1
|
Xue L, Pang M, Yuan Z, Zhou D. Metal-Site Dispersed Zinc-Chromium Oxide Derived from Chromate-Intercalated Layered Hydroxide for Highly Selective Propane Dehydrogenation. Molecules 2024; 29:3063. [PMID: 38999013 PMCID: PMC11243157 DOI: 10.3390/molecules29133063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Propane dehydrogenation (PDH) is a crucial approach for propylene production. However, commonly used CrOx-based catalysts have issues including easy sintering at elevated reaction temperatures and relying on high acidity supports. In this work, we develop a strategy, to strongly anchor and isolate active sites against their commonly observed aggregation during reactions, by taking advantage of the net trap effect in chromate intercalated Zn-Cr layered hydroxides as precursors. Furthermore, the intercalated chromate overcomes the collapse of traditional layered hydroxides during their transformation to metal oxide, thus exposing more available active sites. A joint fine modulation including crystal structure, surface acidity, specific surface area, and active sites dispersion is performed on the final mixed metal oxides for propane dehydrogenation. As a result, Zn1Cr2-CrO42--MMO delivers attractive propane conversion (~27%) and propylene selectivity (>90%) as compared to other non-noble-metal-based catalysts.
Collapse
Affiliation(s)
- Lu Xue
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Maoqi Pang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zijian Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Daojin Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
2
|
Ugartemendia A, Mercero JM, Jimenez-Izal E, de Cózar A. Doping Efects on Ethane/Ethylene Dehydrogenation Catalyzed by Pt 2X Nanoclusters. Chemphyschem 2024; 25:e202400095. [PMID: 38525872 DOI: 10.1002/cphc.202400095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 03/26/2024]
Abstract
The catalytic dehydrogenation of light alkanes is key to transform low-cost hydrocarbons to high value-added chemicals. Although Pt is extremely efficient at catalyzing this reaction, it suffers from coke formation that deactivates the catalyst. Dopants such as Sn are widely used to increase the stability and lifetime of Pt. In this work, the dehydrogenation reaction of ethane catalyzed by Pt3 and Pt2X (X=Si, Ge, Sn, P and Al) nanocatalysts has been studied computationally by means of density functional calculations. Our results show how the presence of dopants in the nanocluster structure affects its electronic properties and catalytic activity. Exploration of the potential energy surfaces show that non-doped catalyst Pt3 present low selectivity towards ethylene formation, where acetylene resulting from double dehydrogenation reaction will be obtained as a side product (in agreement with the experimental evidence). On the contrary, the inclusion of Si, Ge, Sn, P or Al as dopant agents implies a selectivity enhancement, where acetylene formation is not energetically favoured. These results demonstrate the effectiveness of such dopant elements for the design of Pt-based catalysts on ethane dehydrogenation.
Collapse
Affiliation(s)
- Andoni Ugartemendia
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia Saila, Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), Donostia International Physics Center (DIPC), M. de Lardizabal Pasealekua 3, Donostia, Euskadi, Spain
| | - José M Mercero
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia Saila, Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), Donostia International Physics Center (DIPC), M. de Lardizabal Pasealekua 3, Donostia, Euskadi, Spain
| | - Elisa Jimenez-Izal
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia Saila, Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), Donostia International Physics Center (DIPC), M. de Lardizabal Pasealekua 3, Donostia, Euskadi, Spain
| | - Abel de Cózar
- Kimika Organikoa I Saila, Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), Donostia International Physics Center (DIPC), M. de Lardizabal Pasealekua 3, Donostia, Euskadi, Spain
- IKERBASQUE, Basque Foundation for Science, E-48009, Bilbao, Spain
| |
Collapse
|
3
|
Almallahi R, Wortman J, Linic S. Overcoming limitations in propane dehydrogenation by codesigning catalyst-membrane systems. Science 2024; 383:1325-1331. [PMID: 38513015 DOI: 10.1126/science.adh3712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 02/08/2024] [Indexed: 03/23/2024]
Abstract
Propylene production through propane dehydrogenation (PDH) is endothermic, and high temperatures required to achieve acceptable propane conversions lead to low selectivity and severe carbon-induced deactivation of conventional catalysts. We developed a catalyst-membrane system that removes the hydrogen by-product and can thus achieve propane conversions that exceed equilibrium limits. In this codesigned system, a silica/alumina (SiO2/Al2O3) hollow-fiber hydrogen membrane was packed with a selective platinum-tin (Pt1Sn1/SiO2) PDH catalyst on the tube side with hydrogen diffusing from the tube to the shell side. We demonstrate that the catalyst-membrane system can achieve propane conversions >140% of the nominal equilibrium conversion with a propylene selectivity >98% without deactivation of the system components. We also show that by introducing oxygen on the shell side of the catalyst-membrane system, we can couple the endothermic PDH reaction on the tube side with exothermic hydrogen oxidation on the shell side. This coupling results in higher rates of hydrogen transport, leading to further enhancements in the propane conversion as well as desired thermoneutral system operation.
Collapse
Affiliation(s)
- Rawan Almallahi
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
- Catalysis Science and Technology Institute, University of Michigan, Ann Arbor, MI, USA
| | - James Wortman
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
- Catalysis Science and Technology Institute, University of Michigan, Ann Arbor, MI, USA
| | - Suljo Linic
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
- Catalysis Science and Technology Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Arribas D, Villalobos-Vilda V, Tosi E, Lacovig P, Baraldi A, Bignardi L, Lizzit S, Martínez JI, de Andres PL, Gutiérrez A, Martín-Gago JÁ, Merino P. In situ observation of the on-surface thermal dehydrogenation of n-octane on Pt(111). NANOSCALE 2023; 15:14458-14467. [PMID: 37458500 DOI: 10.1039/d3nr02564k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
The catalytic dehydrogenation of alkanes constitutes a key step for the industrial conversion of these inert sp3-bonded carbon chains into other valuable unsaturated chemicals. To this end, platinum-based materials are among the most widely used catalysts. In this work, we characterize the thermal dehydrogenation of n-octane (n-C8H18) on Pt(111) under ultra-high vacuum using synchrotron-radiation X-ray photoelectron spectroscopy, temperature-programmed desorption and scanning tunneling microscopy, combined with ab initio calculations. At low activation temperatures, two different dehydrogenation stages are observed. At 330 K, n-C8H18 effectively undergoes a 100% regioselective single C-H bond cleavage at one methyl end. At 600 K, the chemisorbed molecules undergo a double dehydrogenation, yielding double bonds in their carbon skeletons. Diffusion of the dehydrogenated species leads to the formation of carbon molecular clusters, which represents the first step towards poisoning of the catalyst. Our results reveal the chemical mechanisms behind the first stages of alkane dehydrogenation on a platinum model surface at the atomic scale, paving the way for designing more efficient dehydrogenation catalysts.
Collapse
Affiliation(s)
- Daniel Arribas
- Instituto de Ciencia de Materiales de Madrid, c/Sor Juana Inés de la Cruz, 3, Spain.
| | | | - Ezequiel Tosi
- Instituto de Ciencia de Materiales de Madrid, c/Sor Juana Inés de la Cruz, 3, Spain.
- Elettra-Sincrotrone Trieste S.C.p.A., S.S. 14 km 163.5, Trieste, Italy
| | - Paolo Lacovig
- Elettra-Sincrotrone Trieste S.C.p.A., S.S. 14 km 163.5, Trieste, Italy
| | - Alessandro Baraldi
- Elettra-Sincrotrone Trieste S.C.p.A., S.S. 14 km 163.5, Trieste, Italy
- Physics Department, University of Trieste, Via Valerio 2, 34127 Trieste, Italy
| | - Luca Bignardi
- Elettra-Sincrotrone Trieste S.C.p.A., S.S. 14 km 163.5, Trieste, Italy
| | - Silvano Lizzit
- Elettra-Sincrotrone Trieste S.C.p.A., S.S. 14 km 163.5, Trieste, Italy
| | - José Ignacio Martínez
- Instituto de Ciencia de Materiales de Madrid, c/Sor Juana Inés de la Cruz, 3, Spain.
| | - Pedro Luis de Andres
- Instituto de Ciencia de Materiales de Madrid, c/Sor Juana Inés de la Cruz, 3, Spain.
- On leave of absence at nanoteeche@surfaces Laboratory, Swiss Federal Laboratories for Materials Science and Technology, 8600-Dübendorf, Switzerland
| | - Alejandro Gutiérrez
- Applied Physics Department, Universidad Autónoma de Madrid, Calle Francisco Tomás y Valiente, 7, 28049 Madrid, Spain
- Instituto Nicolás Cabrera, Cantoblanco, Calle Francisco Tomás y Valiente, 7, 28049 Madrid, Spain
| | | | - Pablo Merino
- Instituto de Ciencia de Materiales de Madrid, c/Sor Juana Inés de la Cruz, 3, Spain.
| |
Collapse
|
5
|
Zhang Y, Chen Q, Zhang H. Mechanism research reveals the role of Fe n ( n = 2-5) supported C 2N as single-cluster catalysts (SCCs) for the non-oxidative propane dehydrogenation in the optimization of catalytic performance. Phys Chem Chem Phys 2023; 25:24143-24154. [PMID: 37655603 DOI: 10.1039/d3cp03204c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Single cluster catalysts show excellent potential for propane dehydrogenation, compensating for the limited catalytic performance of single-atom catalysts in reactions involving multiple reaction steps and intermediates. Herein, density functional theory is used to investigate the catalytic activity and mechanism for non-oxidized propane dehydrogenation on Fen-C2N (n = 2-5). Firstly, the stability of Fen-C2N (n = 2-5) is evaluated by comparing the mean values of binding energy and cohesive energy. The results show that Fen-C2N (n = 2-4) can exist stably, which is also verified by the molecular dynamics calculation at 873 K. Band structure analysis shows that the screened catalysts have metal properties, which are conducive to charge transfer. Fukui function analysis is used to predict the optimal adsorption site. The electronic properties of propane and propylene adsorbed on catalysts are further studied by the partial density of states and deformation charge density. The activation barrier (Ea) and reaction energy (ΔE) of the main reaction steps are evaluated. The results show that Fe2-C2N (Ea = 0.97 eV, ΔE= 0.22 eV) has the best catalytic activity. The Ea for further propylene dehydrogenation is also used to evaluate the yield of propylene. Compared with Fe-C2N, Fe2-C2N can regulate the adsorption strength of propane and propylene, showing better catalytic ability and higher selectivity for propylene. The above research provides ideas for the design of new catalysts with high selectivity and activity for non-oxidative propane dehydrogenation.
Collapse
Affiliation(s)
- Yu Zhang
- Center for Computational Chemistry and Molecular Simulation, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China.
| | - Qin Chen
- Center for Computational Chemistry and Molecular Simulation, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China.
| | - Hui Zhang
- Center for Computational Chemistry and Molecular Simulation, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China.
| |
Collapse
|
6
|
Meng H, Yang Y, Shen T, Liu W, Wang L, Yin P, Ren Z, Niu Y, Zhang B, Zheng L, Yan H, Zhang J, Xiao FS, Wei M, Duan X. A strong bimetal-support interaction in ethanol steam reforming. Nat Commun 2023; 14:3189. [PMID: 37268617 DOI: 10.1038/s41467-023-38883-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 05/18/2023] [Indexed: 06/04/2023] Open
Abstract
The metal-support interaction (MSI) in heterogeneous catalysts plays a crucial role in reforming reaction to produce renewable hydrogen, but conventional objects are limited to single metal and support. Herein, we report a type of RhNi/TiO2 catalysts with tunable RhNi-TiO2 strong bimetal-support interaction (SBMSI) derived from structure topological transformation of RhNiTi-layered double hydroxides (RhNiTi-LDHs) precursors. The resulting 0.5RhNi/TiO2 catalyst (with 0.5 wt.% Rh) exhibits extraordinary catalytic performance toward ethanol steam reforming (ESR) reaction with a H2 yield of 61.7%, a H2 production rate of 12.2 L h-1 gcat-1 and a high operational stability (300 h), which is preponderant to the state-of-the-art catalysts. By virtue of synergistic catalysis of multifunctional interface structure (Rh-Niδ--Ov-Ti3+; Ov denotes oxygen vacancy), the generation of formate intermediate (the rate-determining step in ESR reaction) from steam reforming of CO and CHx is significantly promoted on 0.5RhNi/TiO2 catalyst, accounting for its ultra-high H2 production.
Collapse
Affiliation(s)
- Hao Meng
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yusen Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Tianyao Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Wei Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Lei Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Pan Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhen Ren
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yiming Niu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
| | - Lirong Zheng
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hong Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jian Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Feng-Shou Xiao
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China.
| | - Min Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Xue Duan
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
7
|
Ganai A, Ball B, Sarkar P. Modulating the Energetics of C-H Bond Activation in Methane by Utilizing Metalated Porphyrinic Metal-Organic Frameworks. J Phys Chem Lett 2023; 14:1832-1839. [PMID: 36779674 DOI: 10.1021/acs.jpclett.2c03891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In recent years, much effort has been directed toward utilizing metal-organic frameworks (MOFs) for activating C-H bonds of light alkanes. The energy demanding steps involved in the catalytic pathway are the formation of metal-oxo species and the subsequent cleavage of the C-H bonds of alkanes. With the intention of exploring the tunability of the activation barriers involved in the catalytic pathway of methane hydroxylation, we have employed density functional theory to model metalated porphyrinic MOFs (MOF-525(M)). We find that the heavier congeners down a particular group have high exothermic oxo-formation enthalpies ΔHO and hence are associated with low N2O activation barriers. Independent analyses of activation barriers and structure-activity relationship leads to the conclusion that MOF-525(Ru) and MOF-525(Ir) can act as an effective catalysts for methane hydroxylation. Hence, ΔHO has been found to act as a guide, in the first place, in choosing the optimum catalyst for methane hydroxylation from a large set of available systems.
Collapse
Affiliation(s)
- Anjali Ganai
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Biswajit Ball
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Pranab Sarkar
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| |
Collapse
|
8
|
Xia H, Bai Y, Niu Q, Chen B, Wang F, Gao B, Liu L, Wang X, Deng W, Dai Q. Support-Dependent Activity and Thermal Stability of Ru-Based Catalysts for Catalytic Combustion of Light Hydrocarbons. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Hangqi Xia
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
- Erdos Electric Power and Metallurgy Group Co., Ltd., Ordos 016064, Inner Mongolia, P. R. China
| | - Yuting Bai
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Qiang Niu
- Erdos Electric Power and Metallurgy Group Co., Ltd., Ordos 016064, Inner Mongolia, P. R. China
| | - Biao Chen
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Feng Wang
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Biao Gao
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Lilin Liu
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xingyi Wang
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Wei Deng
- School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, Hubei 430056, PR China
| | - Qiguang Dai
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| |
Collapse
|
9
|
Song L, Zhang R, Zhou C, Shu G, Ma K, Yue H. Room-temperature activation of the C-H bond in the dehydrogenation of ethane over a Cu/TiO 2 catalyst. Chem Commun (Camb) 2023; 59:478-481. [PMID: 36524553 DOI: 10.1039/d2cc05438h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel photocatalytic system of Cu/TiO2 for activation the C-H bond in the dehydrogenation of ethane to ethylene at room temperature is proposed. The optimized 1%-Cu/TiO2 catalyst achieved C2H6 conversion of 1.70%, C2H4 selectivity of 98.41%, and exhibited excellent stability. The active site Cuδ+ showed high dispersion on the TiO2 surface. Theoretical calculations and in situ diffuse reflectance infrared Fourier transform spectroscopy revealed a reaction mechanism: C2H6 is first activated by adsorption over the Cu4C/TiO2 catalyst with elongation of the C-H bond, attacked by h+/˙OH to form ethyl radicals, which are then converted to C2H4.
Collapse
Affiliation(s)
- Lei Song
- Low-carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Ronghao Zhang
- Low-carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Changan Zhou
- Low-carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Guoqiang Shu
- Low-carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Kui Ma
- Low-carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Hairong Yue
- Low-carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.,Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610207, China
| |
Collapse
|
10
|
Xiao K, Jin C, Zhou K, Wang W, Zhao L. Stepwise Polymetalation around an sp 3 Benzyl Carbon Atom. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kui Xiao
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Cong Jin
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Keting Zhou
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Wan Wang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Liang Zhao
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
11
|
Chen X, Peng M, Xiao D, Liu H, Ma D. Fully Exposed Metal Clusters: Fabrication and Application in Alkane Dehydrogenation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Xiaowen Chen
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People’s Republic of China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
| | - Mi Peng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Dequan Xiao
- Center for Integrative Materials Discovery, Department of Chemistry and Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Hongyang Liu
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People’s Republic of China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| |
Collapse
|
12
|
Xie M, Zhang B, Jin Z, Li P, Yu G. Atomically Reconstructed Palladium Metallene by Intercalation-Induced Lattice Expansion and Amorphization for Highly Efficient Electrocatalysis. ACS NANO 2022; 16:13715-13727. [PMID: 35947035 DOI: 10.1021/acsnano.2c05190] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As an emerging class of materials with distinctive physicochemical properties, metallenes are deemed as efficient catalysts for energy-related electrocatalytic reactions. Engineering the lattice strain, electronic structure, crystallinity, and even surface porosity of metallene provides a great opportunity to further enhance its catalytic performance. Herein, we rationally developed a reconstruction strategy of Pd metallenes at atomic scale to generate a series of nonmetallic atom-intercalated Pd metallenes (M-Pdene, M = H, N, C) with lattice expansion and S-doped Pd metallene (S-Pdene) with an amorphous structure. Catalytic performance evaluation demonstrated that N-Pdene exhibited the highest mass activities of 7.96 A mg-1, which was 10.6 and 8.5 time greater than those of commercial Pd/C and Pt/C, respectively, for methanol oxidation reaction (MOR). Density functional theory calculations suggested that the well-controlled lattice tensile strain as well as the strong p-d hybridization interaction between N and Pd resulted in enhanced OH adsorption and weakened CO adsorption for efficient MOR catalysis on N-Pdene. When tested as hydrogen evolution reaction (HER) catalysts, the amorphous S-Pdene delivered superior activity and durability relative to the crystalline counterparts because of the disordered Pd surface with a further elongated bond length and a downshifted d-band center. This work provides an effective strategy for atomic engineering of metallene nanomaterials with high performance as electrocatalysts.
Collapse
Affiliation(s)
- Minghao Xie
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Bowen Zhang
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhaoyu Jin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
| | - Panpan Li
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
13
|
Huang W, Wei C, Li Y, Zhang Y, Lin W. The role of Mo species in Ni-Mo catalysts for dry reforming of methane. Phys Chem Chem Phys 2022; 24:21461-21469. [PMID: 36048173 DOI: 10.1039/d2cp02120j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Ni-Mo catalyst has attracted significant attention due to its excellent coke-resistance in dry reforming of methane (DRM) reaction, but its detailed mechanism is still vague. Herein, Mo-doped Ni (Ni-Mox) and MoOx adsorbed Ni surfaces (MoOx@Ni) are employed to explore the DRM reaction mechanism and the effect of coke-resistance. Due to the electron donor effect of Mo, the antibonding states below the Fermi level between Ni and C increase and the adsorption of C decrease, thereby inhibiting the carbonization of Ni. On account of the strong Mo and O interaction, more O atoms gather around Mo, which inhibits the oxidation of Ni and may promote the formation of MoOx species on the Ni-Mo catalyst. The presence of Mo-O species promotes the carbon oxidation, forming a unique redox cycle (MoOx ↔ MoOx-1) similar to the Mars-van Krevelen (MvK) mechanism, explaining the excellent anti-carbon deposition effect on the Ni-Mo catalyst.
Collapse
Affiliation(s)
- Weiqiao Huang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Changgeng Wei
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Yi Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China. .,Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen, Fujian 361005, China
| | - Yongfan Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China. .,Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen, Fujian 361005, China
| | - Wei Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China. .,Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
14
|
Jiang X, Lis BM, Purdy SC, Paladugu S, Fung V, Quan W, Bao Z, Yang W, He Y, Sumpter BG, Page K, Wachs IE, Wu Z. CO 2-Assisted Oxidative Dehydrogenation of Propane over VO x/In 2O 3 Catalysts: Interplay between Redox Property and Acid–Base Interactions. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiao Jiang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Bar Mosevitzky Lis
- Department of Chemical & Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Stephen C. Purdy
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Sreya Paladugu
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Victor Fung
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Wenying Quan
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 301 Ferst Dr., Atlanta, Georgia 30332, United States
| | - Zhenghong Bao
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Weiwei Yang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Yang He
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Bobby G. Sumpter
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Katharine Page
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Israel E. Wachs
- Department of Chemical & Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Zili Wu
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
15
|
Ko J, Ma H, Schneider WF. Kinetic Origins of High Selectivity of Metal Phosphides for Ethane Dehydrogenation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jeonghyun Ko
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Hanyu Ma
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - William F. Schneider
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
16
|
Yang F, Zhang J, Shi Z, Chen J, Wang G, He J, Zhao J, Zhuo R, Wang R. Advanced design and development of catalysts in propane dehydrogenation. NANOSCALE 2022; 14:9963-9988. [PMID: 35815671 DOI: 10.1039/d2nr02208g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Propane dehydrogenation (PDH) is an industrial technology for direct propylene production, which has received extensive attention and realized large-scale application. At present, the commercial Pt/Cr-based catalysts suffer from fast deactivation and inferior stability resulting from active species sintering and coke depositing. To overcome the above problems, several strategies such as the modification of the support and the introduction of additives have been proposed to strengthen the catalytic performance and prolong the robust stability of Pt/Cr-based catalysts. This review firstly gives a brief description of the development of PDH and PDH catalysts. Then, the advanced research progress of supported noble metals and non-noble metals together with metal-free materials for PDH is systematically summarized along with the material design and active origin as well as the existing problems in the development of PDH catalysts. Furthermore, the review also emphasizes advanced synthetic strategies based on novel design of PDH catalysts with improved dehydrogenation activity and stability. Finally, the future challenges and directions of PDH catalysts are provided for the development of their further industrial application.
Collapse
Affiliation(s)
- Fuwen Yang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Zongbo Shi
- REZEL Catalysts Corporation, Shanghai 200120, China
| | - Jinwei Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Gang Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Junjie He
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Junyu Zhao
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | | | - Ruilin Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu 610065, China
| |
Collapse
|
17
|
Sombut P, Puntscher L, Atzmueller M, Jakub Z, Reticcioli M, Meier M, Parkinson GS, Franchini C. Role of Polarons in Single-Atom Catalysts: Case Study of Me 1 [Au 1, Pt 1, and Rh 1] on TiO 2(110). Top Catal 2022; 65:1620-1630. [PMID: 36405974 PMCID: PMC9668789 DOI: 10.1007/s11244-022-01651-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 11/29/2022]
Abstract
The local environment of metal-oxide supported single-atom catalysts plays a decisive role in the surface reactivity and related catalytic properties. The study of such systems is complicated by the presence of point defects on the surface, which are often associated with the localization of excess charge in the form of polarons. This can affect the stability, the electronic configuration, and the local geometry of the adsorbed adatoms. In this work, through the use of density functional theory and surface-sensitive experiments, we study the adsorption of Rh1, Pt1, and Au1 metals on the reduced TiO2(110) surface, a prototypical polaronic material. A systematic analysis of the adsorption configurations and oxidation states of the adsorbed metals reveals different types of couplings between adsorbates and polarons. As confirmed by scanning tunneling microscopy measurements, the favored Pt1 and Au1 adsorption at oxygen vacancy sites is associated with a strong electronic charge transfer from polaronic states to adatom orbitals, which results in a reduction of the adsorbed metal. In contrast, the Rh1 adatoms interact weakly with the excess charge, which leaves the polarons largely unaffected. Our results show that an accurate understanding of the properties of single-atom catalysts on oxide surfaces requires a careful account of the interplay between adatoms, vacancy sites, and polarons. Supplementary Information The online version contains supplementary material available at 10.1007/s11244-022-01651-0.
Collapse
Affiliation(s)
| | - Lena Puntscher
- Institute of Applied Physics, TU Wien, 1040 Vienna, Austria
| | | | - Zdenek Jakub
- Institute of Applied Physics, TU Wien, 1040 Vienna, Austria
| | - Michele Reticcioli
- Faculty of Physics, Center for Computational Materials Science, University of Vienna, 1090 Vienna, Austria
| | - Matthias Meier
- Institute of Applied Physics, TU Wien, 1040 Vienna, Austria
- Faculty of Physics, Center for Computational Materials Science, University of Vienna, 1090 Vienna, Austria
| | | | - Cesare Franchini
- Faculty of Physics, Center for Computational Materials Science, University of Vienna, 1090 Vienna, Austria
- Alma Mater Studiorum, Università di Bologna, 40127 Bologna, Italy
| |
Collapse
|
18
|
Guo J, Peng M, Jia Z, Li C, Liu H, Zhang H, Ma D. Kinetic Evidence of Most Abundant Surface Intermediates Variation over Pt n and Pt p: Few-Atom Pt Ensembles Enable Efficient Catalytic Cyclohexane Dehydrogenation for Hydrogen Production-II. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jinqiu Guo
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300350, China
| | - Mi Peng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, and BIC-ESAT, Peking University, Beijing 100871, China
| | - Zhimin Jia
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Chengyu Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, and BIC-ESAT, Peking University, Beijing 100871, China
| | - Hongyang Liu
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Hongbo Zhang
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300350, China
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, and BIC-ESAT, Peking University, Beijing 100871, China
| |
Collapse
|
19
|
Effect of Acid–Base Characteristics of Zeolite Catalysts on Oxidative Dehydrogenation of Propane with Carbon Dioxide. THEOR EXP CHEM+ 2022. [DOI: 10.1007/s11237-022-09729-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
20
|
Pineda M, Stamatakis M. Kinetic Monte Carlo simulations for heterogeneous catalysis: Fundamentals, current status, and challenges. J Chem Phys 2022; 156:120902. [DOI: 10.1063/5.0083251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Kinetic Monte Carlo (KMC) simulations in combination with first-principles (1p)-based calculations are rapidly becoming the gold-standard computational framework for bridging the gap between the wide range of length scales and time scales over which heterogeneous catalysis unfolds. 1p-KMC simulations provide accurate insights into reactions over surfaces, a vital step toward the rational design of novel catalysts. In this Perspective, we briefly outline basic principles, computational challenges, successful applications, as well as future directions and opportunities of this promising and ever more popular kinetic modeling approach.
Collapse
Affiliation(s)
- M. Pineda
- Thomas Young Centre and Department of Chemical Engineering, University College London, Roberts Building, Torrington Place, London WC1E 7JE, United Kingdom
| | - M. Stamatakis
- Thomas Young Centre and Department of Chemical Engineering, University College London, Roberts Building, Torrington Place, London WC1E 7JE, United Kingdom
| |
Collapse
|
21
|
Yamamoto M, Zhao Q, Goto S, Gu Y, Toriyama T, Yamamoto T, Nishihara H, Aziz A, Crespo-Otero R, Di Tommaso D, Tamura M, Tomishige K, Kyotani T, Yamazaki K. Porous nanographene formation on γ-alumina nanoparticles via transition-metal-free methane activation. Chem Sci 2022; 13:3140-3146. [PMID: 35414888 PMCID: PMC8926170 DOI: 10.1039/d1sc06578e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/22/2022] [Indexed: 11/24/2022] Open
Abstract
γ-Al2O3 nanoparticles promote pyrolytic carbon deposition of CH4 at temperatures higher than 800 °C to give single-walled nanoporous graphene (NPG) materials without the need for transition metals as reaction centers. To accelerate the development of efficient reactions for NPG synthesis, we have investigated early-stage CH4 activation for NPG formation on γ-Al2O3 nanoparticles via reaction kinetics and surface analysis. The formation of NPG was promoted at oxygen vacancies on (100) surfaces of γ-Al2O3 nanoparticles following surface activation by CH4. The kinetic analysis was well corroborated by a computational study using density functional theory. Surface defects generated as a result of surface activation by CH4 make it kinetically feasible to obtain single-layered NPG, demonstrating the importance of precise control of oxygen vacancies for carbon growth. Oxygen vacancies on the (100) surface of γ-Al2O3 nanoparticles catalyse CH4-CVD for single-layered nanoporous graphenes with no transition metal reaction centre. The rate-limiting step is the proton transfer (PT) in the activation of CH4 on them.![]()
Collapse
Affiliation(s)
- Masanori Yamamoto
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University 2-1-1 Katahira, Aoba Sendai 980-8577 Japan
| | - Qi Zhao
- Department of Chemistry, Queen Mary University of London Mile End Road London E1 4NS UK
| | - Shunsuke Goto
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University 2-1-1 Katahira, Aoba Sendai 980-8577 Japan
| | - Yu Gu
- Graduate School of Engineering, Tohoku University 6-6-07 Aramaki, Aoba Sendai 980-8579 Japan
| | - Takaaki Toriyama
- The Ultramicroscopy Research Center, Kyushu University Motooka 744, Nishi Fukuoka 819-0395 Japan
| | - Tomokazu Yamamoto
- The Ultramicroscopy Research Center, Kyushu University Motooka 744, Nishi Fukuoka 819-0395 Japan
| | - Hirotomo Nishihara
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University 2-1-1 Katahira, Aoba Sendai 980-8577 Japan
| | - Alex Aziz
- Department of Chemistry, Queen Mary University of London Mile End Road London E1 4NS UK
| | - Rachel Crespo-Otero
- Department of Chemistry, Queen Mary University of London Mile End Road London E1 4NS UK
| | - Devis Di Tommaso
- Department of Chemistry, Queen Mary University of London Mile End Road London E1 4NS UK
| | - Masazumi Tamura
- Graduate School of Engineering, Tohoku University 6-6-07 Aramaki, Aoba Sendai 980-8579 Japan
| | - Keiichi Tomishige
- Graduate School of Engineering, Tohoku University 6-6-07 Aramaki, Aoba Sendai 980-8579 Japan
| | - Takashi Kyotani
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University 2-1-1 Katahira, Aoba Sendai 980-8577 Japan
| | - Kaoru Yamazaki
- Institute for Materials Research, Tohoku University 2-1-1 Katahira, Aoba Sendai 980-8577 Japan
| |
Collapse
|
22
|
Bian W, Shen X, Tan H, Fan X, Liu Y, Lin H, Li Y. The triggering of catalysis via structural engineering at atomic level: Direct propane dehydrogenation on Fe-N3P-C. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Nakaya Y, Furukawa S. Tailoring Single-Atom Platinum for Selective and Stable Catalysts in Propane Dehydrogenation. Chempluschem 2022; 87:e202100560. [PMID: 35194957 DOI: 10.1002/cplu.202100560] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/12/2022] [Indexed: 11/08/2022]
Abstract
Propane dehydrogenation has been a promising method for producing propylene that has the potentials to meet the increasing global demand for propylene. However, owing to the restricted equilibrium conversion caused by the high endothermicity, even the Pt-based catalysts, which exhibit high activity and selectivity, severely suffer significantly from coke formation and/or nanoparticle sintering at realistic reaction temperatures, resulting in a short catalyst lifetime. As a result, few innovative catalysts in terms of catalytic activity, selectivity, and stability, have been produced. In this Review, we focus on the characteristics of single-atom-like Pt sites for PDH and attempt to provide suggestions for developing highly efficient catalysts. First, we briefly describe the fundamental strategies. Following that, the remarkable catalysis is addressed by three different distinct sorts of state-of-the-art single-atom-like Pt catalysts are discussed. Additionally, we present other promising catalyst design approaches that are not based on single-atom-like Pt catalysts, as well as future research challenges in this field.
Collapse
Affiliation(s)
- Yuki Nakaya
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo, Kita-ku, 001-0021, Japan
| | - Shinya Furukawa
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo, Kita-ku, 001-0021, Japan
- Department of Research Promotion, Japan Science and Technology Agency, Chiyoda, Tokyo, 102-0076, Japan
| |
Collapse
|
24
|
Lv JY, Ren RP, Lv YK. A theoretical study on the mechanism of conversion of C 3H 8 and CO 2 to C 3H 6 and HCOOH by M 4–B 24N 28 catalysis. NEW J CHEM 2022. [DOI: 10.1039/d2nj00522k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we explored the reaction mechanism of metallic copper-doped modified aperiodic (BN)28 nanocages for the catalytic oxidation of propane with carbon dioxide. The DFT calculation is performed on all possible paths during the reaction process.
Collapse
Affiliation(s)
- Jia-Yuan Lv
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Rui-Peng Ren
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, 87 Zhengyang Street, Xiaodian District, Taiyuan, Shanxi, China
| | - Yong-Kang Lv
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, 87 Zhengyang Street, Xiaodian District, Taiyuan, Shanxi, China
| |
Collapse
|
25
|
The continuum of carbon-hydrogen (C-H) activation mechanisms and terminology. Commun Chem 2021; 4:173. [PMID: 36697593 PMCID: PMC9814233 DOI: 10.1038/s42004-021-00611-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/22/2021] [Indexed: 01/28/2023] Open
Abstract
As a rapidly growing field across all areas of chemistry, C-H activation/functionalisation is being used to access a wide range of important molecular targets. Of particular interest is the development of a sustainable methodology for alkane functionalisation as a means for reducing hydrocarbon emissions. This Perspective aims to give an outline to the community with respect to commonly used terminology in C-H activation, as well as the mechanisms that are currently understood to operate for (cyclo)alkane activation/functionalisation.
Collapse
|
26
|
Monai M, Gambino M, Wannakao S, Weckhuysen BM. Propane to olefins tandem catalysis: a selective route towards light olefins production. Chem Soc Rev 2021; 50:11503-11529. [PMID: 34661210 DOI: 10.1039/d1cs00357g] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
On-purpose synthetic routes for propylene production have emerged in the last couple of decades in response to the increasing demand for plastics and a shift to shale gas feedstocks for ethylene production. Propane dehydrogenation (PDH), an efficient and selective route to produce propylene, saw booming investments to fill the so-called propylene gap. In the coming years, however, a fluctuating light olefins market will call for flexibility in end-product of PDH plants. This can be achieved by combining PDH with propylene metathesis in a single step, propane to olefins (PTO), which allows production of mixtures of propylene, ethylene and butenes, which are important chemical building blocks for a.o. thermoplastics. The metathesis technology introduced by Phillips in the 1960s and mostly operated in reverse to produce propylene, is thus undergoing a renaissance of scientific and technological interest in the context of the PTO reaction. In this review, we will describe the state-of-the-art of PDH, propylene metathesis and PTO reactions, highlighting the open challenges and opportunities in the field. While the separate PDH and metathesis reactions have been extensively studied in the literature, understanding the whole PTO tandem-catalysis system will require new efforts in theoretical modelling and operando spectroscopy experiments, to gain mechanistic insights into the combined reactions and finally improve catalytic selectivity and stability for on-purpose olefins production.
Collapse
Affiliation(s)
- Matteo Monai
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| | - Marianna Gambino
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| | - Sippakorn Wannakao
- SCG Chemicals Co., Ltd, 1 Siam-Cement Rd, Bang sue, Bangkok 1080, Thailand
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
27
|
Bu X, Ran J, Niu J, Ou Z, Tang L, Huang X. Reaction mechanism insights into CH4 catalytic oxidation on Pt13 cluster: A DFT study. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Ivanchina E, Ivashkina E, Dolganova I, Dolganov I, Solopova A, Pasyukova M. Influence of flowrate and composition of the alkanes dehydrogenation process feedstock on by-products concentration in the linear alkylbenzene sulfonic acid manufacturing technology. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
Huš M, Kopač D, Bajec D, Likozar B. Effect of Surface Oxidation on Oxidative Propane Dehydrogenation over Chromia: An Ab Initio Multiscale Kinetic Study. ACS Catal 2021; 11:11233-11247. [PMID: 34513204 PMCID: PMC8422962 DOI: 10.1021/acscatal.1c01814] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/27/2021] [Indexed: 11/28/2022]
Abstract
An increasingly utilized way for the production of propene is propane dehydrogenation. The reaction presents an alternative to conventional processes based on petroleum resources. In this work, we investigate theoretically how Cr2O3 catalyzes this reaction in oxidative and reducing environments. Although previous studies showed that the reduced catalyst is selective for the non-oxidative dehydrogenation of propane, real operating conditions are oxidative. Herein, we use multiscale modeling to investigate the difference between the oxidized and reduced catalyst and their performance. The complete reaction pathway for propane dehydrogenation, including C-C cracking, formation of side products (propyne, ethane, ethylene, acetylene, and methane), and catalyst coking on oxidized and reduced surfaces of α-Cr2O3(0001), is calculated using density functional theory with the Hubbard correction. Parameters describing adsorption, desorption, and surface reactions are used in a kinetic Monte Carlo simulation, which employed industrially relevant conditions (700-900 K, pressures up to 2 bar, and varying oxidants: N2O, O2, and none). We observe that over the reduced surface, propene and hydrogen form with high selectivity. When oxidants are used, the surface is oxidized, which changes the reaction mechanism and kinetics. During a much faster reaction, H2O forms as a coproduct in a Mars-van Krevelen cycle. Additionally, CO2 is also formed, which represents waste and adversely affects the selectivity. It is shown that the oxidized surface is much more active but prone to the formation of CO2, while the reduced surface is less active but highly selective toward propene. Moreover, the effect of the oxidant used is investigated, showing that N2O is preferred to O2 due to higher selectivity and less catalyst coking. We show that there exists an optimum degree of surface oxidation, where the yield of propene is maximized. The coke, which forms during the reaction, can be burnt away as CO2 with oxygen.
Collapse
Affiliation(s)
- Matej Huš
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
- Association for Technical Culture of Slovenia (ZOTKS), Zaloška 65, SI-1000 Ljubljana, Slovenia
| | - Drejc Kopač
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - David Bajec
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Blaž Likozar
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
30
|
Tzeng YZ, Chang CJ, Yang MC, Tsai MJ, Teramura K, Tanaka T, Lee HV, Juan JC, Wu JY, Lin YC. Zn-based metal–organic frameworks as sacrificial agents for the synthesis of Zn/ZSM-5 catalysts and their applications in the aromatization of methanol. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.01.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Del Campo P, Martínez C, Corma A. Activation and conversion of alkanes in the confined space of zeolite-type materials. Chem Soc Rev 2021; 50:8511-8595. [PMID: 34128513 DOI: 10.1039/d0cs01459a] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Microporous zeolite-type materials, with crystalline porous structures formed by well-defined channels and cages of molecular dimensions, have been widely employed as heterogeneous catalysts since the early 1960s, due to their wide variety of framework topologies, compositional flexibility and hydrothermal stability. The possible selection of the microporous structure and of the elements located in framework and extraframework positions enables the design of highly selective catalysts with well-defined active sites of acidic, basic or redox character, opening the path to their application in a wide range of catalytic processes. This versatility and high catalytic efficiency is the key factor enabling their use in the activation and conversion of different alkanes, ranging from methane to long chain n-paraffins. Alkanes are highly stable molecules, but their abundance and low cost have been two main driving forces for the development of processes directed to their upgrading over the last 50 years. However, the availability of advanced characterization tools combined with molecular modelling has enabled a more fundamental approach to the activation and conversion of alkanes, with most of the recent research being focused on the functionalization of methane and light alkanes, where their selective transformation at reasonable conversions remains, even nowadays, an important challenge. In this review, we will cover the use of microporous zeolite-type materials as components of mono- and bifunctional catalysts in the catalytic activation and conversion of C1+ alkanes under non-oxidative or oxidative conditions. In each case, the alkane activation will be approached from a fundamental perspective, with the aim of understanding, at the molecular level, the role of the active sites involved in the activation and transformation of the different molecules and the contribution of shape-selective or confinement effects imposed by the microporous structure.
Collapse
Affiliation(s)
- Pablo Del Campo
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain.
| | | | | |
Collapse
|
32
|
Lian Z, Si C, Jan F, Zhi S, Li B. Coke Deposition on Pt-Based Catalysts in Propane Direct Dehydrogenation: Kinetics, Suppression, and Elimination. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00331] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zan Lian
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, People’s Republic of China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, Liaoning 110016, People’s Republic of China
| | - Chaowei Si
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, People’s Republic of China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, Liaoning 110016, People’s Republic of China
| | - Faheem Jan
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, People’s Republic of China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, Liaoning 110016, People’s Republic of China
| | - ShuaiKe Zhi
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, People’s Republic of China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, Liaoning 110016, People’s Republic of China
| | - Bo Li
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, People’s Republic of China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, Liaoning 110016, People’s Republic of China
| |
Collapse
|
33
|
Han SW, Park H, Han J, Kim JC, Lee J, Jo C, Ryoo R. PtZn Intermetallic Compound Nanoparticles in Mesoporous Zeolite Exhibiting High Catalyst Durability for Propane Dehydrogenation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01808] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Seung Won Han
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Hongjun Park
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Jongho Han
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Jeong-Chul Kim
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - John Lee
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Changbum Jo
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Ryong Ryoo
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
34
|
Zeeshan M, Chang Q, Zhang J, Hu P, Sui Z, Zhou X, Chen D, Zhu Y. Effects of Oxygen Vacancy and Pt Doping on the Catalytic Performance of
CeO
2
in Propane Dehydrogenation: A
First‐Principles
Study. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Muhammad Zeeshan
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Qing‐Yu Chang
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Jun Zhang
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Ping Hu
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Zhi‐Jun Sui
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Xing‐Gui Zhou
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - De Chen
- Department of Chemical Engineering, Norwegian University of Science and Technology N‐7491 Trondheim Norway
| | - Yi‐An Zhu
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
35
|
Coupling of Propane with CO2 to Propylene Catalyzed by V–Fe Modified KIT-6 Zeolites. CATALYSIS SURVEYS FROM ASIA 2021. [DOI: 10.1007/s10563-021-09339-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Zhang B, Li G, Zhai Z, Chen D, Tian Y, Yang R, Wang L, Zhang X, Liu G. PtZn
intermetallic nanoalloy encapsulated in silicalite‐1 for propane dehydrogenation. AIChE J 2021. [DOI: 10.1002/aic.17295] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Bofeng Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University Tianjin China
| | - Guozhu Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University Tianjin China
| | - Ziwei Zhai
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University Tianjin China
| | - Dali Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University Tianjin China
| | - Yajie Tian
- College of Chemistry and Chemical Engineering Henan University Kaifeng China
| | - Ruoou Yang
- Shanghai Synchrotron Radiation Facility, Zhangjiang National Lab Shanghai Advanced Research Institute, Chinese Academy of Sciences Shanghai China
| | - Li Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University Tianjin China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University Tianjin China
| | - Guozhu Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University Tianjin China
| |
Collapse
|
37
|
Chen X, Peng M, Cai X, Chen Y, Jia Z, Deng Y, Mei B, Jiang Z, Xiao D, Wen X, Wang N, Liu H, Ma D. Regulating coordination number in atomically dispersed Pt species on defect-rich graphene for n-butane dehydrogenation reaction. Nat Commun 2021; 12:2664. [PMID: 33976155 PMCID: PMC8113322 DOI: 10.1038/s41467-021-22948-w] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/30/2021] [Indexed: 12/31/2022] Open
Abstract
Metal nanoparticle (NP), cluster and isolated metal atom (or single atom, SA) exhibit different catalytic performance in heterogeneous catalysis originating from their distinct nanostructures. To maximize atom efficiency and boost activity for catalysis, the construction of structure-performance relationship provides an effective way at the atomic level. Here, we successfully fabricate fully exposed Pt3 clusters on the defective nanodiamond@graphene (ND@G) by the assistance of atomically dispersed Sn promoters, and correlated the n-butane direct dehydrogenation (DDH) activity with the average coordination number (CN) of Pt-Pt bond in Pt NP, Pt3 cluster and Pt SA for fundamentally understanding structure (especially the sub-nano structure) effects on n-butane DDH reaction at the atomic level. The as-prepared fully exposed Pt3 cluster catalyst shows higher conversion (35.4%) and remarkable alkene selectivity (99.0%) for n-butane direct DDH reaction at 450 °C, compared to typical Pt NP and Pt SA catalysts supported on ND@G. Density functional theory calculation (DFT) reveal that the fully exposed Pt3 clusters possess favorable dehydrogenation activation barrier of n-butane and reasonable desorption barrier of butene in the DDH reaction.
Collapse
Grants
- National Key R&D Program of China (2016YFA0204100, 2017YFB0602200), the National Natural Science Foundation of China (91845201, 21961160722, 22072162, 21703261, 21725301, 21932002, and 21821004), the Liaoning Revitalization Talents Program XLYC1907055, Research Grants Council of Hong Kong (Project Nos. C6021-14E, N_HKUST624/19 and 16306818).
Collapse
Affiliation(s)
- Xiaowen Chen
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, P. R. China
| | - Mi Peng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University, Beijing, P. R. China
| | - Xiangbin Cai
- Department of Physics and Center for Quantum Materials, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, P. R. China
| | - Yunlei Chen
- State Key Laboratory of Coal Conversion, Institute Coal Chemistry, Chinese Academy of Sciences, Taiyuan, P. R. China
- University of Chinese Academy of Science, Beijing, P. R. China
| | - Zhimin Jia
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, P. R. China
| | - Yuchen Deng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University, Beijing, P. R. China
| | - Bingbao Mei
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Zheng Jiang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Dequan Xiao
- Center for Integrative Materials Discovery, Department of Chemistry and Chemical Engineering, University of New Haven, West Haven, CT, USA
| | - Xiaodong Wen
- State Key Laboratory of Coal Conversion, Institute Coal Chemistry, Chinese Academy of Sciences, Taiyuan, P. R. China
- University of Chinese Academy of Science, Beijing, P. R. China
| | - Ning Wang
- Department of Physics and Center for Quantum Materials, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, P. R. China.
| | - Hongyang Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, P. R. China.
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, P. R. China.
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University, Beijing, P. R. China.
| |
Collapse
|
38
|
Niu K, Chi L, Rosen J, Björk J. Structure-activity correlation of Ti 2CT 2MXenes for C-H activation. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:235201. [PMID: 33618346 DOI: 10.1088/1361-648x/abe8a1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
As a bourgeoning class of 2D materials, MXenes have recently attracted significant attention within heterogeneous catalysis for promoting reactions such as hydrogen evolution and C-H activation. However, the catalytic activity of MXenes is highly dependent on the structural configuration including termination groups and their distribution. Therefore, understanding the relation between the structure and the activity is desired for the rational design of MXenes as high-efficient catalysts. Here, we present that the correlation between the structure and activity of Ti2CT2(T is a combination of O, OH and/or F) MXenes for C-H activation can be linked by a quantitative descriptor: the hydrogen affinity (EH). A linear correlation is observed between the mean hydrogen affinity and the overall ratio of O terminations (xO) in Ti2CT2MXenes, in which hydrogen affinity increases as thexOdecreases, regardless to the species of termination groups. In addition, the hydrogen affinity is more sensitive to the presence of OH termination than F terminations. Moreover, the linear correlation between the hydrogen affinity and the activity of Ti2CT2MXenes for C-H activation of both -CH3and -CH2- groups can be extended to be valid for all three possible termination groups. Such a correlation provides fast prediction of the activity of general Ti2CT2MXenes, avoiding tedious activation energy calculations. We anticipate that the findings have the potential to accelerate the development of MXenes for heterogeneous catalysis applications.
Collapse
Affiliation(s)
- Kaifeng Niu
- Department of Physics, Chemistry and Biology, IFM, Linköping University, 581 83 Linköping, Sweden
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, People's Republic of China
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, People's Republic of China
| | - Johanna Rosen
- Department of Physics, Chemistry and Biology, IFM, Linköping University, 581 83 Linköping, Sweden
| | - Jonas Björk
- Department of Physics, Chemistry and Biology, IFM, Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
39
|
Tailoring catalytic properties of V2O3 to propane dehydrogenation through single-atom doping: A DFT study. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.02.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Chang QY, Wang KQ, Sui ZJ, Zhou XG, Chen D, Yuan WK, Zhu YA. Rational Design of Single-Atom-Doped Ga 2O 3 Catalysts for Propane Dehydrogenation: Breaking through Volcano Plot by Lewis Acid–Base Interactions. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05454] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qing-Yu Chang
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kai-Qi Wang
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhi-Jun Sui
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xing-Gui Zhou
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - De Chen
- Department of Chemical Engineering, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Wei-Kang Yuan
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yi-An Zhu
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
41
|
Wang Y, Hu P, Yang J, Zhu YA, Chen D. C-H bond activation in light alkanes: a theoretical perspective. Chem Soc Rev 2021; 50:4299-4358. [PMID: 33595008 DOI: 10.1039/d0cs01262a] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alkanes are the major constituents of natural gas and crude oil, the feedstocks for the chemical industry. The efficient and selective activation of C-H bonds can convert abundant and low-cost hydrocarbon feedstocks into value-added products. Due to the increasing global demand for light alkenes and their corresponding polymers as well as synthesis gas and hydrogen production, C-H bond activation of light alkanes has attracted widespread attention. A theoretical understanding of C-H bond activation in light hydrocarbons via density functional theory (DFT) and microkinetic modeling provides a feasible approach to gain insight into the process and guidelines for designing more efficient catalysts to promote light alkane transformation. This review describes the recent progress in computational catalysis that has addressed the C-H bond activation of light alkanes. We start with direct and oxidative C-H bond activation of methane, with emphasis placed on kinetic and mechanistic insights obtained from DFT assisted microkinetic analysis into steam and dry reforming, and the partial oxidation dependence on metal/oxide surfaces and nanoparticle size. Direct and oxidative activation of the C-H bond of ethane and propane on various metal and oxide surfaces are subsequently reviewed, including the elucidation of active sites, intriguing mechanisms, microkinetic modeling, and electronic features of the ethane and propane conversion processes with a focus on suppressing the side reaction and coke formation. The main target of this review is to give fundamental insight into C-H bond activation of light alkanes, which can provide useful guidance for the optimization of catalysts in future research.
Collapse
Affiliation(s)
- Yalan Wang
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim, 7491, Norway.
| | | | | | | | | |
Collapse
|
42
|
Qin F, Chen W. Copper-based single-atom alloys for heterogeneous catalysis. Chem Commun (Camb) 2021; 57:2710-2723. [PMID: 33616591 DOI: 10.1039/d1cc00062d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Heterogeneous catalysts, as crucial industrial commodities, play an important role in industrial production, especially in energy catalysis. Traditional noble metal catalysts cannot meet the increasing demand. Therefore, the exploration of cost-effective catalysts with high activity and selectivity is important to promote chemical production. Single-atom alloy (SAA) catalysts reduce the use of precious metals compared with traditional catalysts. The unique structure of SAAs, extremely high atom utilization and high catalytic selectivity give them a prominent position in heterogeneous catalysis. SAAs are widely used in selective hydrogenation/dehydrogenation, carbon dioxide reduction reaction (CO2RR), hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and nitric oxide reduction reaction (NORR). Here, the applications and research progress of copper-based single-atom alloys in the various catalytic reactions mentioned above are mainly introduced, and the factors (such as synthesis method, composition content, etc.) affecting the catalytic performance are analyzed using a combination of various characterization and testing methods.
Collapse
Affiliation(s)
- Fengjuan Qin
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Wenxing Chen
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
43
|
Niu J, Wang Y, E. Liland S, K. Regli S, Yang J, Rout KR, Luo J, Rønning M, Ran J, Chen D. Unraveling Enhanced Activity, Selectivity, and Coke Resistance of Pt–Ni Bimetallic Clusters in Dry Reforming. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04429] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Juntian Niu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education of PRC, Chongqing University, Chongqing 400044, China
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Yalan Wang
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Shirley E. Liland
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Samuel K. Regli
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Jia Yang
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Kumar R. Rout
- SINTEF Materials and Chemistry, Trondheim 7491, Norway
| | - Jun Luo
- Center for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials, School of Materials, Tianjin University of Technology, Tianjin 300384, China
| | - Magnus Rønning
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Jingyu Ran
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education of PRC, Chongqing University, Chongqing 400044, China
| | - De Chen
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway
| |
Collapse
|
44
|
|
45
|
Saelee T, Lerdpongsiripaisarn M, Rittiruam M, Somdee S, Liu A, Praserthdam S, Praserthdam P. Experimental and computational investigation on underlying factors promoting high coke resistance in NiCo bimetallic catalysts during dry reforming of methane. Sci Rep 2021; 11:519. [PMID: 33436936 PMCID: PMC7804276 DOI: 10.1038/s41598-020-80287-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/17/2020] [Indexed: 11/08/2022] Open
Abstract
Global warming remains one of the greatest challenges. One of the most prominent solutions is to close the carbon cycle by utilizing the greenhouse gas: CO2, and CH4, as a feedstock via the dry reforming of methane (DRM). This work provided an insight into how the NiCo bimetallic catalyst can perform with high stability against coking during DRM compared to the Ni and Co monometallic catalysts, in which the experimental and computational techniques based on density functional theory were performed. It was found that the high stability against coking found on the NiCo surface can be summarized into two key factors: (1) the role of Co weakening the bond between a Ni active site and coke (2) significantly high surface coke diffusion rate on NiCo. Moreover, the calculation of the surface fraction weighted rate of coke diffusion which modeled the real NiCo particle into four regions: Ni-dominant, Co-dominant, NiCo-dominant, and the mixed region consisting a comparable amount of the former there regions, have shown that the synthesis of a NiCo particle should be dominated with NiCo region while keeping the Ni-dominant, and Co-dominant regions to be as low as possible to facilitate coke diffusion and removal. Thus, to effectively utilize the coke-resistant property of NiCo catalyst for DRM, one should together combine its high coke diffusion rate with coke removal mechanisms such as oxidation or hydrogenation, especially at the final diffusion site, to ensure that there will not be enough coke at the final site that will cause back-diffusion.
Collapse
Affiliation(s)
- Tinnakorn Saelee
- High-Performance Computing Unit (CECC-HCU), Center of Excellence On Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence On Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Mongkol Lerdpongsiripaisarn
- High-Performance Computing Unit (CECC-HCU), Center of Excellence On Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence On Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Meena Rittiruam
- High-Performance Computing Unit (CECC-HCU), Center of Excellence On Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence On Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Siriwimol Somdee
- High-Performance Computing Unit (CECC-HCU), Center of Excellence On Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence On Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Anchittha Liu
- Center of Excellence On Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Supareak Praserthdam
- High-Performance Computing Unit (CECC-HCU), Center of Excellence On Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand.
- Center of Excellence On Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Piyasan Praserthdam
- Center of Excellence On Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
46
|
Nguyen TD, Zheng W, Celik FE, Tsilomelekis G. CO 2-assisted ethane oxidative dehydrogenation over MoO x catalysts supported on reducible CeO 2–TiO 2. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00362c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Supported MoOx catalysts on mixed CeO2–TiO2 were investigated for the oxidative dehydrogenation of ethane (ODHE) using CO2 as a mild oxidant. The reducibility of the support and nature of MoOx affect the relative dehydrogenation pathways.
Collapse
Affiliation(s)
- Thu D. Nguyen
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, USA
| | - Weiqing Zheng
- Catalysis Center for Energy Innovation, University of Delaware, Newark, DE 19716, USA
| | - Fuat E. Celik
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, USA
| | - George Tsilomelekis
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, USA
| |
Collapse
|
47
|
Jiao Y, Ma H, Wang H, Li YW, Wen XD, Jiao H. Interactive network of the dehydrogenation of alkanes, alkenes and alkynes – surface carbon hydrogenative coupling on Ru(111). Catal Sci Technol 2021. [DOI: 10.1039/d0cy02055a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The reaction mechanisms of the dehydrogenation and retrosynthesis of alkanes, the consecutive dissociation of methane, ethane, ethene and ethyne, as well as propane, propene and propyne, on the fcc Ru(111) surface has been computed.
Collapse
Affiliation(s)
- Yueyue Jiao
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- P.R. China
| | - Huan Ma
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- P.R. China
| | - Hui Wang
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- P.R. China
| | - Yong-Wang Li
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- P.R. China
| | - Xiao-Dong Wen
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- P.R. China
| | - Haijun Jiao
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock
- 18059 Rostock
- Germany
| |
Collapse
|
48
|
Curcio D, Sierda E, Pozzo M, Bignardi L, Sbuelz L, Lacovig P, Lizzit S, Alfè D, Baraldi A. Unusual reversibility in molecular break-up of PAHs: the case of pentacene dehydrogenation on Ir(111). Chem Sci 2021; 12:170-178. [PMID: 34168740 PMCID: PMC8179676 DOI: 10.1039/d0sc03734f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this work, we characterise the adsorption of pentacene molecules on Ir(111) and their dissociation behaviour as a function of temperature.
Collapse
Affiliation(s)
- Davide Curcio
- Department of Physics, University of Trieste, Via Valerio 2, 34127 Trieste, Italy
| | - Emil Sierda
- Department of Physics, University of Hamburg, Jungiusstrasse 11, D-20355 Hamburg, Germany
- Institute of Physics, Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland
| | - Monica Pozzo
- Department of Earth Sciences, Thomas Young Center, University College London, 5 Gower Place, London WC1E 6BS, UK
- London Centre for Nanotechnology, Thomas Young Centre, University College London, 17-19 Gordon Street, London WC1H 0AH, UK
| | - Luca Bignardi
- Department of Physics, University of Trieste, Via Valerio 2, 34127 Trieste, Italy
| | - Luca Sbuelz
- Department of Physics, University of Trieste, Via Valerio 2, 34127 Trieste, Italy
| | - Paolo Lacovig
- Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale 14 - km 163.5 in AREA Science Park, 34149 Trieste, Italy
| | - Silvano Lizzit
- Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale 14 - km 163.5 in AREA Science Park, 34149 Trieste, Italy
| | - Dario Alfè
- Department of Earth Sciences, Thomas Young Center, University College London, 5 Gower Place, London WC1E 6BS, UK
- London Centre for Nanotechnology, Thomas Young Centre, University College London, 17-19 Gordon Street, London WC1H 0AH, UK
- Dipartimento di Fisica “Ettore Pancini”, Università di Napoli “Federico II”, Monte S. Angelo, 80126 Napoli, Italy
| | - Alessandro Baraldi
- Department of Physics, University of Trieste, Via Valerio 2, 34127 Trieste, Italy
- Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale 14 - km 163.5 in AREA Science Park, 34149 Trieste, Italy
- IOM-CNR, Laboratorio TASC, Strada Statale 14 - km 163.5 in AREA Science Park, 34149 Trieste, Italy
| |
Collapse
|
49
|
Wang Q, Xu W, Ma Z, Yu F, Chen Y, Liao H, Wang X, Zhou J. Highly Effective Direct Dehydrogenation of Propane to Propylene by Microwave Catalysis at Low Temperature over Co−Sn/NC Microwave Catalyst. ChemCatChem 2020. [DOI: 10.1002/cctc.202001640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Qige Wang
- Key Laboratory of Green Catalysis and Chemical Reaction Engineering of Hunan Province, School of Chemical Engineering Xiangtan University Xiangtan 411105 P.R. China
| | - Wentao Xu
- Key Laboratory of Green Catalysis and Chemical Reaction Engineering of Hunan Province, School of Chemical Engineering Xiangtan University Xiangtan 411105 P.R. China
- National and Local United Engineering Research Center for Chemical Process Simulation and Intensification Xiangtan University Xiangtan 411105 P.R. China
| | - Zhongchen Ma
- Key Laboratory of Green Catalysis and Chemical Reaction Engineering of Hunan Province, School of Chemical Engineering Xiangtan University Xiangtan 411105 P.R. China
| | - Fei Yu
- Key Laboratory of Green Catalysis and Chemical Reaction Engineering of Hunan Province, School of Chemical Engineering Xiangtan University Xiangtan 411105 P.R. China
| | - Yi Chen
- Key Laboratory of Green Catalysis and Chemical Reaction Engineering of Hunan Province, School of Chemical Engineering Xiangtan University Xiangtan 411105 P.R. China
| | - Huanyu Liao
- Key Laboratory of Green Catalysis and Chemical Reaction Engineering of Hunan Province, School of Chemical Engineering Xiangtan University Xiangtan 411105 P.R. China
| | - Xianyou Wang
- National Base for International Science and Technology Cooperation, School of Chemistry Xiangtan University Xiangtan 411105 P.R. China
| | - Jicheng Zhou
- Key Laboratory of Green Catalysis and Chemical Reaction Engineering of Hunan Province, School of Chemical Engineering Xiangtan University Xiangtan 411105 P.R. China
- National and Local United Engineering Research Center for Chemical Process Simulation and Intensification Xiangtan University Xiangtan 411105 P.R. China
| |
Collapse
|
50
|
Xiao L, Shan YL, Sui ZJ, Chen D, Zhou XG, Yuan WK, Zhu YA. Beyond the Reverse Horiuti–Polanyi Mechanism in Propane Dehydrogenation over Pt Catalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03381] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ling Xiao
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yu-Ling Shan
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhi-Jun Sui
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - De Chen
- Department of Chemical Engineering, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Xing-Gui Zhou
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei-Kang Yuan
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yi-An Zhu
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|