adsorption data behavior over a large space around central and optimum point. Accordingly Optimum conditions for well and quantitative removal of present dyes was obtained best operation and conditions: initial SY, MB and EB dyes concentration of 15, 15 and 25mgL-1, 4.0, 6.0 and 5.0 of pH, 360, 360 and 240s sonication time and 0.04, 0.03 and 0.032g of Fe3O4-MNPs-AC. Replication of similar experiment (N=5) guide that average removal percentage of SY, MB and EB were found to be 96.63±2.86%, 98.12±1.67% and 99.65±1.21% respectively. Good agreement and closeness of Predicted and experimental result and high adsorption capacity of dyes in short time strongly confirm high suitability of present method for waste water treatment, while easy separation of present nanoparticle and its good regeneration all support good applicability of Fe3O4-MNPs-AC for waste water treatment. The kinetic study can be represented by combination of pseudo second-order and intraparticle diffusion. The obtained maximum adsorption capacities correspond to Langmuir as best model for representation of experimental data correspond to dyes adsorption onto Fe3O4-MNPs-AC were 76.37, 78.76 and 102.00mgg-1 for SY, MB and EB, respectively. In addition, the performance comparison of ultrasound-assisted, magnetic stirrer assisted and vortex assisted adsorption methods demonstrates that ultrasound is an effective and good choice for facilitation of adsorption process via. Compromise of simple and facile diffusion.
Collapse
Affiliation(s)
| | - Mehrorang Ghaedi
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran.
| | - Arash Asfaram
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran
| | | | - Ramin Jannesar
- Department of Pathology, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
34
|
Elwakeel KZ, El-Bindary AA, Ismail A, Morshidy AM. Sorptive removal of Remazol Brilliant Blue R from aqueous solution by diethylenetriamine functionalized magnetic macro-reticular hybrid material. RSC Adv 2016. [DOI: 10.1039/c5ra26508h] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chitosan, glycidyl methacrylate (synthetic polymer) and magnetite are combined to produce novel magnetic macro-reticular hybrid synthetic–natural materials which are shown to be effective sorbents for RBBR ions.
Collapse
Affiliation(s)
- K. Z. Elwakeel
- Environmental Science Department
- Faculty of Science
- Port-Said University
- Port-Said
- Egypt
| | - A. A. El-Bindary
- Chemistry Department
- Faculty of Science
- Damietta University
- Damietta 34517
- Egypt
| | - A. Ismail
- Environmental Science Department
- Faculty of Science
- Port-Said University
- Port-Said
- Egypt
| | - A. M. Morshidy
- National Institute of Oceanography and Fisheries (NIOF)
- Kafr Elsheikh
- Egypt
| |
Collapse
|