1
|
Ye C, Yan C, Bian SJ, Li XR, Li Y, Wang KX, Zhu YH, Wang L, Wang YC, Wang YY, Li TS, Qi SH, Luo L. Momordica charantia L.-derived exosome-like nanovesicles stabilize p62 expression to ameliorate doxorubicin cardiotoxicity. J Nanobiotechnology 2024; 22:464. [PMID: 39095755 PMCID: PMC11297753 DOI: 10.1186/s12951-024-02705-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Doxorubicin (DOX) is a first-line chemotherapeutic drug for various malignancies that causes cardiotoxicity. Plant-derived exosome-like nanovesicles (P-ELNs) are growing as novel therapeutic agents. Here, we investigated the protective effects in DOX cardiotoxicity of ELNs from Momordica charantia L. (MC-ELNs), a medicinal plant with antioxidant activity. RESULTS We isolated MC-ELNs using ultracentrifugation and characterized them with canonical mammalian extracellular vesicles features. In vivo studies proved that MC-ELNs ameliorated DOX cardiotoxicity with enhanced cardiac function and myocardial structure. In vitro assays revealed that MC-ELNs promoted cell survival, diminished reactive oxygen species, and protected mitochondrial integrity in DOX-treated H9c2 cells. We found that DOX treatment decreased the protein level of p62 through ubiquitin-dependent degradation pathway in H9c2 and NRVM cells. However, MC-ELNs suppressed DOX-induced p62 ubiquitination degradation, and the recovered p62 bound with Keap1 promoting Nrf2 nuclear translocation and the expressions of downstream gene HO-1. Furthermore, both the knockdown of Nrf2 and the inhibition of p62-Keap1 interaction abrogated the cardioprotective effect of MC-ELNs. CONCLUSIONS Our findings demonstrated the therapeutic beneficials of MC-ELNs via increasing p62 protein stability, shedding light on preventive approaches for DOX cardiotoxicity.
Collapse
Affiliation(s)
- Cong Ye
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou city, Jiangsu Province, 221004, PR China
| | - Chen Yan
- Department of Rheumatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang city, Jiangxi Province, PR China
| | - Si-Jia Bian
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou city, Jiangsu Province, 221004, PR China
| | - Xin-Ran Li
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou city, Jiangsu Province, 221004, PR China
| | - Yu Li
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang city, Jiangxi Province, PR China
| | - Kai-Xuan Wang
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou city, Jiangsu Province, PR China
| | - Yu-Hua Zhu
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou city, Jiangsu Province, 221004, PR China
| | - Liang Wang
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou city, Jiangsu Province, 221004, PR China
| | - Ying-Chao Wang
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou city, Jiangsu Province, 221004, PR China
| | - Yi-Yuan Wang
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou city, Jiangsu Province, 221004, PR China
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Su-Hua Qi
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou city, Jiangsu Province, 221004, PR China.
| | - Lan Luo
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou city, Jiangsu Province, 221004, PR China.
| |
Collapse
|
2
|
Huang HT, Lo IW, Lin YC, Geng-You L, Lin YS, Zhang LJ, Li TL, Liaw CC, Kuo YH. Kaguacidine A: a novel spirohydantoin-containing cucurbitane glycoside from vines of Momordica charantia L. Nat Prod Res 2024; 38:2179-2186. [PMID: 36606546 DOI: 10.1080/14786419.2022.2164278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023]
Abstract
The spirohydantoin-containing cucurbitane-type triterpenoid, kaguacidine A (1), was isolated and purified from 95% ethanol extract of vines of Momordica charantia L. (Cucurbitaceae). Its unprecedented chemical structure, a spirohydantoin substituent at C-23 of cucurbitane, was elucidated by extensive spectroscopic analyses, including HRESIMS, IR, optical rotation, 1 D- and 2 D-NMR spectra. The possible biosynthetic pathway is deduced and may be attributed to the metabolic activity of microbial symbionts in M. charantia L. Compound 1 was evaluated for anti-inflammatory activity against LPS-induced NO production in RAW 264.7 cells and anti-proliferative activity against four cancer cell lines, including HEp-2, MCF-7, Hep-G2, and WiDr. Compound 1 showed moderate anti-inflammatory activity with an IC50 value of 18.5 ± 0.4 μg/mL and weak anti-proliferative activity against MCF-7, HEp-2, Hep-G2, and WiDr with IC50 values of >40, 33.8 ± 0.6, 31.0 ± 0.7, and 27.0 ± 0.7 μM, respectively.
Collapse
Affiliation(s)
- Hung-Tse Huang
- Division of Chinese Materia Medica Development, National Research Institute of Chinese Medicine, Taipei, Taiwan
| | - I-Wen Lo
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Chi Lin
- Division of Chinese Materia Medica Development, National Research Institute of Chinese Medicine, Taipei, Taiwan
| | - Liao Geng-You
- School of Medicine, Institute of Physiology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yun-Sheng Lin
- Department of Biological Science and Technology, Meiho University, Pingtung, Taiwan
| | - Li-Jie Zhang
- Division of Chinese Materia Medica Development, National Research Institute of Chinese Medicine, Taipei, Taiwan
| | - Tsung-Lin Li
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chia-Ching Liaw
- Division of Chinese Materia Medica Development, National Research Institute of Chinese Medicine, Taipei, Taiwan
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Yao-Haur Kuo
- Division of Chinese Materia Medica Development, National Research Institute of Chinese Medicine, Taipei, Taiwan
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
3
|
Zhang X, Zhao Y, Song Y, Miao M. Effects of Momordica charantia L. supplementation on glycemic control and lipid profile in type 2 diabetes mellitus patients: A systematic review and meta-analysis of randomized controlled trials. Heliyon 2024; 10:e31126. [PMID: 38784554 PMCID: PMC11112315 DOI: 10.1016/j.heliyon.2024.e31126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/08/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Background and aims Momordica charantia L. (M. charantia) has been traditionally utilized as a medicinal intervention for managing type 2 diabetes mellitus (T2DM). The current study was designed to offer a GRADE-assessed systematic review and meta-analysis of randomized controlled trials (RCTs) examining the impact of M. Charantia intake on glycemic indexes and the lipid profile of patients with T2DM. Methods A comprehensive search was conducted across several databases, including PubMed, EMBASE, Web of Science, and Cochrane Library, from the inception of each database until April 22, 2023. The Hartung-Knapp adjustment was applied to ensure conservative summary estimates with broad confidence intervals. Results A total of eight trials involving 423 patients with T2DM were included in this study. Compared to the control group, the intake of M. charantia supplementation resulted in significant reductions in fasting blood glucose (FBG) (WMD: -0.85 mmol/L; 95%CI: -1.44, -0.26; p = 0.005; I2 = 73.4 %), postprandial glucose (PPG) (WMD: -2.28 mmol/L; 95%CI: -3.35, -1.21; p = 0.000; I2 = 66.9 %), glycosylated hemoglobin A1c (HbA1c) (WMD: -0.38 %; 95%CI: -0.53, -0.23; p = 0.000; I2 = 37.6 %), and total cholesterol (TC) (WMD: -0.38 mmol/L; 95%CI: -0.70, -0.07; p = 0.017; I2 = 63.6 %). These results remained statistically significant even after applying the Hartung-Knapp adjustment. However, no significant differences were observed in terms of triglyceride (TG), high-density lipoprotein (HDL), and low-density lipoprotein (LDL). Conclusions The findings of this study suggest that M. charantia could serve as a potential alternative for individuals with T2DM, particularly those with elevated total cholesterol levels. However, further high-quality studies are necessary to validate these results.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yinan Zhao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yagang Song
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Mingsan Miao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| |
Collapse
|
4
|
Laczkó-Zöld E, Csupor-Löffler B, Kolcsár EB, Ferenci T, Nan M, Tóth B, Csupor D. The metabolic effect of Momordica charantia cannot be determined based on the available clinical evidence: a systematic review and meta-analysis of randomized clinical trials. Front Nutr 2024; 10:1200801. [PMID: 38274207 PMCID: PMC10808600 DOI: 10.3389/fnut.2023.1200801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
Several studies have shown that Momordica charantia L. (Cucurbitaceae, bitter melon) has beneficial effects on metabolic syndrome (MetS) parameters and exerts antidiabetic, anti-hyperlipidemic, and anti-obesity activities. Since the findings of these studies are contradictory, the goal of this systematic review and meta-analysis was to assess the efficacy of bitter melon in the treatment of metabolic syndrome, with special emphasis on the anti-diabetic effect. Embase, Cochrane, PubMed, and Web of Science databases were searched for randomized controlled human trials (RCTs). The meta-analysis was reported according to the PRISMA statement. The primary outcomes of the review are body weight, BMI, fasting blood glucose, glycated hemoglobin A1c, systolic blood pressure, diastolic blood pressure, serum triglyceride, HDL, LDL, and total cholesterol levels. Nine studies were included in the meta-analysis with 414 patients in total and 4-16 weeks of follow-up. In case of the meta-analysis of change scores, no significant effect could be observed for bitter melon treatment over placebo on fasting blood glucose level (MD = -0.03; 95% CI: -0.38 to 0.31; I2 = 34%), HbA1c level (MD = -0.12; 95% CI: -0.35 to 0.11; I2 = 56%), HDL (MD = -0.04; 95% CI: -0.17 to 0.09; I2 = 66%), LDL (MD = -0.10; 95% CI: -0.28 to 0.08; I2 = 37%), total cholesterol (MD = -0.04; 95% CI: -0.17 to 0.09; I2 = 66%,), body weight (MD = -1.00; 95% CI: -2.59-0.59; I2 = 97%), BMI (MD = -0.42; 95% CI: -0.99-0.14; I2 = 95%), systolic blood pressure (MD = 1.01; 95% CI: -1.07-3.09; I2 = 0%) and diastolic blood pressure levels (MD = 0.24; 95% CI: -1.04-1.53; I2 = 0%). Momordica treatment was not associated with a notable change in ALT, AST, and creatinine levels compared to the placebo, which supports the safety of this plant. However, the power was overall low and the meta-analyzed studies were also too short to reliably detect long-term metabolic effects. This highlights the need for additional research into this plant in carefully planned clinical trials of longer duration.
Collapse
Affiliation(s)
- Eszter Laczkó-Zöld
- Department of Pharmacognosy and Phytotherapy, "George Emil Palade" University of Medicine, Pharmacy, Sciences, and Technology of Târgu Mureş, Târgu Mureş, Romania
| | - Boglárka Csupor-Löffler
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary
| | - Edina-Blanka Kolcsár
- Department of Pharmacognosy and Phytotherapy, "George Emil Palade" University of Medicine, Pharmacy, Sciences, and Technology of Târgu Mureş, Târgu Mureş, Romania
| | - Tamás Ferenci
- Physiological Controls Research Center, Óbuda University, Budapest, Hungary
- Department of Statistics, Corvinus University of Budapest, Budapest, Hungary
| | - Monica Nan
- Pharmacy Department, Encompass Health Rehabilitation Hospital of Round Rock, Round Rock, TX, United States
| | - Barbara Tóth
- Institute of Clinical Pharmacy, University of Szeged, Szeged, Hungary
| | - Dezső Csupor
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary
- Institute of Clinical Pharmacy, University of Szeged, Szeged, Hungary
- Institute of Pharmacognosy, University of Szeged, Szeged, Hungary
| |
Collapse
|
5
|
Huang WH, Su WM, Wang CW, Fang YH, Jian YW, Hsu HJ, Peng CW. Momordica anti-HIV protein MAP30 abrogates the Epstein-Barr virus nuclear antigen 1 dependent functions in host cells. Heliyon 2023; 9:e21486. [PMID: 38027600 PMCID: PMC10660024 DOI: 10.1016/j.heliyon.2023.e21486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/07/2023] [Accepted: 10/22/2023] [Indexed: 12/01/2023] Open
Abstract
Originally extracted from Momordica charantia seeds, the antiviral and anti-tumor activities of Momordica anti-HIV protein MAP30 have become well known. Although MAP30 has been reported to possess antiviral activity against several human viruses, the current understanding of the MAP30-mediated antiviral response is mainly derived from the previous research work on anti-HIV herbal medicines; the mechanistic insight of its effects on other viruses remains largely unknown. In this study, we showed that both ectopically expressed and purified recombinant MAP30 (rMAP30) impeded Epstein-Barr virus Nuclear Antigen 1 (EBNA1)-mediated transcription from the viral latent replication origin. Mechanistically, in vivo and in vitro studies revealed that MAP30 caused EBNA1 to dissociate from the cognate binding sites, which disrupted downstream EBNA1-dependent viral epigenome accumulation and cell maintenance of Epstein-Barr virus (EBV)-associated neoplastic cells. Finally, mutational analysis indicated that the N-terminal ricin A homologous domain shared by ricin-like proteins was implicated in the anti-EBV response. Our study provides evidence to support that MAP30 has a unique property to combat EBV latent infection, suggesting a potential to develop this herbal protein to be an alternative medicine for EBV associated diseases.
Collapse
Affiliation(s)
- Wei-Hang Huang
- Department of Clinical Pathology Department of Hematology & Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 97002 Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan
| | - Wen-Min Su
- Department of Life Science, National Dong-Hwa University, Shoufeng, Hualien, 974301 Taiwan
| | - Chung-Wei Wang
- Department of Life Science, National Dong-Hwa University, Shoufeng, Hualien, 974301 Taiwan
| | - Yue-Hao Fang
- Institute of Medical Sciences, Tzu Chi University, Hualien 97004, Taiwan
| | - Yuan-Wei Jian
- Department of Life Sciences, Tzu Chi University, Hualien, 97004 Taiwan
| | - Hao-Jen Hsu
- Department of Life Sciences, Tzu Chi University, Hualien, 97004 Taiwan
| | - Chih-Wen Peng
- Department of Life Science, National Dong-Hwa University, Shoufeng, Hualien, 974301 Taiwan
| |
Collapse
|
6
|
Zhong J, Cui J, Miao M, Hu F, Dong J, Liu J, Zhong C, Cheng J, Hu K. A point mutation in MC06g1112 encoding FLOWERING LOCUS T decreases the first flower node in bitter gourd ( Momordica charantia L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1153208. [PMID: 37881613 PMCID: PMC10595031 DOI: 10.3389/fpls.2023.1153208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023]
Abstract
In Cucurbitaceae crops, the first flower node (FFN) is an important agronomic trait which can impact the onset of maturity, the production of female flowers, and yield. However, the gene responsible for regulating FFN in bitter gourd is unknown. Here, we used a gynoecious line (S156G) with low FFN as the female parent and a monoecious line (K8-201) with high FFN as the male parent to obtain F1 and F2 generations. Genetic analysis indicated that the low FFN trait was incompletely dominant over the high FFN trait. A major quantitative trait locus (QTL)-Mcffn and four minor effect QTLs-Mcffn1.1, Mcffn1.2, Mcffn1.3, and Mcffn1.4 were detected by whole-genome re-sequencing-based QTL mapping in the S156G×K8-201 F2 population (n=234) cultivated in autumn 2019. The Mcffn locus was further supported by molecular marker-based QTL mapping in three S156G×K8-201 F2 populations planted in autumn 2019 (n=234), autumn 2020 (n=192), and spring 2022 (n=205). Then, the Mcffn locus was fine-mapped into a 77.98-kb physical region on pseudochromosome MC06 using a large S156G×K8-201 F2 population (n=2,402). MC06g1112, which is a homolog of FLOWERING LOCUS T (FT), was considered as the most likely Mcffn candidate gene according to both expression and sequence variation analyses between parental lines. A point mutation (C277T) in MC06g1112, which results in a P93S amino acid mutation between parental lines, may be responsible for decreasing FFN in bitter gourd. Our findings provide a helpful resource for the molecular marker-assisted selective breeding of bitter gourd.
Collapse
Affiliation(s)
- Jian Zhong
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), College of Horticulture, South China Agricultural University, Guangzhou, China
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| | - Junjie Cui
- Department of Horticulture, Foshan University, Foshan, China
| | - Mingjun Miao
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| | - Fang Hu
- Henry Fok School of Biology and Agricultural, Shaoguan University, Shaoguan, China
| | - Jichi Dong
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jia Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Chunfeng Zhong
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jiaowen Cheng
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Kailin Hu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
7
|
Zhang Y, Lu P, Jin H, Cui J, Miao C, He L, Yu J, Ding X, Zhang H. Integrated Secondary Metabolomic and Antioxidant Ability Analysis Reveals the Accumulation Patterns of Metabolites in Momordica charantia L. of Different Cultivars. Int J Mol Sci 2023; 24:14495. [PMID: 37833943 PMCID: PMC10572697 DOI: 10.3390/ijms241914495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Bitter gourd (Momordica charantia L.) contains rich bioactive ingredients and secondary metabolites; hence, it has been used as medicine and food product. This study systematically quantified the nutrient contents, the total content of phenolic acids (TPC), flavonoids (TFC), and triterpenoids (TTC) in seven different cultivars of bitter gourd. This study also estimated the organic acid content and antioxidative capacity of different cultivars of bitter gourd. Although the TPC, TFC, TTC, organic acid content, and antioxidative activity differed significantly among different cultivars of bitter gourd, significant correlations were also observed in the obtained data. In the metabolomics analysis, 370 secondary metabolites were identified in seven cultivars of bitter gourd; flavonoids and phenolic acids were significantly more. Differentially accumulated metabolites identified in this study were mainly associated with secondary metabolic pathways, including pathways of flavonoid, flavonol, isoflavonoid, flavone, folate, and phenylpropanoid biosyntheses. A number of metabolites (n = 27) were significantly correlated (positive or negative) with antioxidative capacity (r ≥ 0.7 and p < 0.05). The outcomes suggest that bitter gourd contains a plethora of bioactive compounds; hence, bitter gourd may potentially be applied in developing novel molecules of medicinal importance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiaotao Ding
- Shanghai Key Laboratory of Protected Horticulture Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (Y.Z.); (P.L.); (H.J.); (J.C.); (C.M.); (L.H.); (J.Y.)
| | - Hongmei Zhang
- Shanghai Key Laboratory of Protected Horticulture Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (Y.Z.); (P.L.); (H.J.); (J.C.); (C.M.); (L.H.); (J.Y.)
| |
Collapse
|
8
|
Yedjou CG, Grigsby J, Mbemi A, Nelson D, Mildort B, Latinwo L, Tchounwou PB. The Management of Diabetes Mellitus Using Medicinal Plants and Vitamins. Int J Mol Sci 2023; 24:ijms24109085. [PMID: 37240430 DOI: 10.3390/ijms24109085] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Diabetes mellitus (DM) is a serious chronic metabolic disease that is associated with hyperglycemia and several complications including cardiovascular disease and chronic kidney disease. DM is caused by high levels of blood sugar in the body associated with the disruption of insulin metabolism and homeostasis. Over time, DM can induce life-threatening health problems such as blindness, heart disease, kidney damage, and stroke. Although the cure of DM has improved over the past decades, its morbidity and mortality rates remain high. Hence, new therapeutic strategies are needed to overcome the burden of this disease. One such prevention and treatment strategy that is easily accessible to diabetic patients at low cost is the use of medicinal plants, vitamins, and essential elements. The research objective of this review article is to study DM and explore its treatment modalities based on medicinal plants and vitamins. To achieve our objective, we searched scientific databases of ongoing trials in PubMed Central, Medline databases, and Google Scholar websites. We also searched databases on World Health Organization International Clinical Trials Registry Platform to collect relevant papers. Results of numerous scientific investigations revealed that phytochemicals present in medicinal plants (Allium sativum, Momordica charantia, Hibiscus sabdariffa L., and Zingiber officinale) possess anti-hypoglycemic activities and show promise for the prevention and/or control of DM. Results also revealed that intake of vitamins C, D, E, or their combination improves the health of diabetes patients by reducing blood glucose, inflammation, lipid peroxidation, and blood pressure levels. However, very limited studies have addressed the health benefits of medicinal plants and vitamins as chemo-therapeutic/preventive agents for the management of DM. This review paper aims at addressing this knowledge gap by studying DM and highlighting the biomedical significance of the most potent medicinal plants and vitamins with hypoglycemic properties that show a great potential to prevent and/or treat DM.
Collapse
Affiliation(s)
- Clement G Yedjou
- Department of Biological Sciences, College of Science and Technology, Florida Agricultural and Mechanical University, 1610 S. Martin Luther King Blvd, Tallahassee, FL 32307, USA
| | - Jameka Grigsby
- Department of Biological Sciences, School of Arts and Sciences, Alcorn State University, 1000 ASU Drive, Lorman, MS 39096, USA
| | - Ariane Mbemi
- Department of Biology, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Box 18750, Jackson, MS 39217, USA
| | - Daryllynn Nelson
- Department of Health Administration, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA 30310, USA
| | - Bryan Mildort
- Department of Pharmaceutical Sciences, College of Pharmacy, Howard University, 2400 6th St, NW, Washington, DC 20059, USA
| | - Lekan Latinwo
- Department of Biological Sciences, College of Science and Technology, Florida Agricultural and Mechanical University, 1610 S. Martin Luther King Blvd, Tallahassee, FL 32307, USA
| | - Paul B Tchounwou
- RCMI Center for Urban Health Disparities Research and Innovation, Morgan State University, 1700 E. Cold Spring Lane, Baltimore, MD 21252, USA
| |
Collapse
|
9
|
Zhong J, Cui J, Liu J, Zhong C, Hu F, Dong J, Cheng J, Hu K. Fine-mapping and candidate gene analysis of the Mcgy1 locus responsible for gynoecy in bitter gourd (Momordica spp.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:81. [PMID: 36952023 DOI: 10.1007/s00122-023-04314-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
The Mcgy1 locus responsible for gynoecy was fine-mapped into a 296.94-kb region, in which four single-nucleotide variations and six genes adjacent to them might be associate with sex differentiation in bitter gourd. Gynoecy plays an important role in high-efficiency hybrid seed production, and gynoecious plants are excellent materials for dissecting sex differentiation in Cucurbitaceae crop species, including bitter gourd. However, the gene responsible for gynoecy in bitter gourd is unknown. Here, we first identified a gynoecy locus designated Mcgy1 using the F2 population (n = 291) crossed from the gynoecious line S156G and the monoecious line K8-201 via bulked segregant analysis with whole-genome resequencing (BSA-seq) and molecular marker linkage analysis. Then, a large S156G × K8-201 F2 population (n = 5,656) was used for fine-mapping to delimit the Mcgy1 locus into a 296.94-kb physical region on pseudochromosome MC01, where included 33 annotated genes different from any homologous gynoecy genes previously reported in Cucurbitaceae species. Within this region, four underlying single-nucleotide variations (SNVs) that might cause gynoecy were identified by multiple genomic sequence variation analysis, and their six neighbouring genes were considered as potential candidate genes for Mcgy1. Of these, only MC01g1681 showed a significant differential expression at two-leaf developmental stage between S156G and its monoecious near-isogenic line S156 based on RNA sequencing (RNA-seq) and qRT-PCR analyses. In addition, transcriptome analysis revealed 21 key differentially expressed genes (DEGs) and possible regulatory pathways of the formation of gynoecy in bitter gourd. Our findings provide a new clue for researching on gynoecious plants in Cucurbitaceae species and a theoretical basis for breeding gynoecious bitter gourd lines by the use of molecular markers-assisted selection.
Collapse
Affiliation(s)
- Jian Zhong
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetables Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Junjie Cui
- Department of Horticulture, Foshan University, Foshan, 528225, China
| | - Jia Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetables Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Chunfeng Zhong
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetables Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Fang Hu
- Henry Fok School of Biology and Agricultural, Shaoguan University, Shaoguan, 512023, China
| | - Jichi Dong
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetables Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jiaowen Cheng
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetables Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| | - Kailin Hu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetables Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
10
|
Bora AFM, Kouame KJEP, Li X, Liu L, Pan Y. New insights into the bioactive polysaccharides, proteins, and triterpenoids isolated from bitter melon (Momordica charantia) and their relevance for nutraceutical and food application: A review. Int J Biol Macromol 2023; 231:123173. [PMID: 36642359 DOI: 10.1016/j.ijbiomac.2023.123173] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023]
Abstract
The recent trend in infectious diseases and chronic disorders has dramatically increased consumers' interest in functional foods. As a result, the research of bioactive ingredients with potential for nutraceutical and food application has rapidly become a topic of interest. In this optic, the plant Momordica charantia (M. charantia) has recently attracted the most attention owing to its numerous biological properties including anti-diabetic, anti-obesity, anti-inflammatory, anti-cancers among others. However, the current literature on M. charantia has mainly been concerned with the plant extract while little is known on the specific bioactive compounds responsible for the plant's health benefits. Hence, the present review aims to provide a comprehensive overview of the recent research progress on bioactives isolated from M. charantia, focusing on polysaccharides, proteins, and triterpenoids. Thus, this review provides an up-to-date account of the different extraction methods used to isolate M. charantia bioactives. In addition, the structural features and biological properties are presented. Moreover, this review discusses the current and promising applications of M. charantia bioactives with relevance to the nutraceutical and food industries. The information provided in this review will serve as a theoretical basis and practical support for the formulation of products enriched with M. charantia bioactives.
Collapse
Affiliation(s)
- Awa Fanny Massounga Bora
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Kouadio Jean Eric-Parfait Kouame
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Xiaodong Li
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China.
| | - Lu Liu
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Yue Pan
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| |
Collapse
|
11
|
Courric E, Brinvilier D, Couderc P, Ponce-Mora A, Méril-Mamert V, Sylvestre M, Pelage JH, Vaillant J, Rousteau A, Bejarano E, Cebrian-Torrejon G. Medicinal Plants and Plant-Based Remedies in Grande-Terre: An Ethnopharmacological Approach. PLANTS (BASEL, SWITZERLAND) 2023; 12:654. [PMID: 36771738 PMCID: PMC9919082 DOI: 10.3390/plants12030654] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
The island of Grande-Terre is a French overseas region that belongs to the Guadeloupean archipelago, a biodiversity hotspot with unique flora. Herbal medicine is widely used in the island for therapeutical purposes; however, there is a significant knowledge gap in the records relating to medicinal plants and their associated uses. Ethnobotanical survey methodology using quantitative parameters (informant consensus factor, species use value, relative frequency of citation, frequency use of a treatment and plant for an ailment) provided insights into the traditional medicinal use of a given plant. Ninety-six different plant species distributed among 56 families were identified and 523 remedies were documented in the survey. After data filtering, 22 plants species were associated with 182 remedies. The most frequent plant families were Poaceae, Myrtaceae, Cucurbitaceae and Rubiaceae. Aerial parts of these plants were the most common parts of the plant used for the remedies and the most frequent mode of administration was oral ingestion. This study highlights a valuable traditional knowledge of folklore medicine and helps to document and preserve the association of a plant with-and its use frequency for-a given ailment. These findings might be the starting point for the identification of biologically active phytocompounds to fight common health debilities.
Collapse
Affiliation(s)
- Elisa Courric
- COVACHIM-M2E Laboratory EA 3592, Department of Chemistry, University of the French West Indies, Fouillole Campus, UFR SEN, CEDEX, 97157 Pointe-à-Pitre, France
| | - David Brinvilier
- COVACHIM-M2E Laboratory EA 3592, Department of Chemistry, University of the French West Indies, Fouillole Campus, UFR SEN, CEDEX, 97157 Pointe-à-Pitre, France
| | - Petra Couderc
- COVACHIM-M2E Laboratory EA 3592, Department of Chemistry, University of the French West Indies, Fouillole Campus, UFR SEN, CEDEX, 97157 Pointe-à-Pitre, France
| | - Alejandro Ponce-Mora
- Department of Biomedical Sciences, School of Health Sciences and Veterinary, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Moncada, Spain
| | - Vanessa Méril-Mamert
- COVACHIM-M2E Laboratory EA 3592, Department of Chemistry, University of the French West Indies, Fouillole Campus, UFR SEN, CEDEX, 97157 Pointe-à-Pitre, France
| | - Muriel Sylvestre
- COVACHIM-M2E Laboratory EA 3592, Department of Chemistry, University of the French West Indies, Fouillole Campus, UFR SEN, CEDEX, 97157 Pointe-à-Pitre, France
| | - Jeannie Hélène Pelage
- Départament de Medicine Générale, Faculté Hyacinthe Bastaraud, University of the French West Indies, Fouillole Campus, 97157 Pointe-à-Pitre, France
| | - Jean Vaillant
- LAMIA, EA 4540, Department of Chemistry, University of the French West Indies, Fouillole Campus, UFR SEN, CEDEX, 97157 Pointe-à-Pitre, France
| | - Alain Rousteau
- UA, UMR EcoFoG, CNRS, Cirad, INRA, Université des Antilles, Université de Guyane, Université des Antilles, 97159 Pointe-à-Pitre, France
| | - Eloy Bejarano
- Department of Biomedical Sciences, School of Health Sciences and Veterinary, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Moncada, Spain
| | - Gerardo Cebrian-Torrejon
- COVACHIM-M2E Laboratory EA 3592, Department of Chemistry, University of the French West Indies, Fouillole Campus, UFR SEN, CEDEX, 97157 Pointe-à-Pitre, France
| |
Collapse
|
12
|
Manzoor Q, Shahab MR, Sajid A, Yaseen HM, Alqahtani FO, Malik QM, Nazir A, Arif K, Iqbal M. Eco-benign preparation of biosorbent using Momordica Charantia for the efficient removal of Cr(VI) ions from wastewater. Z PHYS CHEM 2022. [DOI: 10.1515/zpch-2022-0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Abstract
Environmental pollution is the major issue of 21st century. The toxic industrial effluents are crucially damaging aquatic environment, in the form of heavy metals, dyes and acids. The heavy metals are toxic, carcinogenic, non-degradable and therefore must be removed to save natural environment and human health. Batch sorption efficiency of Momordica Charantia L. stem and root (MCS and MCR) was studied for Cr(VI) metal ions removal under controlled adsorption parameters. The adsorbed and residual concentration of Cr(VI) was determined by atomic absorption spectrophotometer (AAS). The adsorbent surface morphology was determined by FTIR, BET, SEM and elemental analysis by EDX. The Freundlich and Langmuir equilibrium isotherm and pseudo 1st and 2nd order kinetic models were studied to understand bio-sorption mechanism. The Freundlich isotherm and pseudo 2nd order kinetic was best fitted model for MCS and MCR bio-sorption process. The maximum Langmuir adsorption capacity (q
max) was 312.50 and 400 (mg/g) for MCS and MCR respectively. The trend of removal efficiency (%) and metal uptake (q
e) was in order as MCS > MCR. All data was statistically analyzed using mean values ± standard deviation (SD). In conclusion, MCS and MCR are suggested as excellent sorbents for the elimination of numerous contaminants from the wastewater.
Collapse
Affiliation(s)
- Qaisar Manzoor
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| | | | - Arfaa Sajid
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| | | | - Fatimah Othman Alqahtani
- Department of Chemistry , College of Science, King Faisal University , P.O. Box 380 , Al-Ahsa , 31982 , Saudi Arabia
| | | | - Arif Nazir
- Department of Chemistry , The University of Lahore , Lahore , Pakistan
| | - Khalid Arif
- Department of Mathematics and Statistics , The University of Lahore , Lahore , Pakistan
| | - Munawar Iqbal
- Department of Chemistry, Division of Science and Technology , University of Education , Lahore , Pakistan
| |
Collapse
|
13
|
Anti-Aging Effect of Momordica charantia L. on d-Galactose-Induced Subacute Aging in Mice by Activating PI3K/AKT Signaling Pathway. Molecules 2022; 27:molecules27144502. [PMID: 35889375 PMCID: PMC9320056 DOI: 10.3390/molecules27144502] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
Anti-aging is a challenging and necessary research topic. Momordica charantia L. is a common edible medicinal plant that has various pharmacological activities and is often employed in daily health care. However, its anti-aging effect on mice and the underlying mechanism thereof remain unclear. Our current study mainly focused on the effect of Momordica charantia L. on d-galactose-induced subacute aging in mice and explored the underlying mechanism. UHPLC-Q-Exactive Orbitrap MS was applied to qualitatively analyze the chemical components of Momordica charantia L. ethanol extract (MCE). A subacute aging mice model induced by d-galactose (d-gal) was established to investigate the anti-aging effect and potential mechanism of MCE. The learning and memory ability of aging mice was evaluated using behavioral tests. The biochemical parameters, including antioxidant enzyme activity and the accumulation of lipid peroxides in serum, were measured to explore the effect of MCE on the redox imbalance caused by aging. Pathological changes in the hippocampus were observed using hematoxylin and eosin (H&E) staining, and the levels of aging-related proteins in the PI3K/AKT signaling pathway were assessed using Western blotting. The experimental results demonstrated that a total of 14 triterpenoids were simultaneously identified in MCE. The behavioral assessments results showed that MCE can improve the learning and memory ability of subacute mice. The biochemical parameters determination results showed that MCE can improve the activity of antioxidant enzymes and decrease the accumulation of lipid peroxides in aging mice significantly. Furthermore, aging and injury in the hippocampus were ameliorated. Mechanistically, the results showed a significant upregulation in the protein expression of P-PI3K/PI3K and P-AKT/AKT (p < 0.01), as well as a significant reduction in cleaved caspase-3/caspase-3, Bax and P-mTOR/mTOR (p < 0.01). Our results confirm that MCE could restore the antioxidant status and improve cognitive impairment in aging mice, inhibit d-gal-induced apoptosis by regulating the PI3K/AKT signaling pathway, and rescue the impaired autophagy caused by mTOR overexpression, thereby exerting an anti-aging effect.
Collapse
|
14
|
Liaw CC, Lo IW, Lin YC, Huang HT, Zhang LJ, Hsiao PC, Li TL, Kuo YH. Four cucurbitane glycosides taimordisins A–D with novel furopyranone skeletons isolated from the fruits of Momordica charantia. Food Chem X 2022; 14:100286. [PMID: 35330883 PMCID: PMC8938282 DOI: 10.1016/j.fochx.2022.100286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 10/31/2022] Open
Abstract
Four new cucurbitane-type triterpenoids glycosides were isolated from the fresh fruit of Momordica charantia and determined by NMR, HRESIMS, and biosynthesis. Taimordisins A and B possess rare bicyclic-fused and trifuso-centro-fused ring systems at side chain of the cucurbitane-type triterpenoids at the first time. Taimordisins A-D showed the inhibition of NO production by LPS-stimulated in RAW264.7 macrophage cells.
Four novel triterpene glycosides, taimordisins A–D (1–4), were discovered from fresh fruits of Taiwanese Momordica charantia. The chemical framework and relative stereochemistry of these four natural products were isolated, purified, and determined by using various separation and spectroscopy techniques. Each of them features a unique bicyclic-fused or trifuso-centro-fused ring system. Notably, 1 and 2 are cucurbitane-based compounds possessing a new C-24 and C-2″ carbon–carbon linkage with 5-hydroxy-2-(hydroxymethyl)tetrahydro-4H-pyran-4-one and 6-(hydroxymethyl)tetrahydro-4H-pyran-3,4,4-triol units, respectively, and represented an unprecedented molecular skeleton. In terms of biosynthesis, they all originate from a common precursor 3-hydroxycucurbita-5,24-dien-19-al-7,23-di-O-β-glucopyranoside. Of two sugar moieties, the one at 23-O-β-glucopyranoside grants each individual congener uniqueness likely through microbial symbiont-mediated intramolecular transformation into two major types of furo[2,3-b]pyranone and furo[3,2-c]pyranone derivatives. These new products possess desirable anti-inflammatory biological activities in addition to being generally regarded as safe.
Collapse
|
15
|
Wang H, Shuai X, Ye S, Zhang R, Wu M, Jiang S, Li Y, Wu D, He J. Recent advances in the development of bitter gourd seed oil: from chemical composition to potential applications. Crit Rev Food Sci Nutr 2022; 63:10678-10690. [PMID: 35648048 DOI: 10.1080/10408398.2022.2081961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Non-conventional seed oils are being considered novelty foods due to the unique properties of their chemical constituents. Numerous such seed oils serve as nutritional and functional supplements, making them a point of interest for scholars. Bitter gourd (Momordica charantia L.) seed oil (BGSO) has been widely used in folk medicine worldwide for the treatment of different pathologies, such as diabetes, cancer, and several inflammatory diseases. Therefore, its nutritional and medicinal value has been extensively studied. Considering the potential use of BGSO, it is imperative to have a comprehensive understanding of this product to develop and use its biologically active ingredients in innovative food and pharmaceutical products. An extensive understanding of BGSO would also help improve the economic feasibility of the bitter gourd seed processing industry and help prevent environmental pollution associated with the raw waste produced during the processing of bitter gourd seeds. This review addresses the potential uses of BGSO in terms of food and pharmaceuticals industry perspectives and comprehensively summarizes the oil extraction process, chemical composition, biological activity, and the application prospects of BGSO in clinical medicine.
Collapse
Affiliation(s)
- Huiling Wang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, P.R. China
- National R&D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, P.R. China
| | - Xiaoyan Shuai
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, P.R. China
- National R&D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, P.R. China
| | - Shuxin Ye
- China YunHong Holdings Co, Ltd, Wuxue, P.R. China
| | - Rui Zhang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, P.R. China
- National R&D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, P.R. China
| | - Muci Wu
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, P.R. China
- National R&D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, P.R. China
| | - Sijia Jiang
- China YunHong Holdings Co, Ltd, Wuxue, P.R. China
| | - Yubao Li
- China YunHong Holdings Co, Ltd, Wuxue, P.R. China
| | - Dong Wu
- China YunHong Holdings Co, Ltd, Wuxue, P.R. China
| | - Jingren He
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, P.R. China
- National R&D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, P.R. China
| |
Collapse
|
16
|
Xu B, Li Z, Zeng T, Zhan J, Wang S, Ho CT, Li S. Bioactives of Momordica charantia as Potential Anti-Diabetic/Hypoglycemic Agents. Molecules 2022; 27:2175. [PMID: 35408574 PMCID: PMC9000558 DOI: 10.3390/molecules27072175] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022] Open
Abstract
Momordica charantia L., a member of the Curcubitaceae family, has traditionally been used as herbal medicine and as a vegetable. Functional ingredients of M. charantia play important roles in body health and human nutrition, which can be used directly or indirectly in treating or preventing hyperglycemia-related chronic diseases in humans. The hypoglycemic effects of M. charantia have been known for years. In this paper, the research progress of M. charantia phytobioactives and their hypoglycemic effects and related mechanisms, especially relating to diabetes mellitus, has been reviewed. Moreover, the clinical application of M. charantia in treating diabetes mellitus is also discussed, hoping to broaden the application of M. charantia as functional food.
Collapse
Affiliation(s)
- Bilin Xu
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, China; (B.X.); (Z.L.); (J.Z.); (S.W.)
| | - Zhiliang Li
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, China; (B.X.); (Z.L.); (J.Z.); (S.W.)
| | - Ting Zeng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Jianfeng Zhan
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, China; (B.X.); (Z.L.); (J.Z.); (S.W.)
| | - Shuzhen Wang
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, China; (B.X.); (Z.L.); (J.Z.); (S.W.)
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA;
| | - Shiming Li
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, China; (B.X.); (Z.L.); (J.Z.); (S.W.)
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA;
| |
Collapse
|
17
|
Liao PY, Lo HY, Liu IC, Lo LC, Hsiang CY, Ho TY. A gastro-resistant peptide from Momordica charantia improves diabetic nephropathy in db/ db mice via its novel reno-protective and anti-inflammatory activities. Food Funct 2022; 13:1822-1833. [PMID: 35083999 DOI: 10.1039/d1fo02788c] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diabetic nephropathy (DN), a principal diabetic microvascular complication, is a chronic inflammatory immune disorder. A gastro-resistant peptide mcIRBP-9 from Momordica charantia has shown modulation of blood glucose homeostasis in diabetic mice. Here we conducted a long-term experiment to evaluate the therapeutic effects and mechanisms of mcIRBP-9 on DN. Type 2 diabetic mice (db/db mice) were orally given mcIRBP-9 once daily for 12 consecutive weeks. The amelioration of DN was evaluated by renal function indexes, vascular leakage, and pathological lesions. Possible effective mechanisms of mcIRBP-9 on DN were analyzed by gene expression profiles. A pharmacokinetic study in rats was carried out to evaluate the oral bioavailability of mcIRBP-9. Our data showed that mcIRBP-9 was able to enter systemic circulation in rats after oral administration. In comparison with mock, long-term administration of mcIRBP-9 significantly decreased blood glucose (572.25 ± 1.55 mg dL-1vs. 213.50 ± 163.39 mg dL-1) and HbA1c levels (13.58 ± 0.30% vs. 8.23 ± 2.98%) and improved the survival rate (85.7% vs. 100%) in diabetic mice. mcIRBP-9 ameliorated DN by reducing renal vascular leakage and histopathological changes. mcIRBP-9 altered the pathways involved in inflammatory and immune responses, and the nuclear factor-κB played a central role in the regulation of mcIRBP-9-affected pathways. Moreover, mcIRBP-9 improved the inflammatory characteristic of DN in diabetic and non-diabetic mice. In conclusion, mcIRBP-9 displayed a novel anti-inflammatory activity and exhibited a reno-protective ability in addition to controlling the blood glucose and HbA1c levels. These findings suggested the role of mcIRBP-9 from M. charantia as a nutraceutical agent for diabetes and subsequent DN.
Collapse
Affiliation(s)
- Pei-Yung Liao
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 404333, Taiwan. .,Division of Endocrinology and Metabolism, Department of Internal Medicine, Changhua Christian Hospital, Changhua 500209, Taiwan
| | - Hsin-Yi Lo
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 404333, Taiwan.
| | - I-Chen Liu
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 404333, Taiwan.
| | - Lun-Chien Lo
- School of Chinese Medicine, China Medical University, Taichung 404333, Taiwan
| | - Chien-Yun Hsiang
- Department of Microbiology and Immunology, China Medical University, Taichung 404333, Taiwan.
| | - Tin-Yun Ho
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 404333, Taiwan. .,Department of Health and Nutrition Biotechnology, Asia University, Taichung 413305, Taiwan
| |
Collapse
|
18
|
Wang S, Liu Q, Zeng T, Zhan J, Zhao H, Ho CT, Xiao Y, Li S. Immunomodulatory effects and associated mechanisms of Momordica charantia and its phytochemicals. Food Funct 2022; 13:11986-11998. [DOI: 10.1039/d2fo02096c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Momordica charantia L. (M. charantia), which is a member of the Cucurbitaceae family and widely distributed in tropical and subtropical regions, has been consumed as a vegetable and also used as herbal medicine for thousands of years worldwide.
Collapse
Affiliation(s)
- Shuzhen Wang
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei Province, P.R. China
| | - Qian Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, 250355, Shandong Province, P.R. China
| | - Ting Zeng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, 250355, Shandong Province, P.R. China
| | - Jianfeng Zhan
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei Province, P.R. China
| | - Hui Zhao
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Yunli Xiao
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei Province, P.R. China
| | - Shiming Li
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei Province, P.R. China
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
19
|
Liao PY, Lo HY, Liu IC, Lo LC, Hsiang CY, Ho TY. The novel anti-inflammatory activity of mcIRBP from Momordica charantia is associated with the improvement of diabetic nephropathy. Food Funct 2022; 13:1268-1279. [DOI: 10.1039/d1fo03620c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Diabetic nephropathy is an inflammatory immune disorder accompanying diabetes.
Collapse
Affiliation(s)
- Pei-Yung Liao
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Changhua Christian Hospital, Changhua 50006, Taiwan
| | - Hsin-Yi Lo
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - I-Chen Liu
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Lun-Chien Lo
- School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Chien-Yun Hsiang
- Department of Microbiology and Immunology, China Medical University, Taichung 40402, Taiwan
| | - Tin-Yun Ho
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
20
|
Tan W, Pan T, Wang S, Li P, Men Y, Tan R, Zhong Z, Wang Y. Immunometabolism modulation, a new trick of edible and medicinal plants in cancer treatment. Food Chem 2021; 376:131860. [PMID: 34971892 DOI: 10.1016/j.foodchem.2021.131860] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/04/2021] [Accepted: 12/10/2021] [Indexed: 12/23/2022]
Abstract
The edible and medicinal plants (EMPs) are becoming an abundant source for cancer prevention and treatment since the natural and healthy trend for modern human beings. Currently, there are more than one hundred species of EMPs widely used and listed by the national health commission of China, and most of them indicate immune or metabolic regulation potential in cancer treatment with numerous studies over the past two decades. In the present review, we focused on the metabolic influence in immunocytes and tumor microenvironment, including immune response, immunosuppressive factors and cancer cells, discussing the immunometabolic potential of EMPs in cancer treatment. There are more than five hundred references collected and analyzed through retrieving pharmacological studies deposited in PubMed by medical subject headings and the corresponding names derived from pharmacopoeia of China as a sole criterion. Finally, the immunometabolism modulation of EMPs was sketch out implying an immunometabolic control in cancer treatment.
Collapse
Affiliation(s)
- Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Tingrui Pan
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China
| | - Yongfan Men
- Research Laboratory of Biomedical Optics and Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Rui Tan
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Zhangfeng Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China.
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China.
| |
Collapse
|
21
|
Gao Y, Li X, Huang Y, Chen J, Qiu M. Bitter Melon and Diabetes Mellitus. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1923733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ya Gao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
- University of the Chinese Academy of Sciences, Beijing, PR China
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Chinese Academy of Sciences, Kunming, PR China
| | - Xian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
- University of the Chinese Academy of Sciences, Beijing, PR China
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Chinese Academy of Sciences, Kunming, PR China
| | - Yanjie Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
- University of the Chinese Academy of Sciences, Beijing, PR China
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Chinese Academy of Sciences, Kunming, PR China
| | - Jianchao Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
| | - Minghua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
- University of the Chinese Academy of Sciences, Beijing, PR China
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Chinese Academy of Sciences, Kunming, PR China
| |
Collapse
|
22
|
Chang ML, Lin YT, Kung HN, Hou YC, Liu JJ, Pan MH, Chen HL, Yu CH, Tsai PJ. A triterpenoid-enriched extract of bitter melon leaves alleviates hepatic fibrosis by inhibiting inflammatory responses in carbon tetrachloride-treated mice. Food Funct 2021; 12:7805-7815. [PMID: 34231603 DOI: 10.1039/d1fo00884f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Liver fibrosis is a progression of chronic liver disease characterized by excess deposition of fibrillary collagen. The aim of this study was to investigate the protective effect of a triterpenoid-enriched extract (TEE) from bitter melon leaves against carbon tetrachloride (CCl4)-induced hepatic fibrosis in mice. Male ICR mice received TEE (100 or 150 mg kg-1) by daily oral gavage for one week before starting CCl4 administration and throughout the entire experimental period. After intraperitoneal injection of CCl4 for nine weeks, serum and liver tissues of the mice were collected for biochemical, histopathological and molecular analyses. Our results showed that TEE supplementation reduced CCl4-induced serum aspartate aminotransferase and alanine aminotransferase activities. Histopathological examinations revealed that CCl4 administration results in hepatic fibrosis, while TEE supplementation significantly suppressed hepatic necroinflammation and collagen deposition. In addition, TEE supplementation decreased α-smooth muscle actin (α-SMA)-positive staining and protein levels of α-SMA and transforming growth factor-β1. TEE-supplemented mice had lower mRNA expression levels of interleukin-6, tumor necrosis factor-α, and toll-like receptor 4. Moreover, TEE (150 mg kg-1) supplementation significantly reduced intrahepatic inflammatory Ly6C+ monocyte infiltration. We demonstrated that TEE could ameliorate hepatic fibrosis by regulating inflammatory cytokine secretion and α-SMA expression in the liver to reduce collagen accumulation.
Collapse
Affiliation(s)
- Mei-Ling Chang
- Department of Food Science, Nutrition and Nutraceutical Biotechnology, Shih Chien University, Taipei 104, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lin C, Lin Y, Xiao J, Lan Y, Cao Y, Chen Y. Effect of Momordica saponin- and Cyclocarya paliurus polysaccharide-enriched beverages on oxidative stress and fat accumulation in Caenorhabditis elegans. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3366-3375. [PMID: 33230856 DOI: 10.1002/jsfa.10966] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/14/2020] [Accepted: 11/24/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND As an edible and medicinal herb in Chinese folk medicine, Cyclocarya paliurus (Batal.) Iljinskaja leaves are traditionally widely used in the treatment of metabolic disorders. The vegetable Momordica charantia L. has been consumed worldwide for thousands of years as a traditional drug due to its activities against obesity and diabetes. In view of the therapeutic value of Momordica saponins (MSs) and C. paliurus polysaccharides (CPPs), an independently developed MSs- and CPPs-containing beverage (MC) was evaluated for its efficacy in controlling oxidative stress and obesity in Caenorhabditis elegans. RESULTS First, we found that MC could promote the nuclear localization of DAF-16 and the translation of SOD-3. Further exploring its antioxidant properties, the oxidative stress by-products reactive oxygen species, malondialdehyde, and nonesterified fatty acids were significantly inhibited in C. elegans. Moreover, damage due to diseases related to oxidative stress (age pigments and neurodegenerative diseases) was alleviated. Furthermore, fat accumulation was significantly reduced in normal and high-fat models. Finally, the lipid-lowering effects of MC might involve reductions in the size and number of lipid droplets without impairing basic physiological functions in C. elegans. CONCLUSION These results provide promising data indicating MC as an innovative health beverage for the pharmacological management of oxidative stress and obesity. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chunxiu Lin
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yizi Lin
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yaqi Lan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yunjiao Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
24
|
Bitter melon fruit extract enhances intracellular ATP production and insulin secretion from rat pancreatic β-cells. Br J Nutr 2021; 127:377-383. [PMID: 33762029 DOI: 10.1017/s0007114521001082] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Bitter melon (Momordica charantia L.) has been shown to have various health-promoting activities, including antidiabetic and hypoglycaemic effects. Improvement in insulin sensitivity and increase in glucose utilisation in peripheral tissues have been reported, but the effect on insulin secretion from pancreatic β-cells remains unclear. In this study, we investigated the effect of bitter melon fruit on insulin secretion from β-cells and the underlying mechanism. The green fruit of bitter melon was freeze-dried and extracted with methanol. The bitter melon fruit extract (BMFE) was fractionated using ethyl acetate (fraction A), n-butanol (fraction B) and water (fraction C). Insulin secretory capacity from INS-1 rat insulinoma cell line and rat pancreatic islets, as well as glucose tolerance in rats by oral glucose tolerance test (OGTT), was measured using BMFE and fractions. ATP production in β-cells was also examined. BMFE augmented insulin secretion from INS-1 cells in a dose-dependent manner. The significant augmentation of insulin secretion was independent of the glucose dose. Fraction A (i.e. hydrophobic fraction), but not fractions B and C, augmented insulin secretion significantly at the same level as that by BMFE. This finding was also observed in pancreatic islets. In OGTT, BMFE and fraction A decreased blood glucose levels and increased serum insulin levels after glucose loading. The decrease in blood glucose levels was also observed in streptozotocin-induced diabetic rats. In addition, BMFE and fraction A increased the ATP content in β-cells. We concluded that hydrophobic components of BMFE increase ATP production and augment insulin secretion from β-cells, consequently decreasing blood glucose levels.
Collapse
|
25
|
The triterpenoids of the bitter gourd (Momordica Charantia) and their pharmacological activities: A review. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2020.103726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Liu Z, Gong J, Huang W, Lu F, Dong H. The Effect of Momordica charantia in the Treatment of Diabetes Mellitus: A Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:3796265. [PMID: 33510802 PMCID: PMC7826218 DOI: 10.1155/2021/3796265] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/02/2020] [Accepted: 12/18/2020] [Indexed: 12/29/2022]
Abstract
In recent years, many studies of Momordica charantia (MC) in the treatment of diabetes mellitus (DM) and its complications have been reported. This article reviewed the effect and mechanism of MC against diabetes, including the results from in vitro and in vivo experiments and clinical trials. The common side effects of MC were also summarized. We hope that it might open up new ideas for further mechanism exploration and clinical application as well as provide a scientific theoretical basis for the development of drugs or foods derived from MC.
Collapse
Affiliation(s)
- Zhuo Liu
- Grade 2016 of Integrated Traditional Chinese and Western Clinical Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Gong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenya Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fuer Lu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
27
|
Li J, Li Z, Li L, Song C, Raghavan G, He F. Microwave drying of balsam pear with online aroma detection and control. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110139] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
Chang CI, Cheng SY, Nurlatifah AO, Sung WW, Tu JH, Lee LL, Cheng HL. Bitter Melon Extract Yields Multiple Effects on Intestinal Epithelial Cells and Likely Contributes to Anti-diabetic Functions. Int J Med Sci 2021; 18:1848-1856. [PMID: 33746602 PMCID: PMC7976585 DOI: 10.7150/ijms.55866] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022] Open
Abstract
The intestines have been recognized as important tissues for metabolic regulation, including glycemic control, but their vital role in promoting the anti-diabetic effects of bitter melon, the fruit of Momordica charantia L, has seldom been characterized, nor acknowledged. Evidence suggests that bitter melon constituents can have substantial interactions with the intestinal epithelial cells before circulating to other tissues. We therefore characterized the effects of bitter melon extract (BME) on intestinal epithelial cells. BME was found to contain substantial amounts of carbohydrates, proteins, and triterpenoids. TNF-α induced insulin resistance in an enterocyte cell line of IEC-18 cells, and BME promoted glucose utilization of the insulin-resistant cells. Further analysis suggested that the increased glucose consumption was a result of the combined effects of insulin sensitizing and insulin substitution functions of BME. The functions of insulin substitution were likely generated due to the activation of AMP-activated protein kinase. Meanwhile, BME acted as a glucagon-like peptide 1 (GLP-1) secretagogue on enteroendocrine cells, which may be mediated by the activation of bitter-taste receptors. Therefore, BME possesses insulin sensitizing, insulin substitution, and GLP-1 secretagogue functions upon intestinal cells. These effects of BME on intestinal cells likely play a significant part in the anti-diabetic action of bitter melon.
Collapse
Affiliation(s)
- Chi-I Chang
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Shi-Yie Cheng
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung 811, Taiwan
| | - Annisa Oktafianti Nurlatifah
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan.,Department of Agroindustrial Biotechnology, Brawijaya University, Jalan, Veteran Malang 65145, Indonesia
| | - Wei-Wen Sung
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Jing-Hong Tu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Lin-Lee Lee
- Department of English, National Kaohsiung Normal University, Kaohsiung 80201, Taiwan
| | - Hsueh-Ling Cheng
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| |
Collapse
|
29
|
Yook JS, Kwak JJ, Jeong WM, Song YH, Hijioka Y, Honda Y, Kim SE, Ha MS. Possible adaptogenic effects of Momordica charantia on high-intensity training-induced alteration in the hypothalamic-pituitary-adrenal axis. J Clin Biochem Nutr 2020; 67:290-296. [PMID: 33293770 PMCID: PMC7705085 DOI: 10.3164/jcbn.20-96] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 06/24/2020] [Indexed: 11/22/2022] Open
Abstract
This study investigated the effects of a drink supplement containing Momordica charantia extract from bitter melon on physical fitness and levels of stress hormones during a four-week exercise training program in a hot environment. Ten male tennis players were orally administrated in a four-week (100 ml, 6 times a day), and the pre- and post-supplementation levels of different physical fitness variables and cortisol, and adrenocorticotropic hormone in plasma were measured at four time-points—before (baseline), during, and after the exercise, and on the next day of the supplementation. The findings showed that the supplementation has significant positive effects on enhancement of physical fitness parameters especially balance (d = 22.10, p = 0.013), flexibility (d = 4.83, p = 0.015), and cardiorespiratory fitness (d = 10.00, p = 0.030). Moreover, the adrenocorticotropic hormone levels were reduced during the exercise, and the cortisol levels showed the decreasing trend during and after the exercise, which was correlated with the change of cardiorespiratory fitness (r = 0.65, p<0.05). These results indicated the possible adaptogenic effects of Momordica charantia extract intake. Based on the findings, we suggest that Momordica charantia could be used as a source of adaptogenic supplement to alleviate the exercise- and environment-induced stress.
Collapse
Affiliation(s)
- Jang Soo Yook
- Center for Functional Connectomics, Brain Research Institute, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Jae-Jun Kwak
- Department of National Defense Technology, Woosuk University, Daehak-ro 66, Jincheon-eup, Jincheon-gun, Chungcheongbuk-do 27841, Republic of Korea
| | - Woo-Min Jeong
- WellCare Korea Co. Ltd., Wadong-ro 26, Danwon-gu, Ansan-si, Gyeonggi-do 15265, Republic of Korea
| | - Young Hoon Song
- Department of Physical Education, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Korea
| | - Yasuaki Hijioka
- Center for Climate Change Adaption, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Yasushi Honda
- Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8574, Japan
| | - Satbyul Estella Kim
- Center for Climate Change Adaption, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.,Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8574, Japan
| | - Min-Seong Ha
- Department of Sports Neuroscience, Advanced Research Initiative for Human High Performance (ARIHHP), Faculty of Health and Sports Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8574, Japan.,Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sports Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8574, Japan.,Sport Culture Science Department, Dongguk University-Seoul, 30, Pildong-ro 1-gil, Jung-gu, Seoul 04620, Republic of Korea
| |
Collapse
|
30
|
Lu K, Chen S, Lin Y, Wu H, Chao P. An antidiabetic nutraceutical combination of red yeast rice ( Monascus purpureus), bitter gourd ( Momordica charantia), and chromium alleviates dedifferentiation of pancreatic β cells in db/db mice. Food Sci Nutr 2020; 8:6718-6726. [PMID: 33312555 PMCID: PMC7723183 DOI: 10.1002/fsn3.1966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/10/2020] [Accepted: 10/10/2020] [Indexed: 11/13/2022] Open
Abstract
Antidiabetic properties of red yeast rice, bitter gourd, and chromium have gained scientific support. This study aimed to test whether a nutraceutical combination of these 3 materials prevented dedifferentiation of pancreatic β cells. Male db/db mice (8 weeks of age) were allocated into four groups (DB, DB/L, DB/M, and DB/H; n = 8-10) and fed a high-fat diet containing 0%, 0.2%, 0.4%, or 1% nutraceutical, respectively, whereas wild-type mice receiving a standard diet served as a healthy control (C; n = 10). The nutraceutical contained 10 mg/g monacolin K, 165 µg/g chromium, and 300 mg/g bitter gourd. After 8-weeks dietary treatment, diabetic syndromes (including hyperglycemia, hyperphagia, excessive drinking, polyuria, glucosuria, albuminuria, and glucose intolerance), were improved by the nutraceutical in a dose-dependent fashion. Decreased insulin and increased glucagon in serum and pancreatic islets in db/db mice were abolished in the DB/H group. Furthermore, supplementation curtailed dedifferentiation of β cells, as evidenced by decreasing the dedifferentiation marker (Aldh1a3) and increasing β-cell-enriched genes and transcription factors (Ins1, Ins2, FOXO1, and NKX6.1), as well as nuclear localization of NKX6.1 in pancreatic islets when compared to the DB group. We concluded that this nutraceutical, a combination of Monascus purpureus, Momordica charantia, and chromium, could be used as an adjunct for type 2 diabetes treatment and delay disease progression by sustaining β-cell function.
Collapse
Affiliation(s)
- Ke‐Ying Lu
- Department of NutritionChina Medical UniversityTaichungTaiwan
- Lishui Municipal Central HospitalLishuiChina
| | - Szu‐Han Chen
- Department of NutritionChina Medical UniversityTaichungTaiwan
| | - Yu‐Shun Lin
- Department of NutritionChina Medical UniversityTaichungTaiwan
| | - Hai‐Ping Wu
- Department of NutritionChina Medical UniversityTaichungTaiwan
| | - Pei‐Min Chao
- Department of NutritionChina Medical UniversityTaichungTaiwan
| |
Collapse
|
31
|
Mohammadmoradi S, Howatt DA, Lu HS, Daugherty A, Saha SP. Bitter Melon ( Momordica charantia L.) Supplementation Has No Effect on Hypercholesterolemia and Atherosclerosis in Mice. Curr Dev Nutr 2020; 4:nzaa148. [PMID: 33103042 PMCID: PMC7568838 DOI: 10.1093/cdn/nzaa148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/11/2020] [Accepted: 09/09/2020] [Indexed: 11/17/2022] Open
Abstract
Bitter melon (BM; Momordica charantia L.) has been reported to ameliorate diet-induced obesity and dyslipidemia. However, the effects of BM on atherosclerosis have not been determined. This study investigated the effects of BM diet-induced atherosclerosis in LDL receptor-deficient mice. A total of 30 female mice (aged 6-8 wk) were fed a saturated fat-enriched diet. In group 1 (n = 10), mice were fed this diet alone, whereas mice in groups 2 and 3 (n = 10/group) were fed the diet supplemented with BM either 0.1% or 1% by weight. After 12 wk, body weight, plasma cholesterol, and atherosclerotic plaque areas were analyzed. No significant differences in body weight and plasma cholesterol concentrations were observed among the groups. Also, BM supplementation did not affect atherosclerosis development. In conclusion, dietary BM has no effect on plasma cholesterol concentration and atherogenesis in hypercholesterolemic mice.
Collapse
Affiliation(s)
- Shayan Mohammadmoradi
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Deborah A Howatt
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Hong S Lu
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Alan Daugherty
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Sibu P Saha
- Department of Surgery, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
32
|
Effects of Bitter Melon Saponin on the Glucose and Lipid Metabolism in HepG2 Cell and C. elegans. J FOOD QUALITY 2020. [DOI: 10.1155/2020/8860356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
This study tried to explore how saponins from bitter melon (BMS) affect the glucose and lipid metabolism in palmitic acid-treated HepG2 cell and glucose-treated Caenorhabditis elegans (C. elegans). Results showed that BMS could effectively accelerate glucose consumption and elevate the levels of glycogen and ATP in palmitic acid-treated HepG2 cell, while significantly decreasing the triglyceride (TG) content. qRT-PCR data indicated that BMS might promote fatty acid β-oxidation by AMPK-ACC2-CPT1 pathway and glucose uptake by upregulating GLUT4 expression. In the model of glucose-treated C. elegans, we observed that BMS obviously inhibited fat accumulation, along with no toxicity towards some physical activities. The potential mechanism of BMS in the metabolism involved the suppression of synthesis of polyunsaturated fatty acids and enhancement of fatty acid β-oxidation. Taken together, BMS exhibited ability of regulating energy metabolism in HepG2 cell line and C. elegans.
Collapse
|
33
|
The Pharmacological Properties and Therapeutic Use of Bitter Melon (Momordica charantia L.). ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s40495-020-00219-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
34
|
Kim Y, Shim J, Kim J, Lim E. Charantin relieves pain by inhibiting pro-inflammatory cytokine induction. Pharmacogn Mag 2020. [DOI: 10.4103/pm.pm_348_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
35
|
Zheng Y, Gou X, Zhang L, Gao H, Wei Y, Yu X, Pang B, Tian J, Tong X, Li M. Interactions Between Gut Microbiota, Host, and Herbal Medicines: A Review of New Insights Into the Pathogenesis and Treatment of Type 2 Diabetes. Front Cell Infect Microbiol 2020; 10:360. [PMID: 32766169 PMCID: PMC7379170 DOI: 10.3389/fcimb.2020.00360] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022] Open
Abstract
Herbal medicines (HMs) are a major subset of complementary and alternative medicine. They have been employed for the efficient clinical management of type 2 diabetes mellitus (T2DM) for centuries. However, the related underlying mechanisms still remain to be elucidated. It has been found out that microbiota is implicated in the pathogenesis and treatment of T2DM. An interplay between gut microbiota and host occurs mainly at the gastrointestinal mucosal barrier. The host movements influence the composition and abundance of gut microbiota, whereas gut microbiota in turn modulate the metabolic and immunological activities of the host. Intestinal dysbiosis, endotoxin-induced metabolic inflammation, immune response disorder, bacterial components and metabolites, and decreased production of short-chain fatty acids are considered significant pathogenic mechanisms underlying T2DM. The interaction between gut microbiota and HMs during T2DM treatment has been investigated in human, animal, and in vitro studies. HMs regulate the composition of beneficial and harmful bacteria and decrease the inflammation caused by gut microbiota. Furthermore, the metabolism of gut microbiota modulates HM biotransformation. In this review, we have summarized such research findings, with the aim to improve our understanding of the pathogenesis and potential therapeutic mechanisms of HMs in T2DM and to provide new insights into specific targeted HM-based therapies and drug discovery.
Collapse
Affiliation(s)
- Yujiao Zheng
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaowen Gou
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Lili Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hanjia Gao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Wei
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaotong Yu
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bing Pang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaxing Tian
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Jiaxing Tian
| | - Xiaolin Tong
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Xiaolin Tong
| | - Min Li
- Molecular Biology Laboratory, Guang'anmen Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
- Min Li
| |
Collapse
|
36
|
The Role of Momordica charantia in Resisting Obesity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16183251. [PMID: 31487939 PMCID: PMC6765959 DOI: 10.3390/ijerph16183251] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/28/2019] [Accepted: 09/02/2019] [Indexed: 02/06/2023]
Abstract
Momordica charantia (M. charantia), commonly known as bitter gourd, bitter melon, kugua, balsam pear, or karela, is a tropical and sub-tropical vine belonging to the Cucurbitaceae family. It has been used to treat a variety of diseases in the traditional medicine of China, India, and Sri Lanka. Here, we review the anti-obesity effects of various bioactive components of M. charantia established at the cellular and organismal level. We aim to provide links between various bioactive components of M. charantia and their anti-obesity mechanism. An advanced search was conducted on the worldwide accepted scientific databases via electronic search (Google Scholar, Web of Science, ScienceDirect, ACS Publications, PubMed, Wiley Online Library, SciFinder, CNKI) database with the query TS = “Momordica charantia” and “obesity”. Information was also obtained from International Plant Names Index, Chinese Pharmacopoeia, Chinese herbal classic books, online databases, PhD and MSc dissertations, etc. First, studies showing the anti-obesity effects of M. charantia on the cells and on animals were classified. The major bioactive components that showed anti-obesity activities included proteins, triterpenoids, saponins, phenolics, and conjugated linolenic acids. Their mechanisms included inhibition of fat synthesis, promotion of glucose utilization, and stimulation of auxiliary lipid-lowering activity. Finally, we summarized the risks of excessive consumption of M. charantia and the application. Although further research is necessary to explore various issues, this review establishes the therapeutic potential of M. charantia and it is highly promising candidate for the development of anti-obesity health products and medicines.
Collapse
|
37
|
Khan MF, Abutaha N, Nasr FA, Alqahtani AS, Noman OM, Wadaan MAM. Bitter gourd (Momordica charantia) possess developmental toxicity as revealed by screening the seeds and fruit extracts in zebrafish embryos. Altern Ther Health Med 2019; 19:184. [PMID: 31340810 PMCID: PMC6657154 DOI: 10.1186/s12906-019-2599-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/16/2019] [Indexed: 01/17/2023]
Abstract
Background Bitter gourd (Momordica charantia) has attracted the focus of researchers owing to its excellent anti-diabetic action. The beneficial effect of Momordica charantia on heart has been reported by in vitro and in vivo studies. However the developmental toxicity or potential risk of M. charantia on fetus heart development is largely unknown. Hence this study was designed to find out the developmental toxicity of M. charantia using zebrafish (Danio rerio) embryos. Methods The crude extracts were prepared from fruit and seeds of M. charantia. The Zebrafish embryos were exposed to serial dilution of each of the crude extract. The biologically active fractions were fractionated by C18 column using high pressure liquid chromatography. Fourier-transform infrared spectroscopy and gas chromatography coupled with mass spectrophotometry was done to identify chemical constituents in fruit and seed extract of M. charantia. Results The seed extract of M. charantia was lethal with LD50 values of 50 μg/ml to zebrafish embryos and multiple anomalies were observed in zebrafish embryos at sub-lethal concentration. However, the fruit extract was much safe and exposing the zebrafish embryos even to 200 μg/ml did not result any lethality. The fruit extract induced severe cardiac hypertrophy in treated embryos. The time window treatment showed that M. charantia perturbed the cardiac myoblast specification process in treated zebrafish embryos. The Fourier-transform infrared spectroscopy analyses revealed diverse chemical group in the active fruit fraction and five new type of compounds were identified in the crude seeds extract of M. charantia by gas chromatography and mass spectrophotometry. Conclusion The teratogenicity of seeds extract and cardiac toxicity by the fruit extract of M. charantia warned that the supplementation made from the fruit and seeds of M. charantia should be used with much care in pregnant diabetic patients to avoid possible damage to developing fetus. Electronic supplementary material The online version of this article (10.1186/s12906-019-2599-0) contains supplementary material, which is available to authorized users.
Collapse
|
38
|
Wang CL, Kung HN, Wu CH, Huang CJ. Dietary wild bitter gourd displays selective androgen receptor modulator like activity and improves the muscle decline of orchidectomized mice. Food Funct 2019; 10:125-139. [PMID: 30600821 DOI: 10.1039/c8fo01777h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Loss of skeletal muscle mass and strength is often associated with disability and poor quality of life. Selective Androgen Receptor Modulators (SARMs) are under development as potential treatment. This study aims at examining the potential of wild bitter gourd (BG) as a SARM and its effects on the muscle decline induced by orchiectomy. In the cell-based androgen receptor (AR) transactivation assay, the BGP extract showed weak agonistic and antagonistic activities, resembling those of some SARMs. Male C57BL/6J mice were sham-operated (Sham group) or castrated (Cast groups) and fed a modified AIN-93G high sucrose diet supplemented without (Cast group) or with 5% lyophilized BG powder (Cast + BGP) or with testosterone propionate (7 mg TP per kg diet, Cast + TP) for 23 weeks. In contrast to the Cast + TP group, the BGP supplementation did not affect the serum testosterone concentration, and prostate and seminal vesicle mass. Both TP and BGP supplementation increased the weight of androgen responsive muscles, bulbocavernosus (BC) and levator ani (LA) (p < 0.05). The grip strength and the performance on a rotarod of the Cast + BGP group were comparable to those of the Cast + TP group (p > 0.05). The number of succinate dehydrogenase (SDH)-positive fibers of the Cast + BGP group was not significantly different from that of the Sham and Cast + TP groups (p > 0.05). The BGP supplementation up-regulated the Pgc1α, Ucp2 or Ucp3 gene expressions in skeletal muscles of castrated mice (p < 0.05). BGP showed some characteristics of the SARM and might improve skeletal muscle function through the up-regulation of mitochondrial biogenic genes and oxidative capacity, and ameliorated the castration-induced decline of skeletal muscle function in mice.
Collapse
Affiliation(s)
- Chih-Ling Wang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan.
| | | | | | | |
Collapse
|
39
|
Wen JJ, Gao H, Hu JL, Nie QX, Chen HH, Xiong T, Nie SP, Xie MY. Polysaccharides from fermented Momordica charantia ameliorate obesity in high-fat induced obese rats. Food Funct 2019; 10:448-457. [DOI: 10.1039/c8fo01609g] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Momordica charantia (M. charantia) has been widely used to treat obesity due to its bioactive ingredients.
Collapse
Affiliation(s)
- Jia-Jia Wen
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang
- China
| | - He Gao
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang
- China
| | - Jie-Lun Hu
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang
- China
| | - Qi-Xing Nie
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang
- China
| | - Hai-Hong Chen
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang
- China
| | - Tao Xiong
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang
- China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang
- China
| | - Ming-Yong Xie
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang
- China
| |
Collapse
|
40
|
Gürlek Kisacik Ö, Güneş Ü, Yaprakçi MV, Altunbaş K. Effectiveness of bitter melon extract in the treatment of ischemic wounds in rats. Turk J Biol 2018; 42:506-516. [PMID: 30983870 PMCID: PMC6451845 DOI: 10.3906/biy-1804-36] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
There is no consensus on the properties of an ideal dressing for treating wounds. The aim of this study was to investigate the efficacy of dressings using topically administered bitter melon extract with olive oil, pure olive oil, nitrofurazone, and saline in the healing of ischemic wounds. A sample group of 48 rats was used in the trial. Their wounds were treated with bitter melon extract, pure olive oil, nitrofurazone, and saline. Data were collected between October 2014 and April 2015. The highest percentage (94.7%) of wound healing was observed in the bitter melon extract group and the lowest percentage (86.3%) in the nitrofurazone group. At the end of the 21st day, macroscopic reepithelialization was observed in 9 wounds in the bitter melon extract group (75%), in 6 wounds in the pure olive oil group (50%), and in only 3 wounds in the nitrofurazone and saline groups (25%). It can be concluded that dressing with a bitter melon extract is more efficient in the treatment of wounds than using nitrofurazone or saline, and that dressing with olive oil accelerates wound healing, although not as much as dressing with bitter melon extract.
Collapse
Affiliation(s)
- Öznur Gürlek Kisacik
- Department of Basic Nursing, Faculty of Health Science, Afyonkarahisar Health Science University , Afyonkarahisar , Turkey
| | - Ülkü Güneş
- Department of Basic Nursing, Faculty of Nursing, Ege University , Bornova, İzmir , Turkey
| | - Mustafa Volkan Yaprakçi
- Department of Surgery, Faculty of Veterinary Medicine, Afyon Kocatepe University , Afyonkarahisar , Turkey
| | - Korhan Altunbaş
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Afyon Kocatepe University , Afyonkarahisar , Turkey
| |
Collapse
|
41
|
Sun W, Sun J, Zhang H, Meng Y, Li L, Li G, Zhang X, Meng Y. Chemosynthesis and characterization of site-specific N-terminally PEGylated Alpha-momorcharin as apotential agent. Sci Rep 2018; 8:17729. [PMID: 30531997 PMCID: PMC6286350 DOI: 10.1038/s41598-018-35969-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 11/09/2018] [Indexed: 01/08/2023] Open
Abstract
Alpha-momorcharin (α-MC), a type I ribosome-inactivating protein (RIP) isolated from Momordica charantia seeds, has been extensively studied for its antitumor, antiviral and antifungal activities. However, as an exogenous protein, problems associated with short half-life and strong immunogenicity have limited its clinical application. Poly (ethylene glycol) (PEG), as a polyether compound, is a well established and efficient modifier to develop it as a potential agent. Nevertheless, conventional PEGylation is not site-controlled and the conjugates are often not homogenous due to the generation of multi-PEGylated derivatives. To obtain a homogenous mono-PEGylated α-MC, the PEGylation was carried out by coupling a 20 kDa mPEG-butyraldehyde (mPEG-ALD) with α-MC. The product was separated and purified by MacroCap SP chromatography. Results from SDS-PAGE and MALDI-TOF MS revealed that the PEGylated α-MC consisted of one molecule mPEG and α-MC. Edman degradation confirmed that the N-terminal residue of α-MC was successfully coupled with mPEG-ALD. The mono-PEGylated α-MC possessed an extremely similar secondary structure to native α-MC through spectral analyses. In addition, it also showed low immunogenicity by double immunodiffusion and preserved moderate antitumor activity to three kinds of tumor cell lines in vitro. Finally, trypsin resistance was also considerably improved.
Collapse
Affiliation(s)
- Wenkui Sun
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Jinghui Sun
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Haowen Zhang
- Department of Chemical and Biological Engineering, University at Buffalo, the State University of New York, Buffalo, New York, 14260, United States
| | - Yanfa Meng
- Key Laboratory of Bio-resources and Eco-environment Ministry of Education/Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Linli Li
- Key Laboratory of Bio-resources and Eco-environment Ministry of Education/Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Gangrui Li
- Key Laboratory of Bio-resources and Eco-environment Ministry of Education/Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Xu Zhang
- Department of Pharmaceutics, School of Pharmacy, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Yao Meng
- School of Laboratory Medicine/Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, Chengdu Medical College, Chengdu, 610500, Sichuan, China.
- Department of Chemical and Biological Engineering, University at Buffalo, the State University of New York, Buffalo, New York, 14260, United States.
| |
Collapse
|
42
|
Administration of Momordica charantia Enhances the Neuroprotection and Reduces the Side Effects of LiCl in the Treatment of Alzheimer's Disease. Nutrients 2018; 10:nu10121888. [PMID: 30513908 PMCID: PMC6316175 DOI: 10.3390/nu10121888] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/14/2018] [Accepted: 11/28/2018] [Indexed: 12/15/2022] Open
Abstract
Recently, the use of natural food supplements to reduce the side effects of chemical compounds used for the treatment of various diseases has become popular. Lithium chloride (LiCl) has some protective effects in neurological diseases, including Alzheimer’s disease (AD). However, its toxic effects on various systems and some relevant interactions with other drugs limit its broader use in clinical practice. In this study, we investigated the in vitro and in vivo pharmacological functions of LiCl combined with Momordica charantia (MC) in the treatment of AD. The in vitro results show that the order of the neuroprotective effect is MC5, MC3, MC2, and MC5523 under hyperglycemia or tau hyperphosphorylation. Therefore, MC5523 (80 mg/kg; oral gavage) and/or LiCl (141.3 mg/kg; intraperitoneal injection) were applied to ovariectomized (OVX) 3×Tg-AD female and C57BL/6J (B6) male mice that received intracerebroventricular injections of streptozotocin (icv-STZ, 3 mg/kg) for 28 days. We found that the combined treatment not only increased the survival rate by reducing hepatotoxicity but also increased neuroprotection associated with anti-gliosis in the icv-STZ OVX 3×Tg-AD mice. Furthermore, the cotreatment with MC5523 and LiCl prevented memory deficits associated with reduced neuronal loss, gliosis, oligomeric Aβ level, and tau hyperphosphorylation and increased the expression levels of synaptic-related protein and pS9-GSK3β (inactive form) in the icv-STZ B6 mice. Therefore, MC5523 combined with LiCl could be a potential strategy for the treatment of AD.
Collapse
|
43
|
Yang XW, Dai Z, Wang B, Liu YP, Zhao XD, Luo XD. Antitumor Triterpenoid Saponin from the Fruits of Avicennia marina. NATURAL PRODUCTS AND BIOPROSPECTING 2018; 8:347-353. [PMID: 29802619 PMCID: PMC6109444 DOI: 10.1007/s13659-018-0167-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/07/2018] [Indexed: 06/08/2023]
Abstract
The fruits of Avicennia marina are widely used for both medicine and food in Guangxi of China. As a part of our continuous effort to search for bioactive molecules from the plant, the fruits of A. marina were investigated, which has led to one new triterpenoid saponin (1) and 29 known compounds been isolated and their structures were established by using spectroscopic methods and comparing with literature data. The new triterpenoid saponin showed cytotoxicity against GSC-3# and GSC-18# with the IC50 values were 12.21 and 5.53 μg/mL respectively, and most of the known compounds had significant antioxidant capacity with the IC50 values ranging from 0.36 to 13.07 μg/mL.
Collapse
Affiliation(s)
- Xiong-Wu Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Zhi Dai
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Bei Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Ya-Ping Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, People's Republic of China
| | - Xu-Dong Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, People's Republic of China.
| | - Xiao-Dong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China.
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, People's Republic of China.
| |
Collapse
|
44
|
Mozaniel SDO, Wanessa ADC, Fernanda WFB, Marilena EA, Gracialda CF, Raul NDCJ. Phytochemical profile and biological activities of Momordica charantia L. (Cucurbitaceae): A review. ACTA ACUST UNITED AC 2018. [DOI: 10.5897/ajb2017.16374] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
45
|
Mazzio E, Badisa R, Eyunni S, Ablordeppey S, George B, Soliman KFA. Bioactivity-Guided Isolation of Neuritogenic Factor from the Seeds of the Gac Plant ( Momordica cochinchinensis). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:8953958. [PMID: 29955238 PMCID: PMC6000838 DOI: 10.1155/2018/8953958] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/02/2018] [Accepted: 05/10/2018] [Indexed: 12/11/2022]
Abstract
Nerve growth factor (NGF) is an endogenously produced protein with the capacity to induce central nervous system (CNS) neuronal differentiation and repair. NGF signaling involves its binding to tropomyosin-related kinase (Trk) receptors, internalization, and initiation of phosphorylation cascades which cause microtubule reorganization and neuronal outgrowth. Because NGF cannot cross the blood-brain barrier, its therapeutic use is limited. Synthetic peptides that can act as NGF receptor agonists (NGF mimetics) are known to attenuate neurodegenerative pathologies in experimental models of Alzheimer's disease and Parkinson's disease; however, the existence of plant-based NGF mimetics is uncertain. For this reason, we recently completed a high throughput screening of over 1100 nutraceuticals (vitamins, herbal plant parts, polyphenolics, teas, fruits, and vegetables) to identify neuritogenic factor using a PC-12 cell model. Remarkably we found only one, commonly known as the seed of Gac plant (Momordica cochinchinensis) (MCS). In the current study, we further investigated this seed for its neuritogenic effect using bioactivity-guided chemical separations. The data show no biological neuritogenic activity in any chemical solvent fraction, where activity was exclusive to the crude protein. MSC crude proteins were then separated by 1D electrophoresis, where the active neuritogenic activity was confirmed to have a molecular mass of approximately 17 kDa. Subsequently, the 17kDa band was excised, digested, and run on a UPLC-MS/MS with a Q Exactive Hybrid Quadrupole-Orbitrap Mass Spectrometer with data evaluated diverse tools such as X! Tandem, OMS, and K-score algorithms. Proteomic evaluation of the 17kDa band confirmed evidence for 11S globulin subunit beta, napin, oleosin, Momordica trypsin inhibitors (TI) MCoTI-I /II, and many isoforms of Two Inhibitor Peptide Topologies (TIPTOPs). While all peptides identified correspond to the genus/species, Momordica cochinchinensis and Cucumis Sativus, a significant limitation of the analysis is the nonexistence of full annotation for the Momordica cochinchinensis proteome. In conclusion, these findings demonstrate that there is a stable protein within MCS having a mass of 17kDa with the capacity to induce neurite outgrowth. Future work will be required to establish the therapeutic value of the MCS for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- E. Mazzio
- College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - R. Badisa
- College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - S. Eyunni
- College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - S. Ablordeppey
- College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - B. George
- College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - K. F. A. Soliman
- College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
46
|
Jia S, Shen M, Zhang F, Xie J. Recent Advances in Momordica charantia: Functional Components and Biological Activities. Int J Mol Sci 2017; 18:E2555. [PMID: 29182587 PMCID: PMC5751158 DOI: 10.3390/ijms18122555] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 12/16/2022] Open
Abstract
Momordica charantia L. (M. charantia), a member of the Cucurbitaceae family, is widely distributed in tropical and subtropical regions of the world. It has been used in folk medicine for the treatment of diabetes mellitus, and its fruit has been used as a vegetable for thousands of years. Phytochemicals including proteins, polysaccharides, flavonoids, triterpenes, saponins, ascorbic acid and steroids have been found in this plant. Various biological activities of M. charantia have been reported, such as antihyperglycemic, antibacterial, antiviral, antitumor, immunomodulation, antioxidant, antidiabetic, anthelmintic, antimutagenic, antiulcer, antilipolytic, antifertility, hepatoprotective, anticancer and anti-inflammatory activities. However, both in vitro and in vivo studies have also demonstrated that M. charantia may also exert toxic or adverse effects under different conditions. This review addresses the chemical constituents of M. charantia and discusses their pharmacological activities as well as their adverse effects, aimed at providing a comprehensive overview of the phytochemistry and biological activities of M. charantia.
Collapse
Affiliation(s)
- Shuo Jia
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Mingyue Shen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Fan Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
47
|
Protein extract from the fruit pulp of Momordica charantia potentiate glucose uptake by up-regulating GLUT4 and AMPK. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.08.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
48
|
Choi D, Lee SJ, Lee MH, Lee DK. Bitter Melon Seed Extract does not Alter Photoperiodic Effects on Reproduction of Male Golden Hamsters. Dev Reprod 2017; 21:215-221. [PMID: 28785742 PMCID: PMC5532313 DOI: 10.12717/dr.2017.21.2.215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 06/08/2017] [Accepted: 06/12/2017] [Indexed: 11/27/2022]
Abstract
Bitter melon (Momordica charantia, MC) has been used in
traditional Korean medicine in treating diabetes. In addition, some reports were
emerged, showing the antifertility activities of MC in mammals. We investigated
the effects of ethanolic MC extract on the reproductive activity of golden
hamsters whose spermatogenetic capacity is controlled by their photoperiods. The
animals were divided into 4 groups: long photoperiod (LP) control, short
photoperiod (SP) control, and LP animals treated with MC. The animals were
orally ingested with low (0.03 g/kg) or high (0.15 g/kg) concentrations of the
ethanolic extracts for 8 weeks on the daily basis. The control animals received
the vehicle. The animals were then mated with age-matched females, experienced
pregnancy. As results, the LP control animals showed active large testes but SP
control animals displayed remarkably reduced testes. The animals treated with
both concentrations of MC extracts demonstrated large testes, indicating fertile
activity as animals in LP. LP control animals had litters as expected, but SP
controls had no litters at all. MC extract showed the same results as LP animals
in generating offsprings. These results suggest that the MC extract does not
change the photoperiodic influence on reproductive activity of male golden
hamsters.
Collapse
Affiliation(s)
- Donchan Choi
- Department of Life Science, College of Environmental Sciences, Yong-In University, Yongin 17092, Korea
| | - Su Ji Lee
- Department of Life Science, College of Environmental Sciences, Yong-In University, Yongin 17092, Korea
| | - Min Hyuck Lee
- Department of Life Science, College of Environmental Sciences, Yong-In University, Yongin 17092, Korea
| | - Dong Kyu Lee
- Department of Life Science, College of Environmental Sciences, Yong-In University, Yongin 17092, Korea
| |
Collapse
|