1
|
Wang Y, Feng Y, Tu H, Zheng H, Xiang Y, Zhang T, Huang X, Lu F, Yu K, Hu E, Lan G, Ning LJ, Xie R. Photothermal-manipulatable shape memory polyacrylamide/gelatin Janus hydrogel with drug carrier array for invasive wound closure and responsive drug release. Int J Biol Macromol 2025; 293:139255. [PMID: 39732225 DOI: 10.1016/j.ijbiomac.2024.139255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/23/2024] [Accepted: 12/25/2024] [Indexed: 12/30/2024]
Abstract
Traditional wound closure methods often present several issues, including additional puncture wounds, adverse effects from anesthesia, and noticeable scarring. Inspired by embryonic wound healing, a Janus hydrogel (PG/Au-Asp@PCM) is designed to manipulate non-invasive wound closure by photothermal-responsive self-contraction of PG/Au-Asp@PCM, which is attributed to the shape memory behavior of PG/Au-Asp@PCM under near-infrared (NIR). Wherein, gelatin acts as a thermally reversible "switch" and polyacrylamide creates stable and cross-linked "net-points". The elongated PG/Au-Asp@PCM can be temporarily fixed at 4 °C, and subsequently self-contracts upon NIR irradiation, generating a recovery force of 10 kPa, adequate for the closure of wound spontaneously. The Janus hydrogel also incorporates a drug carrier loaded with phase change material (PCM) and aspirin. The PCM absorbs heat during its phase transition above 42 °C, offering the photothermal-responsive release of aspirin on-demand; additionally, it also reduces the risk of skin burn during NIR exposure. Animal studies confirm the effectiveness of PG/Au-Asp@PCM in wound closure. Moreover, wounds treated with PG/Au-Asp@PCM exhibit reduced inflammation, increased thickness of epidermal and dermal layers, and a smoother appearance without scarring. These findings reinforce the feasibility of the photothermal strategy utilizing PG/Au-Asp@PCM for non-invasive wound closure, resulting in enhanced cosmetic appearance and improved wound healing outcomes.
Collapse
Affiliation(s)
- Yujie Wang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Yuxue Feng
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Faculty of Innovation and Design, City University of Macau, Macau 999078, China
| | - Hongyu Tu
- Chongqing Customs Technology Center, Chongqing 400044, China
| | - Huifang Zheng
- Department of Ophthalmology, The First People's Hospital of Longwan District, Wenzhou 325011, China
| | - Yunyun Xiang
- Department of Chinese Medicine (Gynecology), The First People's Hospital of Longwan District, Wenzhou 325011, China
| | - Tongyao Zhang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Xinxin Huang
- Guangdong Modern Apparel Technology & Engineering Center, Guangdong University of Technology, Guangzhou 510075, Guangdong, China
| | - Fei Lu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Kun Yu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Enling Hu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China.
| | - Guangqian Lan
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China.
| | - Liang-Ju Ning
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610065, China.
| | - Ruiqi Xie
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Wang Y, Sun X, Liu Q, Yu G. Functional gel materials for next-generation electrochromic devices and applications. Chem Soc Rev 2025. [PMID: 40019199 DOI: 10.1039/d4cs01256a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Flexible, wearable, bistable displays, visualized energy storage devices and large-area smart windows based on electrochromic (EC) technology are regarded as promising next-generation sustainable display technologies, with the potential to improve people's lives by enabling low-energy consumption, vision-friendly, smart display, and energy-efficient building solutions. Recently, gel-based EC devices have gained considerable research interest and have emerged as an effective platform for EC applications due to their unique and enhanced properties. Compared to solid-state and liquid-state EC devices, gel-based EC systems offer superior processability and scalability, improved mechanical properties such as flexibility and stretchability, and high ionic conductivity without leakage or volatility issues. This review summarizes and analyzes the gelation chemistry in EC systems, focusing on their relationship with key EC properties of the device. Ionic conductivity, temperature adaptability, and mechanical characteristics of the gels such as stretchability, self-healing ability, flexibility, and viscosity are foundational for enabling diverse functional EC applications. We introduce the preparation methods of related gels for EC devices and then discuss the factors influencing the properties and the strategies for tuning them, including the control of morphology, network architecture, polymer skeletons, functional groups, and additives within ion gels. Representative and latest applications of gel-based electrolytes in EC devices for various promising displays were then presented. Finally, we critically analyze the remaining challenges that need to be addressed to enable the practical deployment of gel-based EC devices and offer more insights into future directions for advancing EC technologies.
Collapse
Affiliation(s)
- Yuyang Wang
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Xiaoyan Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Quanbing Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
3
|
Kitao T, Matsuda I, Uemura T. Engineering of Polyisoprene Networks Enabled by Host-Guest Thiol-Ene Reaction. ACS Macro Lett 2025; 14:195-200. [PMID: 39895135 DOI: 10.1021/acsmacrolett.4c00786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Regulating cross-linking of polymers is critical for optimizing the physical properties of polymer networks. Herein, we present a strategic approach for designing polymer networks using dithiol-functionalized metal-organic frameworks (MOFs) with both one- and three-dimensional pore architectures. Upon thermal treatment, thiyl radicals were generated from the MOFs through the dissociation of S-H bonds, as confirmed by electron spin resonance measurements. Unlike in solution and bulk phases, the confinement of these radicals within the MOFs effectively suppressed homocoupling reactions, thus enabling their function as densely packed cross-linkers. The thiol-ene reaction between the MOFs and cis-1,4-polyisoprene (PI) chains, followed by the selective removal of MOF hosts, resulted in PI networks that retained the original structural features. The ordered alignment of the PI chains enhanced their thermal stability compared with the randomly cross-linked PI network.
Collapse
Affiliation(s)
- Takashi Kitao
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Ikki Matsuda
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takashi Uemura
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
4
|
Vieru A, Yilmaz O, Rusu AG, Yilmaz CN, Ghilan A, Nita LE. Synthesis and Characterization of Innovative Double-Network Hydrogels with Potential as Adsorbent Materials for Wastewater Treatment. Polymers (Basel) 2025; 17:463. [PMID: 40006125 PMCID: PMC11858847 DOI: 10.3390/polym17040463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/31/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Nowadays, large amounts of wastewater arise from various industrial applications. The discharge of wastewater into the environment represents a threat to the aquatic ecosystem and human health. Thus, in the present study, innovative double-network (DN) hydrogels with pH-sensitive features and applicability as adsorbents in the treatment of leather dye wastewater were prepared. The polyelectrolyte, poly(N,N-dimethylaminoethyl methacrylate (PDMAEMA), was obtained via the radical polymerization process, while the supramolecular structure was co-assembled through physical interactions. As a novelty, the double network was obtained through the interpenetration of the supramolecular network in the cross-linked polymeric one. The new hydrogels were physico-chemically and morphologically characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and in terms of thermogravimetric analysis (TGA), swelling degree measurements, and dye adsorption studies. The DN hydrogels present interconnected macropores and high thermal stability. The swelling capacity of the dual network gels highlights a superadsorbent behavior at pH 3. Furthermore, the dye adsorption study highlights the effects of several variables (pH, concentration dose of adsorbent) on the ability of the gels to adsorb an anionic dye. The adsorption kinetics of the anionic dyes fitted the pseudo-first-order model (PFO). The estimated maximum adsorption capacities for the anionic dyes was 451 mg g-1 for PDMAEMA and 545 mg g-1 for DN gel.
Collapse
Affiliation(s)
- Alexandra Vieru
- Petru Poni Institute of Macromolecular Chemistry, Romanian Academy, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (A.V.); (A.G.R.); (A.G.)
| | - Onur Yilmaz
- Leather Engineering Department, Faculty of Engineering, Ege University, 35100 Izmir, Türkiye;
| | - Alina Gabriela Rusu
- Petru Poni Institute of Macromolecular Chemistry, Romanian Academy, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (A.V.); (A.G.R.); (A.G.)
| | - Cătălina Natalia Yilmaz
- Biochemistry Division, Department of Chemistry, Faculty of Science, Dokuz Eylul University, 35210 Izmir, Türkiye;
| | - Alina Ghilan
- Petru Poni Institute of Macromolecular Chemistry, Romanian Academy, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (A.V.); (A.G.R.); (A.G.)
| | - Loredana Elena Nita
- Petru Poni Institute of Macromolecular Chemistry, Romanian Academy, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (A.V.); (A.G.R.); (A.G.)
| |
Collapse
|
5
|
Heremans J, Ballet S, Martin C. The versatility of peptide hydrogels: From self-assembly to drug delivery applications. J Pept Sci 2025; 31:e3662. [PMID: 39561971 DOI: 10.1002/psc.3662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/21/2024]
Abstract
Pharmaceuticals often suffer from limitations such as low solubility, low stability, and short half-life. To address these challenges and reduce the need for frequent drug administrations, a more efficient delivery is required. In this context, the development of controlled drug delivery systems, acting as a protective depot for the drug, has expanded significantly over the last decades. Among these, injectable hydrogels have emerged as a promising platform, especially in view of the rise of biologicals as therapeutics. Hydrogels are functional, solid-like biomaterials, composed of cross-linked hydrophilic polymers and high water content. Their physical properties, which closely mimic the extracellular matrix, make them suitable for various biomedical applications. This review discusses the different types of hydrogel systems and their self-assembly process, with an emphasis on peptide-based hydrogels. Due to their structural and functional diversity, biocompatibility, synthetic accessibility, and tunability, peptides are regarded as promising and versatile building blocks. A comprehensive overview of the variety of peptide hydrogels is outlined, with β-sheet forming sequences being highlighted. Key factors to consider when using peptide hydrogels as a controlled drug delivery system are reviewed, along with a discussion of the main drug release mechanisms and the emerging trend towards affinity-based systems to further refine drug release profiles.
Collapse
Affiliation(s)
- Julie Heremans
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Charlotte Martin
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
6
|
Yu J, Zhang C, Kong L, Deng Z. Recent Advances and Challenges in Metal Halide Perovskite Quantum Dot-Embedded Hydrogels for Biomedical Application. Molecules 2025; 30:643. [PMID: 39942747 PMCID: PMC11819677 DOI: 10.3390/molecules30030643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/20/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
Metal halide perovskite quantum dots (MHP QDs), as a kind of fluorescent material, have attracted much attention due to their excellent photoluminescence (PL) quantum yield (QY), narrow full width at half maximum (FWHM), broad absorption, and tunable emission wavelength. However, the instability and biological incompatibility of MHP QDs greatly hinder their application in the field of biomedicine. Hydrogels are three-dimensional polymer networks that are widely used in biomedicine because of their high transparency and excellent biocompatibility. This review not only introduces the latest research progress in improving the mechanical and optical properties of hydrogels/MHP QDs but also combines it with the existing methods for enhancing the stability of MHP QDs in hydrogels, aiming to provide new ideas for researchers in material selection and methods for constructing MHP QD-embedded hydrogels. Finally, their application prospects and future challenges are introduced.
Collapse
Affiliation(s)
- Junyi Yu
- College of Chemistry, Jilin University, Changchun 130012, China;
| | - Chengran Zhang
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China; (C.Z.); (L.K.)
| | - Lijun Kong
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China; (C.Z.); (L.K.)
| | - Zhengtao Deng
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China; (C.Z.); (L.K.)
| |
Collapse
|
7
|
Wang X, Zhang X, Gong C, Yang J, Chen J, Guo W. Functionalized GelMA/CMCS Composite Hydrogel Incorporating Magnesium Phosphate Cement for Bone Regeneration. Biomedicines 2025; 13:257. [PMID: 40002671 PMCID: PMC11852312 DOI: 10.3390/biomedicines13020257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Bone regeneration remains a challenging issue in tissue engineering. The use of hydrogels as scaffolds for bone tissue repair has gained attention due to their biocompatibility and ability to mimic the extracellular matrix. This study aims to develop a functionalized GelMA/CMCS composite hydrogel incorporating magnesium phosphate cement (MPC) for enhanced bone regeneration. Methods: These composites were developed by incorporating potassium magnesium phosphate hexahydrate (KMgPO4·6H2O, MPC) powders into methacrylated gelatin/carboxymethyl chitosan (GelMA-C) hydrogels. The material's mechanical properties, antibacterial performance, and cytocompatibility were evaluated. In vitro experiments involved cell viability and osteogenic differentiation assays using rBMSCs as well as angiogenic potential assays using HUVECs. The hydrogel was also assessed for its potential in promoting bone repair in a rat (Sprague-Dawley) model of bone defect. Results: The developed GelMA-CM composite demonstrated improved mechanical properties, biocompatibility, and osteogenic potential compared to individual GelMA or CMCS hydrogels. Incorporation of MPC facilitated the sustained release of ions which promoted osteogenic differentiation of pre-osteoblasts. In vivo results indicated accelerated bone healing in the rat bone defect model. Conclusions: The functionalized GelMA-CM composite could be a viable candidate for clinical applications in bone regeneration therapies.
Collapse
Affiliation(s)
| | | | | | | | | | - Weichun Guo
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China; (X.W.); (X.Z.); (C.G.); (J.Y.); (J.C.)
| |
Collapse
|
8
|
Hervéou L, Legrand G, Divoux T, Baeza GP. Understanding polymer-colloid gels: a solvent perspective using low-field NMR. SOFT MATTER 2025; 21:342-347. [PMID: 39534934 DOI: 10.1039/d4sm01098a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The present work emphasizes the relevance of low-field NMR relaxometry to investigate colloid-polymer hydrogels by probing water dynamics across a wide range of formulations between 10 °C and 80 °C. By examining the temperature dependence of the transverse relaxation time T2, we demonstrate a clear link between the NMR response and the rheological behavior of the hydrogels. In particular, we show that NMR relaxometry targeting the solvent provides reliable insights into the hydrogel microstructure and allows the detection of phase transitions and aging processes. Our findings suggest that this solvent-focused technique could greatly benefit the soft matter community, complementing other experimental methods in the study of gels.
Collapse
Affiliation(s)
- Léo Hervéou
- INSA Lyon, UCBL, CNRS, MATEIS, UMR5510, 69621, Villeurbanne, France.
- ENSL, CNRS, Laboratoire de physique, F-69342 Lyon, France
| | | | - Thibaut Divoux
- ENSL, CNRS, Laboratoire de physique, F-69342 Lyon, France
| | - Guilhem P Baeza
- INSA Lyon, UCBL, CNRS, MATEIS, UMR5510, 69621, Villeurbanne, France.
| |
Collapse
|
9
|
Chen S, Lee CJM, Tan GSX, Ng PR, Zhang P, Zhao J, Novoselov KS, Andreeva DV. Ultra-Tough Graphene Oxide/DNA 2D Hydrogel with Intrinsic Sensing and Actuation Functions. Macromol Rapid Commun 2025; 46:e2400518. [PMID: 39101702 DOI: 10.1002/marc.202400518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Indexed: 08/06/2024]
Abstract
Hydrogel devices with mechanical toughness and tunable functionalities are highly desirable for practical long-term applications such as sensing and actuation elements for soft robotics. However, existing hydrogels have poor mechanical properties, slow rates of response, and low functionality. In this work, two-dimensional hydrogel actuators are proposed and formed on the self-assembly of graphene oxide (GO) and deoxynucleic acid (DNA). The self-assembly process is driven by the GO-induced transition of double stranded DNA (dsDNA) into single stranded DNA (ssDNA). Thus, the hydrogel's structural unit consists of two layers of GO covered by ssDNA and a layer of dsDNA in between. Such heterogeneous architectures stabilized by multiple hydrogen bondings have Young's modulus of up to 10 GPa and rapid swelling rates of 4.0 × 10-3 to 1.1 × 10-2 s-1, which surpasses most types of conventional hydrogels. It is demonstrated that the GO/DNA hydrogel actuators leverage the unique properties of these two materials, making them excellent candidates for various applications requiring sensing and actuation functions, such as artificial skin, wearable electronics, bioelectronics, and drug delivery systems.
Collapse
Affiliation(s)
- Siyu Chen
- Institute for Functional Intelligent Materials, Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore, Singapore
| | - Chang Jie Mick Lee
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore, Singapore
| | - Gladys Shi Xuan Tan
- Institute for Functional Intelligent Materials, Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore, Singapore
| | - Pei Rou Ng
- Institute for Functional Intelligent Materials, Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore, Singapore
| | - Pengxiang Zhang
- Institute for Functional Intelligent Materials, Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore, Singapore
| | - Jinpei Zhao
- Institute for Functional Intelligent Materials, Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore, Singapore
| | - Kostya S Novoselov
- Institute for Functional Intelligent Materials, Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore, Singapore
| | - Daria V Andreeva
- Institute for Functional Intelligent Materials, Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore, Singapore
| |
Collapse
|
10
|
Guo X, Dong Y, Qin J, Zhang Q, Zhu H, Zhu S. Fracture-Resistant Stretchable Materials: An Overview from Methodology to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2312816. [PMID: 38445902 DOI: 10.1002/adma.202312816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/16/2024] [Indexed: 03/07/2024]
Abstract
Stretchable materials, such as gels and elastomers, are attractive materials in diverse applications. Their versatile fabrication platforms enable the creation of materials with various physiochemical properties and geometries. However, the mechanical performance of traditional stretchable materials is often hindered by the deficiencies in their energy dissipation system, leading to lower fracture resistance and impeding their broader range of applications. Therefore, the synthesis of fracture-resistant stretchable materials has attracted great interest. This review comprehensively summarizes key design considerations for constructing fracture-resistant stretchable materials, examines their synthesis strategies to achieve elevated fracture energy, and highlights recent advancements in their potential applications.
Collapse
Affiliation(s)
- Xiwei Guo
- School of Science and Engineering, The Chinese University of Hong Kong Shenzhen, Shenzhen, 518172, China
| | - Yue Dong
- School of Science and Engineering, The Chinese University of Hong Kong Shenzhen, Shenzhen, 518172, China
| | - Jianliang Qin
- School of Science and Engineering, The Chinese University of Hong Kong Shenzhen, Shenzhen, 518172, China
| | - Qi Zhang
- School of Science and Engineering, The Chinese University of Hong Kong Shenzhen, Shenzhen, 518172, China
| | - He Zhu
- School of Science and Engineering, The Chinese University of Hong Kong Shenzhen, Shenzhen, 518172, China
| | - Shiping Zhu
- School of Science and Engineering, The Chinese University of Hong Kong Shenzhen, Shenzhen, 518172, China
| |
Collapse
|
11
|
Wang Y, Zhou X, He L, Zhou X, Wang Y, Zhou P. Research Progress on Using Modified Hydrogel Coatings as Marine Antifouling Materials. Mar Drugs 2024; 22:546. [PMID: 39728121 PMCID: PMC11676044 DOI: 10.3390/md22120546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
The adhesion of marine organisms to marine facilities negatively impacts human productivity. This phenomenon, known as marine fouling, constitutes a serious issue in the marine equipment industry. It increases resistance for ships and their structures, which, in turn, raises fuel consumption and reduces ship speed. To date, numerous antifouling strategies have been researched to combat marine biofouling. However, a multitude of these resources face long-term usability issues due to various limitations, such as low adhesion quality, elevated costs, and inefficacy. Hydrogels, exhibiting properties akin to the slime layer on the skin of many aquatic creatures, possess a low frictional coefficient and a high rate of water absorbency and are extensively utilized in the marine antifouling field. This review discusses the recent progress regarding the application of hydrogels as an important marine antifouling material in recent years. It introduces the structure, properties, and classification of hydrogels; summarizes the current research status of improved hydrogels in detail; and analyzes the improvement in their antifouling properties and the prospects for their application in marine antifouling.
Collapse
Affiliation(s)
- Ying Wang
- College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China; (Y.W.); (X.Z.); (Y.W.); (P.Z.)
| | - Xiaohong Zhou
- School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, China;
| | - Lingyan He
- College of Mechanical and Electrical Engineering, Guangxi Vocational College of Water Resources and Electric Power, Nanning 530023, China
| | - Xiangkai Zhou
- College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China; (Y.W.); (X.Z.); (Y.W.); (P.Z.)
| | - Yantian Wang
- College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China; (Y.W.); (X.Z.); (Y.W.); (P.Z.)
| | - Peijian Zhou
- College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China; (Y.W.); (X.Z.); (Y.W.); (P.Z.)
| |
Collapse
|
12
|
Zhang W, Liu S, Wang L, Li B, Xie M, Deng Y, Zhang J, Zeng H, Qiu L, Huang L, Gou T, Cen X, Tang J, Wang J. Triple-crosslinked double-network alginate/dextran/dendrimer hydrogel with tunable mechanical and adhesive properties: A potential candidate for sutureless keratoplasty. Carbohydr Polym 2024; 344:122538. [PMID: 39218556 DOI: 10.1016/j.carbpol.2024.122538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
An ideal adhesive hydrogel must possess high adhesion to the native tissue, biocompatibility, eligible biodegradability, and good mechanical compliance with the substrate tissues. We constructed an interpenetrating double-network hydrogel containing polysaccharides (alginate and dextran) and nanosized spherical dendrimer by both physical and chemical crosslinking, thus endowing the hydrogel with a broad range of mechanical properties, adhesive properties, and biological functions. The double-network hydrogel has moderate pore sizes and swelling properties. The chelation of calcium ions significantly enhances the tensile and compressive properties. The incorporation of dendrimer improves both the mechanical and adhesive properties. This multicomponent interpenetrating network hydrogel has excellent biocompatibility, tunable mechanical and adhesive properties, and satisfied multi-functions to meet the complex requirements of wound healing and tissue engineering. The hydrogel exhibits promising corneal adhesion capabilities in vitro, potentially supplanting the need for sutures in corneal stromal surgery and mitigating the risks associated with donor corneal damage and graft rejection during corneal transplantation. This novel polysaccharide and dendrimer hydrogel also shows good results in sutureless keratoplasty, with high efficiency and reliability. Based on the clinical requirements for tissue bonding and wound closure, the hydrogel provides insight into solving the mechanical properties and adhesive strength of tissue adhesives.
Collapse
Affiliation(s)
- Wen Zhang
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Shujing Liu
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Lixiang Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Boxuan Li
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Mengzhen Xie
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yingping Deng
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jialuo Zhang
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Huazhang Zeng
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Li Qiu
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Lisha Huang
- National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tao Gou
- National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaobo Cen
- West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jing Tang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Juan Wang
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| |
Collapse
|
13
|
Haririan Y, Asefnejad A. Biopolymer hydrogels and synergistic blends for tailored wound healing. Int J Biol Macromol 2024; 279:135519. [PMID: 39260639 DOI: 10.1016/j.ijbiomac.2024.135519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
Biopolymers have a transformative role in wound repair due to their biocompatibility, ability to stimulate collagen production, and controlled drug and growth factor delivery. This article delves into the biological parameters critical to wound healing emphasizing how combinations of hydrogels with reparative properties can be strategically designed to create matrices that stimulate targeted cellular responses at the wound site to facilitate tissue repair and recovery. Beyond a detailed examination of various biopolymer types and their functionalities in wound dressings acknowledging that the optimal choice depends on the specific wound type and application, this evaluation provides concepts for developing synergistic biopolymer blends to create next-generation dressings with enhanced efficiencies. Furthermore, the incorporation of therapeutic agents such as medications and wound healing accelerators into dressings to enhance their efficacy is examined. These agents often possess desirable properties such as antibacterial activity, antioxidant effects, and the ability to promote collagen synthesis and tissue regeneration. Finally, recent advancements in conductive hydrogels are explored, highlighting their capabilities in treatment and real-time wound monitoring. This comprehensive resource emphasizes the importance of optimizing ingredient efficiency besides assisting researchers in selecting suitable materials for personalized wound dressings, ultimately leading to more sophisticated and effective wound management strategies.
Collapse
Affiliation(s)
- Yasamin Haririan
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Azadeh Asefnejad
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
14
|
Choi H, Choi WS, Jeong JO. A Review of Advanced Hydrogel Applications for Tissue Engineering and Drug Delivery Systems as Biomaterials. Gels 2024; 10:693. [PMID: 39590049 PMCID: PMC11594258 DOI: 10.3390/gels10110693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Hydrogels are known for their high water retention capacity and biocompatibility and have become essential materials in tissue engineering and drug delivery systems. This review explores recent advancements in hydrogel technology, focusing on innovative types such as self-healing, tough, smart, and hybrid hydrogels, each engineered to overcome the limitations of conventional hydrogels. Self-healing hydrogels can autonomously repair structural damage, making them well-suited for applications in dynamic biomedical environments. Tough hydrogels are designed with enhanced mechanical properties, enabling their use in load-bearing applications such as cartilage regeneration. Smart hydrogels respond to external stimuli, including changes in pH, temperature, and electromagnetic fields, making them ideal for controlled drug release tailored to specific medical needs. Hybrid hydrogels, made from both natural and synthetic polymers, combine bioactivity and mechanical resilience, which is particularly valuable in engineering complex tissues. Despite these innovations, challenges such as optimizing biocompatibility, adjusting degradation rates, and scaling up production remain. This review provides an in-depth analysis of these emerging hydrogel technologies, highlighting their transformative potential in both tissue engineering and drug delivery while outlining future directions for their development in biomedical applications.
Collapse
Affiliation(s)
- Hoon Choi
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Wan-Sun Choi
- Department of Orthopaedic Surgery, Ajou University School of Medicine, Suwon 16499, Republic of Korea;
| | - Jin-Oh Jeong
- Wake Forest Institute for Regenerative Medicine (WFIRM), Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
15
|
Li M, Pu J, Cao Q, Zhao W, Gao Y, Meng T, Chen J, Guan C. Recent advances in hydrogel-based flexible strain sensors for harsh environment applications. Chem Sci 2024:d4sc05295a. [PMID: 39430943 PMCID: PMC11488682 DOI: 10.1039/d4sc05295a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024] Open
Abstract
Flexible strain sensors are broadly investigated in electronic skins and human-machine interaction due to their light weight, high sensitivity, and wide sensing range. Hydrogels with unique three-dimensional network structures are widely used in flexible strain sensors for their exceptional flexibility and adaptability to mechanical deformation. However, hydrogels often suffer from damage, hardening, and collapse under harsh conditions, such as extreme temperatures and humidity levels, which lead to sensor performance degradation or even failure. In addition, the failure mechanism in extreme environments remains unclear. In this review, the performance degradation and failure mechanism of hydrogel flexible strain sensors under various harsh conditions are examined. Subsequently, strategies towards the environmental tolerance of hydrogel flexible strain sensors are summarized. Finally, the current challenges of hydrogel flexible strain sensors in harsh environments are discussed, along with potential directions for future development and applications.
Collapse
Affiliation(s)
- Miaoyu Li
- Institute of Flexible Electronics and Intelligent Textile, Xi'an Polytechnic University Xi'an 710048 P. R. China
- School of Textile Science and Engineering, Xi'an Polytechnic University Xi'an 710048 P. R. China
| | - Jie Pu
- Institute of Flexible Electronics, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Qinghe Cao
- Institute of Flexible Electronics, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Wenbo Zhao
- Institute of Flexible Electronics, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Yong Gao
- Institute of Flexible Electronics, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Ting Meng
- Institute of Flexible Electronics, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Jipeng Chen
- Institute of Flexible Electronics, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Cao Guan
- Institute of Flexible Electronics and Intelligent Textile, Xi'an Polytechnic University Xi'an 710048 P. R. China
- Institute of Flexible Electronics, Northwestern Polytechnical University Xi'an 710072 P. R. China
| |
Collapse
|
16
|
Chu Z, He K, Huang S, Zhang W, Li X, Cui K. Investigating Temperature-Dependent Microscopic Deformation in Tough and Self-Healing Hydrogel Using Time-Resolved USAXS. Macromol Rapid Commun 2024; 45:e2400327. [PMID: 38837533 DOI: 10.1002/marc.202400327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/30/2024] [Indexed: 06/07/2024]
Abstract
Tough and self-healing hydrogels are typically sensitive to loading rates or temperatures due to the dynamic nature of noncovalent bonds. Understanding the structure evolution under varying loading conditions can provide valuable insights for developing new tough soft materials. In this study, polyampholyte (PA) hydrogel with a hierarchical structure is used as a model system. The evolution of the microscopic structure during loading is investigated under varied loading temperatures. By combining ultra-small angle X-ray scattering (USAXS) and Mooney-Rivlin analysis, it is elucidated that the deformation of bicontinuous hard/soft phase networks is closely correlated with the relaxation dynamics or strength of noncovalent bonds. At high loading temperatures, the gel is soft and ductile, and large affine deformation of the phase-separated networks is observed, correlated with the fast relaxation dynamics of noncovalent bonds. At low loading temperatures, the gel is stiff, and nonaffine deformation occurs from the onset of loading due to the substantial breaking of noncovalent bonds and limited chain mobility as well as weak adaptation of phase deformation to external stretch. This work provides an in-depth understanding of the relationship between structure and performance of tough and self-healing hydrogels.
Collapse
Affiliation(s)
- Zhaoyang Chu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China
- Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, University of Science and Technology of China, Hefei, 230026, China
| | - Kaining He
- Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei, 230026, China
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Siqi Huang
- Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei, 230026, China
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Wenhua Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Xueyu Li
- Laboratory of Soft & Wet Matter, Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Kunpeng Cui
- Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei, 230026, China
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
17
|
Zhang K, Yang Z, Seitz MP, Jain E. Macroporous PEG-Alginate Hybrid Double-Network Cryogels with Tunable Degradation Rates Prepared via Radical-Free Cross-Linking for Cartilage Tissue Engineering. ACS APPLIED BIO MATERIALS 2024; 7:5925-5938. [PMID: 39135543 PMCID: PMC11409214 DOI: 10.1021/acsabm.4c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 09/17/2024]
Abstract
Trauma or repeated damage to joints can result in focal cartilage defects, significantly elevating the risk of osteoarthritis. Damaged cartilage has an inherently limited self-healing capacity and remains an urgent unmet clinical need. Consequently, there is growing interest in biodegradable hydrogels as potential scaffolds for the repair or reconstruction of cartilage defects. Here, we developed a biodegradable and macroporous hybrid double-network (DN) cryogel by combining two independently cross-linked networks of multiarm polyethylene glycol (PEG) acrylate and alginate.Hybrid DN cryogels are formed using highly biocompatible click reactions for the PEG network and ionic bonding for the alginate network. By judicious selection of various structurally similar cross-linkers to form the PEG network, we can generate hybrid DN cryogels with customizable degradation kinetics. The resulting PEG-alginate hybrid DN cryogels have an interconnected macroporous structure, high mechanical strength, and rapid swelling kinetics. The interconnected macropores in the cryogels support efficient mesenchymal stem cell infiltration at a high density. Finally, we demonstrate that PEG-alginate hybrid DN cryogels allow sustained release of chondrogenic growth factors and support chondrogenic differentiation of mouse mesenchymal stem cells. This study provides a novel method to generate macroporous hybrid DN cryogels with customizable degradation rates and a potential scaffold for cartilage tissue engineering.
Collapse
Affiliation(s)
- Kaixiang Zhang
- Department
of Biomedical and Chemical engineering, Syracuse University, Syracuse, New York 13244, United States
- Bioinspired
Syracuse: Institute for Material and Living System, Syracuse University, Syracuse, New York 13244, United States
| | - Zining Yang
- Department
of Biomedical and Chemical engineering, Syracuse University, Syracuse, New York 13244, United States
- Bioinspired
Syracuse: Institute for Material and Living System, Syracuse University, Syracuse, New York 13244, United States
| | - Michael Patrick Seitz
- Department
of Biomedical and Chemical engineering, Syracuse University, Syracuse, New York 13244, United States
- Bioinspired
Syracuse: Institute for Material and Living System, Syracuse University, Syracuse, New York 13244, United States
| | - Era Jain
- Department
of Biomedical and Chemical engineering, Syracuse University, Syracuse, New York 13244, United States
- Bioinspired
Syracuse: Institute for Material and Living System, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
18
|
Seifi S, Shamloo A, Barzoki AK, Bakhtiari MA, Zare S, Cheraghi F, Peyrovan A. Engineering biomimetic scaffolds for bone regeneration: Chitosan/alginate/polyvinyl alcohol-based double-network hydrogels with carbon nanomaterials. Carbohydr Polym 2024; 339:122232. [PMID: 38823905 DOI: 10.1016/j.carbpol.2024.122232] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 06/03/2024]
Abstract
In this study, new types of hybrid double-network (DN) hydrogels composed of polyvinyl alcohol (PVA), chitosan (CH), and sodium alginate (SA) are introduced, with the hypothesis that this combination and incorporating multi-walled carbon nanotubes (MWCNTs) and graphene nanoplatelets (GNPs) will enhance osteogenetic differentiation and the structural and mechanical properties of scaffolds for bone tissue engineering applications. Initially, the impact of varying mass ratios of the PVA/CH/SA mixture on mechanical properties, swelling ratio, and degradability was examined. Based on this investigation, a mass ratio of 4:6:6 was determined to be optimal. At this ratio, the hydrogel demonstrated a Young's modulus of 47.5 ± 5 kPa, a swelling ratio of 680 ± 6 % after 3 h, and a degradation rate of 46.5 ± 5 % after 40 days. In the next phase, following the determination of the optimal mass ratio, CNTs and GNPs were incorporated into the 4:6:6 composite resulting in a significant enhancement in the electrical conductivity and stiffness of the scaffolds. The introduction of CNTs led to a notable increase of 36 % in the viability of MG63 osteoblast cells. Additionally, the inhibition zone test revealed that GNPs and CNTs increased the diameter of the inhibition zone by 49.6 % and 52.6 %, respectively.
Collapse
Affiliation(s)
- Saeed Seifi
- Nano-Bioengineering Lab, School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran
| | - Amir Shamloo
- Nano-Bioengineering Lab, School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran.
| | - Ali Kheirkhah Barzoki
- Nano-Bioengineering Lab, School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran
| | - Mohammad Ali Bakhtiari
- Nano-Bioengineering Lab, School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran
| | - Sona Zare
- Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran; Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Cheraghi
- Department of Materials Science and Engineering, Sharif University of Technology, Azadi Ave., P.O. Box 11155-9466, Tehran, Iran
| | - Aisan Peyrovan
- Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran; Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Oh DH, Le Thi P, Park KD. Injectable Dual Fenton/Enzymatically Cross-Linked Double-Network Hydrogels Based on Acrylic/Phenolic Polymers with Highly Reinforced and Tunable Mechanical Properties. ACS APPLIED BIO MATERIALS 2024; 7:5702-5718. [PMID: 39105701 DOI: 10.1021/acsabm.4c00773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Injectable hydrogels have been extensively used as promising therapeutic scaffolds for a wide range of biomedical applications, such as tissue regeneration and drug delivery. However, their low fracture toughness and brittleness often limit their scope of application. Double-network (DN) hydrogel, which is composed of independently cross-linked rigid and ductile polymer networks, has been proposed as an alternative technique to compensate for the weak mechanical properties of hydrogels. Nevertheless, some challenges still remain, such as the complicated and time-consuming process for DN formation, and the difficulty in controlling the mechanical properties of DN hydrogels. In this study, we introduce a simple, rapid, and controllable method to prepare in situ cross-linkable injectable DN hydrogels composed of acrylamide (AAm) and 4-arm-PPO-PEO-tyramine (TTA) via dual Fenton- and enzyme-mediated reactions. By varying the concentration of Fenton's reagent, the DN hydrogels were rapidly formed with controllable gelation rate. Importantly, the DN hydrogels showed a 13-fold increase in compressive strength and a 14-fold increase in tensile strength, compared to the single network hydrogels. The mechanical properties, elasticity, and plasticity of DN hydrogels could also be modulated by simply varying the preparation conditions, including the cross-linking density and reagent concentrations. At low cross-linker concentration (<0.05 wt %), the plastic DN hydrogel stretched to over 6,500%, whereas high cross-linker concentration (≥0.05 wt %) induced fully elastic hydrogels, without hysteresis. Besides, DN hydrogels were endowed with rapid self-recovery and highly enhanced adhesion, which can be further applied to wearable devices. Moreover, human dermal fibroblasts treated with DN hydrogels retained viability, demonstrating the biocompatibility of the cross-linking system. Therefore, we expect that the dual Fenton-/enzyme-mediated cross-linkable DN hydrogels offer great potential as advanced biomaterials applied for hard tissue regeneration and replacement.
Collapse
Affiliation(s)
- Dong Hwan Oh
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Phuong Le Thi
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 7000000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ho Chi Minh City 7000000, Vietnam
| | - Ki Dong Park
- Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| |
Collapse
|
20
|
Su CY, Li D, Sun W, Wang LJ, Wang Y. Green, tough, and heat-resistant: A GDL-induced strategy for starch-alginate hydrogels. Food Chem 2024; 449:139188. [PMID: 38579652 DOI: 10.1016/j.foodchem.2024.139188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024]
Abstract
Hydrogels fabricated by non-covalent interaction garnered significant attention for their eco-friendly and robust mechanical attributes, and are often used in food, medicine and other fields. Although starch-alginate hydrogels exhibit high adhesion and are environmentally sustainable, their applications are limited due to their low elasticity and hardness. Addressing this challenge, we introduce a solvent-induced strategy using glucolactone (GDL) to fabricate hydrogels with enhanced strength and thermal resilience. Utilizing corn starch with varying amylose contents, sodium alginate and calcium carbonate to prepare a double network structure. This GDL-induced hydrogel outperforms most previous starch-based hydrogels in mechanical robustness and thermal stability. Typical starch-alginate hydrogel had a homogeneous network structure and exhibited a high tensile stress of 407.57 KPa, and a high enthalpy value of 1857.67 J/g. This investigation furnishes a facile yet effective method for the synthesis of hydrogels with superior mechanical and thermal properties, thereby broadening the design landscape for starch-based hydrogels.
Collapse
Affiliation(s)
- Chun-Yan Su
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing, China
| | - Dong Li
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing, China.
| | - Weihong Sun
- College of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Li-Jun Wang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing 100083, China.
| | - Yong Wang
- School of Chemical Engineering, University of New South Wales, Kensington, New South Wales, Australia
| |
Collapse
|
21
|
Kim J, Park J, Choe G, Jeong SI, Kim HS, Lee JY. A Gelatin/Alginate Double Network Hydrogel Nerve Guidance Conduit Fabricated by a Chemical-Free Gamma Radiation for Peripheral Nerve Regeneration. Adv Healthc Mater 2024; 13:e2400142. [PMID: 38566357 DOI: 10.1002/adhm.202400142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Nerve guidance conduits (NGCs) are widely developed using various materials for the functional repair of injured or diseased peripheral nerves. Especially, hydrogels are considered highly suitable for the fabrication of NGCs due to their beneficial tissue-mimicking characteristics (e.g., high water content, softness, and porosity). However, the practical applications of hydrogel-based NGCs are hindered due to their poor mechanical properties and complicated fabrication processes. To bridge this gap, a novel double-network (DN) hydrogel using alginate and gelatin by a two-step crosslinking process involving chemical-free gamma irradiation and ionic crosslinking, is developed. DN hydrogels (1% alginate and 15% gelatin), crosslinked with 30 kGy gamma irradiation and barium ions, exhibit substantially improved mechanical properties, including tensile strength, elastic modulus, and fracture stain, compared to single network (SN) gelatin hydrogels. Additionally, the DN hydrogel NGC exhibits excellent kink resistance, mechanical stability to successive compression, suture retention, and enzymatic degradability. In vivo studies with a sciatic defect rat model indicate substantially improved nerve function recovery with the DN hydrogel NGC compared to SN gelatin and commercial silicone NGCs, as confirm footprint analysis, electromyography, and muscle weight measurement. Histological examination reveals that, in the DN NGC group, the expression of Schwann cell and neuronal markers, myelin sheath, and exon diameter are superior to the other controls. Furthermore, the DN NGC group demonstrates increased muscle fiber formation and reduced fibrotic scarring. These findings suggest that the mechanically robust, degradable, and biocompatible DN hydrogel NGC can serve as a novel platform for peripheral nerve regeneration and other biomedical applications, such as implantable tissue constructs.
Collapse
Affiliation(s)
- Junghyun Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Junggeon Park
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Goeun Choe
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Sung-In Jeong
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
| | - Hyung-Seok Kim
- Department of Forensic Medicine, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Jae Young Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| |
Collapse
|
22
|
Georgopoulou A, Filippi M, Stefani L, Drescher F, Balciunaite A, Scherberich A, Katzschmann R, Clemens F. Bioprinting of Stable Bionic Interfaces Using Piezoresistive Hydrogel Organoelectronics. Adv Healthc Mater 2024; 13:e2400051. [PMID: 38666593 DOI: 10.1002/adhm.202400051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/23/2024] [Indexed: 05/04/2024]
Abstract
Bionic tissues offer an exciting frontier in biomedical research by integrating biological cells with artificial electronics, such as sensors. One critical hurdle is the development of artificial electronics that can mechanically harmonize with biological tissues, ensuring a robust interface for effective strain transfer and local deformation sensing. In this study, a highly tissue-integrative, soft mechanical sensor fabricated from a composite piezoresistive hydrogel. The composite not only exhibits exceptional mechanical properties, with elongation at the point of fracture reaching up to 680%, but also maintains excellent biocompatibility across multiple cell types. Furthermore, the material exhibits bioadhesive qualities, facilitating stable cell adhesion to its surface. A unique advantage of the formulation is the compatibility with 3D bioprinting, an essential technique for fabricating stable interfaces. A multimaterial sensorized 3D bionic construct is successfully bioprinted, and it is compared to structures produced via hydrogel casting. In contrast to cast constructs, the bioprinted ones display a high (87%) cell viability, preserve differentiation ability, and structural integrity of the sensor-tissue interface throughout the tissue development duration of 10 d. With easy fabrication and effective soft tissue integration, this composite holds significant promise for various biomedical applications, including implantable electronics and organ-on-a-chip technologies.
Collapse
Affiliation(s)
- Antonia Georgopoulou
- High Performance Ceramics Laboratory, Empa, Swiss Federal Laboratories for Material Science and Technology, Dübendorf, 8600, Switzerland
| | - Miriam Filippi
- Soft Robotics Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, 8092, Switzerland
| | - Lisa Stefani
- Soft Robotics Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, 8092, Switzerland
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Felix Drescher
- Soft Robotics Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, 8092, Switzerland
| | - Aiste Balciunaite
- Soft Robotics Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, 8092, Switzerland
| | - Arnaud Scherberich
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Robert Katzschmann
- Soft Robotics Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, 8092, Switzerland
| | - Frank Clemens
- High Performance Ceramics Laboratory, Empa, Swiss Federal Laboratories for Material Science and Technology, Dübendorf, 8600, Switzerland
| |
Collapse
|
23
|
Yang Y, Xu Q, Wang X, Bai Z, Xu X, Ma J. Casein-based hydrogels: Advances and prospects. Food Chem 2024; 447:138956. [PMID: 38503069 DOI: 10.1016/j.foodchem.2024.138956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/21/2024]
Abstract
Casein-based hydrogels (Casein Gels) possess advantageous properties, including mechanical strength, stability, biocompatibility, and even adhesion, conductivity, sensing capabilities, as well as controlled-releasing behavior of drugs. These features are attributed to their gelation methods and functionalization with various polymers. Casein Gels is an important protein-based material in the food industry, in terms of dairy and functional foods, biological and medicine, in terms of carrier for bioactive and sensitive drugs, wound healing, and flexible sensors and wearable devices. Herein, this review aims to highlight the importance of the features mentioned above via a comprehensive investigation of Casein Gels through multiple directions and dimensional applications. Firstly, the composition, structure, and properties of casein, along with the gelation methods employed to create Casein Gels are elaborated, which serves as a foundation for further exploration. Then, the application progresses of Casein Gels in dairy products, functional foods, medicine, flexible sensors and wearable devices, are thoroughly discussed to provide insights into the diverse fields where Casein Gels have shown promise and utility. Lastly, the existing challenges and future research trends are highlighted from an interdisciplinary perspective. We present the latest research advances of Casein Gels and provide references for the development of multifunctional biomass-based hydrogels.
Collapse
Affiliation(s)
- Yuxi Yang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Qunna Xu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Xi'an Key Laboratory of Green Chemicals and Functional Materials, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China.
| | - Xinyi Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Institute of Biomass & Functional Materials, Shaanxi University of Science &Technology, Xi'an 710021, China
| | - Zhongxue Bai
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Institute of Biomass & Functional Materials, Shaanxi University of Science &Technology, Xi'an 710021, China
| | - Xiaoyu Xu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Jianzhong Ma
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Xi'an Key Laboratory of Green Chemicals and Functional Materials, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China.
| |
Collapse
|
24
|
Ghosh A, Kumar S, Singh PP, Nandi S, Mandal M, Pradhan D, Khatua BB, Das RK. Dynamic Metal-Coordinated Adhesive and Self-Healable Antifreezing Hydrogels for Strain Sensing, Flexible Supercapacitors, and EMI Shielding Applications. ACS OMEGA 2024; 9:33204-33223. [PMID: 39100348 PMCID: PMC11292641 DOI: 10.1021/acsomega.4c04851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024]
Abstract
Dynamic metal-coordinated adhesive and self-healable hydrogel materials have garnered significant attention in recent years due to their potential applications in various fields. These hydrogels can form reversible metal-ligand bonds, resulting in a network structure that can be easily broken and reformed, leading to self-healing capabilities. In addition, these hydrogels possess excellent mechanical strength and flexibility, making them suitable for strain-sensing applications. In this work, we have developed a mechanically robust, highly stretchable, self-healing, and adhesive hydrogel by incorporating Ca2+-dicarboxylate dynamic metal-ligand cross-links in combination with low density chemical cross-links into a poly(acrylamide-co-maleic acid) copolymer structure. Utilizing the reversible nature of the Ca2+-dicarboxylate bond, the hydrogel exhibited a tensile strength of up to ∼250 kPa and was able to stretch to 15-16 times its original length. The hydrogel exhibited a high fracture energy of ∼1500 J m-2, similar to that of cartilage. Furthermore, the hydrogel showed good recovery, fatigue resistance, and fast self-healing properties due to the reversible Ca2+-dicarboxylate cross-links. The presence of Ca2+ resulted in a highly conductive hydrogel, which was utilized to design a flexible resistive strain sensor. This hydrogel can strongly adhere to different substrates, making it advantageous for applications in flexible electronic devices. When adhered to human body parts, the hydrogel can efficiently detect limb movements. The hydrogel also exhibited excellent performance as a solid electrolyte for flexible supercapacitors, with a capacitance of ∼260 F/g at 0.5 A/g current density. Due to its antifreezing and antidehydration properties, this hydrogel retains its flexibility at subzero temperatures for an extended period. Additionally, the porous network and high water content of the hydrogel impart remarkable electromagnetic attenuation properties, with a value of ∼38 dB in the 14.5-20.5 GHz frequency range, which is higher than any other hydrogel without conducting fillers. Overall, the hydrogel reported in this study exhibits diverse applications as a strain sensor, solid electrolyte for flexible supercapacitors, and efficient material for electromagnetic attenuation. Its multifunctional properties make it a promising candidate for use in various fields as a state-of-the-art material.
Collapse
Affiliation(s)
- Ashis Ghosh
- Materials
Science Centre, Indian Institute of Technology
Kharagpur, Kharagpur 721302, India
| | - Sudhir Kumar
- Materials
Science Centre, Indian Institute of Technology
Kharagpur, Kharagpur 721302, India
| | - Prem Pal Singh
- Materials
Science Centre, Indian Institute of Technology
Kharagpur, Kharagpur 721302, India
| | - Suvendu Nandi
- School
of Medical Science and Technology, Indian
Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Mahitosh Mandal
- School
of Medical Science and Technology, Indian
Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Debabrata Pradhan
- Materials
Science Centre, Indian Institute of Technology
Kharagpur, Kharagpur 721302, India
| | - Bhanu Bhusan Khatua
- Materials
Science Centre, Indian Institute of Technology
Kharagpur, Kharagpur 721302, India
| | - Rajat Kumar Das
- Materials
Science Centre, Indian Institute of Technology
Kharagpur, Kharagpur 721302, India
| |
Collapse
|
25
|
Hasan N, Bhuyan MM, Jeong JH. Single/Multi-Network Conductive Hydrogels-A Review. Polymers (Basel) 2024; 16:2030. [PMID: 39065347 PMCID: PMC11281081 DOI: 10.3390/polym16142030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Hydrogels made from conductive organic materials have gained significant interest in recent years due to their wide range of uses, such as electrical conductors, freezing resistors, biosensors, actuators, biomedical engineering materials, drug carrier, artificial organs, flexible electronics, battery solar cells, soft robotics, and self-healers. Nevertheless, the insufficient level of effectiveness in electroconductive hydrogels serves as a driving force for researchers to intensify their endeavors in this domain. This article provides a concise overview of the recent advancements in creating self-healing single- or multi-network (double or triple) conductive hydrogels (CHs) using a range of natural and synthetic polymers and monomers. We deliberated on the efficacy, benefits, and drawbacks of several conductive hydrogels. This paper emphasizes the use of natural polymers and innovative 3D printing CHs-based technology to create self-healing conductive gels for flexible electronics. In conclusion, advantages and disadvantages have been noted, and some potential opportunities for self-healing single- or multi-network hydrogels have been proposed.
Collapse
Affiliation(s)
| | - Md Murshed Bhuyan
- Department of Mechanical, Smart and Industrial Engineering (Mechanical Engineering Major), Gachon University 1342, Seongnam-si 13120, Republic of Korea;
| | - Jae-Ho Jeong
- Department of Mechanical, Smart and Industrial Engineering (Mechanical Engineering Major), Gachon University 1342, Seongnam-si 13120, Republic of Korea;
| |
Collapse
|
26
|
Ballard A, Patush R, Perez J, Juarez C, Kirillova A. Bioprinting: Mechanical Stabilization and Reinforcement Strategies in Regenerative Medicine. Tissue Eng Part A 2024; 30:387-408. [PMID: 38205634 DOI: 10.1089/ten.tea.2023.0239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
Bioprinting describes the printing of biomaterials and cell-laden or cell-free hydrogels with various combinations of embedded bioactive molecules. It encompasses the precise patterning of biomaterials and cells to create scaffolds for different biomedical needs. There are many requirements that bioprinting scaffolds face, and it is ultimately the interplay between the scaffold's structure, properties, processing, and performance that will lead to its successful translation. Among the essential properties that the scaffolds must possess-adequate and appropriate application-specific chemical, mechanical, and biological performance-the mechanical behavior of hydrogel-based bioprinted scaffolds is the key to their stable performance in vivo at the site of implantation. Hydrogels that typically constitute the main scaffold material and the medium for the cells and biomolecules are very soft, and often lack sufficient mechanical stability, which reduces their printability and, therefore, the bioprinting potential. The aim of this review article is to highlight the reinforcement strategies that are used in different bioprinting approaches to achieve enhanced mechanical stability of the bioinks and the printed scaffolds. Enabling stable and robust materials for the bioprinting processes will lead to the creation of truly complex and remarkable printed structures that could accelerate the application of smart, functional scaffolds in biomedical settings. Impact statement Bioprinting is a powerful tool for the fabrication of 3D structures and scaffolds for biomedical applications. It has gained tremendous attention in recent years, and the bioink library is expanding to include more and more material combinations. From the practical application perspective, different properties need to be considered, such as the printed structure's chemical, mechanical, and biological performances. Among these, the mechanical behavior of the printed constructs is critical for their successful translation into the clinic. The aim of this review article is to explore the different reinforcement strategies used for the mechanical stabilization of bioinks and bioprinted structures.
Collapse
Affiliation(s)
- Ashleigh Ballard
- Department of Materials Science and Engineering, Iowa State University, Ames, Iowa, USA
| | - Rebecca Patush
- Department of Materials Science and Engineering, Iowa State University, Ames, Iowa, USA
| | - Jenesis Perez
- Department of Materials Science and Engineering, Iowa State University, Ames, Iowa, USA
| | - Carmen Juarez
- Des Moines Area Community College, Ankeny, Iowa, USA
| | - Alina Kirillova
- Department of Materials Science and Engineering, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
27
|
Liu Y, Huang J, Li S, Li Z, Chen C, Qu G, Chen K, Teng Y, Ma R, Ren J, Wu X. Recent Advances in Functional Hydrogel for Repair of Abdominal Wall Defects: A Review. Biomater Res 2024; 28:0031. [PMID: 38845842 PMCID: PMC11156463 DOI: 10.34133/bmr.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/18/2024] [Indexed: 06/09/2024] Open
Abstract
The abdominal wall plays a crucial role in safeguarding the internal organs of the body, serving as an essential protective barrier. Defects in the abdominal wall are common due to surgery, infection, or trauma. Complex defects have limited self-healing capacity and require external intervention. Traditional treatments have drawbacks, and biomaterials have not fully achieved the desired outcomes. Hydrogel has emerged as a promising strategy that is extensively studied and applied in promoting tissue regeneration by filling or repairing damaged tissue due to its unique properties. This review summarizes the five prominent properties and advances in using hydrogels to enhance the healing and repair of abdominal wall defects: (a) good biocompatibility with host tissues that reduces adverse reactions and immune responses while supporting cell adhesion migration proliferation; (b) tunable mechanical properties matching those of the abdominal wall that adapt to normal movement deformations while reducing tissue stress, thereby influencing regulating cell behavior tissue regeneration; (c) drug carriers continuously delivering drugs and bioactive molecules to sites optimizing healing processes enhancing tissue regeneration; (d) promotion of cell interactions by simulating hydrated extracellular matrix environments, providing physical support, space, and cues for cell migration, adhesion, and proliferation; (e) easy manipulation and application in surgical procedures, allowing precise placement and close adhesion to the defective abdominal wall, providing mechanical support. Additionally, the advances of hydrogels for repairing defects in the abdominal wall are also mentioned. Finally, an overview is provided on the current obstacles and constraints faced by hydrogels, along with potential prospects in the repair of abdominal wall defects.
Collapse
Affiliation(s)
- Ye Liu
- School of Medicine,
Southeast University, Nanjing 210009, China
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210002, China
| | - Jinjian Huang
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210002, China
| | - Sicheng Li
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210002, China
| | - Ze Li
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210002, China
| | - Canwen Chen
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210002, China
| | - Guiwen Qu
- School of Medicine,
Southeast University, Nanjing 210009, China
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210002, China
| | - Kang Chen
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210002, China
| | - Yitian Teng
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210002, China
| | - Rui Ma
- School of Medicine,
Southeast University, Nanjing 210009, China
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210002, China
| | - Jianan Ren
- School of Medicine,
Southeast University, Nanjing 210009, China
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210002, China
| | - Xiuwen Wu
- School of Medicine,
Southeast University, Nanjing 210009, China
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School,
Nanjing University, Nanjing 210002, China
| |
Collapse
|
28
|
Yan X, Huang H, Bakry AM, Wu W, Liu X, Liu F. Advances in enhancing the mechanical properties of biopolymer hydrogels via multi-strategic approaches. Int J Biol Macromol 2024; 272:132583. [PMID: 38795882 DOI: 10.1016/j.ijbiomac.2024.132583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/01/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
The limited mechanical properties of biopolymer-based hydrogels have hindered their widespread applications in biomedicine and tissue engineering. In recent years, researchers have shown significant interest in developing novel approaches to enhance the mechanical performance of hydrogels. This review focuses on key strategies for enhancing mechanical properties of hydrogels, including dual-crosslinking, double networks, and nanocomposite hydrogels, with a comprehensive analysis of their underlying mechanisms, benefits, and limitations. It also introduces the classic application scenarios of biopolymer-based hydrogels and the direction of future research efforts, including wound dressings and tissue engineering based on 3D bioprinting. This review is expected to deepen the understanding of the structure-mechanical performance-function relationship of hydrogels and guide the further study of their biomedical applications.
Collapse
Affiliation(s)
- Xiaojia Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Hechun Huang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Amr M Bakry
- Dairy Science Department, Faculty of Agriculture, New Valley University, New Valley, El-Kharga 72511, Egypt
| | - Wanqiang Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
29
|
Chen X, Cui J, Liu Z, Wang Y, Li M, Zhang J, Pan S, Wang M, Bao C, Wei Q. Polyacrylamide/sodium alginate/sodium chloride photochromic hydrogel with high conductivity, anti-freezing property and fast response for information storage and electronic skin. Int J Biol Macromol 2024; 268:131972. [PMID: 38697436 DOI: 10.1016/j.ijbiomac.2024.131972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/07/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024]
Abstract
Photochromic hydrogels have promising prospects in areas such as wearable device, information encryption technology, optoelectronic display technology, and electronic skin. However, there are strict requirements for the properties of photochromic hydrogels in practical engineering applications, especially in some extreme application environments. The preparation of photochromic hydrogels with high transparency, high toughness, fast response, colour reversibility, excellent electrical conductivity, and anti-freezing property remains a challenge. In this study, a novel photochromic hydrogel (PAAm/SA/NaCl-Mo7) was prepared by loading ammonium molybdate (Mo7) and sodium chloride (NaCl) into a dual-network hydrogel of polyacrylamide (PAAm) and sodium alginate (SA) using a simple one-pot method. PAAm/SA/NaCl-Mo7 hydrogel has excellent conductivity (175.9 S/cm), water retention capacity and anti-freezing properties, which can work normally at a low temperature of -28.4 °C. In addition, the prepared PAAm/SA/NaCl-Mo7 hydrogel exhibits fast response (<15 s), high transparency (>70 %), good toughness (maximum elongation up to 1500 %), good cyclic compression properties at high compressive strains (60 %), good biocompatibility (78.5 %), stable reversible discolouration and excellent sensing properties, which can be used for photoelectric display, information storage and motion monitoring. This work provides a new inspiration for the development of flexible electronic skin devices.
Collapse
Affiliation(s)
- Xiaohu Chen
- Department of Indurstry and Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Bio-additive manufacturing university-enterprise joint research center of Shaanxi Province, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China
| | - Jiashu Cui
- Department of Indurstry and Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Bio-additive manufacturing university-enterprise joint research center of Shaanxi Province, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China
| | - Zhisheng Liu
- Department of Indurstry and Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Bio-additive manufacturing university-enterprise joint research center of Shaanxi Province, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China
| | - Yanen Wang
- Department of Indurstry and Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Bio-additive manufacturing university-enterprise joint research center of Shaanxi Province, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China.
| | - Mingyang Li
- Department of Indurstry and Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Bio-additive manufacturing university-enterprise joint research center of Shaanxi Province, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China
| | - Juan Zhang
- Department of Indurstry and Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Bio-additive manufacturing university-enterprise joint research center of Shaanxi Province, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China
| | - Siyu Pan
- Department of Indurstry and Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Bio-additive manufacturing university-enterprise joint research center of Shaanxi Province, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China
| | - Mengjie Wang
- Department of Indurstry and Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Bio-additive manufacturing university-enterprise joint research center of Shaanxi Province, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China
| | - Chengwei Bao
- Department of Indurstry and Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Bio-additive manufacturing university-enterprise joint research center of Shaanxi Province, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China
| | - Qinghua Wei
- Department of Indurstry and Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Bio-additive manufacturing university-enterprise joint research center of Shaanxi Province, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China.
| |
Collapse
|
30
|
Han GY, Park JY, Back JH, Yi MB, Kim HJ. Highly Resilient Noncovalently Associated Hydrogel Adhesives for Wound Sealing Patch. Adv Healthc Mater 2024; 13:e2303342. [PMID: 38291883 DOI: 10.1002/adhm.202303342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/13/2024] [Indexed: 02/01/2024]
Abstract
The development of hydrogel adhesives with high mechanical resilience and toughness remains a challenging task. Hydrogels must exhibit high mechanical resilience to withstand the inevitable movement of the human body while simultaneously demonstrating strong wet tissue adhesion and appropriate toughness to hold and seal damaged tissues; However, tissue adhesion, toughness, and mechanical resilience are typically negatively correlated. Therefore, this paper proposes a highly resilient double-network (DN) hydrogel wound-sealing patch that exhibits a well-balanced combination of tissue adhesion, toughness, and mechanical resilience. The DN structure is formed by introducing covalently and non-covalently crosslinkable dopamine-modified crosslinkers and physically interactable linear poly(vinyl imidazole) (PVI). The resulting hydrogel adhesive exhibits high toughness and mechanical resilience due to the presence of a DN involving reversible physical intermolecular interactions such as hydrogen bonds, hydrophobic associations, cation-π interactions, π-π interactions, and chain entanglements. Moreover, the hydrogel adhesive achieves strong wet tissue adhesion through the polar hydroxyl groups of dopamine and the amine group of PVI. These mechanical attributes allow the proposed adhesive to effectively seal damaged tissues and promote wound healing by maintaining a moist environment.
Collapse
Affiliation(s)
- Gi-Yeon Han
- Program in Environmental Materials Science, Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ji-Yong Park
- Department of Veterinary Physiology, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jong-Ho Back
- Program in Environmental Materials Science, Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea
| | - Mo-Beom Yi
- Program in Environmental Materials Science, Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyun-Joong Kim
- Program in Environmental Materials Science, Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
31
|
Long S, Chen F, Ren H, Hu Y, Chen C, Huang Y, Li X. Ion-Cross-Linked Hybrid Photochromic Hydrogels with Enhanced Mechanical Properties and Shape Memory Behaviour. Polymers (Basel) 2024; 16:1031. [PMID: 38674950 PMCID: PMC11054056 DOI: 10.3390/polym16081031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Shape-shifting polymers usually require not only reversible stimuli-responsive ability, but also strong mechanical properties. A novel shape-shifting photochromic hydrogel system was designed and fabricated by embedding hydrophobic spiropyran (SP) into double polymeric network (DN) through micellar copolymerisation. Here, sodium alginate (Alg) and poly acrylate-co-methyl acrylate-co-spiropyran (P(SA-co-MA-co-SPMA)) were employed as the first network and the second network, respectively, to realise high mechanical strength. After being soaked in the CaCl2 solution, the carboxyl groups in the system underwent metal complexation with Ca2+ to enhance the hydrogel. Moreover, after the hydrogel was exposed to UV-light, the closed isomer of spiropyran in the hydrogel network could be converted into an open zwitterionic isomer merocyanine (MC), which was considered to interact with Ca2+ ions. Interestingly, Ca2+ and UV-light responsive programmable shape of the copolymer hydrogel could recover to its original form via immersion in pure water. Given its excellent metal ion and UV light stimuli-responsive and mechanical properties, the hydrogel has potential applications in the field of soft actuators.
Collapse
Affiliation(s)
- Shijun Long
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China; (S.L.); (F.C.); (H.R.); (Y.H.)
- Hubei Longzhong Laboratory, Xiangyang 441000, China
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
| | - Fan Chen
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China; (S.L.); (F.C.); (H.R.); (Y.H.)
| | - Han Ren
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China; (S.L.); (F.C.); (H.R.); (Y.H.)
| | - Yali Hu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China; (S.L.); (F.C.); (H.R.); (Y.H.)
| | - Chao Chen
- Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China
| | - Yiwan Huang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China; (S.L.); (F.C.); (H.R.); (Y.H.)
- Hubei Longzhong Laboratory, Xiangyang 441000, China
| | - Xuefeng Li
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China; (S.L.); (F.C.); (H.R.); (Y.H.)
- Hubei Longzhong Laboratory, Xiangyang 441000, China
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
32
|
Es Sayed J, Mukherjee A, El Aani S, Vengallur N, Koch M, Giuntoli A, Kamperman M. Structure-Property Relationships of Granular Hybrid Hydrogels Formed through Polyelectrolyte Complexation. Macromolecules 2024; 57:3190-3201. [PMID: 38616812 PMCID: PMC11008357 DOI: 10.1021/acs.macromol.3c02335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/22/2024] [Accepted: 03/07/2024] [Indexed: 04/16/2024]
Abstract
Hybrid hydrogels are hydrogels that exhibit heterogeneity in the network architecture by means of chemical composition and/or microstructure. The different types of interactions, together with structural heterogeneity, which can be created on different length scales, determine the mechanical properties of the final material to a large extent. In this work, the microstructure-mechanical property relationships for a hybrid hydrogel that contains both electrostatic and covalent interactions are investigated. The hybrid hydrogel is composed of a microphase-separated polyelectrolyte complex network (PEC) made of poly(4-styrenesulfonate) and poly(diallyldimethylammonium chloride) within a soft and elastic polyacrylamide hydrogel network. The system exhibits a granular structure, which is attributed to the liquid-liquid phase separation into complex coacervate droplets induced by the polymerization and the subsequent crowding effect of the polyacrylamide chains. The coacervate droplets are further hardened into PEC granules upon desalting the hydrogel. The structure formation is confirmed by a combination of electron microscopic imaging and molecular dynamics simulations. The interpenetration of both networks is shown to enhance the toughness of the resulting hydrogels due to the dissipative behavior of the PEC through the rupture of electrostatic interactions. Upon cyclic loading-unloading, the hydrogels show recovery of up to 80% of their original dissipative behavior in less than 300 s of rest with limited plasticity. The granular architecture and the tough and self-recoverable properties of the designed hybrid networks make them good candidates for applications, such as shape-memory materials, actuators, biological tissue mimics, and elastic substrates for soft sensors.
Collapse
Affiliation(s)
- Julien Es Sayed
- Zernike
Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Adrivit Mukherjee
- Zernike
Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Engineering
and Technology Institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Siham El Aani
- Zernike
Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Nayan Vengallur
- Zernike
Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Marcus Koch
- INM
− Leibniz Institute for New Materials, Campus D2.2, 66123 Saarbrücken, Germany
| | - Andrea Giuntoli
- Zernike
Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Marleen Kamperman
- Zernike
Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
33
|
He Y, Guo J, Bai J, Hua L, Zhang Y, Huang Z, Pan L, Hong Z. An Innovative High-Strength Double-Network Hydrogel for Use as a Drilling Fluid Plugging Agent. Gels 2024; 10:224. [PMID: 38667643 PMCID: PMC11049153 DOI: 10.3390/gels10040224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
The problem of wellbore leakage is a key challenge in the petroleum industry, limiting drilling progress and increasing drilling costs. Plugging agents play a role in repairing leaks and fractures; however, traditional plugging materials generally have low mechanical strength, poor adaptability to permeable strata, limited water absorption and expansion capabilities, and poor temperature and salt resistance. To address these limitations, a pioneering polyacrylic acid-polyacrylamide (PAA/PAM) double-network hydrogel was synthesized through aqueous solution polymerization in this study. Its strength, water absorption, expansion, temperature resistance, salt resistance, and plugging effectiveness were comprehensively evaluated. The results demonstrate that good mechanical performance is exhibited by the synthesized hydrogel, capable of withstanding a maximum stress of approximately 3.5 MPa at a 90% strain. Excellent water absorption and expansion are observed in the synthesized double-network hydrogel, with a maximum expansion of 6 times within 30 min and 8 times after 2 h. Test results show that the hydrogel had good temperature resistance and salt resistance, maintaining a strength grade E within the experimental range. The simulated evaluation of the plugging experiment indicates that, under conditions of 130 °C and 6 MPa, the leakage rate of the drilling fluid is maintained below 5 mL/min when the double-network hydrogel is utilized. From the above experimental results, it can be illustrated that excellent mechanical properties, impressive water absorption, and expansion capabilities are exhibited by the synthesized double-network hydrogel. Furthermore, the high-temperature resistance and salt resistance of the double-network hydrogel were also demonstrated. Therefore, In comparison to traditional plugging materials, significant promise is held by this newly synthesized double-network hydrogel material as a plugging agent in drilling fluids.
Collapse
Affiliation(s)
| | - Jing Guo
- School of Petroleum and Natural Gas Engineering, Changzhou University, Changzhou 213164, China; (Y.H.); (J.B.); (L.H.); (Y.Z.); (Z.H.); (L.P.); (Z.H.)
| | | | | | | | | | | | | |
Collapse
|
34
|
Fu H, Wang B, Li J, Cao D, Zhang W, Xu J, Li J, Zeng J, Gao W, Chen K. Ultra-strong, nonfreezing, and flexible strain sensors enabled by biomass-based hydrogels through triple dynamic bond design. MATERIALS HORIZONS 2024; 11:1588-1596. [PMID: 38270542 DOI: 10.1039/d3mh02008h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Biomass-based hydrogels have displayed excellent potential in flexible strain sensors due to their adequacy, biocompatibility, nontoxic and degradability. Nevertheless, their inferior mechanical properties, particularly at cryogenic temperatures, impeded their extensive utilization. Herein, we reported a rationally designed strain sensor fabricated from a gelatin and cellulose-derived hydrogel with superior mechanical robustness, cryogenic endurance, and flexibility, owing to a triple dynamic bond strategy (TDBS), namely the synergistic reinforcement among potent hydrogen bonds, imine bonds, and sodium bonds. Beyond conventional sacrificing bonds consisting of hydrogen bonds, dynamic covalent bonds and coordinate bonds, synergetic triple dynamic bonds dominated by strong hydrogen bonds and assisted by imine and sodium bonds with higher strength can dissipate more mechanical energy endowing the hydrogel with 38-fold enhancement in tensile strength (6.4 MPa) and 39-fold improvement in toughness (2.9 MPa). We further demonstrated that this hydrogel can work as a robust and biodegradable strain sensor exhibiting remarkable flexibility, broad detection range, considerable sensitivity and excellent sensing stability. Furthermore, owing to the improved nonfreezing performance achieved from incorporating sodium salts, the sensor delivered outstanding sensing properties under subzero conditions such as -20 and -4 °C. It is anticipated that the TDBS can create diverse high-performance soft-electronics for broad applications in human-machine interfaces, energy and healthcare.
Collapse
Affiliation(s)
- Haocheng Fu
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Bin Wang
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Jinpeng Li
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Daxian Cao
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Wei Zhang
- Shandong Sun Holdings Group, No. 1 Youyi Road, Yanzhou District, Jining 272100, China.
| | - Jun Xu
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Jun Li
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Jinsong Zeng
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Wenhua Gao
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Kefu Chen
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| |
Collapse
|
35
|
Diepenbroek E, Mehta S, Borneman Z, Hempenius MA, Kooij ES, Nijmeijer K, de Beer S. Advances in Membrane Separation for Biomaterial Dewatering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4545-4566. [PMID: 38386509 PMCID: PMC10919095 DOI: 10.1021/acs.langmuir.3c03439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024]
Abstract
Biomaterials often contain large quantities of water (50-98%), and with the current transition to a more biobased economy, drying these materials will become increasingly important. Contrary to the standard, thermodynamically inefficient chemical and thermal drying methods, dewatering by membrane separation will provide a sustainable and efficient alternative. However, biomaterials can easily foul membrane surfaces, which is detrimental to the performance of current membrane separations. Improving the antifouling properties of such membranes is a key challenge. Other recent research has been dedicated to enhancing the permeate flux and selectivity. In this review, we present a comprehensive overview of the design requirements for and recent advances in dewatering of biomaterials using membranes. These recent developments offer a viable solution to the challenges of fouling and suboptimal performances. We focus on two emerging development strategies, which are the use of electric-field-assisted dewatering and surface functionalizations, in particular with hydrogels. Our overview concludes with a critical mention of the remaining challenges and possible research directions within these subfields.
Collapse
Affiliation(s)
- Esli Diepenbroek
- Department
of Molecules & Materials, MESA+ Institute, University of Twente, 7500 AE Enschede, The Netherlands
| | - Sarthak Mehta
- Membrane
Materials and Processes, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Zandrie Borneman
- Membrane
Materials and Processes, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Mark A. Hempenius
- Department
of Molecules & Materials, MESA+ Institute, University of Twente, 7500 AE Enschede, The Netherlands
| | - E. Stefan Kooij
- Physics
of Interfaces and Nanomaterials, MESA+ Institute, University of Twente, 7500
AE Enschede, The
Netherlands
| | - Kitty Nijmeijer
- Membrane
Materials and Processes, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Sissi de Beer
- Department
of Molecules & Materials, MESA+ Institute, University of Twente, 7500 AE Enschede, The Netherlands
| |
Collapse
|
36
|
Yu Y, Wang C, Fu Q, Wan Y, Yu A. Multi-crosslinked hydrogel built with hyaluronic acid-tyramine, thiolated glycol chitosan and copper-doped bioglass nanoparticles for expediting wound healing. Carbohydr Polym 2024; 327:121635. [PMID: 38171654 DOI: 10.1016/j.carbpol.2023.121635] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024]
Abstract
The migration of fibroblasts and endothelial cells is a critical determinant of wound-healing outcomes for skin injuries. Here, hyaluronic acid-tyramine (HAT) and thiolated glycol chitosan (TGC) conjugates were combined with copper-doped bioglass (ACuBG) nanoparticles to build a novel type of multi-crosslinked hydrogel for stimulating the migration of cells, and thus, expediting wound healing. The optimally devised HAT/TGC/ACuBG gels had markedly improved strength and stiffness compared to the gels built from either HAT or TGC while showing sufficient elasticity, which contributes to stimulating the migration of fibroblasts. The sustainable release of silicon and copper ions from the gels was found to jointly induce the migration of human umbilical vein endothelial cells. The results based on mouse full-thickness skin defects demonstrated that they were able to fully restore the skin defects with formation of complete appendages within two weeks, suggesting their promising potency for use in expediting wound healing.
Collapse
Affiliation(s)
- Yifeng Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital, Wuhan University, Wuhan, 430071, PR China
| | - Congcong Wang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Qiaoqin Fu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Ying Wan
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
| | - Aixi Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital, Wuhan University, Wuhan, 430071, PR China.
| |
Collapse
|
37
|
Zhu J, Xu H, Hu Q, Yang Y, Ni S, Peng F, Jin X. High stretchable and tough xylan-g-gelatin hydrogel via the synergy of chemical cross-linking and salting out for strain sensors. Int J Biol Macromol 2024; 261:129759. [PMID: 38281523 DOI: 10.1016/j.ijbiomac.2024.129759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/03/2024] [Accepted: 01/24/2024] [Indexed: 01/30/2024]
Abstract
Stretchable and tough hydrogels have been extensively used in tissue engineering scaffolds and flexible electronics. However, it is still a significant challenge to prepare hydrogels with both tensile strength and toughness by utilizing xylan, which is abundant in nature. Herein, we present a novel hydrogel of carboxymethyl xylan(CMX) graft gelatin (G) and doped with conductive hydroxyl carbon nanotubes (OCNT). CMX and G are combined through amide bonding as well as intermolecular hydrogen bonding to form a semi-interpenetrating hydrogel network. The hydrogel was further subjected to salting-out treatment, which induced the aggregation of the CMX-g-G molecular chain and the formation of chain bundles to toughen the hydrogel, the tensile strain, tensile stress, and toughness of CMX-g-G hydrogels were 1.547 MPa, 324 %, and 2.31 MJ m-3, respectively. In addition, OCNT was used as a conductive filler to impart electrical conductivity and further improve the mechanical properties of CMX-g-G/OCNT hydrogel, and a tensile strength of 1.62 MPa was obtained. Thus, the synthesized CMX-g-G/OCNT hydrogel can be used as a reliable and sensitive strain sensor for monitoring human activity. This study opens up new horizons for the preparation of xylan-based high-performance hydrogels.
Collapse
Affiliation(s)
- Jingqiao Zhu
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Hanping Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Qiangli Hu
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Yujia Yang
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Siyang Ni
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Feng Peng
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Xiaojuan Jin
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
38
|
Xu Z, Chen Y, Cao Y, Xue B. Tough Hydrogels with Different Toughening Mechanisms and Applications. Int J Mol Sci 2024; 25:2675. [PMID: 38473922 DOI: 10.3390/ijms25052675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/20/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Load-bearing biological tissues, such as cartilage and muscles, exhibit several crucial properties, including high elasticity, strength, and recoverability. These characteristics enable these tissues to endure significant mechanical stresses and swiftly recover after deformation, contributing to their exceptional durability and functionality. In contrast, while hydrogels are highly biocompatible and hold promise as synthetic biomaterials, their inherent network structure often limits their ability to simultaneously possess a diverse range of superior mechanical properties. As a result, the applications of hydrogels are significantly constrained. This article delves into the design mechanisms and mechanical properties of various tough hydrogels and investigates their applications in tissue engineering, flexible electronics, and other fields. The objective is to provide insights into the fabrication and application of hydrogels with combined high strength, stretchability, toughness, and fast recovery as well as their future development directions and challenges.
Collapse
Affiliation(s)
- Zhengyu Xu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Yanru Chen
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250000, China
| | - Bin Xue
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250000, China
| |
Collapse
|
39
|
He S, Liu Z, Wu X, Liu J, Fang H, Shao W. Novel flexible hydrogels based on carboxymethyl guar gum and polyacrylic acid for ultra-highly sensitive and reliable strain and pressure sensors. Carbohydr Polym 2024; 324:121515. [PMID: 37985099 DOI: 10.1016/j.carbpol.2023.121515] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 11/22/2023]
Abstract
To realize on stable and real-time monitoring of human activities, novel hydrogels using polyacrylic acid (PAA) and carboxymethyl guar gum (CMGG) were fabricated as wearable and flexible strain or pressure sensors in the presence of lignosulfonate (LS) and Al3+. Based on the co-existence of metal coordination bonds, hydrogen bonds and ionic interaction in this system, the obtained hydrogels exhibited desirable mechanical properties with good self-recovery ability. The hydrogels displayed good self-adhesion behavior and an ultra-high tensile sensitivity (gauge factor (GF) = 24.30), therefore, they could precisely detect human joints movements such as elbow, wrist, and finger bending as well as tiny movements and external stimuli such as swallowing, smile, frown, pulse, speaking, writing, and even the falling of different liquid drops. Additionally, the hydrogels showed excellent self-healing ability with the healing efficiency as high as 100 % after 30 h. Most importantly, the healed hydrogel could perform the same sensing performance as before. Based on these distinguished characteristics, this hydrogel represents great potentials in wearable and flexible sensors for long-term and stable health monitoring application.
Collapse
Affiliation(s)
- Shu He
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zeng Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xing Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jia Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Hongli Fang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Shao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
40
|
Wei H, Chen C, Yang D. Applications of inverse opal photonic crystal hydrogels in the preparation of acid-base color-changing materials. RSC Adv 2024; 14:2243-2263. [PMID: 38213963 PMCID: PMC10777361 DOI: 10.1039/d3ra07465j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024] Open
Abstract
Hydrogels are three-dimensional (3D) crosslinked network hydrophilic polymers that have structures similar to that of biological protein tissue and can quickly absorb a large amount of water. Opal photonic crystals (OPCs) are a kind of photonic band gap material formed by the periodic arrangement of 3D media, and inverse opal photonic crystals (IOPCs) are their inverse structure. Inverse opal photonic crystal hydrogels (IOPCHs) can produce corresponding visual color responses to a change in acid or alkali in an external humid environment, which has wide applications in chemical sensing, anti-counterfeiting, medical detection, intelligent display, and other fields, and the field has developed rapidly in recent years. In this paper, the research progress on fast acid-base response IOPCHs (pH-IOPCHs) is comprehensively described from the perspective of material synthesis. The technical bottleneck of enhancing the performance of acid-base-responsive IOPCHs and the current practical application limitations are summarized, and the development prospects of acid-base-responsive IOPCHs are described. These comprehensive analyses are expected to provide new ideas for solving problems in the preparation and application of pH-IOPCHs.
Collapse
Affiliation(s)
- Hu Wei
- Research Institute for National Defense Engineering of Academy of Military Science, PLA Luoyang 471023 China +086-18761686837
- Henan Key Laboratory of Special Protective Materials Luoyang 471023 China
| | - Changbing Chen
- Research Institute for National Defense Engineering of Academy of Military Science, PLA Luoyang 471023 China +086-18761686837
- Henan Key Laboratory of Special Protective Materials Luoyang 471023 China
| | - Dafeng Yang
- Research Institute for National Defense Engineering of Academy of Military Science, PLA Luoyang 471023 China +086-18761686837
- Henan Key Laboratory of Special Protective Materials Luoyang 471023 China
| |
Collapse
|
41
|
Xiang S, Guilbaud-Chéreau C, Hoschtettler P, Stefan L, Bianco A, Ménard-Moyon C. Preparation and optimization of agarose or polyacrylamide/amino acid-based double network hydrogels for photocontrolled drug release. Int J Biol Macromol 2024; 255:127919. [PMID: 37944737 DOI: 10.1016/j.ijbiomac.2023.127919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/30/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
The high water content and biocompatibility of amino-acid-based supramolecular hydrogels have generated growing interest in drug delivery research. Nevertheless, the existing dominant approach of constructing such hydrogels, the exploitation of a single amino acid type, typically comes with several drawbacks such as weak mechanical properties and long gelation times, hindering their applications. Here, we design a near-infrared (NIR) light-responsive double network (DN) structure, containing amino acids and different synthetic or natural polymers, i.e., polyacrylamide, poly(N-isopropylacrylamide), agarose, or low-gelling agarose. The hydrogels displayed high mechanical strength and high drug-loading capacity. Adjusting the ratio of Fmoc-Tyr-OH/Fmoc-Tyr(Bzl)-OH or Fmoc-Phe-OH/Fmoc-Tyr(Bzl)-OH, we could drastically shorten the gelation time of the DN hydrogels at room and body temperatures. Moreover, introducing photothermal agents (graphene oxide, carbon nanotubes, molybdenum disulfide nanosheets, or indocyanine green), we equipped the hydrogels with NIR responsivity. We demonstrated the light-triggered release of the drug baclofen, which is used in severe spasticity treatment. Rheology and stability tests confirmed the positive impact of the polymers on the mechanical strength of the hydrogels, while maintaining good stability under physiological conditions. Overall, our study contributed a novel hydrogel formulation with high mechanical resistance, rapid gel formation, and efficient NIR-controlled drug release, offering new opportunities for biomedical applications.
Collapse
Affiliation(s)
- Shunyu Xiang
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, 67000 Strasbourg, France
| | - Chloé Guilbaud-Chéreau
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, 67000 Strasbourg, France
| | | | - Loïc Stefan
- Université de Lorraine, CNRS, LCPM, 54000 Nancy, France
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, 67000 Strasbourg, France.
| | - Cécilia Ménard-Moyon
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, 67000 Strasbourg, France.
| |
Collapse
|
42
|
Yao H, Fu Q, Zhang Y, Wan Y, Min Q. Strong, elastic and degradation-tolerated hydrogels composed of chitosan, silk fibroin and bioglass nanoparticles with factor-bestowed activity for bone tissue engineering. Int J Biol Macromol 2023; 253:126619. [PMID: 37657578 DOI: 10.1016/j.ijbiomac.2023.126619] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/06/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023]
Abstract
Polymer hydrogels intended for use in bone repair need to be strong, elastic, and capable of enduring degradation. However, many natural polymer hydrogels lack these essential properties and thus, are unsuitable for bone repair applications. Here, a new type of multi-network hydrogel with improved mechanical and degradation-resistant properties has been developed for use in bone repair. The hydrogel is composed of thiolated chitosan (TCH), silk fibroin (SF), and thiolated bioglass (TBG) nanoparticles (NPs). The multi-networks are built through sulfhydryl self-crosslinking, diepoxide crosslinker-involved linkages of amino or hydroxyl groups, and enzyme-mediated phenol hydroxyl crosslinking. Additionally, mesoporous TBG NPs serve as a vehicle for loading stromal cell-derived factor-1 (SDF-1) to provide the gel with cell-recruiting activity. The formulated TCH/SF/TBG hydrogels exhibit remarkably enhanced strength, elasticity, and improved degradation tolerance compared to some gels made from only TCH or SF. Furthermore, TCH/SF/TBG gels can support the growth of seeded cells and the deposition of matrix components. Some TCH/SF/TBG gels also demonstrate the ability to release SDF-1 in an approximately linear manner for a few weeks while retaining the chemotactic properties of the released SDF-1. Overall, the multi-network hydrogel has the potential as an in situ forming material for cell-recruiting bone repair and regeneration.
Collapse
Affiliation(s)
- Hui Yao
- School of Pharmacy, Hubei University of Science and Technology, Xianning 437100, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Xianning 437100, PR China
| | - Qiaoqin Fu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yuchen Zhang
- School of Pharmacy, Hubei University of Science and Technology, Xianning 437100, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Xianning 437100, PR China
| | - Ying Wan
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Qing Min
- School of Pharmacy, Hubei University of Science and Technology, Xianning 437100, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Xianning 437100, PR China.
| |
Collapse
|
43
|
Shams Es-haghi S, Weiss RA. Fabrication of Tough Double-Network Hydrogels from Highly Cross-Linked Brittle Neutral Networks Using Alkaline Hydrolysis. Gels 2023; 10:29. [PMID: 38247751 PMCID: PMC10815074 DOI: 10.3390/gels10010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
This paper describes a simple method to synthesize tough hydrogels from a highly cross-linked neutral network. It was found that applying alkaline hydrolysis to a highly cross-linked hydrogel synthesized from acrylamide (AAm) can increase its swelling ratio dramatically. Double-network (DN) hydrogels synthesized from polymerization of loosely cross-linked AAm networks inside a highly cross-linked AAm gel were not tough. However, repeating the same recipes with a second polymerization step to synthesize a DN hydrogel from a hydrolyzed highly cross-linked AAm gel resulted in tough hydrogels. Those gels exhibited finite tensile behavior similar to that of conventional DN hydrogels. Moreover, craze-like patterns were observed during tensile loading of a DN hydrogel synthesized from a hydrolyzed highly cross-linked first network and a loosely cross-linked second network. The patterns remained in the gel even after strain hardening at high stretch ratios. The craze-like pattern formation was suppressed by increasing the concentration of cross-linking monomer in the second polymerization step. Crack propagation in DN hydrogels synthesized using hydrolysis was also studied by applying a tensile load on notched specimens.
Collapse
Affiliation(s)
- S. Shams Es-haghi
- Advanced Structures and Composites Center, The University of Maine, 35 Flagstaff Road, Orono, ME 04469-5793, USA
- Department of Chemical and Biomedical Engineering, The University of Maine, 5737 Jenness Hall, Orono, ME 04469-5737, USA
- Department of Mechanical Engineering, The University of Maine, 75 Long Road, Orono, ME 04469-5744, USA
| | - R. A. Weiss
- Department of Chemical and Biomolecular Engineering, University of Connecticut, 25 King Hill Rd Unit 3136, Storrs, CT 06268-1702, USA
| |
Collapse
|
44
|
Choi SG, Kang SH, Lee JY, Park JH, Kang SK. Recent advances in wearable iontronic sensors for healthcare applications. Front Bioeng Biotechnol 2023; 11:1335188. [PMID: 38162187 PMCID: PMC10757853 DOI: 10.3389/fbioe.2023.1335188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
Iontronic sensors have garnered significant attention as wearable sensors due to their exceptional mechanical performance and the ability to maintain electrical performance under various mechanical stimuli. Iontronic sensors can respond to stimuli like mechanical stimuli, humidity, and temperature, which has led to exploration of their potential as versatile sensors. Here, a comprehensive review of the recent researches and developments on several types of iontronic sensors (e.g., pressure, strain, humidity, temperature, and multi-modal sensors), in terms of their sensing principles, constituent materials, and their healthcare-related applications is provided. The strategies for improving the sensing performance and environmental stability of iontronic sensors through various innovative ionic materials and structural designs are reviewed. This review also provides the healthcare applications of iontronic sensors that have gained increased feasibility and broader applicability due to the improved sensing performance. Lastly, outlook section discusses the current challenges and the future direction in terms of the applicability of the iontronic sensors to the healthcare.
Collapse
Affiliation(s)
- Sung-Geun Choi
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Se-Hun Kang
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Ju-Yong Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Joo-Hyeon Park
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Seung-Kyun Kang
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
- Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul, Republic of Korea
- Nano Systems Institute SOFT Foundry, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
45
|
Sinad KVG, Ebubechukwu RC, Chu CK. Recent advances in double network hydrogels based on naturally-derived polymers: synthesis, properties, and biological applications. J Mater Chem B 2023; 11:11460-11482. [PMID: 38047404 DOI: 10.1039/d3tb00773a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Hydrogels composed of naturally-derived biopolymers have garnered significant research interest due to the bioavailability and biocompatibility of starting materials. However, translating these advantages to practical use is challenged by limitations of mechanical properties and stability of the resulting materials. The development of double network (DN) hydrogels has led to greatly enhanced mechanical properties and shows promise toward broadening the applications of conventional synthetic or natural hydrogels. This review highlights recently developed protein-based and polysaccharide-based DN hydrogels. For each biopolymer, we focus on a subset of DN hydrogels centered around a theme related to synthetic design or applications. Network structures and crosslinking mechanisms that endow enhanced mechanical properties and performance to the materials are discussed. Important applications, including tissue engineering, drug delivery, bioadhesives, wound healing, and wearable sensors, that arise from the inherent properties of the natural polymer or its combination with other materials are also emphasized. Finally, we discuss ongoing challenges to stimulate the discovery of new design principles for the future of DN hydrogels based on naturally-derived polymers for biological applications.
Collapse
Affiliation(s)
| | - Ruth C Ebubechukwu
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania, USA.
| | - Crystal K Chu
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania, USA.
| |
Collapse
|
46
|
Wang P, Liao Q, Zhang H. Polysaccharide-Based Double-Network Hydrogels: Polysaccharide Effect, Strengthening Mechanisms, and Applications. Biomacromolecules 2023; 24:5479-5510. [PMID: 37718493 DOI: 10.1021/acs.biomac.3c00765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Polysaccharides are carbohydrate polymers that are major components of plants, animals, and microorganisms, with unique properties. Biological hydrogels are polymeric networks that imbibe and retain large amounts of water and are the major components of living organisms. The mechanical properties of hydrogels are critical for their functionality and applications. Since synthetic polymeric double-network (DN) hydrogels possess unique network structures with high and tunable mechanical properties, many natural functional polysaccharides have attracted increased attention due to their rich and convenient sources, unique chemical structure and chain conformation, inherently desirable cytocompatibility, biodegradability and environmental friendliness, diverse bioactivities, and rheological properties, which rationally make them prominent constituents in designing various strong and tough polysaccharide-based DN hydrogels over the past ten years. This review focuses on the latest developments of polysaccharide-based DN hydrogels to comprehend the relationship among the polysaccharide properties, inner strengthening mechanisms, and applications. The aim of this review is to provide an insightful mechanical interpretation of the design strategy of novel polysaccharide-based DN hydrogels and their applications by introducing the correlation between performance and composition. The mechanical behavior of DN hydrogels and the roles of varieties of marine, microbial, plant, and animal polysaccharides are emphatically explained.
Collapse
Affiliation(s)
- Pengguang Wang
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qingyu Liao
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongbin Zhang
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
47
|
Browne D, Briggs F, Asuri P. Role of Polymer Concentration on the Release Rates of Proteins from Single- and Double-Network Hydrogels. Int J Mol Sci 2023; 24:16970. [PMID: 38069293 PMCID: PMC10707672 DOI: 10.3390/ijms242316970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Controlled delivery of proteins has immense potential for the treatment of various human diseases, but effective strategies for their delivery are required before this potential can be fully realized. Recent research has identified hydrogels as a promising option for the controlled delivery of therapeutic proteins, owing to their ability to respond to diverse chemical and biological stimuli, as well as their customizable properties that allow for desired delivery rates. This study utilized alginate and chitosan as model polymers to investigate the effects of hydrogel properties on protein release rates. The results demonstrated that polymer properties, concentration, and crosslinking density, as well as their responses to pH, can be tailored to regulate protein release rates. The study also revealed that hydrogels may be combined to create double-network hydrogels to provide an additional metric to control protein release rates. Furthermore, the hydrogel scaffolds were also found to preserve the long-term function and structure of encapsulated proteins before their release from the hydrogels. In conclusion, this research demonstrates the significance of integrating porosity and response to stimuli as orthogonal control parameters when designing hydrogel-based scaffolds for therapeutic protein release.
Collapse
Affiliation(s)
| | | | - Prashanth Asuri
- Department of Bioengineering, Santa Clara University, Santa Clara, CA 95053, USA; (D.B.); (F.B.)
| |
Collapse
|
48
|
Zheng Y, Baidya A, Annabi N. Molecular design of an ultra-strong tissue adhesive hydrogel with tunable multifunctionality. Bioact Mater 2023; 29:214-229. [PMID: 37520304 PMCID: PMC10372327 DOI: 10.1016/j.bioactmat.2023.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 05/15/2023] [Accepted: 06/08/2023] [Indexed: 08/01/2023] Open
Abstract
Designing adhesive hydrogels with optimal properties for the treatment of injured tissues is challenging due to the tradeoff between material stiffness and toughness while maintaining adherence to wet tissue surfaces. In most cases, bioadhesives with improved mechanical strength often lack an appropriate elastic compliance, hindering their application for sealing soft, elastic, and dynamic tissues. Here, we present a novel strategy for engineering tissue adhesives in which molecular building blocks are manipulated to allow for precise control and optimization of the various aforementioned properties without any tradeoffs. To introduce tunable mechanical properties and robust tissue adhesion, the hydrogel network presents different modes of covalent and noncovalent interactions using N-hydroxysuccinimide ester (NHS) conjugated alginate (Alg-NHS), poly (ethylene glycol) diacrylate (PEGDA), tannic acid (TA), and Fe3+ ions. Through combining and tuning different molecular interactions and a variety of crosslinking mechanisms, we were able to design an extremely elastic (924%) and tough (4697 kJ/m3) multifunctional hydrogel that could quickly adhere to wet tissue surfaces within 5 s of gentle pressing and deform to support physiological tissue function over time under wet conditions. While Alg-NHS provides covalent bonding with the tissue surfaces, the catechol moieties of TA molecules synergistically adopt a mussel-inspired adhesive mechanism to establish robust adherence to the wet tissue. The strong adhesion of the engineered bioadhesive patch is showcased by its application to rabbit conjunctiva and porcine cornea. Meanwhile, the engineered bioadhesive demonstrated painless detachable characteristics and in vitro biocompatibility. Additionally, due to the molecular interactions between TA and Fe3+, antioxidant and antibacterial properties required to support the wound healing pathways were also highlighted. Overall, by tuning various molecular interactions, we were able to develop a single-hydrogel platform with an "all-in-one" multifunctionality that can address current challenges of engineering hydrogel-based bioadhesives for tissue repair and sealing.
Collapse
Affiliation(s)
- Yuting Zheng
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, United States
| | - Avijit Baidya
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, United States
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, United States
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, United States
| |
Collapse
|
49
|
Liu Y, Zhang J, Zhang Y, Yoon HY, Jia X, Roman M, Johnson BN. Accelerated Engineering of Optimized Functional Composite Hydrogels via High-Throughput Experimentation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37905949 DOI: 10.1021/acsami.3c11483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The Materials Genome Initiative (MGI) seeks to accelerate the discovery and engineering of advanced materials via high-throughput experimentation (HTE), which is a challenging task, given the common trade-off between design for optimal processability vs performance. Here, we report a HTE method based on automated formulation, synthesis, and multiproperty characterization of bulk soft materials in well plate formats that enables accelerated engineering of functional composite hydrogels with optimized properties for processability and performance. The method facilitates rapid high-throughput screening of hydrogel composition-property relations for multiple properties in well plate formats. The feasibility and utility of the method were demonstrated by application to several functional composite hydrogel systems, including alginate/poly(N-isopropylacrylamide) (PNIPAM) and poly(ethylene glycol) dimethacrylate (PEGDMA)/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) hydrogels. The HTE method was leveraged to identify formulations of conductive PEGDMA/PEDOT:PSS composite hydrogels for optimized performance and processability in three-dimensional (3D) printing. This work provides an advance in experimental methods based on automated dispensing, mixing, and sensing for the accelerated engineering of soft functional materials.
Collapse
Affiliation(s)
- Yang Liu
- Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Junru Zhang
- Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Yujing Zhang
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Hu Young Yoon
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Xiaoting Jia
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Maren Roman
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Blake N Johnson
- Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
50
|
Kaur K, Murphy CM. Advances in the Development of Nano-Engineered Mechanically Robust Hydrogels for Minimally Invasive Treatment of Bone Defects. Gels 2023; 9:809. [PMID: 37888382 PMCID: PMC10606921 DOI: 10.3390/gels9100809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023] Open
Abstract
Injectable hydrogels were discovered as attractive materials for bone tissue engineering applications given their outstanding biocompatibility, high water content, and versatile fabrication platforms into materials with different physiochemical properties. However, traditional hydrogels suffer from weak mechanical strength, limiting their use in heavy load-bearing areas. Thus, the fabrication of mechanically robust injectable hydrogels that are suitable for load-bearing environments is of great interest. Successful material design for bone tissue engineering requires an understanding of the composition and structure of the material chosen, as well as the appropriate selection of biomimetic natural or synthetic materials. This review focuses on recent advancements in materials-design considerations and approaches to prepare mechanically robust injectable hydrogels for bone tissue engineering applications. We outline the materials-design approaches through a selection of materials and fabrication methods. Finally, we discuss unmet needs and current challenges in the development of ideal materials for bone tissue regeneration and highlight emerging strategies in the field.
Collapse
Affiliation(s)
- Kulwinder Kaur
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland;
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Ciara M. Murphy
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland;
- Advanced Materials and Bioengineering Research (AMBER) Centre, Trinity College Dublin (TCD), D02 PN40 Dublin, Ireland
- Trinity Centre for Bioengineering, Trinity College Dublin (TCD), D02 PN40 Dublin, Ireland
| |
Collapse
|