1
|
Pattathil V, Pranckevicius C. Aromaticity transfer in an annulated 1,4,2-diazaborole: facile access to Cs symmetric 1,4,2,5-diazadiborinines. Chem Commun (Camb) 2024; 60:7705-7708. [PMID: 38975792 DOI: 10.1039/d4cc02414a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
A tricyclic annulated 1,4,2-diazaborole is readily accessed via reaction of a bidentate pyridyl-carbene ligand with MesBBr2 followed by reduction. Dearomatization of the flanking rings is shown to increase reactivity of this heterocycle in the form of a B-centred alkylation with MeI. Its reaction with hydrido-, fluoro-, and chloro-boranes reveal an unprecedented ring expansion reaction to form a diverse family of B2C2N2 heterocycles, reduction of which allows facile access to the first examples of Cs symmetric 1,4,2,5-diazadiborinines. DFT calculations have shed light on the electronic structures of the reduced species and provide insight into mechanistic aspects of the observed ring-expansion.
Collapse
Affiliation(s)
- Vignesh Pattathil
- Department of Chemistry, Charles E. Fipke Centre for Innovative Research, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC, Canada.
| | - Conor Pranckevicius
- Department of Chemistry, Charles E. Fipke Centre for Innovative Research, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC, Canada.
| |
Collapse
|
2
|
Abstract
Heteroatom-centered diradical(oid)s have been in the focus of molecular main group chemistry for nearly 30 years. During this time, the diradical concept has evolved and the focus has shifted to the rational design of diradical(oid)s for specific applications. This review article begins with some important theoretical considerations of the diradical and tetraradical concept. Based on these theoretical considerations, the design of diradical(oid)s in terms of ligand choice, steric, symmetry, electronic situation, element choice, and reactivity is highlighted with examples. In particular, heteroatom-centered diradical reactions are discussed and compared with closed-shell reactions such as pericyclic additions. The comparison between closed-shell reactivity, which proceeds in a concerted manner, and open-shell reactivity, which proceeds in a stepwise fashion, along with considerations of diradical(oid) design, provides a rational understanding of this interesting and unusual class of compounds. The application of diradical(oid)s, for example in small molecule activation or as molecular switches, is also highlighted. The final part of this review begins with application-related details of the spectroscopy of diradical(oid)s, followed by an update of the heteroatom-centered diradical(oid)s and tetraradical(oid)s published in the last 10 years since 2013.
Collapse
Affiliation(s)
- Alexander Hinz
- Institut für Anorganische Chemie (AOC), Karlsruher Institut für Technologie (KIT), Engesserstrasse 15, 76131 Karlsruhe, Germany
| | - Jonas Bresien
- Institut für Chemie, Universität Rostock, Albert-Einstein-Strasse 3a, 18059 Rostock, Germany
| | - Frank Breher
- Institut für Anorganische Chemie (AOC), Karlsruher Institut für Technologie (KIT), Engesserstrasse 15, 76131 Karlsruhe, Germany
| | - Axel Schulz
- Institut für Chemie, Universität Rostock, Albert-Einstein-Strasse 3a, 18059 Rostock, Germany
| |
Collapse
|
3
|
Prey SE, Herok C, Fantuzzi F, Bolte M, Lerner HW, Engels B, Wagner M. Multifaceted behavior of a doubly reduced arylborane in B-H-bond activation and hydroboration catalysis. Chem Sci 2023; 14:849-860. [PMID: 36755708 PMCID: PMC9890859 DOI: 10.1039/d2sc05518j] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Alkali-metal salts of 9,10-dimethyl-9,10-dihydro-9,10-diboraanthrancene (M2[DBA-Me2]; M+ = Li+, Na+, K+) activate the H-B bond of pinacolborane (HBpin) in THF already at room temperature. For M+ = Na+, K+, the addition products M2[4] are formed, which contain one new H-B and one new B-Bpin bond; for M+ = Li+, the H- ion is instantaneously transferred from the DBA-Me2 unit to another equivalent of HBpin to afford Li[5]. Although Li[5] might commonly be considered a [Bpin]- adduct of neutral DBA-Me2, it donates a [Bpin]+ cation to Li[SiPh3], generating the silyl borane Ph3Si-Bpin; Li2[DBA-Me2] with an aromatic central B2C4 ring acts as the leaving group. Furthermore, Li2[DBA-Me2] catalyzes the hydroboration of various unsaturated substrates with HBpin in THF. Quantum-chemical calculations complemented by in situ NMR spectroscopy revealed two different mechanistic scenarios that are governed by the steric demand of the substrate used: in the case of the bulky Ph(H)C[double bond, length as m-dash]NtBu, the reaction requires elevated temperatures of 100 °C, starts with H-Bpin activation which subsequently generates Li[BH4], so that the mechanism eventually turns into "hidden borohydride catalysis". Ph(H)C[double bond, length as m-dash]NPh, Ph2C[double bond, length as m-dash]O, Ph2C[double bond, length as m-dash]CH2, and iPrN[double bond, length as m-dash]C[double bond, length as m-dash]NiPr undergo hydroboration already at room temperature. Here, the active hydroboration catalyst is the [4 + 2] cycloadduct between the respective substrate and Li2[DBA-Me2]: in the key step, attack of HBpin on the bridging unit opens the bicyclo[2.2.2]octadiene scaffold and gives the activated HBpin adduct of the Lewis-basic moiety that was previously coordinated to the DBA-B atom.
Collapse
Affiliation(s)
- Sven E. Prey
- Institut für Anorganische und Analytische Chemie, Goethe-Universität FrankfurtFrankfurt am Main D-60438Germany
| | - Christoph Herok
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg Würzburg D-97074 Germany
| | - Felipe Fantuzzi
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg Würzburg D-97074 Germany .,School of Chemistry and Forensic Science, University of Kent Canterbury CT2 7NH UK
| | - Michael Bolte
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt Frankfurt am Main D-60438 Germany
| | - Hans-Wolfram Lerner
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt Frankfurt am Main D-60438 Germany
| | - Bernd Engels
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg Würzburg D-97074 Germany
| | - Matthias Wagner
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt Frankfurt am Main D-60438 Germany
| |
Collapse
|
4
|
Ghorai S, Jemmis ED. From a Möbius-aromatic interlocked Mn 2B 10H 10 wheel to the metal-doped boranaphthalenes M 2@B 10H 8 and M 2B 5 2D-sheets (M = Mn and Fe): a molecules to materials continuum using DFT studies. Chem Sci 2022; 13:8968-8978. [PMID: 36091213 PMCID: PMC9365082 DOI: 10.1039/d2sc02244c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/27/2022] [Indexed: 11/21/2022] Open
Abstract
The design of (1) Möbius aromatic interlocked boron wheel Mn2B10H10, (2) Hückel aromatic boron analogs of naphthalene (M2@B10H8; M = Mn and Fe), and (3) metal boride monolayers (FeB5 and Fe2B5), creating a molecules to materials continuum.
Collapse
Affiliation(s)
- Sagar Ghorai
- Inorganic and Physical Chemistry Department, Indian Institute of Science, Bangalore-560012, India
| | - Eluvathingal D. Jemmis
- Inorganic and Physical Chemistry Department, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
5
|
Kinjo R. How to Install Boron into Aromatic Scaffolds~Chemistry of Diazadiborinines~. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.1056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rei Kinjo
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University
| |
Collapse
|
6
|
Sharma MK, Wölper C, Haberhauer G, Schulz S. Reversible and Irreversible [2+2] Cycloaddition Reactions of Heteroallenes to a Gallaphosphene. Angew Chem Int Ed Engl 2021; 60:21784-21788. [PMID: 34324782 PMCID: PMC8519123 DOI: 10.1002/anie.202108370] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/28/2021] [Indexed: 12/11/2022]
Abstract
[2+2] Cycloaddition reactions of gallaphosphene L(Cl)GaPGaL 1 (L=HC[C(Me)N(2,6-i-Pr2 C6 H3 )]2 ) with carbodiimides [C(NR)2 ; R=i-Pr, Cy] and isocyanates [RNCO; R=Et, i-Pr, Cy] yielded four-membered metallaheterocycles LGa(Cl)P[μ-C(X)NR]GaL (X=NR, R=i-Pr 2, Cy 3; X=O, R=Et 4, i-Pr 5, Cy 6). Compounds 4-6 reversibly react with CO2 via [2+2] cycloaddition at ambient temperature to the six-membered metallaheterocycles LGa(Cl)P[μ-C(O)O]-μ-C(O)N(R)GaL (R=Et 7, i-Pr 8, Cy 9). Compounds 2-9 were characterized by IR and heteronuclear (1 H, 13 C{1 H}, 31 P{1 H}) NMR spectroscopy and elemental analysis, while quantum chemical calculations provided a deeper understanding on the energetics of the reactions.
Collapse
Affiliation(s)
- Mahendra K. Sharma
- Institute of Inorganic Chemistry, and Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenUniversitätsstrasse 5–745141EssenGermany
| | - Christoph Wölper
- Institute of Inorganic Chemistry, and Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenUniversitätsstrasse 5–745141EssenGermany
| | - Gebhard Haberhauer
- Institute of Organic ChemistryUniversity of Duisburg-EssenUniversitätsstrasse 5–745141EssenGermany
| | - Stephan Schulz
- Institute of Inorganic Chemistry, and Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenUniversitätsstrasse 5–745141EssenGermany
| |
Collapse
|
7
|
Sharma MK, Wölper C, Haberhauer G, Schulz S. Reversible und irreversible [2+2]‐Cycloadditionen von Heteroallenen an ein Gallaphosphen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mahendra K. Sharma
- Institut für Anorganische Chemie und Center for Nanointegration Duisburg-Essen (CENIDE) Universität Duisburg-Essen Universitätsstraße 5–7 45141 Essen Deutschland
| | - Christoph Wölper
- Institut für Anorganische Chemie und Center for Nanointegration Duisburg-Essen (CENIDE) Universität Duisburg-Essen Universitätsstraße 5–7 45141 Essen Deutschland
| | - Gebhard Haberhauer
- Institut für Organische Chemie Universität Duisburg-Essen Universitätsstraße 5–7 45141 Essen Deutschland
| | - Stephan Schulz
- Institut für Anorganische Chemie und Center for Nanointegration Duisburg-Essen (CENIDE) Universität Duisburg-Essen Universitätsstraße 5–7 45141 Essen Deutschland
| |
Collapse
|
8
|
Yanagisawa T, Mizuhata Y, Tokitoh N. A Novel Reactivity of Phosphanylalumane (>P-Al<): Reversible Addition of a Saturated Interelement Bond to Olefins. Chemistry 2021; 27:11273-11278. [PMID: 34105846 DOI: 10.1002/chem.202101649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Indexed: 11/09/2022]
Abstract
The reversible addition of olefins to a phosphanylalumane, P-Al single-bond species, was investigated. The P-Al bond added to ethylene and relatively small terminal alkenes (propylene and hex-1-ene) at room temperature to give the corresponding alkene adducts. Heating the terminal alkene adducts released the corresponding alkenes and regenerated the P-Al bond, but no release of ethylene was observed even under vacuum conditions. The reactivity of ethylene adduct as a new saturated C2 vicinal P/Al-based FLP was also investigated. The ethylene adduct was found to undergo complexation with nitriles to give the corresponding nitrile adducts to the Al center, which retained the ethylene tether as in the case of the corresponding P/B-based FLP. However, the reactivity of ethylene toward CO2 and benzaldehyde differed from that of the P/B system giving the corresponding adducts.
Collapse
Affiliation(s)
- Tatsuya Yanagisawa
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Yoshiyuki Mizuhata
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.,Integrated Research Consortium on Chemical Sciences, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Norihiro Tokitoh
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.,Integrated Research Consortium on Chemical Sciences, Gokasho, Uji, Kyoto, 611-0011, Japan
| |
Collapse
|
9
|
Guo R, Jiang J, Ke Z, Tung CH, Kong L. Incorporation of H 2O and CO 2 into a BN-embedded 3 aH-3 a1H-acephenanthrylene derivative. Chem Commun (Camb) 2021; 57:1226-1229. [PMID: 33416813 DOI: 10.1039/d0cc07276a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A fused tetracyclic BN-species 1 featuring nucleophilic nitrogen and electrophilic boron centers behaves as a reactive N/B frustrated Lewis pair (FLP) for small molecule activation. Specifically, the O-H and C[double bond, length as m-dash]O bonds have been cleaved by 1 with the formation of fused borinic acid 2, borenium species 3, anionic boranuidacarboxylic acid 4 and oxadiazaborolidinone 5, respectively. Quantum-mechanical calculations are conducted to comprehensively understand the activation processes of small molecules by 1.
Collapse
Affiliation(s)
- Rui Guo
- School of Chemistry and Chemical Engineering, Key Lab of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, People's Republic of China.
| | - Jingxing Jiang
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou 510275, People's Republic of China.
| | - Zhuofeng Ke
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou 510275, People's Republic of China.
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Key Lab of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, People's Republic of China.
| | - Lingbing Kong
- School of Chemistry and Chemical Engineering, Key Lab of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, People's Republic of China.
| |
Collapse
|
10
|
Wallach C, Geitner FS, Karttunen AJ, Fässler TF. Boranyl-Functionalized [Ge 9 ] Clusters: Providing the Idea of Intramolecular Ge/B Frustrated Lewis Pairs. Angew Chem Int Ed Engl 2021; 60:2648-2653. [PMID: 33090635 PMCID: PMC7898805 DOI: 10.1002/anie.202012336] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/03/2020] [Indexed: 12/14/2022]
Abstract
The unique three-dimensional structure of spherical, homoatomic nine-atom germanium clusters opens various possibilities for the spatial arrangement of functional groups. Ligands comprising lone pairs have recently been introduced in the cluster sphere, and we now report the addition of a boranyl group to the cluster featuring a Ge-B exo-cluster bond. The reaction of the twofold-silylated cluster [Ge9 {Si(TMS)3 }2 ]2- (TMS=trimethylsilyl) with 2-chloro-1,3,2-diazaborolidines DABR -Cl leads to the first boranyl-functionalized [Ge9 ] clusters [Ge9 {Si(TMS)3 }2 DABR ]- (R=methyl (1 a), iso-propyl (2 a), ortho-tolyl (3 a)). The anions 2 a and 3 a were structurally characterized as [NHCDipp Cu]+ complexes (NHCDipp =1,3-di(2,6-diisopropylphenyl)imidazolylidine) through single crystal X-ray structure determination. Quantum-chemical calculations manifest the frustrated Lewis pair (FLP) character of the boranyl-functionalized cluster [Ge9 {Si(TMS)3 }2 BCy2 ]- (4 a).
Collapse
Affiliation(s)
- Christoph Wallach
- Department ChemieTechnische Universität MünchenLichtenbergstraße 485747Garching b. MünchenGermany
| | - Felix S. Geitner
- Department ChemieTechnische Universität MünchenLichtenbergstraße 485747Garching b. MünchenGermany
| | - Antti J. Karttunen
- Department of Chemistry and Materials ScienceAalto University00076AaltoFinland
| | - Thomas F. Fässler
- Department ChemieTechnische Universität MünchenLichtenbergstraße 485747Garching b. MünchenGermany
| |
Collapse
|
11
|
Wallach C, Geitner FS, Karttunen AJ, Fässler TF. Boranyl‐Functionalized [Ge
9
] Clusters: Providing the Idea of Intramolecular Ge/B Frustrated Lewis Pairs. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Christoph Wallach
- Department Chemie Technische Universität München Lichtenbergstraße 4 85747 Garching b. München Germany
| | - Felix S. Geitner
- Department Chemie Technische Universität München Lichtenbergstraße 4 85747 Garching b. München Germany
| | - Antti J. Karttunen
- Department of Chemistry and Materials Science Aalto University 00076 Aalto Finland
| | - Thomas F. Fässler
- Department Chemie Technische Universität München Lichtenbergstraße 4 85747 Garching b. München Germany
| |
Collapse
|
12
|
Shao Y, Huang M, Gu F, Zhao C, Qu LB, Ke Z. Diazadiborinine as an ambiphilic catalyst for metal-free hydrogenation: a computational study on the structural design and reaction mechanism. Org Chem Front 2021. [DOI: 10.1039/d0qo01510e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reactivity and mechanism of hydrogenation by a metal-free ambiphilic catalyst.
Collapse
Affiliation(s)
- Youxiang Shao
- School of Materials Science and Engineering
- PCFM Lab
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | - Ming Huang
- School of Clinical Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou 510006
- P. R. China
| | - Fenglong Gu
- MOE Key Laboratory of Theoretical Chemistry of the Environment
- School of Chemistry and Environment
- South China Normal University
- Guangzhou 510006
- P. R. China
| | - Cunyuan Zhao
- School of Materials Science and Engineering
- PCFM Lab
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | - Ling-Bo Qu
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Zhuofeng Ke
- School of Materials Science and Engineering
- PCFM Lab
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| |
Collapse
|
13
|
Prey SE, Wagner M. Threat to the Throne: Can Two Cooperating Boron Atoms Rival Transition Metals in Chemical Bond Activation and Catalysis? Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001356] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Sven E. Prey
- Institut für Anorganische Chemie Goethe-Universität Frankfurt am Main Max-von-Laue-Str. 7 60438 Frankfurt (Main) Germany
| | - Matthias Wagner
- Institut für Anorganische Chemie Goethe-Universität Frankfurt am Main Max-von-Laue-Str. 7 60438 Frankfurt (Main) Germany
| |
Collapse
|
14
|
Riu MLY, Cummins CC. 3,5-Diphenyl-2-phosphafuran: Synthesis, Structure, and Thermally Reversible [4 + 2] Cycloaddition Chemistry. J Org Chem 2020; 85:14810-14816. [PMID: 33161714 DOI: 10.1021/acs.joc.0c02025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Treatment of trans-chalcone with dibenzo-7-phosphanorbornadiene EtOPA (A = C14H10, anthracene), a source of ethoxyphosphinidene, followed by formal elimination of ethanol yields 3,5-diphenyl-2-phosphafuran (DPF) in 43% yield. We show that the phosphadiene moiety of DPF is a potent diene in the Diels-Alder reaction and reacts with dienophiles dimethyl acetylenedicarboxylate (DPF·DMAD, 68%), norbornene (DPF·norbornene, 73%), and ethylene (DPF·C2H4, 80%) under ambient conditions. Mild heating of DPF·C2H4 results in the corresponding retro-Diels-Alder reaction, establishing DPF as a molecule that is able to reversibly bind ethylene.
Collapse
Affiliation(s)
- Martin-Louis Y Riu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Christopher C Cummins
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
15
|
Taylor JW, Harman WH. H 2 evolution from H 2O via O-H oxidative addition across a 9,10-diboraanthracene. Chem Commun (Camb) 2020; 56:13804-13807. [PMID: 33078792 DOI: 10.1039/d0cc05261b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The water reactivity of the boroauride complex ([Au(B2P2)][K(18-c-6)]; (B2P2, 9,10-bis(2-(diisopropylphosphino)-phenyl)-9,10-dihydroboranthrene) and its corresponding two-electron oxidized complex, Au(B2P2)Cl, are presented. Au(B2P2)Cl is tolerant to H2O and forms the hydroxide complex Au(B2P2)OH in the presence of H2O and triethylamine. [Au(B2P2)]Cl and [Au(B2P2)]OH are poor Lewis acids as judged by the Gutmann-Becket method, with [Au(B2P2)]OH displaying facile hydroxide exchange between B atoms of the DBA ring as evidenced by variable temperature NMR spectroscopy. The reduced boroauride complex [Au(B2P2)]- reacts with 1 equivalent of H2O to produce a hydride/hydroxide product, [Au(B2P2)(H)(OH)]-, that rapidly evolves H2 upon further H2O reaction to yield the dihydroxide compound, [Au(B2P2)(OH)2]-. [Au(B2P2)]Cl can be regenerated from [Au(B2P2)(OH)2]-via HCl·Et2O, providing a synthetic cycle for H2 evolution from H2O enabled by O-H oxidative addition at a diboraanthracene unit.
Collapse
Affiliation(s)
- Jordan W Taylor
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA.
| | | |
Collapse
|
16
|
Pradhan E, Bentley JN, Caputo CB, Zeng T. Designs of Singlet Fission Chromophores with a Diazadiborinine Framework**. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ekadashi Pradhan
- Department of Chemistry York University Toronto Ontario M3 J 1P3 Canada
| | - Jordan N. Bentley
- Department of Chemistry York University Toronto Ontario M3 J 1P3 Canada
| | | | - Tao Zeng
- Department of Chemistry York University Toronto Ontario M3 J 1P3 Canada
| |
Collapse
|
17
|
Huang Z, Wang S, Dewhurst RD, Ignat'ev NV, Finze M, Braunschweig H. Boron: Its Role in Energy-Related Processes and Applications. Angew Chem Int Ed Engl 2020; 59:8800-8816. [PMID: 31625661 PMCID: PMC7317435 DOI: 10.1002/anie.201911108] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Indexed: 12/21/2022]
Abstract
Boron's unique position in the Periodic Table, that is, at the apex of the line separating metals and nonmetals, makes it highly versatile in chemical reactions and applications. Contemporary demand for renewable and clean energy as well as energy-efficient products has seen boron playing key roles in energy-related research, such as 1) activating and synthesizing energy-rich small molecules, 2) storing chemical and electrical energy, and 3) converting electrical energy into light. These applications are fundamentally associated with boron's unique characteristics, such as its electron-deficiency and the availability of an unoccupied p orbital, which allow the formation of a myriad of compounds with a wide range of chemical and physical properties. For example, boron's ability to achieve a full octet of electrons with four covalent bonds and a negative charge has led to the synthesis of a wide variety of borate anions of high chemical and electrochemical stability-in particular, weakly coordinating anions. This Review summarizes recent advances in the study of boron compounds for energy-related processes and applications.
Collapse
Affiliation(s)
- Zhenguo Huang
- School of Civil & Environmental EngineeringUniversity of Technology Sydney81 BroadwayUltimoNSW2007Australia
| | - Suning Wang
- Department of ChemistryQueen's UniversityKingstonOntarioK7L 3N6Canada
| | - Rian D. Dewhurst
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Nikolai V. Ignat'ev
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Merck KGaA64293DarmstadtGermany
| | - Maik Finze
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Holger Braunschweig
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
18
|
Huang Z, Wang S, Dewhurst RD, Ignat'ev NV, Finze M, Braunschweig H. Bor in energiebezogenen Prozessen und Anwendungen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201911108] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zhenguo Huang
- School of Civil & Environmental Engineering University of Technology Sydney 81 Broadway Ultimo NSW 2007 Australien
| | - Suning Wang
- Department of Chemistry Queen's University Kingston Ontario K7L 3N6 Kanada
| | - Rian D. Dewhurst
- Institute for Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Nikolai V. Ignat'ev
- Institute for Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Merck KGaA 64293 Darmstadt Deutschland
| | - Maik Finze
- Institute for Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Holger Braunschweig
- Institute for Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| |
Collapse
|
19
|
Ota K, Kinjo R. A Neutral and Aromatic Boron‐Rich Inorganic Benzene. Angew Chem Int Ed Engl 2020; 59:6572-6575. [DOI: 10.1002/anie.201915790] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/24/2020] [Indexed: 01/22/2023]
Affiliation(s)
- Kei Ota
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University Nanyang Link 21 Singapore 637371 Singapore
| | - Rei Kinjo
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University Nanyang Link 21 Singapore 637371 Singapore
| |
Collapse
|
20
|
Affiliation(s)
- Kei Ota
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University Nanyang Link 21 Singapore 637371 Singapore
| | - Rei Kinjo
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University Nanyang Link 21 Singapore 637371 Singapore
| |
Collapse
|
21
|
Taylor JW, Harman WH. CO scission and reductive coupling of organic carbonyls by a redox-active diboraanthracene. Chem Commun (Camb) 2020; 56:4480-4483. [PMID: 32201869 DOI: 10.1039/d0cc01142h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A gold-stabilized diboraanthracene mediates reductive transformations of carbonyls, including C–O and C–C bond formation, and deoxygenation of acetone to propene and hydroxide.
Collapse
Affiliation(s)
| | - W. Hill Harman
- Department of Chemistry
- University of California
- Riverside
- USA
| |
Collapse
|
22
|
Exploring the reactivity of carbene supported diboraanthracene towards dihydrogen activation. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.06.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Narsaria AK, Hamlin TA, Lammertsma K, Bickelhaupt FM. Dual Activation of Aromatic Diels-Alder Reactions. Chemistry 2019; 25:9902-9912. [PMID: 31111976 PMCID: PMC6771859 DOI: 10.1002/chem.201901617] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/20/2019] [Indexed: 11/20/2022]
Abstract
The unusually fast Diels-Alder reactions of [5]cyclophanes were analyzed by DFT at the BLYP-D3(BJ)/TZ2P level of theory. The computations were guided by an integrated activation-strain and Kohn-Sham molecular orbital analysis. It is revealed why both [5]metacyclophane and [5]paracyclophane exhibit a significant rate enhancement compared to their planar benzene analogue. The activation strain analyses revealed that the enhanced reactivity originates from 1) predistortion of the aromatic core resulting in a reduced activation strain of the aromatic diene, and/or 2) enhanced interaction with the dienophile through a distortion-controlled lowering of the HOMO-LUMO gap within the diene. Both of these physical mechanisms and thus the rate of Diels-Alder cycloaddition can be tuned through different modes of geometrical distortion (meta versus para bridging) and by heteroatom substitution in the aromatic ring. Judicious choice of the bridge and heteroatom in the aromatic core enables effective tuning of the aromatic Diels-Alder reactivity to achieve activation barriers as low as 2 kcal mol-1 , which is an impressive 35 kcal mol-1 lower than that of benzene.
Collapse
Affiliation(s)
- Ayush K. Narsaria
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081HVAmsterdamThe Netherlands
| | - Trevor A. Hamlin
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081HVAmsterdamThe Netherlands
| | - Koop Lammertsma
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081HVAmsterdamThe Netherlands
- Department of ChemistryUniversity of JohannesburgAuckland ParkJohannesburg2006South Africa
| | - F. Matthias Bickelhaupt
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081HVAmsterdamThe Netherlands
- Institute for Molecules and Materials (IMM)Radboud UniversityHeyendaalseweg 1356525AJNijmegenThe Netherlands
| |
Collapse
|
24
|
Kong RY, Crimmin MR. Reversible insertion of CO into an aluminium-carbon bond. Chem Commun (Camb) 2019; 55:6181-6184. [PMID: 31086911 DOI: 10.1039/c9cc02818h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A [2.2.1] aluminium metallobicycle is capable of reversibly inserting CO to form a [2.2.2] metallobicycle at 100 °C. Computational studies reveal a highly asynchronous, but concerted, transition state for CO insertion. The coordination of CO to aluminium precedes C-C bond formation. The reversible migratory insertion of CO at aluminium thus mimics well-established transition-metal reactivity.
Collapse
Affiliation(s)
- Richard Y Kong
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 80 Wood Lane, Shepherds Bush, London, W12 0BZ, UK.
| | | |
Collapse
|
25
|
von Grotthuss E, Prey SE, Bolte M, Lerner HW, Wagner M. Dual Role of Doubly Reduced Arylboranes as Dihydrogen- and Hydride-Transfer Catalysts. J Am Chem Soc 2019; 141:6082-6091. [DOI: 10.1021/jacs.9b01998] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Esther von Grotthuss
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Straße 7, Frankfurt am Main D-60438, Germany
| | - Sven E. Prey
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Straße 7, Frankfurt am Main D-60438, Germany
| | - Michael Bolte
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Straße 7, Frankfurt am Main D-60438, Germany
| | - Hans-Wolfram Lerner
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Straße 7, Frankfurt am Main D-60438, Germany
| | - Matthias Wagner
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Straße 7, Frankfurt am Main D-60438, Germany
| |
Collapse
|
26
|
Abstract
The study of main-group molecules that behave and react similarly to transition-metal (TM) complexes has attracted significant interest in recent decades. Most notably, the attractive idea of replacing the all-too-often rare and costly metals from catalysis has motivated efforts to develop main-group-element-mediated reactions. Main-group elements, however, lack the electronic flexibility of TM complexes that arises from combinations of empty and filled d orbitals and that seem ideally suited to bind and activate many substrates. In this review, we look at boron, an element that despite its nonmetal nature, low atomic weight, and relative redox staticity has achieved great milestones in terms of TM-like reactivity. We show how in interelement cooperative systems, diboron molecules, and hypovalent complexes the fifth element can acquire a truly metallomimetic character. As we discuss, this character is powerfully demonstrated by the reactivity of boron-based molecules with H2, CO, alkynes, alkenes and even with N2.
Collapse
|
27
|
Bakewell C, White AJP, Crimmin MR. Reversible alkene binding and allylic C-H activation with an aluminium(i) complex. Chem Sci 2019; 10:2452-2458. [PMID: 30881673 PMCID: PMC6388093 DOI: 10.1039/c8sc04865g] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/04/2019] [Indexed: 11/21/2022] Open
Abstract
The monomeric molecular aluminium(i) complex 1 [{(ArNCMe)2CH}Al] (Ar = 2,6-di-iso-propylphenyl) reacts with a series of terminal and strained alkenes including ethylene, propylene, allylbenzene and norbornene to form alkene bound products.
The monomeric molecular aluminium(i) complex 1 [{(ArNCMe)2CH}Al] (Ar = 2,6-di-iso-propylphenyl) reacts with a series of terminal and strained alkenes including ethylene, propylene, allylbenzene and norbornene to form alkene bound products. Remarkably all these reactions are reversible under mild conditions (298–353 K) with alkene binding being disfavoured at higher temperatures due to the positive reaction entropy. Van't Hoff analyses have allowed quantification of the binding events with . Calculations and single crystal X-ray diffraction studies are consistent with the alkene bound species being metallocyclopropane complexes. Alkene binding involves a reversible redox process with changes from the +1 to +3 aluminium oxidation state. Under more forcing conditions the metallocyclopropane complexes undergo non-reversible allylic C–H bond activation to generate aluminium(iii) allyl hydride complexes. This represents a rare example of redox-based main group reactivity in which reversible substrate binding is followed by a further productive bond breaking event. Analysis of the mechanism reveals a reaction network in which alkene dissociation and reformation of 1 is required for allylic C–H activation, a realisation that has important implications for the long-term goal of developing redox-based catalytic cycles with main group compounds.
Collapse
Affiliation(s)
- Clare Bakewell
- Department of Chemistry , Imperial College London , South Kensington , London , SW7 2AZ , UK .
| | - Andrew J P White
- Department of Chemistry , Imperial College London , South Kensington , London , SW7 2AZ , UK .
| | - Mark R Crimmin
- Department of Chemistry , Imperial College London , South Kensington , London , SW7 2AZ , UK .
| |
Collapse
|
28
|
Abstract
Most of the chemical and biological processes involving the fixation and transformation of small molecules have long been exclusive for metal complexes. Meanwhile, the last decades have seen a significant advance in main group chemistry that mimics transition-metal complexes, among which various boron-containing systems have been successful in mediating the small molecule activation. In this review, we focus on boron-containing heterocycles enabling the activation of σ- and π-bonds in small molecules, in conjunction with the proposed mechanisms.
Collapse
Affiliation(s)
- Yuanting Su
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Nanyang Link 21, Singapore 637371, Singapore.
| | | |
Collapse
|
29
|
Goh GKH, Li Y, Kinjo R. Oxidative addition of elemental selenium to 1,4,2,5-diazadiborinine. Dalton Trans 2019; 48:7514-7518. [DOI: 10.1039/c9dt01081e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A heavier analogue of dibora-peroxide 4 involving a B–Se–Se–B unit has been synthesized and fully characterized.
Collapse
Affiliation(s)
- Gillian Kor Hwee Goh
- Division of Chemistry and Biological Chemistry (CBC)
- Nanyang Technological University (NTU)
- 637371 Singapore
| | - Yongxin Li
- NTU-CBC Crystallography Facility
- 637371 Singapore
| | - Rei Kinjo
- Division of Chemistry and Biological Chemistry (CBC)
- Nanyang Technological University (NTU)
- 637371 Singapore
| |
Collapse
|
30
|
|
31
|
Dong Z, Albers L, Schmidtmann M, Müller T. A Germacalicene: Synthesis, Structure, and Reactivity. Chemistry 2018; 25:1098-1105. [PMID: 30450653 DOI: 10.1002/chem.201805258] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Indexed: 11/11/2022]
Abstract
The synthesis of the germacalicene 7 from the reaction of the dipotassium germole dianion K2 [6] with 1,2-bis-diisopropylamino-3-chlorocyclopropenyl perchlorate is reported. Based on the crystal structure analysis and the results of DFT calculations, the germacalicene 7 can be viewed as a cyclopropenium germacyclopentadienide ylide that is isoelectronic to α-cationic phosphanes. First reactivity studies revealed its nucleophilic character and resulted in the isolation of the air- and moisture-stable carbonyl iron complex 15 and the cationic silver complex 20. One-electron oxidation of the germacalicene 7 was achieved by its reaction with [Ph3 C][B(C6 F5 )4 ] and the bis-cationic Ge-Ge-bonded dimer 22 was isolated.
Collapse
Affiliation(s)
- Zhaowen Dong
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky-Str. 9-11, 26129, Oldenburg, Germany
| | - Lena Albers
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky-Str. 9-11, 26129, Oldenburg, Germany
| | - Marc Schmidtmann
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky-Str. 9-11, 26129, Oldenburg, Germany
| | - Thomas Müller
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky-Str. 9-11, 26129, Oldenburg, Germany
| |
Collapse
|
32
|
Ghorai S, Jemmis ED. B-B Coupling and B-B Catenation: Computational Study of the Structure and Reactions of Metal-Bis(borylene) Complexes. Chemistry 2018; 24:17844-17851. [PMID: 30303575 DOI: 10.1002/chem.201804599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/06/2018] [Indexed: 11/11/2022]
Abstract
A detailed molecular orbital analysis of the metal-bis(borylene) complex [Fe(CO)3 {B(Dur)B(N(SiMe3 )2 )}] (Dur=2,3,5,6-tetramethylphenyl) (1 a) serves as a focal point of recent developments in this area of chemistry, such as B-B coupling and B-B catenation reactions. There is strong a π delocalization between the Fe(CO)3 and (B-Dur)(B-N(SiMe3 )2 ) units; the short B-B distance in 1 a is due to this π delocalization. The π-donor ligand N(SiMe3 )2 on the boron provides a decisive stability to the complex 1 a. The LUMO of 1 a has B-B σ-bonding character. Hence B-B coupling is facilitated by filling the LUMO. Strong σ-donating ligands, such as PMe3 or PCy3 , induce B-B coupling. Expulsion of one CO from 1 a followed by dimerization leads to [Fe(CO)2 {B(Dur)B(N(SiMe3 )2 )}]2 (3 a) with a short Fe-Fe distance of 2.355 Å. A detailed mechanism for the reaction of 3 a with CO to give the B-B catenation product 2 f is presented. The bonding of all intermediates is compared to their isolobal main-group analogues.
Collapse
Affiliation(s)
- Sagar Ghorai
- Inorganic and Physical Chemistry Department, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Eluvathingal D Jemmis
- Inorganic and Physical Chemistry Department, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| |
Collapse
|
33
|
Roy DK, Krummenacher I, Stennett TE, Lenczyk C, Thiess T, Welz E, Engels B, Braunschweig H. Selective one- and two-electron reductions of a haloborane enabled by a π-withdrawing carbene ligand. Chem Commun (Camb) 2018; 54:9015-9018. [PMID: 30046799 DOI: 10.1039/c8cc03433h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A carbene-stabilised neutral boryl radical and a boryl anion are isolated via selective one- and two-electron reduction of a diamidocarbene (DAC) adduct of dibromo(pentafluorophenyl)borane. Both the radical and the anion have been characterised by various spectroscopic techniques in solution, while the structures have been ascertained by single-crystal X-ray diffraction. In contrast, the reduction of the analogous cyclic (alkyl)(amino) carbene (CAAC) adduct yields a C-H activation product.
Collapse
Affiliation(s)
- Dipak Kumar Roy
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany. and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ivo Krummenacher
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany. and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Tom E Stennett
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany. and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Carsten Lenczyk
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany. and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Torsten Thiess
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany. and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Eileen Welz
- Institute for Physical and Theoretical Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Bernd Engels
- Institute for Physical and Theoretical Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Holger Braunschweig
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany. and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
34
|
Su Y, Li Y, Ganguly R, Kinjo R. Engineering the Frontier Orbitals of a Diazadiborinine for Facile Activation of H2
, NH3
, and an Isonitrile. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803938] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yuanting Su
- Division of Chemistry and Biological Chemistry; School of Physical and Mathematical Sciences; Nanyang Technological University; Nanyang Link 21 Singapore 637371 Singapore
| | - Yongxin Li
- Division of Chemistry and Biological Chemistry; School of Physical and Mathematical Sciences; Nanyang Technological University; Nanyang Link 21 Singapore 637371 Singapore
| | - Rakesh Ganguly
- Division of Chemistry and Biological Chemistry; School of Physical and Mathematical Sciences; Nanyang Technological University; Nanyang Link 21 Singapore 637371 Singapore
| | - Rei Kinjo
- Division of Chemistry and Biological Chemistry; School of Physical and Mathematical Sciences; Nanyang Technological University; Nanyang Link 21 Singapore 637371 Singapore
| |
Collapse
|
35
|
Su Y, Li Y, Ganguly R, Kinjo R. Engineering the Frontier Orbitals of a Diazadiborinine for Facile Activation of H2
, NH3
, and an Isonitrile. Angew Chem Int Ed Engl 2018; 57:7846-7849. [DOI: 10.1002/anie.201803938] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Yuanting Su
- Division of Chemistry and Biological Chemistry; School of Physical and Mathematical Sciences; Nanyang Technological University; Nanyang Link 21 Singapore 637371 Singapore
| | - Yongxin Li
- Division of Chemistry and Biological Chemistry; School of Physical and Mathematical Sciences; Nanyang Technological University; Nanyang Link 21 Singapore 637371 Singapore
| | - Rakesh Ganguly
- Division of Chemistry and Biological Chemistry; School of Physical and Mathematical Sciences; Nanyang Technological University; Nanyang Link 21 Singapore 637371 Singapore
| | - Rei Kinjo
- Division of Chemistry and Biological Chemistry; School of Physical and Mathematical Sciences; Nanyang Technological University; Nanyang Link 21 Singapore 637371 Singapore
| |
Collapse
|
36
|
Boutland AJ, Carroll A, Alvarez Lamsfus C, Stasch A, Maron L, Jones C. Reversible Insertion of a C═C Bond into Magnesium(I) Dimers: Generation of Highly Active 1,2-Dimagnesioethane Compounds. J Am Chem Soc 2017; 139:18190-18193. [DOI: 10.1021/jacs.7b11368] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Aaron J. Boutland
- School
of Chemistry, Monash University, P.O. Box 23, Melbourne, VIC 3800, Australia
| | - Ashlea Carroll
- School
of Chemistry, Monash University, P.O. Box 23, Melbourne, VIC 3800, Australia
| | - Carlos Alvarez Lamsfus
- Université de Toulouse et CNRS, INSA, UPS, UMR 5215, LPCNO, 135 Avenue de Rangueil, F-31077 Toulouse, France
| | - Andreas Stasch
- School
of Chemistry, Monash University, P.O. Box 23, Melbourne, VIC 3800, Australia
| | - Laurent Maron
- Université de Toulouse et CNRS, INSA, UPS, UMR 5215, LPCNO, 135 Avenue de Rangueil, F-31077 Toulouse, France
| | - Cameron Jones
- School
of Chemistry, Monash University, P.O. Box 23, Melbourne, VIC 3800, Australia
| |
Collapse
|
37
|
Su B, Li Y, Ganguly R, Kinjo R. Ring Expansion, Photoisomerization, and Retrocyclization of 1,4,2-Diazaboroles. Angew Chem Int Ed Engl 2017; 56:14572-14576. [DOI: 10.1002/anie.201708720] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Bochao Su
- Division of Chemistry and Biological Chemistry; School of Physical and Mathematical Sciences; Nanyang Technological University; Nanyang Link 21 Singapore 637371 Singapore
| | - Yongxin Li
- NTU-CBC Crystallography Facility; Nanyang Technological University; Singapore
| | - Rakesh Ganguly
- NTU-CBC Crystallography Facility; Nanyang Technological University; Singapore
| | - Rei Kinjo
- Division of Chemistry and Biological Chemistry; School of Physical and Mathematical Sciences; Nanyang Technological University; Nanyang Link 21 Singapore 637371 Singapore
| |
Collapse
|
38
|
Su B, Li Y, Ganguly R, Kinjo R. Ring Expansion, Photoisomerization, and Retrocyclization of 1,4,2-Diazaboroles. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708720] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Bochao Su
- Division of Chemistry and Biological Chemistry; School of Physical and Mathematical Sciences; Nanyang Technological University; Nanyang Link 21 Singapore 637371 Singapore
| | - Yongxin Li
- NTU-CBC Crystallography Facility; Nanyang Technological University; Singapore
| | - Rakesh Ganguly
- NTU-CBC Crystallography Facility; Nanyang Technological University; Singapore
| | - Rei Kinjo
- Division of Chemistry and Biological Chemistry; School of Physical and Mathematical Sciences; Nanyang Technological University; Nanyang Link 21 Singapore 637371 Singapore
| |
Collapse
|
39
|
Taylor JW, McSkimming A, Guzman CF, Harman WH. N-Heterocyclic Carbene-Stabilized Boranthrene as a Metal-Free Platform for the Activation of Small Molecules. J Am Chem Soc 2017; 139:11032-11035. [DOI: 10.1021/jacs.7b06772] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Jordan W. Taylor
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Alex McSkimming
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Camilo F. Guzman
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - W. Hill Harman
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| |
Collapse
|
40
|
Wu D, Wang R, Li Y, Ganguly R, Hirao H, Kinjo R. Electrostatic Catalyst Generated from Diazadiborinine for Carbonyl Reduction. Chem 2017. [DOI: 10.1016/j.chempr.2017.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
41
|
Ghorai S, Jemmis ED. A DFT Study on the Stabilization of the B≡B Triple Bond in a Metallaborocycle: Contrasting Electronic Structures of Boron and Carbon Analogues. Chemistry 2017; 23:9746-9751. [DOI: 10.1002/chem.201702422] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Sagar Ghorai
- Inorganic and Physical Chemistry Department; Indian Institute of Science; Bangalore 560012 Karnataka India
| | - Eluvathingal D. Jemmis
- Inorganic and Physical Chemistry Department; Indian Institute of Science; Bangalore 560012 Karnataka India
| |
Collapse
|
42
|
Tsao FA, Stephan DW. Facile access to unsymmetrically substituted tellurium–boron based heterocycles. Chem Commun (Camb) 2017; 53:6311-6314. [DOI: 10.1039/c7cc03648e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Protonolysis and alkyne exchange reactions are used to give unsymmetrically substituted Te–B based heterocycles.
Collapse
Affiliation(s)
- Fu An Tsao
- Department of Chemistry
- University of Toronto
- Toronto
- Canada
| | | |
Collapse
|
43
|
Wu D, Li Y, Ganguly R, Kinjo R. A snapshot of inorganic Janovsky complex analogues featuring a nucleophilic boron center. Chem Commun (Camb) 2017; 53:12734-12737. [DOI: 10.1039/c7cc07616a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The addition of phenyl lithium (PhLi) to an aromatic 1,3,2,5-diazadiborinine (1) afforded isolable ionic species 2, which can be deemed as an inorganic analogue of a Janovsky complex.
Collapse
Affiliation(s)
- Di Wu
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
- Singapore
| | - Yongxin Li
- NTU-CBC Crystallography Facility
- Nanyang Technological University
- Singapore 637371
- Singapore
| | - Rakesh Ganguly
- NTU-CBC Crystallography Facility
- Nanyang Technological University
- Singapore 637371
- Singapore
| | - Rei Kinjo
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
- Singapore
| |
Collapse
|
44
|
Liu LL, Chen P, Sun Y, Wu Y, Chen S, Zhu J, Zhao Y. Mechanism of Nickel-Catalyzed Selective C-N Bond Activation in Suzuki-Miyaura Cross-Coupling of Amides: A Theoretical Investigation. J Org Chem 2016; 81:11686-11696. [PMID: 27809510 DOI: 10.1021/acs.joc.6b02093] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In textbooks, the low reactivity of amides is attributed to the strong resonance stability. However, Garg and co-workers recently reported the Ni-catalyzed activation of robust amide C-N bonds, leading to conversions of amides into esters, ketones, and other amides with high selectivity. Among them, the Ni-catalyzed Suzuki-Miyaura coupling (SMC) of N-benzyl-N-tert-butoxycarbonyl (N-Bn-N-Boc) amides with pinacolatoboronate (PhBpin) was performed in the presence of K3PO4 and water. Water significantly enhanced the reaction. With the aid of density functional theory (DFT) calculations, the present study explored the mechanism of the aforementioned SMC reaction as well as analyzed the weakening of amide C-N bond by N-functionalization. The most favorable pathway includes four basic steps: oxidative addition, protonation, transmetalation, and reductive elimination. Comparing the base- and water-free process, the transmetalation step with the help of K3PO4 and water is significantly more facile. Water efficiently protonates the basic N(Boc) (Bn) group to form a neutral HN(Boc) (Bn), which is easily removed. The transmetalation step is the rate-determining step with an energy barrier of 25.6 kcal/mol. Further, a DFT prediction was carried out to investigate the full catalytic cycle of a cyclic (amino) (aryl)carbene in the Ni-catalyzed SMC of amides, which provided clues for further design of catalysts.
Collapse
Affiliation(s)
- Liu Leo Liu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province and ‡State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen, 361005 Fujian, China
| | - Peng Chen
- Department of Chemistry, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province and ‡State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen, 361005 Fujian, China
| | - Ying Sun
- Department of Chemistry, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province and ‡State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen, 361005 Fujian, China
| | - Yile Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province and ‡State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen, 361005 Fujian, China
| | - Su Chen
- Department of Chemistry, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province and ‡State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen, 361005 Fujian, China
| | - Jun Zhu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province and ‡State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen, 361005 Fujian, China
| | - Yufen Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province and ‡State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen, 361005 Fujian, China
| |
Collapse
|
45
|
Vondung L, Frank N, Fritz M, Alig L, Langer R. Phosphine-Stabilized Borylenes and Boryl Anions as Ligands? Redox Reactivity in Boron-Based Pincer Complexes. Angew Chem Int Ed Engl 2016; 55:14450-14454. [DOI: 10.1002/anie.201605838] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/12/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Lisa Vondung
- Department of Chemistry; Philipps-Universität Marburg; Hans-Meerwein-Strasse 35032 Marburg Germany
| | - Nicolas Frank
- Department of Chemistry; Philipps-Universität Marburg; Hans-Meerwein-Strasse 35032 Marburg Germany
| | - Maximilian Fritz
- Department of Chemistry; Philipps-Universität Marburg; Hans-Meerwein-Strasse 35032 Marburg Germany
| | - Lukas Alig
- Department of Chemistry; Philipps-Universität Marburg; Hans-Meerwein-Strasse 35032 Marburg Germany
| | - Robert Langer
- Department of Chemistry; Philipps-Universität Marburg; Hans-Meerwein-Strasse 35032 Marburg Germany
- Lehn Institute of Functional Material (LIFM); Sun Yat-Sen University Guangzhou (SYSU); Xingang Road West Guangzhou 510275 PR China
| |
Collapse
|
46
|
Vondung L, Frank N, Fritz M, Alig L, Langer R. Phosphan-stabilisierte Borylene und Boryl-Anionen als Liganden? Redoxaktivität in Bor-basierten Pinzetten-Komplexen. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201605838] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lisa Vondung
- Fachbereich Chemie; Philipps-Universität Marburg; Hans-Meerwein-Straße 35032 Marburg Deutschland
| | - Nicolas Frank
- Fachbereich Chemie; Philipps-Universität Marburg; Hans-Meerwein-Straße 35032 Marburg Deutschland
| | - Maximilian Fritz
- Fachbereich Chemie; Philipps-Universität Marburg; Hans-Meerwein-Straße 35032 Marburg Deutschland
| | - Lukas Alig
- Fachbereich Chemie; Philipps-Universität Marburg; Hans-Meerwein-Straße 35032 Marburg Deutschland
| | - Robert Langer
- Fachbereich Chemie; Philipps-Universität Marburg; Hans-Meerwein-Straße 35032 Marburg Deutschland
- Lehn Institute of Functional Material (LIFM); Sun Yat-Sen University Guangzhou (SYSU); Xingang Road West Guangzhou 510275 PR China
| |
Collapse
|
47
|
Abstract
Boranes have long been known as the archetypal Lewis acids owing to an empty p-orbital on the boron centre. Meanwhile, Lewis basic tricoordinate boranes have been developed in recent years. Here we report the synthesis of an annulated 1,4,2,5-diazadiborinine derivative featuring boron atoms that exhibit both Lewis acidic and basic properties. Experimental and computational studies confirmed that two boron atoms in this molecule are spectroscopically equivalent. Nevertheless, this molecule cleaves C-O, B-H, Si-H and P-H bonds heterolytically, and readily undergoes [4+2] cycloaddition reaction with non-activated unsaturated bonds such as C=O, C=C, C≡C and C≡N bonds. The result, thus, indicates that the indistinguishable boron atoms in 1,4,2,5-diazadiborinine act as both nucleophilic and electrophilic centres, demonstrating ambiphilic nature.
Collapse
|
48
|
Liu LL, Wu Y, Chen P, Chan C, Xu J, Zhu J, Zhao Y. Mechanism, catalysis and predictions of 1,3,2-diazaphospholenes: theoretical insight into highly polarized P–X bonds. Org Chem Front 2016. [DOI: 10.1039/c6qo00002a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
1,3,2-Diazaphospholene-based compounds 2 with two electron donor amino groups on the heterocyclic skeleton, featuring an extremely polarized and weak P–X bond (X = H, CCMe, NMe2, PMe2 and SMe), are predicted to have a useful catalytic ability.
Collapse
Affiliation(s)
- Liu Leo Liu
- Department of Chemistry and Chemical Biology
- College of Chemistry and Chemical Engineering
- Key Laboratory for Chemical Biology of Fujian Province
- China
| | - Yile Wu
- Department of Chemistry and Chemical Biology
- College of Chemistry and Chemical Engineering
- Key Laboratory for Chemical Biology of Fujian Province
- China
| | - Peng Chen
- Department of Chemistry and Chemical Biology
- College of Chemistry and Chemical Engineering
- Key Laboratory for Chemical Biology of Fujian Province
- China
| | - Chinglin Chan
- Department of Chemistry
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| | - Ji Xu
- Materials Science and Engineering Program
- University of California
- La Jolla
- USA
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| | - Yufen Zhao
- Department of Chemistry and Chemical Biology
- College of Chemistry and Chemical Engineering
- Key Laboratory for Chemical Biology of Fujian Province
- China
| |
Collapse
|
49
|
Braunschweig H, Dewhurst RD, Pentecost L, Radacki K, Vargas A, Ye Q. Dative Bonding between Group 13 Elements Using a Boron-Centered Lewis Base. Angew Chem Int Ed Engl 2015; 55:436-40. [PMID: 26768824 DOI: 10.1002/anie.201509289] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Indexed: 11/09/2022]
Abstract
An electron-rich monovalent boron compound is used as a Lewis base to prepare adducts with Group 13 Lewis acids using both its boron and nitrogen sites. The hard Lewis acid AlCl3 binds through a nitrogen atom of the Lewis base, while softer Lewis acids GaX3 (Cl, Br, I) bind at the boron atom. The latter are the first noncluster Lewis adducts between a boron-centered Lewis base and a main-group Lewis acid.
Collapse
Affiliation(s)
- Holger Braunschweig
- Institut für Anorganische Chemie, Julius-Maximilians Universität Würzburg, Am Hubland, 97074 Würzburg (Germany) http://www-anorganik.chemie.uni-wuerzburg.de/Braunschweig/.
| | - Rian D Dewhurst
- Institut für Anorganische Chemie, Julius-Maximilians Universität Würzburg, Am Hubland, 97074 Würzburg (Germany) http://www-anorganik.chemie.uni-wuerzburg.de/Braunschweig/
| | - Leanne Pentecost
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, Sussex (UK)
| | - Krzysztof Radacki
- Institut für Anorganische Chemie, Julius-Maximilians Universität Würzburg, Am Hubland, 97074 Würzburg (Germany) http://www-anorganik.chemie.uni-wuerzburg.de/Braunschweig/
| | - Alfredo Vargas
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, Sussex (UK)
| | - Qing Ye
- Institut für Anorganische Chemie, Julius-Maximilians Universität Würzburg, Am Hubland, 97074 Würzburg (Germany) http://www-anorganik.chemie.uni-wuerzburg.de/Braunschweig/
| |
Collapse
|
50
|
Braunschweig H, Dewhurst RD, Pentecost L, Radacki K, Vargas A, Ye Q. Dative Wechselwirkungen einer Bor-zentrierten Lewis-Base mit Gruppe-13-Elementen. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201509289] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|