1
|
Li J, Wang Y, Zheng X, Chen L, Sun Q, Peng D, Le T. Novel CoOOH-based fluorescent aptasensor for rapid and sensitive detection of sulfamethazine in environmental samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123290. [PMID: 37643510 DOI: 10.1016/j.saa.2023.123290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Sulfamethazine (SMZ) has been widely used in animal husbandry and exposed to water and soil environments, posing potential threat to human health and ecological environment. Hence, we designed a CoOOH-based aptasensor, the fluorescence resonance energy transfer between FAM-labeled aptamer and CoOOH was used to sensitively and selectively detect SMZ in water and soil environments. Molecular docking and molecular dynamics simulations were used to predict binding mechanisms of SMZ and aptamer. Under optimized conditions, the aptasensor exhibited high sensitivity and selectivity with a linear range of 5-40 ng/mL and a limit of detection of 2.43 ng/mL. The recoveries of the aptasensor were 84.6-115.8% in water and soil samples with relative standard deviations below 9%, and the detection results were highly consistent with high-performance liquid chromatography. Therefore, this developed aptasensor was a reliable tool and could be applied to monitoring of SMZ in environmental samples.
Collapse
Affiliation(s)
- Jiaqi Li
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Yarong Wang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Xiaoling Zheng
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Lingling Chen
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Qi Sun
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China.
| | - Dapeng Peng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Dtection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Tao Le
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China.
| |
Collapse
|
2
|
Ren D, Chen Q, Xia X, Xu G, Wei F, Yang J, Hu Q, Cen Y. CRISPR/Cas12a-based fluorescence aptasensor integrated with two-dimensional cobalt oxyhydroxide nanosheets for IFN-γ detection. Anal Chim Acta 2023; 1278:341750. [PMID: 37709435 DOI: 10.1016/j.aca.2023.341750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
Cytokine storm (CS) is a risky immune overreaction accompanied by significant elevations of pro-inflammatory cytokines including interferon-γ (IFN-γ), interleukin and tumor necrosis factor. Sensitive detection of cytokine is conducive to studying CS progress and diagnosing infectious diseases. In this study, we developed a tandem system combining aptamer, strand displacement amplification (SDA), CRISPR/Cas12a, and cobalt oxyhydroxide nanosheets (termed Apt-SCN tandem system) as a signal-amplified platform for IFN-γ detection. Owing to the stronger affinity, target IFN-γ bound specifically to the aptamer from aptamer-complementary DNA (Apt-cDNA) duplex. The cDNA released from the Apt-cDNA duplex initiated SDA, resulting in the generation of double-stranded DNA products that could activate the trans-cleavage activity of CRISPR/Cas12a. The activated CRISPR/Cas12a further cleaved FAM-labeled single-stranded DNA probe, preventing it from adhering to the cobalt oxyhydroxide nanosheets and recovering the fluorescence signal. Sensitive fluorometric analysis of IFN-γ was successfully performed with detection limit as low as 0.37 nM. Unlike traditional protein analysis methods, Apt-SCN tandem system incorporates multiple signal amplification techniques and may also be applicable for other cytokines assay. This study was the initial study to utilize SDA and CRISPR/Cas12a to detect IFN-γ, showing great potential for cytokines clinical assay and CS prevention.
Collapse
Affiliation(s)
- Dandan Ren
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Qiutong Chen
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Xinyi Xia
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Guanhong Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Fangdi Wei
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Jing Yang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Qin Hu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China.
| | - Yao Cen
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China; Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
3
|
Shen C, Zhong L, Wan P, Jia H, Liu B. Enzyme-free dual amplification biosensor based on functional nucleic acid and CDs/CoOOH for detection of leukemia fusion gene. Anal Chim Acta 2023; 1276:341623. [PMID: 37573112 DOI: 10.1016/j.aca.2023.341623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 08/14/2023]
Abstract
Acute promyelocytic leukemia (APL) is an acute myeloid leukemia (AML) with a specific fusion gene target, PML/RARα fusion gene (PML/RARα), which is formed by the translocation of chromosomes 15 and 17. Detection of PML/RARα is the most reliable parameter for the diagnosis, treatment adjustment, efficacy evaluation, prognosis analysis and relapse prediction of APL. In this study, a novel biosensor was constructed for rapid enzyme-free detection of PML/RARα using DNAzyme and carbon dots/cobalt oxhydroxide nanosheet complexs (CDs/CoOOH). In the detection system, the separated DNAzymes could specifically recognize and bind together by the PML/RARα to form a complete DNAzyme for shearing hairpin probe (HP), then generated trigger, which was the first signal amplification. Then, trigger could hybridize with the capture probe (CP) anchored to streptavidin (SA) modified microplate as well as fluorescence quenching signal probe (SP@CDs/CoOOH). Finally, ascorbic acid (AA) was added to decompose CoOOH and the fluorescence of CDs was released, which was the second signal amplification. Through the dual signal amplification of DNAzyme and CDs/CoOOH, PML/RARα could be detected quickly and sensitively, which overcame the limitation of protein enzyme in traditional fluorescence methods, showing potential clinical application value in the diagnosis and treatment of leukemia.
Collapse
Affiliation(s)
- Chenlan Shen
- Department of Laboratory Medicine, Med+X Center for Manufacturing, West China Precision Medicine Industrial Technology Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China; Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Liang Zhong
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Peng Wan
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China; Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Hengke Jia
- Department of Laboratory Medicine, Med+X Center for Manufacturing, West China Precision Medicine Industrial Technology Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Beizhong Liu
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China; Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
4
|
Chen H, Cai Z, Gui J, Tang Y, Yin P, Zhu X, Zhang Y, Li H, Liu M, Yao S. A redox reaction-induced ratiometric fluorescence platform for the specific detection of ascorbic acid based on Ag 2S quantum dots and multifunctional CoOOH nanoflakes. J Mater Chem B 2023; 11:1279-1287. [PMID: 36651433 DOI: 10.1039/d2tb02438a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this work, a ratiometric fluorescent nanoplatform for the detection of ascorbic acid (AA) was constructed based on the Ag2S quantum dots (QDs) and multifunctional hydroxyl cobalt oxide nanoflakes (CoOOH NFs). Ag2S QDs can be assembled on the surface of CoOOH NFs by electrostatic adsorption, resulting in the quenching of the NIR fluorescence emission of Ag2S QDs at 680 nm effectively through the inner filter effect (IFE). o-Phenylenediamine (OPD), a common substrate of oxidase-like (OXD) mimic, is rapidly oxidized into the fluorescent product of 2,3-diaminophenazine (DAP) with the appearance of an emission peak at 575 nm under the catalysis of CoOOH NFs. After AA was added, the fluorescence emission of DAP declined because of the decline in the OXD-like activity of CoOOH NFs due to the transformation of Co2+. Simultaneously, Ag2S QDs were released, accompanied by the recovery of red fluorescence. These two fluorescent signals can be excited at the same excitation wavelength, simplifying the detection procedure. Using F575/F680 as the readout, the quantification of AA can be realized with the linear range and detection limit of 0.2 μM-20 mM and 0.014 μM, respectively. The ratiometric fluorescence sensor can be effectively used to determine the content of AA in real samples such as juice and serum. This work integrates the in-situ formation of the fluorescent species via the catalysis of the nanozyme and the redox reaction to destroy the CoOOH NFs nanozyme as well as the two dimensional nanoflake induced turn-off-on strategy for Ag2S QDs, which provides a specific strategy for the selective detection of AA and may offer a reliable approach for the construction of other biosensing platforms.
Collapse
Affiliation(s)
- Haoyu Chen
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China.
| | - Zifu Cai
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China.
| | - Jialing Gui
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China.
| | - Ying Tang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China.
| | - Peng Yin
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China.
| | - Xiaohua Zhu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China.
| | - Youyu Zhang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China.
| | - Haitao Li
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China.
| | - Meiling Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China.
| | - Shouzhuo Yao
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China.
| |
Collapse
|
5
|
Ju Y, Tang Q, Yang Y, Zeng Y, Zhai Y, Wang H, Li Z, Li L. A label-free fluorescent aptasensor based on the AIE effect and CoOOH for ultrasensitive determination of carcinoembryonic antigen. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4576-4582. [PMID: 36341556 DOI: 10.1039/d2ay01146h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Highly sensitive and specific detection of cancer markers (such as carcinoembryonic antigen) is very important for early diagnosis and treatment of cancer. Herein, we developed a label-free fluorescent aptamer biosensor based on the aggregation-induced emission (AIE) effect and hydroxycobalt oxide (CoOOH) platform, and used it to detect carcinoembryonic antigen (CEA) with high sensitivity and specificity. Fluorescent ionic liquid Compound B can combine with a CEA aptamer (CEA-Apt) through electrostatic attraction and hydrophobic interaction to form an ionic liquid/aptamer (CEA-Apt/B) complex and produce the AIE effect, thereby enhancing the fluorescence intensity of B. CEA-Apt/B was adsorbed on the surface of CoOOH when CoOOH was added to the buffer solution, and the fluorescence of B was quenched. After adding CEA to the solution, CEA-Apt/B bound to CEA and separated from the surface of CoOOH because CEA-Apt had stronger affinity for CEA, resulting in fluorescence recovery of B. In the level range of 0.67-10000 pg mL-1, the fluorescence recovery intensity of the sensor had an excellent linear relationship with the level of CEA, and its LOD was 0.2 pg mL-1 (S/N = 3). In addition, the sensor had good selectivity and can be directly used to detect CEA in human serum with high accuracy.
Collapse
Affiliation(s)
- Yulong Ju
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Qiukai Tang
- Clinical Laboratory, Zhejiang Sian International Hospital, Jiaxing 314031, Zhejiang, China
| | - Yiwen Yang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Yanbo Zeng
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Yunyun Zhai
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Hailong Wang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Zuguang Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Lei Li
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| |
Collapse
|
6
|
Chen Y, Zhao L, Wu X, Dong Y, Wang GL. Self-coordinated nanozyme on Cu 3BiS 3 nanorods for high-performance aptasensing. Mikrochim Acta 2022; 189:419. [PMID: 36251095 DOI: 10.1007/s00604-022-05524-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/01/2022] [Indexed: 11/28/2022]
Abstract
A novel strategy is reported to access high-performance nanozymes via the self-coordination of ferrocyanides ([Fe(CN)6]4-) onto the surface of the Cu3BiS3 (CBS) nanorods. Notably, the in situ formed nanozymes had high catalytic activity, good stability, low cost, and easy mass production. The formed nanozyme catalyzed the oxidation of the typical chromogenic substrate of 3,3',5,5'-tetramethylbenzidine (TMB) with a distinctive absorption peak at 652 nm, accompanied by a blue color development. Moreover, the attachment of deoxyribonucleoside 5'-monophosphates (dNMP) beforehand onto the surface of CBS prevented coordination of ferrocyanides and resulted in the tunable formation of the nanozyme, thereby enabling the construction of an exquisite biosensing platform. Taking the aptasensing of chloramphenicol (CAP) as an example, the engineered nanozyme allowed the construction of a homogenous, label-free, and high-performance bioassay in terms of its convenience and high sensitivity. Under the optimal conditions, changes in the absorption intensity at 652 nm for the oxidized TMB provides a good linear correlation with the logarithm of CAP concentrations in the range 0.1 pM to 100 nM, and the limit of detection was 0.033 pM (calculated from 3σ/s). Considering a vast number of bioreactions can be connected to dNMP production, we expect the engineerable nanozyme as a universal signal transduction scaffold for versatile applications in bioassays. Through the attachment of deoxyribonucleoside 5'-monophosphate (dNMP) on the surface of CBS to regulate the generation of self-coordinated nanozyme CBS/BiHCF, a homogeneous, label-free, and high-performance universal aptasensing platform was constructed.
Collapse
Affiliation(s)
- Yanru Chen
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Lingling Zhao
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xiuming Wu
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yuming Dong
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Guang-Li Wang
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
7
|
Zhang Y, Li R, Yu S, Shang J, He Y, Wang Y, Liu X, Wang F. Sensitive Autocatalytic Hybridization Circuit for Reliable In Situ Intracellular Polynucleotide Kinase Imaging. Anal Chem 2022; 94:13951-13957. [PMID: 36170650 DOI: 10.1021/acs.analchem.2c03169] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Exploring the characteristic functions of polynucleotide kinase (PNK) could substantially promote the elucidation of PNK-related mechanistic pathways. Yet, the sensitive and reliable detection of intracellular PNK still presents a challenging goal. Herein, we propose a simple autocatalytic hybridization circuit (AHC) for in situ intracellular imaging of PNK with high reliability. The AHC amplifier consists of two mutually activated hybridization chain reaction (HCR) modules for magnified signal transduction. The PNK is transduced into initiator I by phosphorylation and cleavage of mediator Hp. Initiator I activates the initial HCR-1 module, leading to the formation of long dsDNA nanowires that carry numerous initiator T. Then, T-initiated feedback HCR-2 module generates branched products that contain plentiful initiator I, thus realizing an autocatalytic HCR amplification reaction. Simultaneously, the HCR-2 module is also assembled as a versatile signal transduction unit for generating the amplified readout. Based on the mutually sustained accumulation of two initiators for the reciprocal activation of two reaction modules, continuous signal amplification and assembly of high-molecular-weight copolymers endow the AHC system with high sensitivity and robustness for the PNK assay. Moreover, the PNK-sensing AHC system achieves reliable imaging of intracellular PNK, thus showing great potential to decipher the correlation between PNK and related diseases.
Collapse
Affiliation(s)
- Yanping Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Ruomeng Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Shanshan Yu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Jinhua Shang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yuqiu He
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yushi Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Xiaoqing Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.,Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430072, P. R. China
| |
Collapse
|
8
|
Zhang J, Li Y, Gong X, Wang Y, Fu W. Colorimetric detection of total antioxidants in green tea with oxidase-mimetic CoOOH nanorings. Colloids Surf B Biointerfaces 2022; 218:112711. [PMID: 35907355 DOI: 10.1016/j.colsurfb.2022.112711] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/15/2022] [Accepted: 07/18/2022] [Indexed: 11/19/2022]
Abstract
Green tea is a popular beverage and is widely consumed due to its taste and antioxidative polyphenols. Herein, a smartphone-based colorimetric reader using cobalt oxyhydroxide (CoOOH) nanorings has been successfully applied to detect antioxidants in green tea with high reliability and robustness. By exploiting the oxidase-mimicking activity, the as-synthesized CoOOH nanorings replaces natural enzymes to directly catalyze oxidate colorless 3,3 ´ ,5,5 ´ -tetramethylbenzidine (TMB), while antioxidants can disintegrate CoOOH, leading to an antioxidant concentration-dependent color change. Benefiting from the CoOOH nanorings-based colorimetric strategy, a smartphone-assistant nanosensor was devised for portable and visual detection of antioxidants in green tea. The proposed method can be extended to visual detection of a diverse range of diseases by responding to their specific antioxidant, and thus provide a pivotal disease toolbox that is compatible for development at the point-of-care.
Collapse
Affiliation(s)
- Jiajia Zhang
- Engineering Research Center for Biotechnology of Active Substances (Ministry of Education), Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, PR China
| | - Yongfei Li
- Engineering Research Center for Biotechnology of Active Substances (Ministry of Education), Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, PR China
| | - Xue Gong
- Engineering Research Center for Biotechnology of Active Substances (Ministry of Education), Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, PR China
| | - Yi Wang
- Engineering Research Center for Biotechnology of Active Substances (Ministry of Education), Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, PR China.
| | - Wensheng Fu
- Engineering Research Center for Biotechnology of Active Substances (Ministry of Education), Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, PR China.
| |
Collapse
|
9
|
Yao QF, Zhu QY, Bu ZQ, Liu QY, Quan MX, Huang WT. DNA nanosensing systems for tunable detection of metal ions and molecular crypto-steganography. Biosens Bioelectron 2022; 195:113645. [PMID: 34571483 DOI: 10.1016/j.bios.2021.113645] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022]
Abstract
Various sensing platforms based on molecular or nanosystems are widely exploited through molecular diversity and specific recognition. However, it is extremely challenging to develop systems with tunable sensing ability and utilize the systems as information carriers/covers for communication and safety. Herein, DNA nanosensing systems based on cobalt oxyhydroxide (CoOOH) nanosheets were constructed for tunable detection and valence distinction of metal ions, molecular crypto-steganography, and information coding. CoOOH nanosheets absorb fluorescence-labeled single-stranded DNA with different bases and lengths, resulting in fluorescence quenching. The binding priority of bases with CoOOH nanosheets was guanine (G) > cytosine (C) > adenine (A) ≈ thymine (T) and the short chain excelled long chain. Due to the differences in the interaction among CoOOH, DNA, metal ions and variability of DNA bases, various DNA-CoOOH nanosystems have significantly different selective response patterns (that is selectivity) to metal ions and tunable linear ranges to Fe3+, Hg2+, Cr3+. Interestingly, by utilizing their molecular diversity, recognition, selective patterns, DNA-CoOOH sensing systems can be served as doubly cryptographic and steganographic systems to implement information encoding, encryption, and hiding and to reversely improve the selectivity of metal ions. This study provides an idea and platform for adjustable detection and valence distinction of metal ions, and gives a set of "molecular programming languages" for designing intelligent programmable sensing and molecular information communication and safety systems.
Collapse
Affiliation(s)
- Qing Feng Yao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Qiu Yan Zhu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Zhen Qi Bu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Qing Yu Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Min Xia Quan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Wei Tao Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, PR China.
| |
Collapse
|
10
|
Yuan X, Bai F, Ye H, Zhao H, Zhao L, Xiong Z. Smartphone-assisted ratiometric fluorescence sensing platform and logical device based on polydopamine nanoparticles and carbonized polymer dots for visual and point-of-care testing of glutathione. Anal Chim Acta 2021; 1188:339165. [PMID: 34794560 DOI: 10.1016/j.aca.2021.339165] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/17/2021] [Accepted: 10/09/2021] [Indexed: 01/11/2023]
Abstract
As a crucial biothiol, glutathione (GSH) plays a key role in the organisms. Monitoring GSH level is of great significance for disease diagnosis and biomedical research. In this work, polydopamine (PDA) nanoparticles-red fluorescent carbonized polymer dots (r-CPDs) based ratiometric fluorescence sensing platform was constructed and employed for GSH assay. Dopamine (DA) could be oxidized by cobalt oxyhydroxide (CoOOH) nanosheets and further polymerized into PDA nanoparticles with green fluorescence. However, in the presence of GSH, CoOOH nanosheets were reduced and decomposed, which prevented the production of PDA nanoparticles. In the sensing system, green-emitting PDA nanoparticles were employed as a response unit and r-CPDs were used as an internal reference unit. With the addition of GSH, the green fluorescence of PDA nanoparticles decreased as well as the red fluorescence of system remained relatively stable. Importantly, a distinct fluorescence color evolution from green to red was presented with a serious of GSH concentrations. Based on this, a portable smartphone-assisted ratiometric chromaticity analytical method was developed to achieve the on-site visual detection of GSH. Both the established ratiometric fluorescence and ratiometric chromaticity sensing methods for GSH assay have the merits of wide linear range, high sensitivity and excellent accuracy, which are suitable for the determination of GSH in human serum and exhibit great application potential in rapid and accurate monitoring of the GSH levels in clinical. Moreover, an ingenious logical device reflecting GSH levels was designed based on the two different fluorescence signals, which provided a new strategy for the intelligent online detection of GSH in complex biological matrices.
Collapse
Affiliation(s)
- Xucan Yuan
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning, 110016, PR China
| | - Fujuan Bai
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning, 110016, PR China
| | - Heng Ye
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning, 110016, PR China
| | - Hanqing Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning, 110016, PR China
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning, 110016, PR China.
| | - Zhili Xiong
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning, 110016, PR China.
| |
Collapse
|
11
|
Huang C, Shen G, Ding S, Kan A, Jiang D, Jiang W. Primer-template conversion-based cascade signal amplification strategy for sensitive and accurate detection of polynucleotide kinase activity. Anal Chim Acta 2021; 1187:339139. [PMID: 34753572 DOI: 10.1016/j.aca.2021.339139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/25/2021] [Accepted: 10/04/2021] [Indexed: 12/29/2022]
Abstract
Here, a primer-template conversion-based cascade signal amplification strategy is described for the sensitive detection of polynucleotide kinase (PNK) activity. This strategy integrated rolling circle amplification (RCA) and multiple-repeated-strand displacement amplification (MRSDA) with G-quadruplex based fluorescence lighting-up assay. A delicate dumbbell-shaped DNA probe with 5'-hydroxyl terminus was designed, in which G-quadruplex and half recognition site of nicking enzyme Nb.BbvCI were encoded in two loops respectively. Under the action of PNK, the 5' terminus on dumbbell probe was firstly phosphorylated, and then the dumbbell was cyclized with the catalyzation of T4 ligase to become the RCA template. The RCA process produced multiple copies of the prolonged primer. After that, under the assistance of nicking enzyme Nb.BbvCI, a primer-template conversion occurred, which converted the primer and template of RCA into the template and primer of the subsequent MRSDA, respectively. The MRSDA generated multiple repeated ssDNA sequences which possessed G-quadruplexes for outputting signal by lighting-up fluorescence of thioflavin T (ThT). The cascade signal amplification of RCA and MRSDA provided high detection sensitivity, and the target-dependence of template in cascade signal amplification led to a low background. The method showed excellent detection limit of 0.2 × 10-6 U μL-1 in buffer and 5 cells in cell lysate sample. Moreover, this method displayed favorable selectivity when interfering proteins were present. The developed strategy has good practical potential for PNK activity detection in clinical diagnosis and medical research.
Collapse
Affiliation(s)
- Chao Huang
- Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Guohong Shen
- Breast Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, 250013, Jinan, PR China
| | - Shengyong Ding
- Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Ailing Kan
- School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, PR China
| | - Dafeng Jiang
- Department of Physical and Chemical Testing, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, 250014, Jinan, PR China.
| | - Wei Jiang
- Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China; School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, PR China.
| |
Collapse
|
12
|
Khojastehnezhad A, Taghavi F, Yaghoobi E, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. Recent achievements and advances in optical and electrochemical aptasensing detection of ATP based on quantum dots. Talanta 2021; 235:122753. [PMID: 34517621 DOI: 10.1016/j.talanta.2021.122753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/07/2021] [Accepted: 07/28/2021] [Indexed: 12/23/2022]
Abstract
The design and fabrication of high sensitive and selective biosensing platforms areessential goals to precisely recognize biomaterials in biological assays. In particular, determination of adenosine triphosphate (ATP) as the main energy currency of the cells and one of the most important biomolecules in living organisms is a pressing need in advanced biological detection. Recently, aptamer-based biosensors are introduced as a new direct strategy in which the aptamers (Apts) directly bind to the different targets and detect them on the basis of conformational changes and physical interactions. They can also be conjugated to optical and electronic probes such as quantum dot (QD) nanomaterials and provide unique QD aptasensing platforms. Currently, these Apt-based biosensors with excellent recognition features have attracted extensive attention due to the high specificity, rapid response and facile construction. Therefore, in this review article, recent achievements and advances in aptasensing detection of ATP based on different detection methods and types of QDs are discussed. In this regard, the optical and electrochemical aptasensors have been categorized based on detection methods; fluorescence (FL), electrochemiluminescence (ECL) and photoelectrochemical (PEC) and they have been also divided to two main groups based on QDs; metal-based (M-based) and carbon-based (C-based) materials. Then, their advantages and limitations have been highlighted, compared and discussed in detail.
Collapse
Affiliation(s)
- Amir Khojastehnezhad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh Taghavi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Yaghoobi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Zhang H, Han Y, Yang Y, Chen J, Qiu H. Construction of a Carbon Dots/Cobalt Oxyhydroxide Nanoflakes Biosensing Platform for Detection of Acid Phosphatase. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10529-10537. [PMID: 34428054 DOI: 10.1021/acs.langmuir.1c01512] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Because abnormal acid phosphatase (ACP) can disrupt the normal physiological processes, determination of ACP level is extremely important for early diagnosis, treatment, and prognostic evaluation of diseases. Herein, a fluorescence platform for monitoring ACP level was established based on the assembly of red-emitting carbon dots (RCDs) on cobalt oxyhydroxide (CoOOH) nanoflakes. RCDs displayed excellent water solubility, pH stability, salt resistance, and photobleaching resistance. Interestingly, the fluorescence of the RCDs assembled on the surface of the CoOOH nanoflakes could be quenched due to the energy transfer caused by the nanoflakes. However, the ascorbic acid (AA) produced by the hydrolysis of ascorbic acid-2-phosphate trisodium salt (AAP) catalyzed by ACP could quickly and effectively reduce CoOOH nanoflakes, leading to the fluorescence recovery of the RCDs. Therefore, an "off-on" biosensor platform for rapid, sensitive, and selective detection of ACP was constructed with a limit of detection of 0.25 mU/L. With the assistance of the biosensor, the level of ACP in human serum samples was evaluated, and the spike recovery values ranged from 94.0% to 104.5%.
Collapse
Affiliation(s)
- Haijuan Zhang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology, Lanzhou University, Lanzhou 730000, China
| | - Yangxia Han
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yali Yang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
14
|
Recent applications of quantum dots in optical and electrochemical aptasensing detection of Lysozyme. Anal Biochem 2021; 630:114334. [PMID: 34384745 DOI: 10.1016/j.ab.2021.114334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 11/21/2022]
Abstract
Lysozyme (Lyz) is a naturally occurring enzyme that operates against Gram-positive bacteria and leads to cell death. This antimicrobial enzyme forms the part of the innate defense system of nearly all animals and exists in their somatic discharges such as milk, tears, saliva and urine. Increased Lyz level in serum is an important indication of several severe diseases and so, precise diagnosis of Lyz is an urgent need in biosensing assays. Up to know, various traditional and modern techniques have been introduced for Lyz determination. Although the traditional methods suffer from some significant limitations such as time-consuming, arduous, biochemical screening, bacterial colony isolation, selective enrichment and requiring sophisticated instrumentation or isotope labeling, some new modern approaches like aptamer-based biosensors (aptasensors) and quantum dot (QD) nanomaterials are the main goal in Lyz detection. Electrochemical and optical sensors have been highlighted because of their adaptability and capability to decrease the drawbacks of common methods. Using an aptamer-based biosensor, sensor selectivity is enhanced due to the specific recognition of the analyte. Thereby, in this review article, the recent advances and achievements in electrochemical and optical aptasensing detection of Lyz based on different QD nanomaterials and detection methods have been discussed in detail.
Collapse
|
15
|
Cai X, Peng F, Luo X, Ye X, Zhou J, Lang X, Shi M. Understanding the Evolution of Cobalt-Based Metal-Organic Frameworks in Electrocatalysis for the Oxygen Evolution Reaction. CHEMSUSCHEM 2021; 14:3163-3173. [PMID: 34101996 DOI: 10.1002/cssc.202100851] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/03/2021] [Indexed: 06/12/2023]
Abstract
Metal-organic frameworks (MOFs) have attracted increasing attention as a promising electrode material for the oxygen evolution reaction (OER). Comprehending catalytic mechanisms in the OER process is of key relevance for the design of efficient catalysts. In this study, two types of Co based MOF with different organic ligands (ZIF-67 and CoBDC; BDC=1,4-benzenedicarboxylate) are synthesized as OER electrocatalysts and their electrochemical behavior is studied in alkaline solution. Physical characterization indicates that ZIF-67, with tetrahedral Co sites, transforms into α-Co(OH)2 on electrochemical activation, which provides continuous active sites in the following oxidation, whereas CoBDC, with octahedral sites, evolves into β-Co(OH)2 through hydrolysis, which is inert for the OER. Electrochemical characterization reveals that Co sites coordinated by nitrogen from imidazole ligands (Co-N coordination) are more inclined to electrochemical activation than Co-O sites. The successive exposure and accumulation of real active sites is responsible for the gradual increase in activity of ZIF-67 in OER. This work not only indicates that CoMOFs are promising OER electrocatalysts but also provides a reference system to understand how metal coordination in MOFs affects the OER process.
Collapse
Affiliation(s)
- Xiaowei Cai
- The State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, P. R. China
| | - Fei Peng
- The State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, P. R. China
| | - Xingyu Luo
- The State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, P. R. China
| | - Xuejie Ye
- The State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, P. R. China
| | - Junxi Zhou
- The State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, P. R. China
| | - Xiaoling Lang
- Fujian Provincial Key Laboratory of Clean Energy Materials, Longyan, 364000, Fujian, P. R. China
| | - Meiqin Shi
- The State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, P. R. China
| |
Collapse
|
16
|
Roushani M, Hosseini H, Hajinia Z, Rahmati Z. Rationally designed of hollow nitrogen doped carbon nanotubes double shelled with hierarchical nickel hydroxide nanosheet as a high performance surface substrate for cortisol aptasensing. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Opoku F, Govender PP. SF 6 decomposed gas sensing performance of van der Waals layered cobalt oxyhydroxide: insights from a computational study. J Mol Model 2021; 27:158. [PMID: 33963473 DOI: 10.1007/s00894-021-04770-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/21/2021] [Indexed: 11/24/2022]
Abstract
The detection of SF6 decomposition products plays a significant part in identifying and assessing the electric discharge faults in SF6 insulation equipment. We performed dispersion corrected density functional theory calculations to study the adsorption performance of CoOOH upon SO2, SF4, SOF2, CF4, and SO2F2 toxic gases, to investigate their potential application as a gas sensor. The results clearly show a weak force between the CoOOH sheet, and the molecular gas with moderate adsorption strength enhances the desorption processes. According to Löwdin charge population analysis, electrons transfer from the molecular gas to the CoOOH surface, where the molecular gas behaves like an electron donor. The lower bandgap energy of the adsorption systems compared with pristine CoOOH significantly increases its electrical conductivity and gas sensing performance. The higher charge transfer and adsorption energy of the SOF2 adsorption system compared with the other four molecular gas is due to orbital hybridization around the Fermi energy. The theoretical computed adsorption energy with ultrahigh sensitivity and fast recovery time suggests that SF6 decomposed gases reusability is achieved with CoOOH as a resistance-type gas sensor.
Collapse
Affiliation(s)
- Francis Opoku
- Department of Chemical Sciences (formerly Department of Applied Chemistry), University of Johannesburg, P.O. Box 17011, Doornfontein Campus, Johannesburg, 2028, South Africa.
| | - Penny P Govender
- Department of Chemical Sciences (formerly Department of Applied Chemistry), University of Johannesburg, P.O. Box 17011, Doornfontein Campus, Johannesburg, 2028, South Africa.
| |
Collapse
|
18
|
Mei T, Zhang S, Sun J, Hu Y. 2D CoOOH nanosheets as oxidase mimic for the colorimetric assay of sulfite in food. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:764-768. [PMID: 33566878 DOI: 10.1039/d1ay00039j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Here, we report a rapid, sensitive and selective colorimetric assay for sulfite (SO32-) based on the intrinsic oxidase-like activity of 2D cobalt oxyhydroxide nanosheets (CoOOH NSs). The 2D CoOOH nanozyme could directly oxidize 3,3',5,5'-tetramethylbenzidine (TMB) into blue products (TMBox) in an aerobic solution without H2O2. Interestingly, the presence of SO32- could effectively inhibit the CoOOH NS-O2-TMB reaction system and thus caused changes in color and absorbance, which facilitated a colorimetric sensor for sulfite. After optimizing detection conditions, a facile and robust approach was developed for SO32- detection in food.
Collapse
Affiliation(s)
- Tianxiao Mei
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Sheng Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Jie Sun
- Shanghai Blood Center, Shanghai 200051, China
| | - Yihui Hu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China. and Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
19
|
Yuan X, Sun Y, Zhao P, Zhao L, Xiong Z. Redox-induced target-dependent ratiometric fluorescence sensing strategy and logic gate operation for detection of α-glucosidase activity and its inhibitor. Dalton Trans 2021; 50:9426-9437. [PMID: 34132726 DOI: 10.1039/d1dt01299a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A target-dependent ratiometric fluorescence sensing strategy was designed and fabricated based on a redox reaction for highly sensitive detection of α-glucosidase (α-Glu) activity and its inhibitor. In this study, silicon quantum dots (SiQDs) with excellent optical properties and two-dimensional (2D) cobalt oxyhydroxide (CoOOH) nanosheets were successfully prepared and exploited for the detection of analytes. The CoOOH nanosheets are able to oxidize o-phenylenediamine (OPD), and the product 2,3-diaminophenazine (oxOPD) not only quenches the blue fluorescence of SiQDs (440 nm) by the inner filter effect (IFE) but also emits orange fluorescence (565 nm). α-Glu can catalytically hydrolyze l-ascorbic acid-2-O-α-d-glucopyranosyl (AA2G) to produce ascorbic acid (AA). The redox between AA and CoOOH could lead to the damage of CoOOH nanosheets, thereby inhibiting the oxidization of OPD and effectively preserving the fluorescence of SiQDs. Thus, ratiometric detection of α-Glu activity was achieved according to the AA-dependent dual-fluorescence signal responses. Under the optimal conditions, good linearity was obtained in the range of 0.01-6 U mL-1 with a detection limit of 0.004 U mL-1. The IC50 of α-Glu inhibitor acarbose was estimated to be 0.216 μM. The method provides high sensitivity and selectivity for the determination of α-Glu activity and its inhibitor, which has great application potential in clinical diagnosis and anti-diabetic drug screening. Furthermore, a logic gate analytical device was successfully established based on double fluorescence signals, which makes it possible to monitor α-Glu activity by intelligence equipment.
Collapse
Affiliation(s)
- Xucan Yuan
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning 110016, P. R. China.
| | - Yi Sun
- Beijing Institute for Drug Control, 102206, P. R. China
| | - Pengfei Zhao
- Department of Clinical Pharmacy, Weifang People's Hospital, 151 Guangwen Street Kuiwen District, Weifang, Shandong 261031, P. R. China
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning 110016, P. R. China.
| | - Zhili Xiong
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning 110016, P. R. China.
| |
Collapse
|
20
|
Yuan L, Guo W, Fu Y, Zhang Z, Wang P, Wang J. A rapid colorimetric method for determining glutathione based on the reaction between cobalt oxyhydroxide nanosheets and 3,3′,5,5′-Tetramethylbenzidine. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
A FRET-based aptasensor for ochratoxin A detection using graphitic carbon nitride quantum dots and CoOOH nanosheets as donor-acceptor pair. Talanta 2020; 218:121159. [DOI: 10.1016/j.talanta.2020.121159] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/03/2020] [Accepted: 05/10/2020] [Indexed: 12/19/2022]
|
22
|
Mao J, Chen X, Xu H, Xu X. DNAzyme-driven DNA walker biosensor for amplified electrochemical detection of T4 polynucleotide kinase activity and inhibition. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
23
|
Saberi Z, Rezaei B, Rezaei P, Ensafi AA. Design a fluorometric aptasensor based on CoOOH nanosheets and carbon dots for simultaneous detection of lysozyme and adenosine triphosphate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 233:118197. [PMID: 32146425 DOI: 10.1016/j.saa.2020.118197] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/20/2020] [Accepted: 02/23/2020] [Indexed: 06/10/2023]
Abstract
Simultaneous detection of biomarkers and biomolecules with great analytical performance still is challenging. A simple fluorometric dual-functional aptasensor was designed to detect Lysozyme (LYS) and adenosine triphosphate (ATP) as models of a protein and a small molecule simultaneously. The sensing principle of the aptasensor is based on the interactions between cobalt oxyhydroxide CoOOH nanosheets as fluorescence quencher and carbon dots (CDs) as fluorophores. The aptamer labeled with CDs was able to assemble on CoOOH nanosheets and consequently, the fluorescence signal was quenched. With addition target analytes to the system, the aptamers folded around of targets with a strong and specific affinity. Therefore, the labeled aptamer with CDs was detached from CoOOH nanosheets and the fluorescence signal was restored. The fluorescence spectral overlap of these two CDs is the main limitation for the simultaneous analysis. The least squared support vector machine (LS-SVM) was applied to resolve this problem. Under optimal conditions, when LS-SVR was used, detection limits were found 4.0 and 1.8 nmol L-1 for ATP and LYS. The parallel biosensor is capable of monitoring ATP and LYS levels in the biological samples with satisfactory results.
Collapse
Affiliation(s)
- Zeinab Saberi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran
| | - Behzad Rezaei
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran.
| | - Parisa Rezaei
- Department of Medical Laboratory Science, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Asghar Ensafi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran
| |
Collapse
|
24
|
Trinh MP, Carballo JG, Adkins GB, Guo K, Zhong W. Physical and chemical template-blocking strategies in the exponential amplification reaction of circulating microRNAs. Anal Bioanal Chem 2020; 412:2399-2412. [PMID: 32072213 PMCID: PMC7141974 DOI: 10.1007/s00216-020-02496-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/28/2020] [Accepted: 02/06/2020] [Indexed: 01/16/2023]
Abstract
The detection of circulating miRNA through isothermal amplification wields many attractive advantages over traditional methods, such as reverse transcription RT-qPCR. However, it is challenging to control the background signal produced in the absence of target, which severely hampers applications of such methods for detecting low abundance targets in complex biological samples. In the present work, we employed both the cobalt oxyhydroxide (CoOOH) nanoflakes and the chemical modification of hexanediol to block non-specific template elongation in exponential amplification reaction (EXPAR). Adsorption by the CoOOH nanoflakes and the hexanediol modification at the 3' end effectively prevented no-target polymerization on the template itself and thus greatly improved the performance of EXPAR, detecting as low as 10 aM of several miRNA targets, including miR-16, miR-21, and miR-122, with the fluorescent DNA staining dye of SYBR Gold™. Little to no cross-reactivity was observed from the interfering strands present in 10-fold excess. Besides contributing to background reduction, the CoOOH nanoflakes strongly adsorbed nucleic acids and isolated them from a complex sample matrix, thus permitting successful detection of the target miRNA in the serum. We expect that simple but sensitive template-blocking EXPAR could be a valuable tool to help with the discovery and validation of miRNA markers in biospecimens. Graphical abstract.
Collapse
Affiliation(s)
- Michael P Trinh
- Department of Chemistry, University of California, Riverside, Riverside, CA, 92521, USA
| | - Jocelyn G Carballo
- Department of Chemistry, University of California, Riverside, Riverside, CA, 92521, USA
| | - Gary B Adkins
- Department of Chemistry, University of California, Riverside, Riverside, CA, 92521, USA
| | - Kaizhu Guo
- Department of Chemistry, University of California, Riverside, Riverside, CA, 92521, USA
| | - Wenwan Zhong
- Department of Chemistry, University of California, Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
25
|
Xue X, Luo M, Rao H, Xue Z, Wang B, Liu X, Lu X. Enhanced Thermometric Sensor for Arsenate Analysis Based on Dual Temperature Readout Signaling Strategy. Anal Chem 2020; 92:4672-4680. [PMID: 32090547 DOI: 10.1021/acs.analchem.0c00358] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
New methods for portable detection of arsenate are still in urgent need. Herein, we explored a simple but sensitive thermometric strategy for arsenate determination without complex instruments and skilled technicians. Cobalt oxyhydroxide (CoOOH) nanoflakes, can ingeniously decompose hydrogen peroxide into oxygen in a sealed reaction vessel, accompanied by marked pressure and significant temperature increase due to the exothermic reaction effect (ΔH = -98.2 kJ/mol). The increased pressure then compelled a certain amount of H2O overflowing from the drainage device into another vessel, leading to a significant temperature decrease due to the preloaded ammonium nitrate (NH4NO3) and its good dissolution endothermic effect (ΔH = 25.4 kJ/mol). In the presence of arsenate, the catalytic activity of CoOOH nanoflakes for H2O2 decomposition was inhibited dramatically, resulting in an obvious decrease of the pressure, weighting water and temperature response. The two temperature responses with increasing and decreasing feature were easily measured through a common thermometer, and exhibited an effective signaling amplification via coupling both "signal-on" and "signal-off" temperature readout elements. The obtained dual superimposing temperature readout exhibits a good linear with the concentration of arsenate with a lower detection limit (51 nM, 3.8 ppb). Compared to the inductively coupled plasma mass spectrometry, this enhanced thermometric strategy provides a simple, rapid, convenient, low cost, and portable platform for sensing arsenate in real environmental water.
Collapse
Affiliation(s)
- Xin Xue
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070 (China)
| | - Mingyue Luo
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070 (China)
| | - Honghong Rao
- School of Chemistry & Environmental Engineering, Lanzhou City University, Lanzhou, 730070 (China)
| | - Zhonghua Xue
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070 (China)
| | - Baodui Wang
- Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, 730000 (China)
| | - Xiuhui Liu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070 (China)
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070 (China)
| |
Collapse
|
26
|
LIU ZL, TAO CA, WANG JF. Progress on Applications of G-quadruplex in Biochemical Analysis. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1016/s1872-2040(19)61212-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
27
|
|
28
|
Zhang XP, Zhao CX, Shu Y, Wang JH. Gold Nanoclusters/Iron Oxyhydroxide Platform for Ultrasensitive Detection of Butyrylcholinesterase. Anal Chem 2019; 91:15866-15872. [DOI: 10.1021/acs.analchem.9b04304] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xiao-Ping Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, P. R. China
| | - Chen-Xi Zhao
- Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, P. R. China
| | - Yang Shu
- Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, P. R. China
| | - Jian-Hua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, P. R. China
| |
Collapse
|
29
|
The determination of α-glucosidase activity through a nano fluorescent sensor of F-PDA−CoOOH. Anal Chim Acta 2019; 1080:170-177. [DOI: 10.1016/j.aca.2019.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/05/2019] [Accepted: 07/06/2019] [Indexed: 12/20/2022]
|
30
|
Electrochemical detection of T4 polynucleotide kinase based on target-assisted ligation reaction coupled with silver nanoparticles. Anal Chim Acta 2019; 1085:85-90. [DOI: 10.1016/j.aca.2019.07.072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 11/20/2022]
|
31
|
Nucleic acid-based fluorescent methods for the determination of DNA repair enzyme activities: A review. Anal Chim Acta 2019; 1060:30-44. [DOI: 10.1016/j.aca.2018.12.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/09/2018] [Accepted: 12/18/2018] [Indexed: 12/13/2022]
|
32
|
Fluorometric and resonance Rayleigh scattering dual-mode bioprobe for determination of the activity of alkaline phosphatase based on the use of CoOOH nanoflakes and cobalt(II)-dependent DNAzyme-assisted amplification. Mikrochim Acta 2019; 186:437. [DOI: 10.1007/s00604-019-3528-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/19/2019] [Indexed: 12/30/2022]
|
33
|
Wen SH, Zhong XL, Wu YD, Liang RP, Zhang L, Qiu JD. Colorimetric Assay Conversion to Highly Sensitive Electrochemical Assay for Bimodal Detection of Arsenate Based on Cobalt Oxyhydroxide Nanozyme via Arsenate Absorption. Anal Chem 2019; 91:6487-6497. [PMID: 31037939 DOI: 10.1021/acs.analchem.8b05121] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This study reports a novel and convenient bimodal method for label-free and signal-off detection of arsenate in environmental samples. Cobalt oxyhydroxide (CoOOH) nanoflakes with facile preparation and intrinsic peroxidase-like activity as nanozyme can efficiently catalyze the conversion of chromogenic substrate such as 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) with the presence of H2O2 into green-colored oxidation products. CoOOH nanoflakes can specifically bind with arsenate via electrostatic attraction and As-O bond interaction, which gives rise to inhibition of the peroxidase-like activity of CoOOH. Thus, through arsenate specific inhibition of CoOOH nanozyme toward ABTS catalysis, a simple colorimetric method was developed for arsenate detection with a detection limit of 3.72 ppb. Based on the system of CoOOH nanozyme and ABTS substrate, this colorimetric method can be converted into an electrochemical sensor for arsenate assay by the utilization of CoOOH nanoflake-modified electrode. The electrochemical measurement can be realized by chronoamperometry, which showed more sensitive and a lower limit of detection as low as 56.1 ppt. The applicability of this bimodal method was demonstrated by measuring arsenate and total arsenic in different real samples such as natural waters and soil extracted solutions, and the results are of satisfactory accuracy as confirmed by inductively coupled plasma mass spectrometry analysis. The bimodal strategy offers obvious advantages including a label-free step, convenient operation, on-site assay, low cost, and high sensitivity, which is promising for reliable detection of arsenate and total arsenic in environmental samples.
Collapse
Affiliation(s)
- Shao-Hua Wen
- College of Chemistry , Nanchang University , Nanchang 330031 , China
| | - Xiao-Li Zhong
- College of Chemistry , Nanchang University , Nanchang 330031 , China
| | - Yi-Di Wu
- College of Chemistry , Nanchang University , Nanchang 330031 , China
| | - Ru-Ping Liang
- College of Chemistry , Nanchang University , Nanchang 330031 , China
| | - Li Zhang
- College of Chemistry , Nanchang University , Nanchang 330031 , China
| | - Jian-Ding Qiu
- College of Chemistry , Nanchang University , Nanchang 330031 , China.,Engineering Technology Research Center for Environmental Protection Materials and Equipment of Jiangxi Province , Pingxiang University , Pingxiang 337055 , China
| |
Collapse
|
34
|
Cobalt oxyhydroxide modified with poly-β-cyclodextrin and a cyanine dye as a nanoplatform for two-photon imaging of ascorbic acid in living cells and tissue. Mikrochim Acta 2019; 186:201. [PMID: 30796531 DOI: 10.1007/s00604-019-3320-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/13/2019] [Indexed: 01/26/2023]
Abstract
This article describes the development of several nanoconjugates composed of cobalt (III) oxyhydroxide and DEASPI/βCDP, where DEASPI stands for the dye trans-4-[p-(N,N-diethylamino)styryl]-N-methylpyridinium, and βCDP stands for β-cyclodextrin. The material enables sensitive fluorometric detection and 3D imaging of ascorbic acid (AA) in biological samples. A nanomicelle composed of DEASPI and βCDP was prepared to act as a two-photon absorbance (TPA) nanofluorophore with desirable two-photon-sensitized fluorescence, high penetration depth, and excellent cell-permeability). The CoOOH nanoflakes were placed on the surface of the nanomicelle to act as both a quencher of fluorescence and as the recognition unit for AA. In the presence of AA, the CoOOH nanoflakes are reduced to Co (II), and this triggers the recovery of fluorescence. This new nanoprobe exhibits amplified two-photon fluorescence (excitation at 840 nm; emission at 565 nm), high sensitivity, and good selectivity. In-vitro imaging of endogenous AA was demonstrated in living HeLa cells. It was also employed to 3D imaging of exogenous AA in tissue by two-photon excitation microscopy to a depth of up to 320 μm. In our perception, this nanoprobe represents a valuable tool for elucidating the roles of AA in biochemical and clinical studies. Graphical abstract Schematic presentation of the preparation of a novel Poly β-Cyclodextrin/TPdye conjugated with cobalt oxyhydroxide nanoplatform and its application for high sensitive and two-photon 3D imaging of ascorbic acid (AA) in living cells and deep tissues.
Collapse
|
35
|
Photoelectrochemical determination of the activity of alkaline phosphatase by using a CdS@graphene conjugate coupled to CoOOH nanosheets for signal amplification. Mikrochim Acta 2019; 186:73. [DOI: 10.1007/s00604-018-3182-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/14/2018] [Indexed: 01/05/2023]
|
36
|
Li J, Ma J, Zhang Y, Zhang Z, He G. A fluorometric method for determination of the activity of T4 polynucleotide kinase by using a DNA-templated silver nanocluster probe. Mikrochim Acta 2019; 186:48. [DOI: 10.1007/s00604-018-3157-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 12/07/2018] [Indexed: 12/31/2022]
|
37
|
Zhang XX, Zhu QY, Lu JY, Zhang FR, Huang WT, Ding XZ, Xia LQ. The Boolean logic tree of molecular self-assembly system based on cobalt oxyhydroxide nanoflakes for three-state logic computation, sensing and imaging of pyrophosphate in living cells and in vivo. Analyst 2018; 144:274-283. [PMID: 30398257 DOI: 10.1039/c8an01565a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sensing of pyrophosphate (PPi) is helpful to better understand many life processes and diagnose various early-stage diseases. However, many traditional reported methods based on artificial receptors for sensing of PPi exhibit some disadvantages including difficulties in designing appropriate binding sites and complicated multi-step assembly/functionalization. Thus, it is significantly important and a big challenge to know how to use a simple molecular self-assembly or an interaction system to solve the above-mentioned limits to achieve the quantitative analysis of specific substances in the system. Based on the natural connection and similarity (such as stimulus responsiveness) between sensing and logic computing, in this study, the Boolean logic tree of molecular self-assembly system based on the cobalt oxyhydroxide (CoOOH) nanoplatform is constructed and applied to organize and connect "plug and play" molecular events (fluorescent dye, acridine orange and anion, PPi). By using molecules as inputs and the corresponding fluorescence signal as the output, the CoOOH-based molecular self-assembly system can be programmed for three-input fluorescent Boolean logic computation, fluorescent three-state logic computation, detection of PPi (linear range from 50 to 6400 nM with a detection limit of 20 nM) and even for imaging in living cancer cells and in vivo (in systems such as Zebrafish and Carassius auratus). Our approach adds a new dimension for expanding molecular logic computing and sensing systems, which will not only provide more opportunities for developing novel logic computing paradigms, but also be helpful in promoting the development and applications of intelligent molecular computing and sensing systems.
Collapse
Affiliation(s)
- Xin Xing Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China.
| | - Qiu Yan Zhu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China.
| | - Jiao Yang Lu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China.
| | - Fu Rui Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China.
| | - Wei Tao Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China.
| | - Xue Zhi Ding
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China.
| | - Li Qiu Xia
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China.
| |
Collapse
|
38
|
Game Theory in Molecular Nanosensing System for Rapid Detection of Hg2+ in Aqueous Solutions. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8122530] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Game theory—the scientific study of interactive, rational decision making—describes the interaction of two or more players from macroscopic organisms to microscopic cellular and subcellular levels. Life based on molecules is the highest and most complex expression of molecular interactions. However, using simple molecules to expand game theory for molecular decision-making remains challenging. Herein, we demonstrate a proof-of-concept molecular game-theoretical system (molecular prisoner’s dilemma) that relies on formation of the thymine–Hg2+–thymine hairpin structure specifically induced by Hg2+ and fluorescence quenching and molecular adsorption capacities of cobalt oxyhydroxide (CoOOH) nanosheets, resulting in fluorescence intensity and distribution change of polythymine oligonucleotide 33-repeat thymines (T33). The “bait” molecule, T33, interacted with two molecular players, CoOOH and Hg2+, in different states (absence = silence and presence = betrayal), regarded as strategies. We created conflicts (sharing or self-interest) of fluorescence distribution of T33, quantifiable in a 2 × 2 payoff matrix. In addition, the molecular game-theoretical-system based on T33 and CoOOH was used for sensing Hg2+ over the range of 20 to 600 nM with the detection limit of 7.94 nM (3σ) and for determination of Hg2+ in pond water. Inspired by the proof-of-concept for molecular game theory, various molecular decision-making systems could be developed, which would help promote molecular information processing and generating novel molecular intelligent decision systems for environmental monitoring and molecular diagnosis and therapy.
Collapse
|
39
|
Zhang X, Liu Q, Jin Y, Li B. Determination of the activity of T4 polynucleotide kinase phosphatase by exploiting the sequence-dependent fluorescence of DNA-templated copper nanoclusters. Mikrochim Acta 2018; 186:3. [DOI: 10.1007/s00604-018-3102-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/16/2018] [Indexed: 12/23/2022]
|
40
|
Ding Y, Zhao J, Li B, Zhao X, Wang C, Guo M, Lin Y. The CoOOH-TMB oxidative system for use in colorimetric and test strip based determination of ascorbic acid. Mikrochim Acta 2018; 185:131. [PMID: 29594579 DOI: 10.1007/s00604-018-2675-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/11/2018] [Indexed: 01/20/2023]
Abstract
The authors report that cobalt oxyhydroxide (CoOOH) nanoflakes possess intrinsic oxidizing ability to directly oxidize 3,3',5,5'-tetramethylbenzidine (TMB) to form a blue colored product (oxTMB) even in the absence of H2O2 and oxygen. In the presence of ascorbic acid (AA), less of the blue product is formed because AA reduces oxTMB. These findings constitute a new scheme for colorimetric detection of AA. Absorbance, best measured at 652 nm, linearly drops in the 10 nM to 1 μM AA concentration range, and the limit of detection is 5 nM (at an S/N ratio of 3). The reaction is complete within <5 s and highly selective. A strip test has been designed for fast and on-spot visual detection of AA. The method was applied to the direct estimation of AA in the microdialysate of brain, and also in soft drink samples. The strip test is considered to be a promising tool for the rapid screening of AA in brain and commercial samples. Graphic abstract Schematic of the CoOOH-TMB colorimetric system that exhibits a high selectivity for ascorbic acid (AA). A strip test has been designed for fast and on-spot visual detection of AA.
Collapse
Affiliation(s)
- Yongqi Ding
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Junfeng Zhao
- Zhengzhou Prevention and Treatment Center for Occupational Diseases, Zhengzhou, 450003, China
| | - Bo Li
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Xu Zhao
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Chao Wang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Minghui Guo
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Yuqing Lin
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
41
|
Wang HB, Li Y, Chen Y, Zhang ZP, Gan T, Liu YM. Determination of the activity of alkaline phosphatase by using nanoclusters composed of flower-like cobalt oxyhydroxide and copper nanoclusters as fluorescent probes. Mikrochim Acta 2018; 185:102. [PMID: 29594450 DOI: 10.1007/s00604-017-2622-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 12/15/2017] [Indexed: 12/21/2022]
Abstract
The authors describe a sensitive fluorometric method for the determination of the activity of alkaline phosphatase (ALP). It is based on the use of a composite prepared consisting of flower-like cobalt oxyhydroxide (CoOOH) and copper nanoclusters (CuNCs). On formation of the CuNC-CoOOH aggregates, the fluorescence of the CuNCs is quenched by the CoOOH sheets. If, however, the CoOOH sheets are reduced to Co(II) ions in the presence of ascorbic acid (AA), fluorescence recovers. AA is formed in-situ by hydrolysis of the substrate ascorbic acid 2-phosphate (AA2P) as catalyzed by ALP. Thus, the ALP activity can be detected indirectly by kinetic monitoring of the increase in fluorescence, best at excitation/emission wavelengths of 335/410 nm. The assay allows ALP to be determined in 0.5 to 150 mU·mL-1 activity range and with a 0.1 mU·mL-1 detection limit. The method was successfully applied to the determination of ALP activity in (spiked) human serum samples. The assay has attractive features in being of the off-on type and immune against false positive results. Graphical Abstract A fluorescent bioassay is reported for the determination of the activity of alkaline phosphatase (ALP). It is exploiting the ascorbic acid (AA)-induced decomposition of nanoclusters composed of flower-like cobalt oxyhydroxide and copper nanoclusters. ALP catalyzes hydrolysis of ascorbic acid 2-phosphate (AA2P) and dephosphorylation to form AA.
Collapse
Affiliation(s)
- Hai-Bo Wang
- College of Chemistry and Chemical Engineering, Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the Sourth of Henan, Xinyang Normal University, Xinyang, 464000, People's Republic of China.
| | - Yang Li
- College of Chemistry and Chemical Engineering, Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the Sourth of Henan, Xinyang Normal University, Xinyang, 464000, People's Republic of China
| | - Ying Chen
- College of Chemistry and Chemical Engineering, Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the Sourth of Henan, Xinyang Normal University, Xinyang, 464000, People's Republic of China
| | - Zi-Ping Zhang
- College of Life Science, Yantai University, Yantai, 264005, People's Republic of China
| | - Tian Gan
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, People's Republic of China.
| | - Yan-Ming Liu
- College of Chemistry and Chemical Engineering, Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the Sourth of Henan, Xinyang Normal University, Xinyang, 464000, People's Republic of China.,Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, People's Republic of China
| |
Collapse
|
42
|
Liu SG, Han L, Li N, Xiao N, Ju YJ, Li NB, Luo HQ. A fluorescence and colorimetric dual-mode assay of alkaline phosphatase activity via destroying oxidase-like CoOOH nanoflakes. J Mater Chem B 2018; 6:2843-2850. [DOI: 10.1039/c7tb03275g] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A fluorescence and colorimetric dual-mode assay of alkaline phosphatase activity was developed using a CoOOH nanoflake/o-phenylenediamine (OPD) sensing system.
Collapse
Affiliation(s)
- Shi Gang Liu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education)
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- P. R. China
| | - Lei Han
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education)
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- P. R. China
| | - Na Li
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education)
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- P. R. China
| | - Na Xiao
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education)
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- P. R. China
| | - Yan Jun Ju
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education)
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- P. R. China
| | - Nian Bing Li
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education)
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- P. R. China
| | - Hong Qun Luo
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education)
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- P. R. China
| |
Collapse
|
43
|
Gao M, Guo J, Song Y, Zhu Z, Yang CJ. Detection of T4 Polynucleotide Kinase via Allosteric Aptamer Probe Platform. ACS APPLIED MATERIALS & INTERFACES 2017; 9:38356-38363. [PMID: 29027787 DOI: 10.1021/acsami.7b14185] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
As a vital enzyme in DNA phosphorylation and restoration, T4 polynucleotide kinase (T4 PNK) has aroused great interest in recent years. Therefore, numerous strategies have been established for highly sensitive detection of T4 PNK based on diverse signal amplification techniques. However, they often need sophisticated design, a variety of auxiliary reagents and enzymes, or cumbersome manipulations. We have designed a new kind of allosteric aptamer probe (AAP) consisting of streptavidin (SA) aptamer and the complementary DNA (cDNA) for simple detection of T4 PNK without signal amplification and with minimized interference in complex biological samples. When the 5'-terminus of the cDNA is phosphorylated by T4 PNK, the cDNA is degraded by lambda exonuclease to release the fluorescein amidite (FAM)-labeled SA aptamer, which subsequently binds to streptavidin beads. The enhancement of the fluorescence signal on SA beads can be detected precisely and easily by a microscope or flow cytometer. Our method performs well in complex biological samples as a result of the enrichment of the signaling molecules on beads, as well as simple manipulations to discard the background interference and nonbinding molecules. Without signal amplification techniques, our AAP method not only avoids complicated manipulations but also decreases the time required. With the advantages of ease of operation, reliability, and robustness for T4 PNK detection in buffer as well as real biological samples, the AAP has great potential for clinical diagnostics, inhibitor screening, and drug discovery.
Collapse
Affiliation(s)
- Mingxuan Gao
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Centre of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
| | - Jingjing Guo
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Centre of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
| | - Yanling Song
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Centre of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
- The Key Lab of Analysis and Detection Technology for Food Safety of MOE, State Key Laboratory of Photocatalysis on Energy and Environment, College of Biological Science and Engineering, Fuzhou University , Fuzhou 350116, China
| | - Zhi Zhu
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Centre of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
| | - Chaoyong James Yang
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Centre of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
| |
Collapse
|
44
|
Dumbbell DNA-templated CuNPs as a nano-fluorescent probe for detection of enzymes involved in ligase-mediated DNA repair. Biosens Bioelectron 2017; 94:456-463. [DOI: 10.1016/j.bios.2017.03.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/06/2017] [Accepted: 03/16/2017] [Indexed: 11/23/2022]
|
45
|
Li N, Zhu YD, Liu T, Liu SG, Lin SM, Shi Y, Luo HQ, Li NB. Turn-on fluorescence detection of pyrophosphate anion based on DNA-attached cobalt oxyhydroxide. NEW J CHEM 2017. [DOI: 10.1039/c6nj03491h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The turn-on fluorescence of pyrophosphate anion (PPi) was detected based on competition between PPi and DNA for CoOOH nanoflakes.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education)
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing
- P. R. China
| | - Yu Die Zhu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education)
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing
- P. R. China
| | - Ting Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education)
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing
- P. R. China
| | - Shi Gang Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education)
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing
- P. R. China
| | - Shu Min Lin
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education)
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing
- P. R. China
| | - Yan Shi
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education)
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing
- P. R. China
| | - Hong Qun Luo
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education)
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing
- P. R. China
| | - Nian Bing Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education)
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing
- P. R. China
| |
Collapse
|
46
|
Zhou H, Peng J, Qiu X, Gao Y, Lu L, Wang W. β-Ni(OH)2 nanosheets: an effective sensing platform for constructing nucleic acid-based optical sensors. J Mater Chem B 2017; 5:7426-7432. [DOI: 10.1039/c7tb01389b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report for the first time that β-Ni(OH)2 nanosheets can exhibit differential affinity toward short oligonucleotide fragment versus ssDNA probe and the absorbed DNA can also be desorbed by degrading the β-Ni(OH)2 nanosheets.
Collapse
Affiliation(s)
- Hui Zhou
- College of Science
- Jiangxi Agricultural University
- Nanchang 330045
- P. R. China
- College of Chemistry and Chemical Engineering
| | - Junbin Peng
- College of Chemistry and Chemical Engineering
- Gannan Normal University
- Ganzhou 341000
- P. R. China
| | - Xinlan Qiu
- College of Science
- Jiangxi Agricultural University
- Nanchang 330045
- P. R. China
| | - Yansha Gao
- College of Science
- Jiangxi Agricultural University
- Nanchang 330045
- P. R. China
| | - Limin Lu
- College of Science
- Jiangxi Agricultural University
- Nanchang 330045
- P. R. China
| | - Wenmin Wang
- College of Science
- Jiangxi Agricultural University
- Nanchang 330045
- P. R. China
| |
Collapse
|
47
|
Zhang H, Zhao Z, Lei Z, Wang Z. Sensitive Detection of Polynucleotide Kinase Activity by Paper-Based Fluorescence Assay with λ Exonuclease Assistance. Anal Chem 2016; 88:11358-11363. [DOI: 10.1021/acs.analchem.6b03567] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Hua Zhang
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People’s Republic of China
| | - Zhen Zhao
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People’s Republic of China
- University
of
Chinese Academy of Sciences, No. 19A
Yuquan Road, Beijing, 100049, People’s Republic of China
| | - Zhen Lei
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People’s Republic of China
- University
of
Chinese Academy of Sciences, No. 19A
Yuquan Road, Beijing, 100049, People’s Republic of China
| | - Zhenxin Wang
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People’s Republic of China
| |
Collapse
|
48
|
Liu H, Ma C, Wang J, Chen H, Wang K. Label-free colorimetric assay for T4 polynucleotide kinase/phosphatase activity and its inhibitors based on G-quadruplex/hemin DNAzyme. Anal Biochem 2016; 517:18-21. [PMID: 27984013 DOI: 10.1016/j.ab.2016.10.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/17/2016] [Accepted: 10/22/2016] [Indexed: 10/20/2022]
Abstract
Here we report a new approach for label-free colorimetric assay of T4 polynucleotide kinase/phosphatase (PNKP) activity based on G-quadruplex/hemin DNAzyme. In the presence of T4 PNKP, the DNA primer with a 3'-phosphate can be dephosphorylated into a 3'-hydroxyl and initiate a primer elongation reaction to open the hairpin probe, and leading to releasing the G-quartets. Under optimal conditions, the proposed method exhibited a considerable performance with a detection limit of 0.01 U/mL. Furthermore, the present assay can be used to study the potential T4 PNKP inhibitor screening, making it promise to be applied in the fields of drug discovery.
Collapse
Affiliation(s)
- Haisheng Liu
- State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha 410013, China
| | - Changbei Ma
- State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha 410013, China.
| | - Jun Wang
- State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha 410013, China
| | - Hanchun Chen
- State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha 410013, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410081, China
| |
Collapse
|
49
|
Abstract
CoOOH ultrafine nanoparticles with a high surface area were prepared by a novel route to achieve enhanced electrochemical performances.
Collapse
Affiliation(s)
- Wei Wen
- College of Mechanical and Electrical Engineering
- Hainan University
- Haikou 570228
- P. R. China
- State Key Laboratory of Silicon Materials
| | - Dong Liang
- College of Mechanical and Electrical Engineering
- Hainan University
- Haikou 570228
- P. R. China
| | - Ji-Peng Cheng
- State Key Laboratory of Silicon Materials
- Zhejiang University
- Hangzhou 310027
- P. R. China
- School of Materials Science and Engineering
| | - Jin-Ming Wu
- State Key Laboratory of Silicon Materials
- Zhejiang University
- Hangzhou 310027
- P. R. China
- School of Materials Science and Engineering
| |
Collapse
|