1
|
Rathnayaka C, Chandrosoma IA, Choi J, Childers K, Chibuike M, Akabirov K, Shiri F, Hall AR, Lee M, McKinney C, Verber M, Park S, Soper SA. Detection and identification of single ribonucleotide monophosphates using a dual in-plane nanopore sensor made in a thermoplastic via replication. LAB ON A CHIP 2024; 24:2721-2735. [PMID: 38656267 PMCID: PMC11091956 DOI: 10.1039/d3lc01062g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
We report the generation of ∼8 nm dual in-plane pores fabricated in a thermoplastic via nanoimprint lithography (NIL). These pores were connected in series with nanochannels, one of which served as a flight tube to allow the identification of single molecules based on their molecular-dependent apparent mobilities (i.e., dual in-plane nanopore sensor). Two different thermoplastics were investigated including poly(methyl methacrylate), PMMA, and cyclic olefin polymer, COP, as the substrate for the sensor both of which were sealed using a low glass transition cover plate (cyclic olefin co-polymer, COC) that could be thermally fusion bonded to the PMMA or COP substrate at a temperature minimizing nanostructure deformation. Unique to these dual in-plane nanopore sensors was two pores flanking each side of the nanometer flight tube (50 × 50 nm, width × depth) that was 10 μm in length. The utility of this dual in-plane nanopore sensor was evaluated to not only detect, but also identify single ribonucleotide monophosphates (rNMPs) by using the travel time (time-of-flight, ToF), the resistive pulse event amplitude, and the dwell time. In spite of the relatively large size of these in-plane pores (∼8 nm effective diameter), we could detect via resistive pulse sensing (RPS) single rNMP molecules at a mass load of 3.9 fg, which was ascribed to the unique structural features of the nanofluidic network and the use of a thermoplastic with low relative dielectric constants, which resulted in a low RMS noise level in the open pore current. Our data indicated that the identification accuracy of individual rNMPs was high, which was ascribed to an improved chromatographic contribution to the nano-electrophoresis apparent mobility. With the ToF data only, the identification accuracy was 98.3%. However, when incorporating the resistive pulse sensing event amplitude and dwell time in conjunction with the ToF and analyzed via principal component analysis (PCA), the identification accuracy reached 100%. These findings pave the way for the realization of a novel chip-based single-molecule RNA sequencing technology.
Collapse
Affiliation(s)
- Chathurika Rathnayaka
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA.
- Center of BioModular Multiscale Systems for Precision Medicine, USA
| | - Indu A Chandrosoma
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA.
- Center of BioModular Multiscale Systems for Precision Medicine, USA
| | - Junseo Choi
- Center of BioModular Multiscale Systems for Precision Medicine, USA
- Mechanical & Industrial Engineering Department, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Katie Childers
- Center of BioModular Multiscale Systems for Precision Medicine, USA
- Bioengineering Program, The University of Kansas, Lawrence, KS 66045, USA
| | - Maximillian Chibuike
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA.
- Center of BioModular Multiscale Systems for Precision Medicine, USA
| | - Khurshed Akabirov
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA.
- Center of BioModular Multiscale Systems for Precision Medicine, USA
| | - Farhad Shiri
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA.
- Center of BioModular Multiscale Systems for Precision Medicine, USA
| | - Adam R Hall
- Center of BioModular Multiscale Systems for Precision Medicine, USA
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston Salem, NC 27101, USA
- Atrium Wake Forest Baptist Comprehensive Cancer Center, Wake Forest School of Medicine, Winston Salem, NC 27157, USA.
| | - Maxwell Lee
- Center of BioModular Multiscale Systems for Precision Medicine, USA
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston Salem, NC 27101, USA
| | - Collin McKinney
- Department of Chemistry, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew Verber
- Department of Chemistry, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sunggook Park
- Center of BioModular Multiscale Systems for Precision Medicine, USA
- Mechanical & Industrial Engineering Department, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Steven A Soper
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA.
- Center of BioModular Multiscale Systems for Precision Medicine, USA
- Department of Mechanical Engineering, The University of Kansas, Lawrence, KS 66045, USA
- Bioengineering Program, The University of Kansas, Lawrence, KS 66045, USA
- KU Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
2
|
Shiri F, Choi J, Vietz C, Rathnayaka C, Manoharan A, Shivanka S, Li G, Yu C, Murphy MC, Soper SA, Park S. Nano-injection molding with resin mold inserts for prototyping of nanofluidic devices for single molecular detection. LAB ON A CHIP 2023; 23:4876-4887. [PMID: 37870483 PMCID: PMC10995647 DOI: 10.1039/d3lc00543g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
While injection molding is becoming the fabrication modality of choice for high-scale production of microfluidic devices, especially those used for in vitro diagnostics, its translation into the growing area of nanofluidics (structures with at least one dimension <100 nm) has not been well established. Another prevailing issue with injection molding is the high startup costs and the relatively long time between device iterations making it in many cases impractical for device prototyping. We report, for the first time, functional nanofluidic devices with dimensions of critical structures below 30 nm fabricated by injection molding for the manipulation, identification, and detection of single molecules. UV-resin molds replicated from Si masters served as mold inserts, negating the need for generating Ni-mold inserts via electroplating. Using assembled devices with a cover plate via hybrid thermal fusion bonding, we demonstrated two functional thermoplastic nanofluidic devices. The first device consisted of dual in-plane nanopores placed at either end of a nanochannel and was used to detect and identify single ribonucleotide monophosphate molecules via resistive pulse sensing and obtain the effective mobility of the molecule through nanoscale electrophoresis to allow its identification. The second device demonstrated selective binding of a single RNA molecule to a solid phase bioreactor decorated with a processive exoribonuclease, XRN1. Our results provide a simple path towards the use of injection molding for device prototyping in the development stage of any nanofluidic or even microfluidic application, through which rapid scale-up is made possible by transitioning from prototyping to high throughput production using conventional Ni mold inserts.
Collapse
Affiliation(s)
- Farhad Shiri
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
- Center of BioModular Multiscale Systems for Precision Medicine, USA
| | - Junseo Choi
- Center of BioModular Multiscale Systems for Precision Medicine, USA
- Mechanical & Industrial Engineering Department, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Chad Vietz
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
- Center of BioModular Multiscale Systems for Precision Medicine, USA
| | - Chathurika Rathnayaka
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
- Center of BioModular Multiscale Systems for Precision Medicine, USA
| | - Anishkumar Manoharan
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
- Center of BioModular Multiscale Systems for Precision Medicine, USA
| | - Suresh Shivanka
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
- Center of BioModular Multiscale Systems for Precision Medicine, USA
| | - Guoqiang Li
- Mechanical & Industrial Engineering Department, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Chengbin Yu
- Mechanical & Industrial Engineering Department, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Michael C Murphy
- Center of BioModular Multiscale Systems for Precision Medicine, USA
- Mechanical & Industrial Engineering Department, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Steven A Soper
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
- Center of BioModular Multiscale Systems for Precision Medicine, USA
- Bioengineering Program, The University of Kansas, Lawrence, KS 66045, USA
- Department of Mechanical Engineering, The University of Kansas, Lawrence, KS 66045, USA
- KU Cancer Center, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Sunggook Park
- Center of BioModular Multiscale Systems for Precision Medicine, USA
- Mechanical & Industrial Engineering Department, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
3
|
Amador-Hernandez JU, Guevara-Pantoja PE, Cedillo-Alcantar DF, Caballero-Robledo GA, Garcia-Cordero JL. Millifluidic valves and pumps made of tape and plastic. LAB ON A CHIP 2023; 23:4579-4591. [PMID: 37772361 DOI: 10.1039/d3lc00559c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
There is growing interest in producing micro- and milli-fluidic technologies made of thermoplastic with integrated fluidic control elements that are easy to assemble and suitable for mass production. Here, we developed millifluidic valves and pumps made of acrylic layers bonded with double-sided tape that are simple and fast to assemble. We demonstrate that a layer of pressure-sensitive adhesive (PSA) is flexible enough to be deformed at relatively low pressures. A chemical treatment deposited on specific regions of the PSA prevents it from sticking to the thermoplastic, which enabled us to create three different types of valves in normally open or closed configurations. We characterized different aspects of their performance, their operating pressures, the cut-off pressure values to open or close the valves (for different configurations and sizes), and the flow rate and volume pumped by seven different micropumps. As an application, we implemented a glucose assay with integrated pumps and valves, automatically generating glucose dilutions and reagent mixing. The ability to create polymeric microfluidic control units made with tape paves the way for their mass manufacturing.
Collapse
Affiliation(s)
- Josue U Amador-Hernandez
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB), Centro de Investigación y de Estudios Avanzados (Cinvestav), Monterrey, NL, Mexico
| | - Pablo E Guevara-Pantoja
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB), Centro de Investigación y de Estudios Avanzados (Cinvestav), Monterrey, NL, Mexico
| | - Diana F Cedillo-Alcantar
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB), Centro de Investigación y de Estudios Avanzados (Cinvestav), Monterrey, NL, Mexico
| | - Gabriel A Caballero-Robledo
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB), Centro de Investigación y de Estudios Avanzados (Cinvestav), Monterrey, NL, Mexico
| | - Jose L Garcia-Cordero
- Laboratory of Microtechnologies Applied to Biomedicine (LMAB), Centro de Investigación y de Estudios Avanzados (Cinvestav), Monterrey, NL, Mexico
- Institute of Human Biology, Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland.
| |
Collapse
|
4
|
Trinh KTL, Thai DA, Yang DH, Lee NY. Chitosan: a green adhesive for surface functionalization and fabrication of thermoplastic biomedical microdevices. LAB ON A CHIP 2023; 23:4245-4254. [PMID: 37655654 DOI: 10.1039/d3lc00500c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Chitosan (CS) is a natural polymer that exhibits many biological properties and is used as a biomaterial for antibacterial coatings, tissue engineering, cell research, drug delivery, and negatively charged molecule capture. In our previous study, we used a CS-polydopamine mixture to realize UV-assisted bonding between poly(methyl methacrylate) (PMMA) substrates to fabricate microdevices for self-assembled stem cell spheroid cultures. Herein, we attained reliable adhesive bonding between PMMAs using CS at room temperature assisted by oxygen plasma. The bond strength of adhesion was as high as 2.1 MPa, which could be stable for over two months according to the leak test. The adhesive bonding and surface functionalization of the microchannels were simultaneously completed such that the microdevices could be directly used for mesenchymal stem cell culture for spheroid generation and DNA purification for point-of-care testing (POCT) devices. Surface characterization was performed by contact angle measurements, Fourier-transform infrared spectroscopy, scanning electron microscopy, and atomic force microscopy. The POCT device allows sequential on-chip DNA purification, amplification, and colorimetric detection of pathogenic bacteria. This method provides a convenient and reliable strategy for the fabrication of PMMA microdevices that can be directly implemented in biological studies and POCT applications without involving prior surface modification steps.
Collapse
Affiliation(s)
- Kieu The Loan Trinh
- BioNano Applications Research Center, Gachon University 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Korea
| | - Duc Anh Thai
- Department of BioNano Technology, Gachon University 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Korea.
| | - Da Hyun Yang
- Department of BioNano Technology, Gachon University 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Korea.
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Korea.
| |
Collapse
|
5
|
Acosta S, Ojeda-Galván HJ, Quintana M. 2D materials towards energy conversion processes in nanofluidics. Phys Chem Chem Phys 2023; 25:24264-24277. [PMID: 37671413 DOI: 10.1039/d3cp00702b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Hierarchically assembled 2D material membranes are extremely promising platforms for energy conversion processes in nanofluidics. In this perspective, we discuss recent advances in the production of smart 2D material membranes that come close to mimicking biological energy conversion processes and how these efforts translate into the design of water purification systems, artificial photosynthesis, and solar energy conversion devices. As we depict here, 2D material membranes synergistically modulate the intrinsic active sites (nanopores), electron transport, mass transfer, and mechanical and chemical stability aiming at cost-effective and highly efficient smart membranes.
Collapse
Affiliation(s)
- Selene Acosta
- Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, 78000, San Luis Potosí, Mexico
| | - H Joazet Ojeda-Galván
- Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, 78000, San Luis Potosí, Mexico
| | - Mildred Quintana
- Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, 78000, San Luis Potosí, Mexico
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, 78000, San Luis Potosí, Mexico.
| |
Collapse
|
6
|
Awate DM, Holton S, Meyer K, Juárez JJ. Processes for the 3D Printing of Hydrodynamic Flow-Focusing Devices. MICROMACHINES 2023; 14:1388. [PMID: 37512699 PMCID: PMC10383660 DOI: 10.3390/mi14071388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023]
Abstract
Flow focusing is an important hydrodynamic technique for cytometric analysis, enabling the rapid study of cellular samples to identify a variety of biological processes. To date, the majority of flow-focusing devices are fabricated using conventional photolithography or flame processing of glass capillaries. This article presents a suite of low-cost, millifluidic, flow-focusing devices that were fabricated using a desktop sterolithgraphy (SLA) 3D printer. The suite of SLA printing strategies consists of a monolithic SLA method and a hybrid molding process. In the monolithic SLA approach, 1.3 mm square millifluidic channels were printed as a single piece. The printed device does not require any post processing, such as bonding or surface polishing for optical access. The hybrid molding approach consists of printing a mold using the SLA 3D printer. The mold is treated to an extended UV exposure and oven baked before using PDMS as the molding material for the channel. To demonstrate the viability of these channels, we performed a series of experiments using several flow-rate ratios to show the range of focusing widths that can be achieved in these devices. The experiments are validated using a numerical model developed in ANSYS.
Collapse
Affiliation(s)
- Diwakar M Awate
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| | - Seth Holton
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| | - Katherine Meyer
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| | - Jaime J Juárez
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
- Center for Multiphase Flow Research and Education, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
7
|
Nordin AN, Abd Manaf A. Design and fabrication technologies for microfluidic sensors. MICROFLUIDIC BIOSENSORS 2023:41-85. [DOI: 10.1016/b978-0-12-823846-2.00004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
8
|
Vaidyanathan S, Gamage S, Dathathreya K, Kryk R, Manoharan A, Zhao Z, Zhang L, Choi J, Park D, Park S, Soper SA. Fluidic operation of a polymer-based nanosensor chip for analysing single molecules. FLOW (CAMBRIDGE, ENGLAND) 2022; 2:E14. [PMID: 35936867 PMCID: PMC9356744 DOI: 10.1017/flo.2022.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Most medical diagnostic tests are expensive, involve slow turnaround times from centralized laboratories and require highly specialized equipment with seasoned technicians to carry out the assay. To facilitate realization of precision medicine at the point of care, we have developed a mixed-scale nanosensor chip featuring high surface area pillar arrays where solid-phase reactions can be performed to detect and identify nucleic acid targets found in diseased patients. Products formed can be identified and detected using a polymer nanofluidic channel. To guide delivery of this platform, we discuss the operation of various components of the device and simulations (COMSOL) used to guide the design by investigating parameters such as pillar array loading, and hydrodynamic and electrokinetic flows. The fabrication of the nanosensor is discussed, which was performed using a silicon (Si) master patterned with a combination of focused ion beam milling and photolithography with deep reactive ion etching. The mixed-scale patterns were transferred into a thermoplastic via thermal nanoimprint lithography, which facilitated fabrication of the nanosensor chip making it appropriate for in vitro diagnostics. The results from COMSOL were experimentally verified for hydrodynamic flow using Rhodamine B as a fluorescent tracer and electrokinetic flow using single fluorescently labelled oligonucleotides (single-stranded DNAs, ssDNAs).
Collapse
Affiliation(s)
- Swarnagowri Vaidyanathan
- Bioengineering Program, The University of Kansas, Lawrence, KS 66045, USA
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, KS 66047, USA
| | - Sachindra Gamage
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, KS 66047, USA
| | - Kavya Dathathreya
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, KS 66047, USA
| | - Renee Kryk
- Department of Mechanical Engineering, The University of Kansas, Lawrence, KS 66045, USA
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, KS 66047, USA
| | - Anishkumar Manoharan
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, KS 66047, USA
| | - Zheng Zhao
- Bioengineering Program, The University of Kansas, Lawrence, KS 66045, USA
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, KS 66047, USA
| | - Lulu Zhang
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, KS 66047, USA
| | - Junseo Choi
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, KS 66047, USA
- Mechanical & Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Daniel Park
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, KS 66047, USA
- Mechanical & Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Sunggook Park
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, KS 66047, USA
- Mechanical & Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Steven A. Soper
- Bioengineering Program, The University of Kansas, Lawrence, KS 66045, USA
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
- Department of Mechanical Engineering, The University of Kansas, Lawrence, KS 66045, USA
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, KS 66047, USA
- Department of Cancer Biology and KU Cancer Center, The University of Kansas Medical Center, Kansas City, KS 66106, USA
| |
Collapse
|
9
|
Shaukat U, Rossegger E, Schlögl S. A Review of Multi-Material 3D Printing of Functional Materials via Vat Photopolymerization. Polymers (Basel) 2022; 14:polym14122449. [PMID: 35746024 PMCID: PMC9227803 DOI: 10.3390/polym14122449] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023] Open
Abstract
Additive manufacturing or 3D printing of materials is a prominent process technology which involves the fabrication of materials layer-by-layer or point-by-point in a subsequent manner. With recent advancements in additive manufacturing, the technology has excited a great potential for extension of simple designs to complex multi-material geometries. Vat photopolymerization is a subdivision of additive manufacturing which possesses many attractive features, including excellent printing resolution, high dimensional accuracy, low-cost manufacturing, and the ability to spatially control the material properties. However, the technology is currently limited by design strategies, material chemistries, and equipment limitations. This review aims to provide readers with a comprehensive comparison of different additive manufacturing technologies along with detailed knowledge on advances in multi-material vat photopolymerization technologies. Furthermore, we describe popular material chemistries both from the past and more recently, along with future prospects to address the material-related limitations of vat photopolymerization. Examples of the impressive multi-material capabilities inspired by nature which are applicable today in multiple areas of life are briefly presented in the applications section. Finally, we describe our point of view on the future prospects of 3D printed multi-material structures as well as on the way forward towards promising further advancements in vat photopolymerization.
Collapse
|
10
|
Ching T, Toh YC, Hashimoto M. Design and fabrication of micro/nanofluidics devices and systems. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 186:15-58. [PMID: 35033282 DOI: 10.1016/bs.pmbts.2021.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This chapter provides an overview of the science, engineering, and design methods required in the development of micro/nanofluidic devices. Section 2 provides the scientific background of fluid mechanics and physical phenomena in micro/nanoscale. Section 3 gives a brief overview of the existing fabrication techniques employed in micro/nanofluidics. The techniques are grouped into three categories: (1) subtractive manufacturing, (2) formative manufacturing, and (3) additive manufacturing. The advantages and disadvantages of each manufacturing technique are also discussed. Implementation of the fluidic devices beyond laboratory demonstrations is not trivial, which requires a good understanding of the problems of interest and the end-users. To that end, Section 4 introduces the design thinking approach and its application to develop micro/nanofluidic devices. Finally, Section 5 concludes the chapter with future outlooks.
Collapse
Affiliation(s)
- Terry Ching
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore, Singapore; Digital Manufacturing and Design Centre, Singapore University of Technology and Design, Singapore, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Yi-Chin Toh
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia; Centre for Biomedical Technologies, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Michinao Hashimoto
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore, Singapore; Digital Manufacturing and Design Centre, Singapore University of Technology and Design, Singapore, Singapore.
| |
Collapse
|
11
|
Cunha ML, da Silva SS, Stracke MC, Zanette DL, Aoki MN, Blanes L. Sample Preparation for Lab-on-a-Chip Systems in Molecular Diagnosis: A Review. Anal Chem 2021; 94:41-58. [PMID: 34870427 DOI: 10.1021/acs.analchem.1c04460] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rapid and low-cost molecular analysis is especially required for early and specific diagnostics, quick decision-making, and sparing patients from unnecessary tests and hospitals from extra costs. One way to achieve this objective is through automated molecular diagnostic devices. Thus, sample-to-answer microfluidic devices are emerging with the promise of delivering a complete molecular diagnosis system that includes nucleic acid extraction, amplification, and detection steps in a single device. The biggest issue in such equipment is the extraction process, which is normally laborious and time-consuming but extremely important for sensitive and specific detection. Therefore, this Review focuses on automated or semiautomated extraction methodologies used in lab-on-a-chip devices. More than 15 different extraction methods developed over the past 10 years have been analyzed in terms of their advantages and disadvantages to improve extraction procedures in future studies. Herein, we are able to explain the high applicability of the extraction methodologies due to the large variety of samples in which different techniques were employed, showing that their applications are not limited to medical diagnosis. Moreover, we are able to conclude that further research in the field would be beneficial because the methodologies presented can be affordable, portable, time efficient, and easily manipulated, all of which are strong qualities for point-of-care technologies.
Collapse
Affiliation(s)
- Mylena Lemes Cunha
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Professor Algacyr Munhoz Mader 3775 St., Curitiba, Paraná, Brazil 81350-010
| | - Stella Schuster da Silva
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Professor Algacyr Munhoz Mader 3775 St., Curitiba, Paraná, Brazil 81350-010
| | - Mateus Cassaboni Stracke
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Professor Algacyr Munhoz Mader 3775 St., Curitiba, Paraná, Brazil 81350-010.,Paraná Institute of Molecular Biology, Professor Algacyr Munhoz Mader 3775 St., Curitiba, Paraná, Brazil 81350-010
| | - Dalila Luciola Zanette
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Professor Algacyr Munhoz Mader 3775 St., Curitiba, Paraná, Brazil 81350-010
| | - Mateus Nóbrega Aoki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Professor Algacyr Munhoz Mader 3775 St., Curitiba, Paraná, Brazil 81350-010
| | - Lucas Blanes
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Professor Algacyr Munhoz Mader 3775 St., Curitiba, Paraná, Brazil 81350-010.,Paraná Institute of Molecular Biology, Professor Algacyr Munhoz Mader 3775 St., Curitiba, Paraná, Brazil 81350-010
| |
Collapse
|
12
|
Castiaux AD, Selemani MA, Ward MA, Martin RS. Fully 3D printed fluidic devices with integrated valves and pumps for flow injection analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5017-5024. [PMID: 34643627 PMCID: PMC8638614 DOI: 10.1039/d1ay01569a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The use of a PolyJet 3D printer to create a microfluidic device that has integrated valves and pumps is described. The process uses liquid support and stacked printing to result in fully printed devices that are ready to use within minutes of fabrication after minimal post-processing. A unique feature of PolyJet printing is the ability to incorporate several different materials of varying properties into one print. In this work, two commercially available materials were used: a rigid-transparent plastic material (VeroClear) was used to define the channel regions and the bulk of the device, while the pumps/valves were printed in a flexible, rubber-like material (Agilus30). The entire process, from initial design to testing takes less than 4 hours to complete. The performance of the valves and pumps were characterized by fluorescence microscopy. A flow injection analysis device that enabled the discrete injections of analyte plugs was created, with on-chip pumps being used to move the fluid streams. The injection process was found to be reproducible and linearly correlated with changes in analyte concentration. The utility was demonstrated with the injection and rapid lysis of fluorescently-labeled endothelial cells. The ability to produce a device with integrated pumps/valves in one process significantly adds to the applicability of 3D printing to create microfluidic devices for analytical measurements.
Collapse
Affiliation(s)
- Andre D Castiaux
- Department of Chemistry, Saint Louis University, USA
- Department of Chemistry, Center for Additive Manufacturing, Saint Louis University, 3501 Laclede Ave., St. Louis, MO, 63103, USA.
| | | | - Morgan A Ward
- Department of Chemistry, Saint Louis University, USA
| | - R Scott Martin
- Department of Chemistry, Saint Louis University, USA
- Department of Chemistry, Center for Additive Manufacturing, Saint Louis University, 3501 Laclede Ave., St. Louis, MO, 63103, USA.
| |
Collapse
|
13
|
Topographical Vacuum Sealing of 3D-Printed Multiplanar Microfluidic Structures. BIOSENSORS-BASEL 2021; 11:bios11100395. [PMID: 34677351 PMCID: PMC8534087 DOI: 10.3390/bios11100395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 11/17/2022]
Abstract
We demonstrate a novel way of creating three-dimensional microfluidic channels capable of following complex topographies. To this end, substrates with open channels and different geometries were 3D-printed, and the open channels were consecutively closed with a thermoplastic using a low-resolution vacuum-forming approach. This process allows the sealing of channels that are located on the surface of complex multiplanar topographies, as the thermoplastic aligns with the surface-shape (the macrostructure) of the substrate, while the microchannels remain mostly free of thermoplastic as their small channel size resists thermoplastic inflow. This new process was analyzed for its capability to consistently close different substrate geometries, which showed reliable sealing of angles >90°. Furthermore, the thermoplastic intrusion into channels of different widths was quantified, showing a linear effect of channel width and percentage of thermoplastic intrusion; ranging from 43.76% for large channels with 2 mm width to only 5.33% for channels with 500 µm channel width. The challenging sealing of substrate ‘valleys’, which are created when two large protrusions are adjacent to each other, was investigated and the correlation between protrusion distance and height is shown. Lastly, we present three application examples: a serpentine mixer with channels spun around a cuboid, increasing the usable surface area; a cuvette-inspired flow cell for a 2-MXP biosensor based on molecular imprinted polymers, fitting inside a standard UV/Vis-Spectrophotometer; and an adapter system that can be manufactured by one-sided injection molding and is self-sealed before usage. These examples demonstrate how this novel technology can be used to easily adapt microfluidic circuits for application in biosensor platforms.
Collapse
|
14
|
Ghorbani Kharaji Z, Bayareh M, Kalantar V. A review on acoustic field-driven micromixers. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2021. [DOI: 10.1515/ijcre-2020-0188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
A review on acoustic field-driven micromixers is given. This is supplemented by the governing equations, governing non-dimensional parameters, numerical simulation approaches, and fabrication techniques. Acoustically induced vibration is a kind of external energy input employed in active micromixers to improve the mixing performance. An air bubble energized by an acoustic field acts as an external energy source and induces friction forces at the interface between an air bubble and liquid, leading to the formation of circulatory flows. The current review (with 200 references) evaluates different characteristics of microfluidic devices working based on acoustic field shaking.
Collapse
Affiliation(s)
| | - Morteza Bayareh
- Department of Mechanical Engineering , Shahrekord University , Shahrekord , Iran
| | - Vali Kalantar
- Department of Mechanical Engineering , Yazd University , Yazd , Iran
| |
Collapse
|
15
|
Ustun M, Rahmani Dabbagh S, Ilci IS, Bagci-Onder T, Tasoglu S. Glioma-on-a-Chip Models. MICROMACHINES 2021; 12:490. [PMID: 33926127 PMCID: PMC8145995 DOI: 10.3390/mi12050490] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/16/2022]
Abstract
Glioma, as an aggressive type of cancer, accounts for virtually 80% of malignant brain tumors. Despite advances in therapeutic approaches, the long-term survival of glioma patients is poor (it is usually fatal within 12-14 months). Glioma-on-chip platforms, with continuous perfusion, mimic in vivo metabolic functions of cancer cells for analytical purposes. This offers an unprecedented opportunity for understanding the underlying reasons that arise glioma, determining the most effective radiotherapy approach, testing different drug combinations, and screening conceivable side effects of drugs on other organs. Glioma-on-chip technologies can ultimately enhance the efficacy of treatments, promote the survival rate of patients, and pave a path for personalized medicine. In this perspective paper, we briefly review the latest developments of glioma-on-chip technologies, such as therapy applications, drug screening, and cell behavior studies, and discuss the current challenges as well as future research directions in this field.
Collapse
Affiliation(s)
- Merve Ustun
- Graduate School of Sciences and Engineering, Koc University, Sariyer, 34450 Istanbul, Turkey;
| | - Sajjad Rahmani Dabbagh
- Department of Mechanical Engineering, Koç University, Sariyer, 34450 Istanbul, Turkey;
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Sariyer, 34450 Istanbul, Turkey
| | - Irem Sultan Ilci
- Department of Bioengineering, Yildiz Technical University, 34220 Istanbul, Turkey;
| | - Tugba Bagci-Onder
- Brain Cancer Research and Therapy Lab, Koç University School of Medicine, 34450 Istanbul, Turkey;
- Koç University Research Center for Translational Medicine, Koç University, Sariyer, 34450 Istanbul, Turkey
| | - Savas Tasoglu
- Department of Mechanical Engineering, Koç University, Sariyer, 34450 Istanbul, Turkey;
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Sariyer, 34450 Istanbul, Turkey
- Koç University Research Center for Translational Medicine, Koç University, Sariyer, 34450 Istanbul, Turkey
- Center for Life Sciences and Technologies, Bogazici University, Bebek, 34342 Istanbul, Turkey
- Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Çengelköy, 34684 Istanbul, Turkey
| |
Collapse
|
16
|
Vaidyanathan S, Weerakoon-Ratnayake KM, Uba FI, Hu B, Kaufman D, Choi J, Park S, Soper SA. Thermoplastic nanofluidic devices for identifying abasic sites in single DNA molecules. LAB ON A CHIP 2021; 21:1579-1589. [PMID: 33651049 PMCID: PMC8293902 DOI: 10.1039/d0lc01038c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
DNA damage can take many forms such as double-strand breaks and/or the formation of abasic (apurinic/apyrimidinic; AP) sites. The presence of AP sites can be used to determine therapeutic efficacy of many drugs, such as doxorubicin. While there are different assays to search for DNA damage, they are fraught with limitations, such as the need for large amounts of DNA secured from millions of cells. This is challenging due to the growing importance of using liquid biopsies as a source of biomarkers for many in vitro diagnostic assays. To accommodate the mass limits imposed by the use of liquid biopsies, we report a single-molecule DNA damage assay that uses plastic nanofluidic chips to stretch DNA to near its full contour length when the channel dimensions (width and depth) are near the persistence length (∼50 nm) of double-stranded (ds) DNA. The nanofluidic chip consisted of input funnels for high loading efficiency of single DNA molecules, entropic traps to store the DNA and simultaneously load a series of nanochannels for high throughput processing, and an array of stretching nanochannels to read the AP sites. Single dsDNA molecules, which were labeled with an intercalating dye and a biotinylated aldehyde reactive probe (bARP), could be parked in the stretching nanochannels, where the AP sites were read directly using a dual-color fluorescence microscope equipped with an EMCCD camera. One color of the microscope was used to read the DNA length and the second color detected the AP sites. The nanofluidic chip was made from thermoplastics via nanoimprint lithography, which obviated the need for direct writing the devices in glass or quartz using focused ion beam milling. We show that we can read the frequency of AP sites in single dsDNA molecules with the frequency of AP sites determined by associating fluorescently-labeled streptavidin with bARP through a biotin/streptavidin complex.
Collapse
Affiliation(s)
- Swarnagowri Vaidyanathan
- Bioengineering Program, The University of Kansas, Lawrence, KS 66045, USA and Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, KS 66047, USA
| | - Kumuditha M Weerakoon-Ratnayake
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, KS 66047, USA and Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA
| | - Franklin I Uba
- Department of Chemistry, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Bo Hu
- Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David Kaufman
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, KS 66047, USA and Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Junseo Choi
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, KS 66047, USA and Mechanical & Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Sunggook Park
- Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, KS 66047, USA and Mechanical & Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Steven A Soper
- Bioengineering Program, The University of Kansas, Lawrence, KS 66045, USA and Center of BioModular Multiscale Systems for Precision Medicine, Lawrence, KS 66047, USA and Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA and Department of Cancer Biology and KU Cancer Center, The University of Kansas Medical Center, Kansas City, KS 66106, USA. and Department of Mechanical Engineering, The University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
17
|
Haider MHA, Ali M, Ensinger W. Anions effect on ion transport properties of polyelectrolyte modified single conical nanopores. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
18
|
Amarasekara CA, Athapattu US, Rathnayaka C, Choi J, Park S, Soper SA. Open-tubular nanoelectrochromatography (OT-NEC): gel-free separation of single stranded DNAs (ssDNAs) in thermoplastic nanochannels. Electrophoresis 2020; 41:1627-1640. [PMID: 33460211 DOI: 10.1002/elps.202000109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022]
Abstract
Electrophoresis or electrochromatography carried out in nanometer columns (width and depth) offers some attractive benefits compared to microscale columns. These advantages include unique separation mechanisms that are scale dependent, fast separation times, and simpler workflow due to the lack of a need for column packing and/or wall coatings to create a stationary phase. We report the use of thermoplastics, in this case PMMA, as the substrate for separating single-stranded DNAs (ssDNAs). Electrophoresis nanochannels were created in PMMA using nanoimprint lithography (NIL), which can produce devices at lower cost and in a higher production mode compared to the fabrication techniques required for glass devices. The nanochannel column in PMMA was successful in separating ssDNAs in free solution that was not possible using microchip electrophoresis in PMMA. The separation could be performed in <1 s with resolution >1.5 when carried out using at an electric field strength of 280 V/cm and an effective column length of 60 μm (100 nm × 100 nm, depth and width). The ssDNAs transport through the PMMA column was driven electrokinetically under the influence of an EOF. The results indicated that the separation was dominated by chromatographic effects using an open tubular nano-electrochromatography (OT-NEC) mode of separation. Interesting to these separations was that no column packing was required nor a wall coating to create the stationary phase; the separation was affected using the native polymer that was UV/O3 activated and an aqueous buffer mobile phase.
Collapse
Affiliation(s)
- Charuni A Amarasekara
- Department of Chemistry, The University of Kansas, Lawrence, Kansas, USA.,Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas, USA
| | - Uditha S Athapattu
- Department of Chemistry, The University of Kansas, Lawrence, Kansas, USA.,Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas, USA
| | - Chathurika Rathnayaka
- Department of Chemistry, The University of Kansas, Lawrence, Kansas, USA.,Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas, USA
| | - Junseo Choi
- Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas, USA.,Department of Mechanical Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Sunggook Park
- Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas, USA.,Department of Mechanical Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Steven A Soper
- Department of Chemistry, The University of Kansas, Lawrence, Kansas, USA.,Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas, USA.,Department of Mechanical Engineering, Louisiana State University, Baton Rouge, Louisiana, USA.,Department of Mechanical Engineering, The University of Kansas, Lawrence, Kansas, USA.,Bioengineering Program, The University of Kansas, Lawrence, Kansas, USA.,KU Cancer Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
19
|
Hagan JT, Sheetz BS, Bandara YMNDY, Karawdeniya BI, Morris MA, Chevalier RB, Dwyer JR. Chemically tailoring nanopores for single-molecule sensing and glycomics. Anal Bioanal Chem 2020; 412:6639-6654. [PMID: 32488384 DOI: 10.1007/s00216-020-02717-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/03/2020] [Accepted: 05/15/2020] [Indexed: 12/18/2022]
Abstract
A nanopore can be fairly-but uncharitably-described as simply a nanofluidic channel through a thin membrane. Even this simple structural description holds utility and underpins a range of applications. Yet significant excitement for nanopore science is more readily ignited by the role of nanopores as enabling tools for biomedical science. Nanopore techniques offer single-molecule sensing without the need for chemical labelling, since in most nanopore implementations, matter is its own label through its size, charge, and chemical functionality. Nanopores have achieved considerable prominence for single-molecule DNA sequencing. The predominance of this application, though, can overshadow their established use for nanoparticle characterization and burgeoning use for protein analysis, among other application areas. Analyte scope continues to be expanded, and with increasing analyte complexity, success will increasingly hinge on control over nanopore surface chemistry to tune the nanopore, itself, and to moderate analyte transport. Carbohydrates are emerging as the latest high-profile target of nanopore science. Their tremendous chemical and structural complexity means that they challenge conventional chemical analysis methods and thus present a compelling target for unique nanopore characterization capabilities. Furthermore, they offer molecular diversity for probing nanopore operation and sensing mechanisms. This article thus focuses on two roles of chemistry in nanopore science: its use to provide exquisite control over nanopore performance, and how analyte properties can place stringent demands on nanopore chemistry. Expanding the horizons of nanopore science requires increasing consideration of the role of chemistry and increasing sophistication in the realm of chemical control over this nanoscale milieu.
Collapse
Affiliation(s)
- James T Hagan
- Department of Chemistry, University of Rhode Island, 140 Flagg Rd., Kingston, RI, 02881, USA
| | - Brian S Sheetz
- Department of Chemistry, University of Rhode Island, 140 Flagg Rd., Kingston, RI, 02881, USA
| | - Y M Nuwan D Y Bandara
- Department of Chemistry, University of Rhode Island, 140 Flagg Rd., Kingston, RI, 02881, USA
| | - Buddini I Karawdeniya
- Department of Chemistry, University of Rhode Island, 140 Flagg Rd., Kingston, RI, 02881, USA
| | - Melissa A Morris
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Robert B Chevalier
- Department of Chemistry, University of Rhode Island, 140 Flagg Rd., Kingston, RI, 02881, USA
| | - Jason R Dwyer
- Department of Chemistry, University of Rhode Island, 140 Flagg Rd., Kingston, RI, 02881, USA.
| |
Collapse
|
20
|
Liu FF, Zhao XP, Kang B, Xia XH, Wang C. Non-linear mass transport in confined nanofluidic devices for label-free bioanalysis/sensors. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115760] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Karawdeniya BI, Bandara YMNDY, Nichols JW, Chevalier RB, Hagan JT, Dwyer JR. Challenging Nanopores with Analyte Scope and Environment. JOURNAL OF ANALYSIS AND TESTING 2019. [DOI: 10.1007/s41664-019-00092-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
22
|
O'Neil C, Amarasekara CA, Weerakoon-Ratnayake KM, Gross B, Jia Z, Singh V, Park S, Soper SA. Electrokinetic transport properties of deoxynucleotide monophosphates (dNMPs) through thermoplastic nanochannels. Anal Chim Acta 2018; 1027:67-75. [PMID: 29866271 PMCID: PMC6408931 DOI: 10.1016/j.aca.2018.04.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/06/2018] [Accepted: 04/16/2018] [Indexed: 01/19/2023]
Abstract
The electrokinetic behavior of molecules in nanochannels (<100 nm in length) have generated interest due to the unique transport properties observed that are not seen in microscale channels. These nanoscale dependent transport properties include transverse electromigration arising from partial electrical double layer overlap, enhanced solute/wall interactions due to the small channel diameter, and field-dependent intermittent motion produced by surface roughness. In this study, the electrokinetic transport properties of deoxynucleotide monophosphates (dNMPs) were investigated, including the effects of electric field strength, surface effects, and composition of the carrier electrolyte (ionic concentration and pH). The dNMPs were labeled with a fluorescent reporter (ATTO 532) to allow tracking of the electrokinetic transport of the dNMPs through a thermoplastic nanochannel fabricated via nanoimprinting (110 nm × 110 nm, width × depth, and 100 μm in length). We discovered that the transport properties in plastic nanochannels of the dye-labeled dNMPs produced differences in their apparent mobilities that were not seen using microscale columns. We built histograms for each dNMP from their apparent mobilities under different operating conditions and fit the histograms to Gaussian functions from which the separation resolution could be deduced as a metric to gage the ability to identify the molecule based on their apparent mobility. We found that the resolution ranged from 0.73 to 2.13 at pH = 8.3. Changing the carrier electrolyte pH > 10 significantly improved separation resolution (0.80-4.84) and reduced the standard deviation in the Gaussian fit to the apparent mobilities. At low buffer concentrations, decreases in separation resolution and increased standard deviations in Gaussian fits to the apparent mobilities of dNMPs were observed due to the increased thickness of the electric double layer leading to a partial parabolic flow profile. The results secured for the dNMPs in thermoplastic nanochannels revealed a high identification efficiency (>99%) in most cases for the dNMPs due to differences in their apparent mobilities when using nanochannels, which could not be achieved using microscale columns.
Collapse
Affiliation(s)
- Colleen O'Neil
- Department of Chemistry, The University of North Carolina, Chapel Hill, NC, USA; NIH Biotechnology Resource Center of BioModular Multiscale Systems for Precision Medicine, USA
| | - Charuni A Amarasekara
- Department of Chemistry, Department of Mechanical Engineering, The University of Kansas, USA; NIH Biotechnology Resource Center of BioModular Multiscale Systems for Precision Medicine, USA
| | - Kumuditha M Weerakoon-Ratnayake
- Department of Chemistry, Department of Mechanical Engineering, The University of Kansas, USA; NIH Biotechnology Resource Center of BioModular Multiscale Systems for Precision Medicine, USA
| | - Bethany Gross
- Department of Chemistry, Department of Mechanical Engineering, The University of Kansas, USA; NIH Biotechnology Resource Center of BioModular Multiscale Systems for Precision Medicine, USA
| | - Zheng Jia
- NIH Biotechnology Resource Center of BioModular Multiscale Systems for Precision Medicine, USA; Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - Varshni Singh
- Department of Biomedical Engineering, The University of North Carolina, Chapel Hill, NC, USA; NIH Biotechnology Resource Center of BioModular Multiscale Systems for Precision Medicine, USA
| | - Sunggook Park
- NIH Biotechnology Resource Center of BioModular Multiscale Systems for Precision Medicine, USA; Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - Steven A Soper
- Department of Chemistry, Department of Mechanical Engineering, The University of Kansas, USA; Department of Cancer Biology, Kansas University Medical Center, USA; NIH Biotechnology Resource Center of BioModular Multiscale Systems for Precision Medicine, USA; Ulsan National Institute of Science and Technology, Ulsan, South Korea.
| |
Collapse
|
23
|
A Review of Current Methods in Microfluidic Device Fabrication and Future Commercialization Prospects. INVENTIONS 2018. [DOI: 10.3390/inventions3030060] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Microfluidic devices currently play an important role in many biological, chemical, and engineering applications, and there are many ways to fabricate the necessary channel and feature dimensions. In this review, we provide an overview of microfabrication techniques that are relevant to both research and commercial use. A special emphasis on both the most practical and the recently developed methods for microfluidic device fabrication is applied, and it leads us to specifically address laminate, molding, 3D printing, and high resolution nanofabrication techniques. The methods are compared for their relative costs and benefits, with special attention paid to the commercialization prospects of the various technologies.
Collapse
|
24
|
Connacher W, Zhang N, Huang A, Mei J, Zhang S, Gopesh T, Friend J. Micro/nano acoustofluidics: materials, phenomena, design, devices, and applications. LAB ON A CHIP 2018; 18:1952-1996. [PMID: 29922774 DOI: 10.1039/c8lc00112j] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Acoustic actuation of fluids at small scales may finally enable a comprehensive lab-on-a-chip revolution in microfluidics, overcoming long-standing difficulties in fluid and particle manipulation on-chip. In this comprehensive review, we examine the fundamentals of piezoelectricity, piezoelectric materials, and transducers; revisit the basics of acoustofluidics; and give the reader a detailed look at recent technological advances and current scientific discussions in the discipline. Recent achievements are placed in the context of classic reports for the actuation of fluid and particles via acoustic waves, both within sessile drops and closed channels. Other aspects of micro/nano acoustofluidics are examined: atomization, translation, mixing, jetting, and particle manipulation in the context of sessile drops and fluid mixing and pumping, particle manipulation, and formation of droplets in the context of closed channels, plus the most recent results at the nanoscale. These achievements will enable applications across the disciplines of chemistry, biology, medicine, energy, manufacturing, and we suspect a number of others yet unimagined. Basic design concepts and illustrative applications are highlighted in each section, with an emphasis on lab-on-a-chip applications.
Collapse
Affiliation(s)
- William Connacher
- Medically Advanced Devices Laboratory, Center for Medical Devices and Instrumentation, Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093-0411, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Lee NY. A review on microscale polymerase chain reaction based methods in molecular diagnosis, and future prospects for the fabrication of fully integrated portable biomedical devices. Mikrochim Acta 2018; 185:285. [PMID: 29736588 DOI: 10.1007/s00604-018-2791-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 04/05/2018] [Indexed: 02/06/2023]
Abstract
Since the advent of microfabrication technology and soft lithography, the lab-on-a-chip concept has emerged as a state-of-the-art miniaturized tool for conducting the multiple functions associated with micro total analyses of nucleic acids, in series, in a seamless manner with a miniscule volume of sample. The enhanced surface-to-volume ratio inside a microchannel enables fast reactions owing to increased heat dissipation, allowing rapid amplification. For this reason, PCR has been one of the first applications to be miniaturized in a portable format. However, the nature of the basic working principle for microscale PCR, such as the complicated temperature controls and use of a thermal cycler, has hindered its total integration with other components into a micro total analyses systems (μTAS). This review (with 179 references) surveys the diverse forms of PCR microdevices constructed on the basis of different working principles and evaluates their performances. The first two main sections cover the state-of-the-art in chamber-type PCR microdevices and in continuous-flow PCR microdevices. Methods are then discussed that lead to microdevices with upstream sample purification and downstream detection schemes, with a particular focus on rapid on-site detection of foodborne pathogens. Next, the potential for miniaturizing and automating heaters and pumps is examined. The review concludes with sections on aspects of complete functional integration in conjunction with nanomaterial based sensing, a discussion on future prospects, and with conclusions. Graphical abstract In recent years, thermocycler-based PCR systems have been miniaturized to palm-sized, disposable polymer platforms. In addition, operational accessories such as heaters and mechanical pumps have been simplified to realize semi-automatted stand-alone portable biomedical diagnostic microdevices that are directly applicable in the field. This review summarizes the progress made and the current state of this field.
Collapse
Affiliation(s)
- Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, South Korea.
| |
Collapse
|
26
|
Strike Z, Ghofrani K, Backhouse C. CO₂ Laser-Based Rapid Prototyping of Micropumps. MICROMACHINES 2018; 9:mi9050215. [PMID: 30424149 PMCID: PMC6187535 DOI: 10.3390/mi9050215] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/25/2018] [Accepted: 04/27/2018] [Indexed: 02/03/2023]
Abstract
The fabrication of microdevices for fluidic control often requires the use of flexible diaphragms in a way that requires cleanroom equipment and compromises performance. We use a CO2 laser to perform the standard ablative techniques of cutting and engraving materials, but we also apply a method that we call laser placement. This allows us to fabricate precisely-positioned and precisely-sized, isolated diaphragms. This in turn enables the rapid prototyping of integrated multilayer microfluidic devices to form complex structures without the need for manual positioning or cleanroom equipment. The fabrication process is also remarkably rapid and capable of being scaled to manufacturing levels of production. We explore the use of these devices to construct a compact system of peristaltic pumps that can form water in oil droplets without the use of the non-pulsatile pumping systems typically required. Many devices can be fabricated at a time on a sheet by sheet basis with a fabrication process that, to our knowledge, is the fastest reported to date for devices of this type (requiring only 3 h). Moreover, this system is unusually compact and self-contained.
Collapse
Affiliation(s)
- Zachary Strike
- Electrical and Computer Engineering, and Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - Kamyar Ghofrani
- DropLab Inc., 151 Charles Steet West, Kitchener, ON N2G 1H6, Canada.
| | - Chris Backhouse
- Electrical and Computer Engineering, and Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
27
|
Specific capture, recovery and culture of cancer cells using oriented antibody-modified polystyrene chips coated with agarose film. Colloids Surf B Biointerfaces 2017; 162:306-315. [PMID: 29220830 DOI: 10.1016/j.colsurfb.2017.11.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/27/2017] [Accepted: 11/30/2017] [Indexed: 01/10/2023]
Abstract
Agarose gel can be used for three dimensional (3D) cell culture because it prevents cell attachment. The dried agarose film coated on a culture plate also protected cell attachment and allowed 3D growth of cancer cells. We developed an efficient method for agarose film coating on an oxygen-plasma treated micropost polystyrene chip prepared by an injection molding process. The agarose film was modified to maleimide or Ni-NTA groups for covalent or cleavable attachment of photoactivatable Fc-specific antibody binding proteins (PFcBPs) via their N-terminal cysteine residues or 6xHis tag, respectively. The antibodies photocrosslinked onto the PFcBP-modified chips specifically captured the target cells without nonspecific binding, and the captured cells grew 3D modes on the chips. The captured cells on the cleavable antibody-modified chips were easily recovered by treatment of commercial trypsin-EDTA solution. Under fluidic conditions using an antibody-modified micropost chip, the cells were mainly captured on the micropost walls of the chip rather than on the bottom of it. The presented method will also be applicable for immobilization of oriented antibodies on various microfluidic chips with different structures.
Collapse
|