1
|
Ersek G, Mehrabi Koushki R, Scheerder J, van Casteren I, Chen Q, Hermida-Merino D, Portale G. Influence of the airflow and humidity on the chain aggregation during the film-formation in a flexible waterborne polyurethane formulation. J Colloid Interface Sci 2025; 678:446-455. [PMID: 39255601 DOI: 10.1016/j.jcis.2024.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/10/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
STATEMENT OF OBJECTIVES Soft, waterborne polyurethane dispersions are indispensable components in many state-of-the-art materials, with applications ranging from binders for coatings and adhesives to matrixes for flexible devices. While the static bulk nanostructure of such systems is widely studied, the influence that environmental conditions such as relative humidity and airflow have on their film formation and phase segregation behavior in supported films is unknown. EXPERIMENTS Here, we elucidate the nanostructure evolution occurring during drying of an industrially relevant, soft polyurethane, utilizing real-time, non-destructive grazing incidence X-ray scattering analysis. Using an environmental-controlled casting cell, we highlight the differences between the drying mechanism under different conditions generated by tuning the airflow and the relative humidity. FINDINGS Our results show how the environment's relative humidity strongly influences chain aggregation and chain interdiffusion due to extended plasticization of the hard segment at high humidities, while accelerated air flows are responsible for the occurrence of (partial) skinning. Interestingly, despite changes in the chain aggregation behavior and occurrence of skinning and skin breakup during drying resulting in higher roughness at the film surface, minor influence is registered on the bulk tensile properties of the films, revealing the resilient nature towards environmental conditions of these soft weakly phase segregating polyurethane systems.
Collapse
Affiliation(s)
- G Ersek
- Physical Chemistry of Polymeric and Nanostructured Materials, Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - R Mehrabi Koushki
- Physical Chemistry of Polymeric and Nanostructured Materials, Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - J Scheerder
- Covestro (Netherlands) B.V., 5145 PE Waalwijk, The Netherlands
| | - I van Casteren
- Covestro (Netherlands) B.V., 5145 PE Waalwijk, The Netherlands
| | - Q Chen
- Covestro (Netherlands) B.V., 5145 PE Waalwijk, The Netherlands
| | - D Hermida-Merino
- Departamento de Física Aplicada, CINBIO, Universidade de Vigo, Campus Lagoas-Marcosende, E36310 Vigo, Galicia, Spain; DUBBLE@ESRF, Netherlands Organization for Scientific Research (NWO), BP 220, F38043 Grenoble, France
| | - G Portale
- Physical Chemistry of Polymeric and Nanostructured Materials, Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
2
|
Hartmann C, Lomako I, Schachner C, El Said E, Abert J, Satrapa V, Kaiser AM, Walch H, Köppel S. Assessment of microplastics in human stool: A pilot study investigating the potential impact of diet-associated scenarios on oral microplastics exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175825. [PMID: 39197786 DOI: 10.1016/j.scitotenv.2024.175825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/05/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
As emerging contaminants microplastic particles have become of particular relevance as they are widely present in the environment and of potential concern to human health. Humans are exposed through different routes, with oral intake and inhalation being the most significant. Dietary intake substantially contributes to oral exposure, although data is still lacking. This first-of-its-kind pilot study investigates the influence of different plastic use and food consumption scenarios (normal, low, high) on microplastic content in stool reflecting oral intake by performing an intervention study with fifteen volunteers. Stool samples were analyzed for ten different plastic types in three size fractions including 5-50 μm (qualitative), 50-500 μm and 500-5000 μm (quantitative). In all samples, microplastic particles were detected with median concentrations up to 3.5 particles/g stool in the size fraction 50-500 μm. Polyethylene was the most frequently detected polymer type. The different scenarios did not result in a consistent pattern of microplastics, however, the use of plastics for food packaging and preparation, and the consumption of highly processed food were statistically significantly associated with microplastics content in stool. These results provide initial findings that contribute to filling current knowledge gaps and pave the way for further research.
Collapse
Affiliation(s)
- Christina Hartmann
- Environment Agency Austria (Umweltbundesamt GmbH), Spittelauer Lände 5, 1090 Vienna, Austria.
| | - Ievgeniia Lomako
- Environment Agency Austria (Umweltbundesamt GmbH), Spittelauer Lände 5, 1090 Vienna, Austria
| | - Carla Schachner
- Environment Agency Austria (Umweltbundesamt GmbH), Spittelauer Lände 5, 1090 Vienna, Austria
| | - Evelin El Said
- Environment Agency Austria (Umweltbundesamt GmbH), Spittelauer Lände 5, 1090 Vienna, Austria
| | - Julia Abert
- Environment Agency Austria (Umweltbundesamt GmbH), Spittelauer Lände 5, 1090 Vienna, Austria
| | - Vito Satrapa
- Environment Agency Austria (Umweltbundesamt GmbH), Spittelauer Lände 5, 1090 Vienna, Austria
| | - Andreas-Marius Kaiser
- Environment Agency Austria (Umweltbundesamt GmbH), Spittelauer Lände 5, 1090 Vienna, Austria
| | - Helene Walch
- Environment Agency Austria (Umweltbundesamt GmbH), Spittelauer Lände 5, 1090 Vienna, Austria
| | - Sebastian Köppel
- Environment Agency Austria (Umweltbundesamt GmbH), Spittelauer Lände 5, 1090 Vienna, Austria
| |
Collapse
|
3
|
Van Hoorde J, Badi N, Du Prez FE. Scalable design of uniform oligourethanes for impact study of chain length, sequence and end groups on thermal properties. Polym Chem 2024; 15:4319-4326. [PMID: 39416393 PMCID: PMC11472299 DOI: 10.1039/d4py01001a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
The full potential of sequence-defined macromolecules remains unexplored, hindered by the difficulty of synthesizing sufficient amounts for the investigation of the properties of such uniform structures and their derived materials. Herein, we report the bidirectional synthesis and thermal behavior analysis of sequence-defined oligourethanes. The synthesis was conducted on a large scale (up to 50 grams) using a straightforward protocol, yielding uniform macromolecules as validated by NMR, ESI-MS and SEC. With this approach, a library of uniform oligourethanes (up to the octamers) was produced using two structural units: a hydrogen-bonding carbamate and a methyl-substituted alternative structure. By varying the chain length, monomer sequence and functionality, we were able to perform a systematic study of the impact of hydrogen bonding on the thermal properties of polyurethanes. Thermal analysis of the discrete oligomers using DSC revealed that both the molecular weight and microstructure significantly affect the glass transition and melting temperatures. TGA measurements also revealed differences in the thermal stability of the oligomers, underscoring the significance of the primary structure of polyurethanes. Additionally, the influence of the terminal groups on the degradation pathway was assessed via pyrolysis-GC-MS, which specifically highlighted the increased thermal stability in the absence of hydroxyl end groups. This work shows the interest of using sequence-defined synthetic macromolecules for the elucidation of structure-property relationships and thereby facilitates their fine-tuning towards specific material applications.
Collapse
Affiliation(s)
- Jens Van Hoorde
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University Krijgslaan 281 S4 9000 Ghent Belgium
| | - Nezha Badi
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University Krijgslaan 281 S4 9000 Ghent Belgium
| | - Filip E Du Prez
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University Krijgslaan 281 S4 9000 Ghent Belgium
| |
Collapse
|
4
|
Yang GW, Xie R, Zhang YY, Xu CK, Wu GP. Evolution of Copolymers of Epoxides and CO 2: Catalysts, Monomers, Architectures, and Applications. Chem Rev 2024. [PMID: 39454031 DOI: 10.1021/acs.chemrev.4c00517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
The copolymerization of CO2 and epoxides presents a transformative approach to converting greenhouse gases into aliphatic polycarbonates (CO2-PCs), thereby reducing the polymer industry's dependence on fossil resources. Over the past 50 years, a wide array of metallic catalysts, both heterogeneous and homogeneous, have been developed to achieve precise control over polymer selectivity, sequence, regio-, and stereoselectivity. This review details the evolution of metal-based catalysts, with a particular focus on the emergence of organoborane catalysts, and explores how these catalysts effectively address kinetic and thermodynamic challenges in CO2/epoxides copoly2merization. Advances in the synthesis of CO2-PCs with varied sequence and chain architectures through diverse polymerization protocols are examined, alongside the applications of functional CO2-PCs produced by incorporating different epoxides. The review also underscores the contributions of computational techniques to our understanding of copolymerization mechanisms and highlights recent advances in the closed-loop chemical recycling of CO2-sourced polycarbonates. Finally, the industrialization efforts of CO2-PCs are discussed, offering readers a comprehensive understanding of the evolution and future potential of epoxide copolymerization with CO2.
Collapse
Affiliation(s)
- Guan-Wen Yang
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Rui Xie
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yao-Yao Zhang
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Cheng-Kai Xu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Guang-Peng Wu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
5
|
Azarmgin S, Torabinejad B, Kalantarzadeh R, Garcia H, Velazquez CA, Lopez G, Vazquez M, Rosales G, Heidari BS, Davachi SM. Polyurethanes and Their Biomedical Applications. ACS Biomater Sci Eng 2024. [PMID: 39436687 DOI: 10.1021/acsbiomaterials.4c01352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The tunable mechanical properties of polyurethanes (PUs), due to their extensive structural diversity and biocompatibility, have made them promising materials for biomedical applications. Scientists can address PUs' issues with platelet absorption and thrombus formation owing to their modifiable surface. In recent years, PUs have been extensively utilized in biomedical applications because of their chemical stability, biocompatibility, and minimal cytotoxicity. Moreover, addressing challenges related to degradation and recycling has led to a growing focus on the development of biobased polyurethanes as a current focal point. PUs are widely implemented in cardiovascular fields and as implantable materials for internal organs due to their favorable biocompatibility and physicochemical properties. Additionally, they show great potential in bone tissue engineering as injectable grafts or implantable scaffolds. This paper reviews the synthesis methods, physicochemical properties, and degradation pathways of PUs and summarizes recent progress in applying different types of polyurethanes in various biomedical applications, from wound repair to hip replacement. Finally, we discuss the challenges and future directions for the translation of novel polyurethane materials into biomedical applications.
Collapse
Affiliation(s)
- Sepideh Azarmgin
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas 78041, United States
- Applied Science Nano Research Group, ASNARKA, Tehran 1619948753, Iran
| | - Bahman Torabinejad
- Applied Science Nano Research Group, ASNARKA, Tehran 1619948753, Iran
- Biomaterials Research Group, Department of Nanotechnology and Advanced Materials, Material and Energy Research Center, Karaj 3177983634, Iran
| | - Rooja Kalantarzadeh
- Biomaterials Research Group, Department of Nanotechnology and Advanced Materials, Material and Energy Research Center, Karaj 3177983634, Iran
- Cellular and Molecular Research Center, Iran University of Medical Science, Tehran 1449614535, Iran
| | - Heriberto Garcia
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas 78041, United States
| | - Carlo Alberto Velazquez
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas 78041, United States
| | - Gino Lopez
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas 78041, United States
| | - Marisol Vazquez
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas 78041, United States
| | - Gabriel Rosales
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas 78041, United States
| | - Behzad Shiroud Heidari
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Seyed Mohammad Davachi
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas 78041, United States
| |
Collapse
|
6
|
Mallouhi J, Varga M, Sikora E, Gráczer K, Bánhidi O, Gaspard S, Goudou F, Viskolcz B, Szőri-Dorogházi E, Fiser B. Activated Carbon and Biochar Derived from Sargassum sp. Applied in Polyurethane-Based Materials Development. Polymers (Basel) 2024; 16:2914. [PMID: 39458742 PMCID: PMC11510917 DOI: 10.3390/polym16202914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Activated carbon (AC) and biochar (BC) are porous materials with large surface areas and widely used in environmental and industrial applications. In this study, different types of AC and BC samples were produced from Sargassum sp. by a chemical activation and pyrolysis process and compared to commercial activated carbon samples. All samples were characterized using various techniques to understand their structure and functionalities. The metal content of the samples was characterized by using an inductively coupled optical emission spectrometer (ICP-OES). A toxicity test was applied to investigate the effect of AC/BC on organisms, where Sinapis alba seed and Escherichia coli bacteria-based toxicity tests were used. The results revealed that the samples did not negatively affect these two organisms. Thus, it is safe to use them in various applications. Therefore, the samples were tested as fillers in polyurethane composites and, thus, polyurethane-AC/BC samples were prepared. The amounts of AC/BC mixed into the polyurethane formulation were 1%, 2%, and 3%. Mechanical and acoustic properties of these composites were analyzed, showing that by adding the AC/BC to the system an increase in the compression strength for all the samples was achieved. A similar effect of the AC/BC was noticed in the acoustic measurements, where adding AC/BC enhanced the sound adsorption coefficient (α) for all composite materials.
Collapse
Affiliation(s)
- Julie Mallouhi
- Institute of Chemistry, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary; (J.M.); (M.V.); (E.S.); (K.G.); (O.B.); (B.V.)
- Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary
| | - Miklós Varga
- Institute of Chemistry, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary; (J.M.); (M.V.); (E.S.); (K.G.); (O.B.); (B.V.)
- Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary
| | - Emőke Sikora
- Institute of Chemistry, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary; (J.M.); (M.V.); (E.S.); (K.G.); (O.B.); (B.V.)
- Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary
| | - Kitty Gráczer
- Institute of Chemistry, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary; (J.M.); (M.V.); (E.S.); (K.G.); (O.B.); (B.V.)
| | - Olivér Bánhidi
- Institute of Chemistry, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary; (J.M.); (M.V.); (E.S.); (K.G.); (O.B.); (B.V.)
| | - Sarra Gaspard
- Laboratory COVACHIM-M2E, EA 3592 Université des Antilles, BP 250, 97157 Pointe à Pitre, Cedex, France; (S.G.); (F.G.)
| | - Francesca Goudou
- Laboratory COVACHIM-M2E, EA 3592 Université des Antilles, BP 250, 97157 Pointe à Pitre, Cedex, France; (S.G.); (F.G.)
| | - Béla Viskolcz
- Institute of Chemistry, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary; (J.M.); (M.V.); (E.S.); (K.G.); (O.B.); (B.V.)
- Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary
| | - Emma Szőri-Dorogházi
- Institute of Chemistry, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary; (J.M.); (M.V.); (E.S.); (K.G.); (O.B.); (B.V.)
- Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary
| | - Béla Fiser
- Institute of Chemistry, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary; (J.M.); (M.V.); (E.S.); (K.G.); (O.B.); (B.V.)
- Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515 Miskolc-Egyetemváros, Hungary
- Department of Biology and Chemistry, Ferenc Rakoczi II Transcarpathian Hungarian College of Higher Education, 90200 Beregszász, Ukraine
- Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, 90-236 Lodz, Poland
| |
Collapse
|
7
|
Vermeeren B, Van Praet S, Arts W, Narmon T, Zhang Y, Zhou C, Steenackers HP, Sels BF. From sugars to aliphatic amines: as sweet as it sounds? Production and applications of bio-based aliphatic amines. Chem Soc Rev 2024. [PMID: 39365265 DOI: 10.1039/d4cs00244j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Aliphatic amines encompass a diverse group of amines that include alkylamines, alkyl polyamines, alkanolamines and aliphatic heterocyclic amines. Their structural diversity and distinctive characteristics position them as indispensable components across multiple industrial domains, ranging from chemistry and technology to agriculture and medicine. Currently, the industrial production of aliphatic amines is facing pressing sustainability, health and safety issues which all arise due to the strong dependency on fossil feedstock. Interestingly, these issues can be fundamentally resolved by shifting toward biomass as the feedstock. In this regard, cellulose and hemicellulose, the carbohydrate fraction of lignocellulose, emerge as promising feedstock for the production of aliphatic amines as they are available in abundance, safe to use and their aliphatic backbone is susceptible to chemical transformations. Consequently, the academic interest in bio-based aliphatic amines via the catalytic reductive amination of (hemi)cellulose-derived substrates has systematically increased over the past years. From an industrial perspective, however, the production of bio-based aliphatic amines will only be the middle part of a larger, ideally circular, value chain. This value chain additionally includes, as the first part, the refinery of the biomass feedstock to suitable substrates and, as the final part, the implementation of these aliphatic amines in various applications. Each part of the bio-based aliphatic amine value chain will be covered in this Review. Applying a holistic perspective enables one to acknowledge the requirements and limitations of each part and to efficiently spot and potentially bridge knowledge gaps between the different parts.
Collapse
Affiliation(s)
- Benjamin Vermeeren
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Belgium.
| | - Sofie Van Praet
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Belgium.
| | - Wouter Arts
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Belgium.
| | - Thomas Narmon
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Belgium.
| | - Yingtuan Zhang
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Belgium.
| | - Cheng Zhou
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Belgium.
| | | | - Bert F Sels
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, Belgium.
| |
Collapse
|
8
|
Yu C, Choi J, Lee J, Lim S, Park Y, Jo SM, Ahn J, Kim SY, Chang T, Boyer C, Kwon MS. Functional Thermoplastic Polyurethane Elastomers with α, ω-Hydroxyl End-Functionalized Polyacrylates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403048. [PMID: 39171759 DOI: 10.1002/adma.202403048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/05/2024] [Indexed: 08/23/2024]
Abstract
Thermoplastic polyurethane (TPU) is an essential class of materials for demanding applications, from soft robotics and electronics to medical devices and batteries. However, traditional TPU development is primarily relied on specific soft segments, such as polyether, polyester, and polycarbonate polyols. Here, a novel method is introduced for developing TPU elastomers with enhanced performance and superior functionalities compared to conventional TPUs, achieved through the use of α,ω-hydroxyl end-functionalized polyacrylates. This approach involves a defect-free synthesis of α,ω-hydroxyl end-functionalized polyacrylates through visible-light-driven photoiniferter polymerization. By strategically blending these functionalized polyacrylates with conventional polyols, TPUs that exhibit exceptional toughness and notable self-healing capabilities, traits rarely found in existing TPUs are engineered. Furthermore, incorporating photo-crosslinkable acrylic monomers has enabled the creation of the first TPU with superior elastomeric properties and photopatterning capabilities. This approach paves the way for a new direction in polyurethane engineering, introducing a novel class of soft segments and unlocking the potential for a wide range of advanced applications.
Collapse
Affiliation(s)
- Changhoon Yu
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jinho Choi
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jungwook Lee
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sumin Lim
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Youngjoo Park
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seong Min Jo
- Department of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Junyoung Ahn
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - So Youn Kim
- Department of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Taihyun Chang
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, and Australian Centre for Nanomedicine, School of Chemical Engineering, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Min Sang Kwon
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
9
|
Huang YS, Huang YW, Luo QW, Lin CH, Srinophakun P, Alapol S, Lin KYA, Huang CF. Preparations of Polyurethane Foam Composite (PUFC) Pads Containing Micro-/Nano-Crystalline Cellulose (MCC/NCC) toward the Chemical Mechanical Polishing Process. Polymers (Basel) 2024; 16:2738. [PMID: 39408449 PMCID: PMC11479108 DOI: 10.3390/polym16192738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Polyurethane foam (PUF) pads are widely used in semiconductor manufacturing, particularly for chemical mechanical polishing (CMP). This study prepares PUF composites with microcrystalline cellulose (MCC) and nanocrystalline cellulose (NCC) to improve CMP performance. MCC and NCC were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD), showing average diameters of 129.7 ± 30.9 nm for MCC and 22.2 ± 6.7 nm for NCC, both with high crystallinity (ca. 89%). Prior to preparing composites, the study on the influence of the postbaked step on the PUF was monitored through Fourier-transform infrared spectroscopy (FTIR). After that, PUF was incorporated with MCC/NCC to afford two catalogs of polyurethane foam composites (i.e., PUFC-M and PUFC-N). These PUFCs were examined for their thermal and surface properties using a differential scanning calorimeter (DSC), thermogravimetric analysis (TGA), dynamic mechanical analyzer (DMA), and water contact angle (WCA) measurements. Tgs showed only slight changes but a notable increase in the 10% weight loss temperature (Td10%) for PUFCs, rising from 277 °C for PUF to about 298 °C for PUFCs. The value of Tan δ dropped by up to 11%, indicating improved elasticity. Afterward, tensile and abrasion tests were conducted, and we acquired significant enhancements in the abrasion performance (e.g., from 1.04 mm/h for the PUF to 0.76 mm/h for a PUFC-N) of the PUFCs. Eventually, we prepared high-performance PUFCs and demonstrated their capability toward the practical CMP process.
Collapse
Affiliation(s)
- Yi-Shen Huang
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 40227, Taiwan; (Y.-S.H.); (Q.-W.L.)
| | - Yu-Wen Huang
- Semiconductor and Green Technology Program, Academy of Circular Economy, National Chung Hsing University, Nantou City 540216, Taiwan;
- IV Technologies Co., Ltd., Taichung 40755, Taiwan;
| | - Qiao-Wen Luo
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 40227, Taiwan; (Y.-S.H.); (Q.-W.L.)
| | | | - Penjit Srinophakun
- Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand; (P.S.); (S.A.)
| | - Supanicha Alapol
- Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand; (P.S.); (S.A.)
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering, Innovation and Development Center of Sustainable Agriculture & Research Center of Sustainable Energy and Nanotechnology, iCAST, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chih-Feng Huang
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 40227, Taiwan; (Y.-S.H.); (Q.-W.L.)
- Semiconductor and Green Technology Program, Academy of Circular Economy, National Chung Hsing University, Nantou City 540216, Taiwan;
| |
Collapse
|
10
|
Kherdekar RD, Ade AB. Integrated approaches for plastic waste management. Front Microbiol 2024; 15:1426509. [PMID: 39391604 PMCID: PMC11465426 DOI: 10.3389/fmicb.2024.1426509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/20/2024] [Indexed: 10/12/2024] Open
Abstract
Plastic pollution is the challenging problem of the world due to usage of plastic in daily life. Plastic is essential for packaging food and other goods and utensils to avoid the risk of microbial attack. Due to its hydrophobic nature, it is used for wrapping as laminates or packaging liquid substances in pouches and sachets. The tensile strength of the plastic is more therefore it is used for manufacturing carrying bags that can bear heavy loads. Plastic is available in various forms as per the requirements in our daily life. Annually millions to trillions of polyethene carry bags are being manufactured and utilized throughout the world. The plastic requires millions of years for natural degradation. The physical and chemical processes are able to degrade plastic material at the meager level by 200 to 500 years in natural conditions. Many industries focus on recycling of plastic. Biodegradation is a comparatively slow and cheaper process that involves microbes. To dispose of plastic completely there is a need of an integrated process in which all the possible methods of disposal are involved and used sustainably so that minimum depletion occurs to the livestock and the environment. In the current review, we could try to emphasize the intricate nature of plastic polymers, pollution caused by it and possible mitigation strategies for plastic waste management.
Collapse
|
11
|
Krzykowska B, Uram Ł, Frącz W, Kovářová M, Sedlařík V, Hanusova D, Kisiel M, Paciorek-Sadowska J, Borowicz M, Zarzyka I. Polymer Bionanocomposites Based on a P3BH/Polyurethane Matrix with Organomodified Montmorillonite-Mechanical and Thermal Properties, Biodegradability, and Cytotoxicity. Polymers (Basel) 2024; 16:2681. [PMID: 39339144 PMCID: PMC11435496 DOI: 10.3390/polym16182681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/16/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024] Open
Abstract
In the present work, hybrid nanobiocomposites based on poly(3-hydroxybutyrate), P3HB, with the use of aromatic linear polyurethane as modifier and organic nanoclay, Cloisite 30B, as a nanofiller were produced. The aromatic linear polyurethane (PU) was synthesized in a reaction of diphenylmethane 4,4'-diisocyanate and polyethylene glycol with a molecular mass of 1000 g/mole. The obtained nanobiocomposites were characterized by the small-angle X-ray scattering technique, scanning electron microscopy, Fourier infrared spectroscopy, thermogravimetry, and differential scanning calorimetry, and moreover, their selected mechanical properties, biodegradability, and cytotoxicity were tested. The effect of the organomodified montmorillonite presence in the biocomposites on their properties was investigated and compared to those of the native P3HB and the P3HB-PU composition. The obtained hybrid nanobiocomposites have an exfoliated structure. The presence and content of Cloisite 30B influence the P3HB-PU composition's properties, and 2 wt.% Cloisite 30B leads to the best improvement in the aforementioned properties. The obtained results indicate that the thermal stability and mechanical properties of P3HB were improved, particularly in terms of increasing the degradation temperature, reducing hardness, and increasing impact strength, which were also confirmed by the morphological analysis of these bionanocomposites. However, the presence of organomodified montmorillonite in the obtained polymer biocomposites decreased their biodegradability slightly. The produced hybrid polymer nanobiocomposites have tailored mechanical and thermal properties and processing conditions for their expected application in the production of biodegradable, short-lived products for agriculture. Moreover, in vitro studies on human skin fibroblasts and keratinocytes showed their satisfactory biocompatibility and low cytotoxicity, which make them safe when in contact with the human body, for instance, in biomedical applications.
Collapse
Affiliation(s)
- Beata Krzykowska
- Department of Organic Chemistry, Faculty of Chemistry, Rzeszów University of Technology, Powstańców Warszawy 6, 35-959 Rzeszów, Poland
| | - Łukasz Uram
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, Rzeszów University of Technology, Powstańców Warszawy 6, 35-959 Rzeszów, Poland;
| | - Wiesław Frącz
- Department of Material Forming and Processing, Faculty of Mechanical Engineering and Aeronautics, Rzeszów University of Technology, Powstańców Warszawy 8, 35-959 Rzeszów, Poland;
| | - Miroslava Kovářová
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic; (M.K.); (V.S.); (D.H.)
| | - Vladimir Sedlařík
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic; (M.K.); (V.S.); (D.H.)
| | - Dominika Hanusova
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic; (M.K.); (V.S.); (D.H.)
| | - Maciej Kisiel
- Department of Industrial and Materials Chemistry, Faculty of Chemistry, Rzeszów University of Technology, Powstańców Warszawy 6, 35-959 Rzeszów, Poland;
| | - Joanna Paciorek-Sadowska
- Department of Chemistry & Technology Polyurethanes, Faculty of Materials Engineering, Kazimierz Wielki University, JK Chodkiewicza Street 30, 85-064 Bydgoszcz, Poland; (J.P.-S.); (M.B.)
| | - Marcin Borowicz
- Department of Chemistry & Technology Polyurethanes, Faculty of Materials Engineering, Kazimierz Wielki University, JK Chodkiewicza Street 30, 85-064 Bydgoszcz, Poland; (J.P.-S.); (M.B.)
| | - Iwona Zarzyka
- Department of Organic Chemistry, Faculty of Chemistry, Rzeszów University of Technology, Powstańców Warszawy 6, 35-959 Rzeszów, Poland
| |
Collapse
|
12
|
Yamada S, Kajita T, Nishimoto M, Horiuchi J, Fujii Y, Sakaguchi K, Hattori K, Tamura H, Kano T, Sakai T, Noro A. Next-Generation Structural Adhesives Composed of Epoxy Resins and Hydrogen-Bonded Styrenic Block Polymer-Based Thermoplastic Elastomers. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39303009 DOI: 10.1021/acsami.4c12540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Structural adhesives are currently applied in the assembly of automobiles, aircraft, and buildings. In particular, epoxy adhesives are widely used due to their excellent mechanical strength and durability. However, cured epoxy resins are typically rigid and inflexible; thus, they have low peel and impact strength. In this study, tough cured epoxy adhesives were developed by mixing a liquid epoxy prepolymer (EP) and polystyrene-b-polyisoprene-b-polystyrene (SIS). SIS is a block polymer-based thermoplastic elastomer (TPE) composed of polystyrene (S) soluble in liquid EP and polyisoprene (I) insoluble in liquid EP, where S and I have a glass transition temperature that is higher and lower than room temperature, respectively. In addition, cured adhesives tougher than the cured adhesives containing SIS were prepared by mixing liquid EP and SIS with hydrogen-bonding groups in the I block (h-SIS). Transmission electron microscopy (TEM) observations revealed mixed S/cured EP domains, with a d-spacing of several tens of nanometers, and cured EP domains, with diameters of one hundred to several hundred nanometers, that were macroscopically dispersed in the I or hydrogen-bonded I matrix of the cured adhesive containing SIS or h-SIS. The lap shear, peel, and impact strength of cured neat EP (EP*) were 23 MPa, 45 N/25 mm, and 0.62 kN/m, respectively. Meanwhile, the cured adhesive containing 16.5 wt % SIS exhibited the slightly lower lap shear strength of 17 MPa compared to that of cured EP*, whereas the peel and impact strength of the cured adhesive with SIS were 61 N/25 mm and 7.1 kN/m, respectively, both higher than those of EP*. Furthermore, the lap shear strength of the cured adhesive containing 15.5 wt % h-SIS was 21 MPa, which was similar to that of cured EP*. The cured adhesive with h-SIS also exhibited an excellent peel strength of 97 N/25 mm and an impact strength of 14 kN/m which was 22 times higher than that of cured EP*. Therefore, mixing liquid EP and SIS improved the cured adhesive properties and flexibility of the cured epoxy adhesives compared to the cured adhesive composed of neat EP, and further enhancement of the adhesive properties was achieved by mixing liquid EP and h-SIS with hydrogen-bonding groups instead of mixing with SIS.
Collapse
Affiliation(s)
- Saya Yamada
- Department of Molecular & Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Takato Kajita
- Department of Molecular & Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Mio Nishimoto
- Department of Molecular & Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Junko Horiuchi
- Department of Molecular & Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yoshirou Fujii
- Chemical Products R&D Department, Engineering Division, Aisin Chemical Co., Ltd., 1141-1 Okawagahara, Fujioka-iino-cho, Toyota, Aichi 470-0492, Japan
| | - Kazumasa Sakaguchi
- Chemical Products R&D Department, Engineering Division, Aisin Chemical Co., Ltd., 1141-1 Okawagahara, Fujioka-iino-cho, Toyota, Aichi 470-0492, Japan
| | - Kazuo Hattori
- Chemical Products R&D Department, Engineering Division, Aisin Chemical Co., Ltd., 1141-1 Okawagahara, Fujioka-iino-cho, Toyota, Aichi 470-0492, Japan
| | - Hiroshi Tamura
- Chemical Products R&D Department, Engineering Division, Aisin Chemical Co., Ltd., 1141-1 Okawagahara, Fujioka-iino-cho, Toyota, Aichi 470-0492, Japan
| | - Tatsuya Kano
- Chemical Products R&D Department, Engineering Division, Aisin Chemical Co., Ltd., 1141-1 Okawagahara, Fujioka-iino-cho, Toyota, Aichi 470-0492, Japan
| | - Takenobu Sakai
- Promotion Office for Open Innovation, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Institute of Materials Innovation, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Atsushi Noro
- Department of Molecular & Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute of Materials Innovation, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Research Center for Net-Zero Carbon Society, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
13
|
Jašek V, Montag P, Menčík P, Přikryl R, Kalendová A, Figalla S. Chemically recycled commercial polyurethane (PUR) foam using 2-hydroxypropyl ricinoleate as a glycolysis reactant for flexibility-enhanced automotive applications. RSC Adv 2024; 14:29966-29978. [PMID: 39309646 PMCID: PMC11413739 DOI: 10.1039/d4ra04972a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024] Open
Abstract
The automotive industry uses polyurethane (PUR) foam core in the vehicle headliner composite. The sector demands recycling suggestions to reduce its scrap and decrease the expenses. This work investigated the PUR depolymerization using synthesized 2-hydroxypropyl ricinoleate (2-HPR) from castor oil and incorporated the liquid recyclate (REC) into the original PUR foam. The synthesis of 2-HPR yielded 97.5%, and the following PUR depolymerization (via glycolysis) reached 87.2% yield. The synthesized products were verified by GPC, FTIR, ESI-MS, and 1H NMR cross-analysis. The laboratory experiments (565 mL) included rheological, structural, and reactivity investigations. Added 30% REC content decreased the apparent viscosity to 109 mPa s from standard 274 mPa s. The reactivity of the 30% REC system increased by 51.2% based on the cream time due to the high REC amine value. The block foam density of systems with 15% REC and above decreased by 14.8%. A system with 20% REC content was the most prospective for up-scale. The industrially significant up-scale (125 L) was performed successfully, and the tensile and flexural test specimens were sampled from the up-scaled foam. The tensile characteristic (tensile strength 107 ± 8 kPa and elongation 9.2 ± 0.7%) and flexural characteristic (flexural strength 156 ± 12 kPa and flexural strain at deformation limit 23.4 ± 0.6%) confirmed that the REC incorporation in the standard PUR foam improves the applicable significant mechanical properties and assures the manufacture improve.
Collapse
Affiliation(s)
- Vojtěch Jašek
- Institute of Materials Chemistry, Faculty of Chemistry, Brno University of Technology 61200 Brno Czech Republic
| | - Petr Montag
- Tomas Bata University in Zlin, Faculty of Technology, Department of Polymer Engineering 76001 Zlín Czech Republic
- BASF Ltd Czech Republic
| | - Přemysl Menčík
- Institute of Materials Chemistry, Faculty of Chemistry, Brno University of Technology 61200 Brno Czech Republic
| | - Radek Přikryl
- Institute of Materials Chemistry, Faculty of Chemistry, Brno University of Technology 61200 Brno Czech Republic
| | - Alena Kalendová
- Tomas Bata University in Zlin, Faculty of Technology, Department of Polymer Engineering 76001 Zlín Czech Republic
| | - Silvestr Figalla
- Institute of Materials Chemistry, Faculty of Chemistry, Brno University of Technology 61200 Brno Czech Republic
| |
Collapse
|
14
|
Rajabifar N, Rostami A, Afshar S, Mosallanezhad P, Zarrintaj P, Shahrousvand M, Nazockdast H. Wound Dressing with Electrospun Core-Shell Nanofibers: From Material Selection to Synthesis. Polymers (Basel) 2024; 16:2526. [PMID: 39274158 PMCID: PMC11398146 DOI: 10.3390/polym16172526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/18/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024] Open
Abstract
Skin, the largest organ of the human body, accounts for protecting against external injuries and pathogens. Despite possessing inherent self-regeneration capabilities, the repair of skin lesions is a complex and time-consuming process yet vital to preserving its critical physiological functions. The dominant treatment involves the application of a dressing to protect the wound, mitigate the risk of infection, and decrease the likelihood of secondary injuries. Pursuing solutions for accelerating wound healing has resulted in groundbreaking advancements in materials science, from hydrogels and hydrocolloids to foams and micro-/nanofibers. Noting the convenience and flexibility in design, nanofibers merit a high surface-area-to-volume ratio, controlled release of therapeutics, mimicking of the extracellular matrix, and excellent mechanical properties. Core-shell nanofibers bring even further prospects to the realm of wound dressings upon separate compartments with independent functionality, adapted release profiles of bioactive agents, and better moisture management. In this review, we highlight core-shell nanofibers for wound dressing applications featuring a survey on common materials and synthesis methods. Our discussion embodies the wound healing process, optimal wound dressing characteristics, the current organic and inorganic material repertoire for multifunctional core-shell nanofibers, and common techniques to fabricate proper coaxial structures. We also provide an overview of antibacterial nanomaterials with an emphasis on their crystalline structures, properties, and functions. We conclude with an outlook for the potential offered by core-shell nanofibers toward a more advanced design for effective wound healing.
Collapse
Affiliation(s)
- Nariman Rajabifar
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology (Tehran Polytechnic), Tehran P.O. Box 15875-4413, Iran
| | - Amir Rostami
- Department of Chemical Engineering, Persian Gulf University, Bushehr P.O. Box 75169-13817, Iran
| | - Shahnoosh Afshar
- Department of Polymer Engineering, Islamic Azad University-Mahshahr Campus, Mahshahr P.O. Box 63511-41111, Iran
| | - Pezhman Mosallanezhad
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology (Tehran Polytechnic), Tehran P.O. Box 15875-4413, Iran
| | - Payam Zarrintaj
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Mohsen Shahrousvand
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, Rasht P.O. Box 43841-119, Iran
| | - Hossein Nazockdast
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology (Tehran Polytechnic), Tehran P.O. Box 15875-4413, Iran
| |
Collapse
|
15
|
Raczyńska A, Góra A, André I. An overview on polyurethane-degrading enzymes. Biotechnol Adv 2024; 77:108439. [PMID: 39241969 DOI: 10.1016/j.biotechadv.2024.108439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Polyurethanes (PUR) are durable synthetic polymers widely used in various industries, contributing significantly to global plastic consumption. PUR pose unique challenges in terms of degradability and recyclability, as they are characterised by intricate compositions and diverse formulations. Additives and proprietary structures used in commercial PUR formulations further complicate recycling efforts, making the effective management of PUR waste a daunting task. In this review, we delve into the complex challenge of enzymatic degradation of PUR, focusing on the structural and functional attributes of both enzymes and PUR. We also present documented native enzymes with reported efficacy in hydrolysing specific bonds within PUR, analysis of these enzyme structures, reaction mechanisms, substrate specificity, and binding site architecture. Furthermore, we propose essential features for the future redesign of enzymes to optimise PUR biodegradation efficiency. By outlining prospective research directions aimed at advancing the field of enzymatic biodegradation of PUR, we aim to contribute to the development of sustainable solutions for managing PUR waste and reducing environmental pollution.
Collapse
Affiliation(s)
- Agata Raczyńska
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, ul. Krzywoustego 8, 44-100 Gliwice, Poland; Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, 135 avenue de Rangueil, F-31077 Toulouse Cedex, France; Faculty of Chemistry, Silesian University of Technology, ul. Strzody 9, 44-100 Gliwice, Poland
| | - Artur Góra
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, ul. Krzywoustego 8, 44-100 Gliwice, Poland.
| | - Isabelle André
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, 135 avenue de Rangueil, F-31077 Toulouse Cedex, France.
| |
Collapse
|
16
|
Nettles J, Alfarhan S, Pascoe CA, Westover C, Madsen MD, Sintas JI, Subbiah A, Long TE, Jin K. Functional Upcycling of Polyurethane Thermosets into Value-Added Thermoplastics via Small-Molecule Carbamate-Assisted Decross-Linking Extrusion. JACS AU 2024; 4:3058-3069. [PMID: 39211581 PMCID: PMC11350600 DOI: 10.1021/jacsau.4c00403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/22/2024] [Accepted: 06/28/2024] [Indexed: 09/04/2024]
Abstract
The cross-linked structures of most commodity polyurethanes (PUs) hinder their recycling by common mechanical/chemical approaches. Catalyzed dynamic carbamate exchange emerges as a promising PU recycling strategy, which converts traditional static PU thermosets into reprocessable covalent adaptable networks (CANs). However, this approach has been limited to thermoset-to-thermoset reprocessing of PU CANs, accompanied by their well-preserved network structures and extremely high viscosities, which pose challenges to processing and certain applications. This study reports a catalytic decross-linking extrusion process aided by small-molecule carbamates, which can upcycle PU thermosets into easily processable and functional PU thermoplastics in a solvent-free and high-throughput manner. Key to this process is the employment of small-molecule carbamates as decross-linkers to simultaneously deconstruct cross-linked PUs and functionalize the decross-linked PU chains, through catalyzed carbamate exchange reactions in a twin-screw extruder. This strategy applies to both aromatic and aliphatic cross-linked PU films and foams, and the amount of small-molecule carbamates required to decross-link PU networks is determined through thermal, chemical, and structural analyses of the resulting extrudates. This approach is generalizable to small-molecule carbamates with various steric/electronic structures and chemical functionalities including methacrylate, anthracene, and stilbene groups. The chain-end functionalization is confirmed by analyzing the purified decross-linked extrudates after dialysis. This thermoset-to-thermoplastic extrusion process represents a powerful approach for upcycling postconsumer PU thermosets into a library of thermoplastic PUs with controlled molecular weights and chain-end functionalities for diverse applications, including adhesives, photoresins, and stimuli-responsive materials, as demonstrated herein. In the future, this strategy could be extended to upcycle many other step-growth networks capable of undergoing catalytic bond exchange reactions, such as cross-linked polyureas and polyesters, contributing to plastic waste management in general.
Collapse
Affiliation(s)
- Jared
A. Nettles
- Chemical
Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe 85287, Arizona, United States
- Biodesign
Center for Sustainable Macromolecular Materials and Manufacturing, Arizona State University, Tempe 85287, Arizona, United States
| | - Saleh Alfarhan
- Chemical
Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe 85287, Arizona, United States
- Biodesign
Center for Sustainable Macromolecular Materials and Manufacturing, Arizona State University, Tempe 85287, Arizona, United States
| | - Cameron A. Pascoe
- Biodesign
Center for Sustainable Macromolecular Materials and Manufacturing, Arizona State University, Tempe 85287, Arizona, United States
| | - Clarissa Westover
- Biodesign
Center for Sustainable Macromolecular Materials and Manufacturing, Arizona State University, Tempe 85287, Arizona, United States
- Materials
Science and Engineering, School for Engineering of Matter, Transport
and Energy, Arizona State University, Tempe 85287, Arizona, United States
| | - Margaret D. Madsen
- Biodesign
Center for Sustainable Macromolecular Materials and Manufacturing, Arizona State University, Tempe 85287, Arizona, United States
- Chemistry,
School of Molecular Sciences, Arizona State
University, Tempe 85287, Arizona, United States
| | - Jose I. Sintas
- Biodesign
Center for Sustainable Macromolecular Materials and Manufacturing, Arizona State University, Tempe 85287, Arizona, United States
- Chemistry,
School of Molecular Sciences, Arizona State
University, Tempe 85287, Arizona, United States
| | - Aadhi Subbiah
- Department
of Chemical and Biological Engineering, Iowa State University, Ames 50011, Iowa, United States
| | - Timothy E. Long
- Chemical
Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe 85287, Arizona, United States
- Biodesign
Center for Sustainable Macromolecular Materials and Manufacturing, Arizona State University, Tempe 85287, Arizona, United States
- Chemistry,
School of Molecular Sciences, Arizona State
University, Tempe 85287, Arizona, United States
| | - Kailong Jin
- Chemical
Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe 85287, Arizona, United States
- Biodesign
Center for Sustainable Macromolecular Materials and Manufacturing, Arizona State University, Tempe 85287, Arizona, United States
| |
Collapse
|
17
|
Sharma M, Patton ZE, Shoemaker CR, Bacsa J, Biegasiewicz KF. N-Halogenation by Vanadium-Dependent Haloperoxidases Enables 1,2,4-Oxadiazole Synthesis. Angew Chem Int Ed Engl 2024:e202411387. [PMID: 39183368 DOI: 10.1002/anie.202411387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Nitrogen-containing compounds are valuable synthetic intermediates and targets in nearly every chemical industry. While methods for nitrogen-carbon and nitrogen-heteroatom bond formation have primarily relied on nucleophilic nitrogen atom reactivity, molecules containing nitrogen-halogen bonds allow for electrophilic or radical reactivity modes at the nitrogen center. Despite the growing synthetic utility of nitrogen-halogen bond-containing compounds, selective catalytic strategies for their synthesis are largely underexplored. We recently discovered that the vanadium-dependent haloperoxidase (VHPO) class of enzymes are a suitable biocatalyst platform for nitrogen-halogen bond formation. Herein, we show that VHPOs perform selective halogenation of a range of substituted benzamidine hydrochlorides to produce the corresponding N'-halobenzimidamides. This biocatalytic platform is applied to the synthesis of 1,2,4-oxadiazoles from the corresponding N-acylbenzamidines in high yield and with excellent chemoselectivity. Finally, the synthetic applicability of this biotechnology is demonstrated in an extension to nitrogen-nitrogen bond formation and the chemoenzymatic synthesis of the Duchenne muscular dystrophy drug, ataluren.
Collapse
Affiliation(s)
- Manik Sharma
- Department of Chemistry, Emory University, 1515 Dickey Dr, Atlanta, GA, 30322
- School of Molecular Sciences, Arizona State University, 551 E University Dr, Tempe, AZ, 85281
| | - Zoe E Patton
- Department of Chemistry, Emory University, 1515 Dickey Dr, Atlanta, GA, 30322
| | - Carlie R Shoemaker
- School of Molecular Sciences, Arizona State University, 551 E University Dr, Tempe, AZ, 85281
| | - John Bacsa
- Department of Chemistry, Emory University, 1515 Dickey Dr, Atlanta, GA, 30322
| | - Kyle F Biegasiewicz
- Department of Chemistry, Emory University, 1515 Dickey Dr, Atlanta, GA, 30322
- School of Molecular Sciences, Arizona State University, 551 E University Dr, Tempe, AZ, 85281
| |
Collapse
|
18
|
Jaussaud Q, Ogbu IM, Pawar GG, Grau E, Robert F, Vidil T, Landais Y, Cramail H. Synthesis of polyurethanes through the oxidative decarboxylation of oxamic acids: a new gateway toward self-blown foams. Chem Sci 2024; 15:13475-13485. [PMID: 39183929 PMCID: PMC11339942 DOI: 10.1039/d4sc02562h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/24/2024] [Indexed: 08/27/2024] Open
Abstract
Polyurethane (PU) thermoplastics and thermosets were prepared through the step-growth polymerization of in situ generated polyisocyanates through the decarboxylation of polyoxamic acids, in the presence of phenyliodine diacetate (PIDA), and polyols. The CO2 produced during the reaction allowed the access to self-blown polyurethane foams through an endogenous chemical blowing. The acetic acid released from ligand exchange at the iodine center was also shown to accelerate the polymerization reaction, avoiding the recourse to an additional catalyst. Changing simple parameters during the production process allowed us to access flexible PU foams with a wide range of properties.
Collapse
Affiliation(s)
- Quentin Jaussaud
- University of Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629 16 Avenue Pey-Berland F-33600 Pessac France
| | - Ikechukwu Martin Ogbu
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255 351, Cours de la Libération F-33400 Talence France
| | - Govind Goroba Pawar
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255 351, Cours de la Libération F-33400 Talence France
| | - Etienne Grau
- University of Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629 16 Avenue Pey-Berland F-33600 Pessac France
| | - Frédéric Robert
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255 351, Cours de la Libération F-33400 Talence France
| | - Thomas Vidil
- University of Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629 16 Avenue Pey-Berland F-33600 Pessac France
| | - Yannick Landais
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255 351, Cours de la Libération F-33400 Talence France
| | - Henri Cramail
- University of Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629 16 Avenue Pey-Berland F-33600 Pessac France
| |
Collapse
|
19
|
Kiełkiewicz D, Siewniak A, Gaida R, Greif M, Chrobok A. Ionic Liquid Catalysis in Cyclic Carbonate Synthesis for the Development of Soybean Oil-Based Non-Isocyanate Polyurethane Foams. Molecules 2024; 29:3908. [PMID: 39202987 PMCID: PMC11356965 DOI: 10.3390/molecules29163908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
A method for obtaining non-isocyanate polyurethane (NIPU) foams from cyclic carbonate (CC) based on soybean oil was developed. For this purpose, cyclic carbonate was synthesized from epoxidized soybean oil and CO2 using various ionic liquids (ILs) as catalysts. Among the tested ILs, the highest selectivity (100%) and CC yield (98%) were achieved for 1-ethyl-3-methylimidazolium ([emim]Br). Without any purification, the resulting cyclic carbonate was reacted directly with diethylenetriamine as a model crosslinking agent to produce NIPU foams. It was found that the soybean oil-based CC synthesized with bromide imidazolium ionic liquids exhibited significantly shorter gelling times (8 min 50 s for [emim]Br and 9 min 35 s for [bmim]Br) compared to those obtained with the conventional TBAB catalyst (26 min 15 s). A shorter gelling time is a crucial parameter for the crosslinking process in foams. The obtained foams were subjected to mechanical tests and a morphology analysis.
Collapse
Affiliation(s)
- Damian Kiełkiewicz
- Łukasiewicz Research Network—Institute of Heavy Organic Synthesis “Blachownia”, Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland; (D.K.); (R.G.)
- Department of Chemical Organic Technology and Petrochemistry, PhD School, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
| | - Agnieszka Siewniak
- Department of Chemical Organic Technology and Petrochemistry, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland;
| | - Rafał Gaida
- Łukasiewicz Research Network—Institute of Heavy Organic Synthesis “Blachownia”, Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland; (D.K.); (R.G.)
| | - Małgorzata Greif
- Łukasiewicz Research Network—Institute of Heavy Organic Synthesis “Blachownia”, Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland; (D.K.); (R.G.)
| | - Anna Chrobok
- Department of Chemical Organic Technology and Petrochemistry, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland;
| |
Collapse
|
20
|
Rahman SS, Mahmud MB, Omranpour H, Salehi A, Monfared AR, Park CB. Highly Tough Yet Stiff, Transparent, and Recyclable PMMA Nanocomposites Incorporating TPU Nanofibril Networks with High Thermal Stability and Strong Interfacial Adhesion. ACS APPLIED MATERIALS & INTERFACES 2024; 16:42687-42703. [PMID: 39082691 DOI: 10.1021/acsami.4c08654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
In this paper, we develop high aspect ratio nanofibrils from a polycaprolactone-based thermoplastic polyurethane (TPU) and evaluate their performance as a toughening agent. Poly(methyl methacrylate) (PMMA) was chosen as the matrix material because of its inherent brittleness and low resistance to sudden shocks and impact. We show that the addition of as little as 3 wt % of TPU nanofibrils with an average diameter of ∼98 nm and very high aspect ratio can significantly improve both the tensile toughness (∼212%) and impact strength (∼40%) of the chosen matrix (i.e., PMMA) without compromising its original strength, stiffness, and transparency. We compare the performance of TPU nanofibrils with TPU spherical particles─the form TPU typically manifests into when melt-mixed with an immiscible polymer. Our findings highlight that the structure of TPU plays a crucial role in determining the critical concentration of TPU needed for the brittle-ductile transition of the matrix. We also provide new and valuable insights into the unique interfacial interaction (i.e., formation of fibrillar bridges) observed between the PMMA matrix and TPU. We also show that the inclusion of 3 wt % of TPU nanofibrils can notably enhance resistance to creep deformation, even at temperatures close to the glass transition temperature of the matrix. Finally, we evaluate recyclability and demonstrate that the composite containing 3 wt % of TPU nanofibrils can be mechanically recycled without losing any properties. The proposed TPU nanofibrils can withstand repeated reprocessing at temperatures up to 190 °C due to their very high melting point and thermal stability. This presents the opportunity for them to be utilized not just with amorphous PMMA, but also with a range of other materials that can be processed at or below this temperature to remarkably improve their toughness without sacrificing strength and stiffness.
Collapse
Affiliation(s)
- Saadman Sakib Rahman
- Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G8
| | - Mayesha Binte Mahmud
- Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G8
| | - Hosseinali Omranpour
- Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G8
| | - Amirmehdi Salehi
- Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G8
| | - Ali Reza Monfared
- Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G8
| | - Chul B Park
- Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G8
| |
Collapse
|
21
|
Makowska S, Szymborski D, Sienkiewicz N, Kairytė A. Current Progress in Research into Environmentally Friendly Rigid Polyurethane Foams. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3971. [PMID: 39203149 PMCID: PMC11355871 DOI: 10.3390/ma17163971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024]
Abstract
Polyurethane foams are materials characterized by low density and thermal conductivity and can therefore be used as thermal insulation materials. They are synthesized from toxic and environmentally unfriendly petrochemicals called isocyanates and polyols, which react with each other to form a urethane group via the displacement of the movable hydrogen atom of the -OH group of the alcohol to the nitrogen atom of the isocyanate group. The following work describes the synthesis of polyurethane foams, focusing on using environmentally friendly materials, such as polyols derived from plant sources or modifiers, to strengthen the foam interface derived from plant precipitation containing cellulose derived from paper waste. The polyurethane foam industry is looking for new sources of materials to replace the currently used petrochemical products. The solutions described are proving to be an innovative and promising area capable of changing the face of current PU foam synthesis.
Collapse
Affiliation(s)
- Sylwia Makowska
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, 90-924 Lodz, Poland; (S.M.); (D.S.); (N.S.)
- Civil Engineering Research Centre, Vilnius Gediminas Technical University, Saulėtekio av. 11, 10223 Vilnius, Lithuania
| | - Dawid Szymborski
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, 90-924 Lodz, Poland; (S.M.); (D.S.); (N.S.)
| | - Natalia Sienkiewicz
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, 90-924 Lodz, Poland; (S.M.); (D.S.); (N.S.)
| | - Agnė Kairytė
- Civil Engineering Research Centre, Vilnius Gediminas Technical University, Saulėtekio av. 11, 10223 Vilnius, Lithuania
| |
Collapse
|
22
|
Yan Y, Wei L, Shao J, Qiu X, Zhang X, Cui X, Huang J, Ge S. A Near-Infrared Photothermal-Responsive Underwater Adhesive with Tough Adhesion and Antibacterial Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310870. [PMID: 38453669 DOI: 10.1002/smll.202310870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/24/2024] [Indexed: 03/09/2024]
Abstract
Developing tunable underwater adhesives that possess tough adhesion in service and easy detachment when required remains challenging. Herein, a strategy is proposed to design a near infrared (NIR) photothermal-responsive underwater adhesive by incorporating MXene (Ti3C2Tx)-based nanoparticles within isocyanate-modified polydimethylsiloxane (PDMS) polymer chains. The developed adhesive exhibits long-term and tough adhesion with an underwater adhesion strength reaching 5.478 MPa. Such strong adhesion is mainly attributed to the covalent bonds and hydrogen bonds at the adhesive-substrate interface. By making use of the photothermal-response of MXene-based nanoparticles and the thermal response of PDMS-based chains, the adhesive possesses photothermal-responsive performance, exhibiting sharply diminished adhesion under NIR irradiation. Such NIR-triggered tunable adhesion allows for easy and active detachment of the adhesive when needed. Moreover, the underwater adhesive exhibits photothermal antibacterial property, making it highly desirable for underwater applications. This work enhances the understanding of photothermal-responsive underwater adhesion, enabling the design of tunable underwater adhesives for biomedical and engineering applications.
Collapse
Affiliation(s)
- Yonggan Yan
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan, Shandong, 250012, China
| | - Luxing Wei
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Jinlong Shao
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaoyong Qiu
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Xiaolai Zhang
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Xin Cui
- Advanced Interdisciplinary Technology Research Center, National Innovation Institute of Defense Technology, Beijing, 100071, China
| | - Jun Huang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Shaohua Ge
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
23
|
Kim J, Fan J, Petrossian G, Zhou X, Kateb P, Gagnon-Lafrenais N, Cicoira F. Self-healing, stretchable and recyclable polyurethane-PEDOT:PSS conductive blends. MATERIALS HORIZONS 2024; 11:3548-3560. [PMID: 38869226 DOI: 10.1039/d4mh00203b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Future electronics call for materials with mechanical toughness, flexibility, and stretchability. Moreover, self-healing and recyclability are highly desirable to mitigate the escalating environmental threat of electronic waste (e-waste). Herein, we report a stretchable, self-healing, and recyclable material based on a mixture of the conductive polymer poly(3,4-ethylenedioxythiophene) doped with polystyrene sulfonate (PEDOT:PSS) with a custom-designed polyurethane (PU) and polyethylene glycol (PEG). This material showed excellent elongation at brake (∼350%), high toughness (∼24.6 MJ m-3), moderate electrical conductivity (∼10 S cm-1), and outstanding mechanical and electrical healing efficiencies. In addition, it demonstrated exceptional recyclability with no significant loss in the mechanical and electrical properties after being recycled 20 times. Based on these properties, as a proof of principle for sustainable electronic devices, we demonstrated that electrocardiogram (ECG) electrodes and pressure sensors based on this material could be recycled without significant performance loss. The development of multifunctional electronic materials that are self-healing and fully recyclable is a promising step toward sustainable electronics, offering a potential solution to the e-waste challenge.
Collapse
Affiliation(s)
- Jinsil Kim
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, QC, H3C 3A7, Canada.
| | - Jiaxin Fan
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, QC, H3C 3A7, Canada.
| | - Gayaneh Petrossian
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, QC, H3C 3A7, Canada.
| | - Xin Zhou
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, QC, H3C 3A7, Canada.
| | - Pierre Kateb
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, QC, H3C 3A7, Canada.
| | - Noemy Gagnon-Lafrenais
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, QC, H3C 3A7, Canada.
| | - Fabio Cicoira
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, QC, H3C 3A7, Canada.
| |
Collapse
|
24
|
Zennifer A, Chellappan DR, Chinnaswamy P, Subramanian A, Sundaramurthi D, Sethuraman S. Efficacy of 3D printed anatomically equivalent thermoplastic polyurethane guide conduits in promoting the regeneration of critical-sized peripheral nerve defects. Biofabrication 2024; 16:045015. [PMID: 38968935 DOI: 10.1088/1758-5090/ad5fbe] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/05/2024] [Indexed: 07/07/2024]
Abstract
Three-dimensional (3D) printing is an emerging tool for creating patient-specific tissue constructs analogous to the native tissue microarchitecture. In this study, anatomically equivalent 3D nerve conduits were developed using thermoplastic polyurethane (TPU) by combining reverse engineering and material extrusion (i.e. fused deposition modeling) technique. Printing parameters were optimized to fabricate nerve-equivalent TPU constructs. The TPU constructs printed with different infill densities supported the adhesion, proliferation, and gene expression of neuronal cells. Subcutaneous implantation of the TPU constructs for three months in rats showed neovascularization with negligible local tissue inflammatory reactions and was classified as a non-irritant biomaterial as per ISO 10993-6. To performin vivoefficacy studies, nerve conduits equivalent to rat's sciatic nerve were fabricated and bridged in a 10 mm sciatic nerve transection model. After four months of implantation, the sensorimotor function and histological assessments revealed that the 3D printed TPU conduits promoted the regeneration in critical-sized peripheral nerve defects equivalent to autografts. This study proved that TPU-based 3D printed nerve guidance conduits can be created to replicate the complicated features of natural nerves that can promote the regeneration of peripheral nerve defects and also show the potential to be extended to several other tissues for regenerative medicine applications.
Collapse
Affiliation(s)
- Allen Zennifer
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613 401, India
| | - David Raj Chellappan
- Central Animal Facility, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613 401, India
| | - Prabu Chinnaswamy
- Department of Veterinary Pathology, Veterinary College and Research Institute, Orathanadu, Tamil Nadu 614 625, India
| | - Anuradha Subramanian
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613 401, India
| | - Dhakshinamoorthy Sundaramurthi
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613 401, India
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613 401, India
| |
Collapse
|
25
|
Głowacki A, Rybiński P, Czerwonka G, Żukowski W, Mirkhodjaev UZ, Żelezik M. Flammability, Toxicity, and Microbiological Properties of Polyurethane Flexible Foams. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3517. [PMID: 39063810 PMCID: PMC11278372 DOI: 10.3390/ma17143517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024]
Abstract
The aim of the research was to investigate the influence of calcium phosphinate (HPCA) and aluminum phosphinate (HPAL) in synergistic systems with organophosphorus compounds, i.e., diphenylcresyl phosphate (CDP) and trichloropropyl phosphate (TCPP), on the thermal stability, flammability, smoke density, and emission of toxic gases during the thermal decomposition of polyurethane (PUR) foams. Thermogravimetric analysis (TGA), along with cone calorimetry and microcalorimetry, were used to assess the influence of fillers on the thermal stability and flammability of PUR foams. The analysis of toxic gas products was performed with the use of a coupled TG-gas analyzer system. The optical density of gases was measured with the use of a smoke density chamber (SDC). The obtained results showed an increase in thermal stability and a decrease in the flammability of the PUR composites. However, the results regarding smoke and gas emissions, as well as toxic combustion by-products, present ambiguity. On one hand, the applied flame retardant systems in the form of PUR-HPCA-CDP and PUR-HPCA-TCPP led to a reduction in the concentration of CO and HCN in the gas by-products. On the other hand, they clearly increased the concentration of CO2, NOx, and smoke emissions. Microbiological studies indicated that the obtained foam material is completely safe for use and does not exhibit biocidal properties.
Collapse
Affiliation(s)
- Arkadiusz Głowacki
- Institute of Chemistry, The Jan Kochanowski University, 25-406 Kielce, Poland
| | - Przemysław Rybiński
- Institute of Chemistry, The Jan Kochanowski University, 25-406 Kielce, Poland
| | - Grzegorz Czerwonka
- Institute of Biology, Jan Kochanowski University, 25-406 Kielce, Poland;
| | - Witold Żukowski
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland;
| | | | - Monika Żelezik
- Institute of Geography and Environmental Sciences, Jan Kochanowski University, 25-406 Kielce, Poland;
| |
Collapse
|
26
|
Pawlak M, Pobłocki K, Drzeżdżon J, Gawdzik B, Jacewicz D. "Isocyanates and isocyanides - life-threatening toxins or essential compounds?". THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173250. [PMID: 38761928 DOI: 10.1016/j.scitotenv.2024.173250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/14/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Isocyanides and isocyanates are some of the most reactive compounds in organic chemistry, making them perceived as compounds with high potential for use in both the laboratory and industry. With their high reactivity also comes several disadvantages, most notably their potentially high toxicity. The following article is a collection of information on the toxic effects of the isocyanide group on the human body and the environment. Information on the mechanism of how these harmful substances affect living tissues and the environment, worldwide information on how to protect against these chemicals, current regulations, and exposure limits for specific countries is compiled. The latest research on the application uses of isocyanates and isocyanides is also outlined, as well as the latest safer and greener methods and techniques to work with these compounds. Additionally, the presented article can serve as a brief guide to the organic toxicity of a group of isocyanates and isocyanates.
Collapse
Affiliation(s)
- Marta Pawlak
- Faculty of Chemistry, Department of Environmental Technology, University of Gdansk, Wita Stwosza 63, Gdansk, Poland.
| | - Kacper Pobłocki
- Faculty of Chemistry, Department of Environmental Technology, University of Gdansk, Wita Stwosza 63, Gdansk, Poland
| | - Joanna Drzeżdżon
- Faculty of Chemistry, Department of Environmental Technology, University of Gdansk, Wita Stwosza 63, Gdansk, Poland
| | - Barbara Gawdzik
- Institute of Chemistry, Jan Kochanowski University, Uniwersytecka 7, 25-406 Kielce, Poland
| | - Dagmara Jacewicz
- Faculty of Chemistry, Department of Environmental Technology, University of Gdansk, Wita Stwosza 63, Gdansk, Poland.
| |
Collapse
|
27
|
Tawfilas M, Bartolini Torres G, Lorenzi R, Saibene M, Mauri M, Simonutti R. Transparent and High-Refractive-Index Titanium Dioxide/Thermoplastic Polyurethane Nanocomposites. ACS OMEGA 2024; 9:29339-29349. [PMID: 39005776 PMCID: PMC11238196 DOI: 10.1021/acsomega.4c01053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/02/2024] [Accepted: 05/27/2024] [Indexed: 07/16/2024]
Abstract
Transparent nanocomposite films made of surface-modified titanium dioxide nanoparticles and thermoplastic polyurethane are prepared via film casting approach showing enhanced refractive indexes and mechanical properties. Two different sets of composites were prepared up to 37.5 wt % of inorganic nanoparticles with a diameter <15 nm, one set using particles capped only with oleic acid and a second one with a bimodal system layer made of oleic acid and mPEO-5000 as coating agents. All of the composites show significantly enhanced refractive index and mechanical properties than the neat polymeric matrix. The transparency of nanocomposite films shows the excellent dispersion of the inorganic nanoparticles in the polymeric matrix avoiding aggregation and precipitation phenomena. Our study provides a facile and feasible route to produce transparent nanocomposite films with tunable mechanical properties and high refractive indices for various applications.
Collapse
Affiliation(s)
- Massimo Tawfilas
- Department of Materials Science, University of Milano-Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| | - Gianluca Bartolini Torres
- Department of Materials Science, University of Milano-Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| | - Roberto Lorenzi
- Department of Materials Science, University of Milano-Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| | - Melissa Saibene
- Piattaforma
di Microscopia, University of Milano-Bicocca, 20126 Milano, Italy
| | - Michele Mauri
- Department of Materials Science, University of Milano-Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| | - Roberto Simonutti
- Department of Materials Science, University of Milano-Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| |
Collapse
|
28
|
Teng YQ, Ren BH, Liu Y, Gao J, Ren WM, Lu XB. Innovative Approach to Chiral Polyurethanes: Asymmetric Copolymerization with Isocyanates. Angew Chem Int Ed Engl 2024; 63:e202404186. [PMID: 38691059 DOI: 10.1002/anie.202404186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/15/2024] [Accepted: 04/29/2024] [Indexed: 05/03/2024]
Abstract
The introduction of nitrogen-containing functional groups to chiral polymer backbones enables the tailoring of physical properties and offers opportunities for further post-polymerization modification. However, the substrate scope of such polymers is extremely limited because monomers having nitrogen-containing groups can change coordination state with respect to the metal centers, thus decreasing the activity and enantioselectivity and even poisoning the catalyst completely. In this paper, we report our attempts to carry out the asymmetric copolymerization of meso-epoxide with highly reactive isocyanates. In particular, we found that biphenol-linked bimetallic Co(III) complexes with multiple chiral centers are very efficient in catalyzing this asymmetric copolymerization reaction, affording optically active polyurethanes with a completely alternating nature and a high enantioselectivity of up to 94 % ee. Crucially, we identified that the steric hindrance at the phenolate ortho position of the ligand strongly influences the catalytic activity and product enantioselectivity. In addition, density functional theory calculations revealed that the highly sterically bulky substituents change the mechanism from bimetallic to monometallic, and result in the unexpected inversion of the chiral induction direction. Moreover, the high stereoregularity of the produced polyurethanes enhances their thermal stability, and they can be selectively decomposed into oxazolidinones. This study offers a versatile methodology for the synthesis of chiral polymers containing nitrogen functionalities.
Collapse
Affiliation(s)
- Yong-Qiang Teng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| | - Bai-Hao Ren
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| | - Ye Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| | - Jie Gao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| | - Wei-Min Ren
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
29
|
Davletbaeva IM, Sazonov OO, Zakirov IN, Arkhipov AV, Davletbaev RS. Self-Organization of Polyurethane Ionomers Based on Organophosphorus-Branched Polyols. Polymers (Basel) 2024; 16:1773. [PMID: 39000629 PMCID: PMC11243855 DOI: 10.3390/polym16131773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 07/17/2024] Open
Abstract
Based on organophosphorus branched polyols (AEPAs) synthesized using triethanolamine (TEOA), ortho-phosphoric acid (OPA), and polyoxyethylene glycol with MW = 400 (PEG), vapor-permeable polyurethane ionomers (AEPA-PEG-PUs) were obtained. During the synthesis of AEPAs, the reaction of the OPA etherification with polyoxyethylene glycol was studied in a wide temperature range and at different molar ratios of the starting components. It turned out that OPA simultaneously undergoes a catalytically activated etherification reaction with triethanolamine and PEG. After TEOA is fully involved in the etherification reaction, excess OPA does not react with the terminal hydroxyl groups of AEPA-PEG or the remaining amount of PEG. The ortho-phosphoric acid remaining in an unreacted state is involved in associative interactions with the phosphate ions of the AEPA. Increasing the synthesis temperature from 40 °C to 110 °C leads to an increase in OPA conversion. However, for the AEPA-PEG-PU based on AEPA-PEG obtained at 100 °C and 110 °C, ortho-phosphoric acid no longer enters into associative interactions with the phosphate ions of the AEPA. Due to the hydrophilicity of polyoxyethylene glycol, the presence of phosphate ions in the polyurethane structure, and their associative binding with the unreacted ortho-phosphoric acid, the diffusion of water molecules in polyurethanes is enhanced, and high values of vapor permeability and tensile strength were achieved.
Collapse
Affiliation(s)
- Ilsiya M. Davletbaeva
- Technology of Synthetic Rubber Department, Kazan National Research Technological University, 68 Karl Marx str., Kazan 420015, Russia; (O.O.S.); (I.N.Z.)
| | - Oleg O. Sazonov
- Technology of Synthetic Rubber Department, Kazan National Research Technological University, 68 Karl Marx str., Kazan 420015, Russia; (O.O.S.); (I.N.Z.)
| | - Ilyas N. Zakirov
- Technology of Synthetic Rubber Department, Kazan National Research Technological University, 68 Karl Marx str., Kazan 420015, Russia; (O.O.S.); (I.N.Z.)
| | - Alexander V. Arkhipov
- Institute of Electronics and Telecommunications, Peter the Great St. Petersburg Polytechnic University, 29 Polytechnicheskaya str., St. Petersburg 195251, Russia;
| | - Ruslan S. Davletbaev
- Material Science and Technology of Materials Department, Kazan State Power Engineering University, 51 Krasnoselskaya str., Kazan 420066, Russia;
| |
Collapse
|
30
|
Wang Z, Zhang Y, Zhang H, Sun Q, He X, Ji H. Waste Plastic-Supported Pd Single-Atom Catalyst for Hydrogenation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3058. [PMID: 38998141 PMCID: PMC11242047 DOI: 10.3390/ma17133058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024]
Abstract
As worldwide plastic pollution continues to rise, innovative ideas for effective reuse and recycling of waste plastic are needed. Single-atom catalysts (SACs), which are known for their high activity and selectivity, present unique advantages in facilitating plastic degradation and conversion. Waste plastic can be used as a support or raw material to create SACs, which reduces waste generation while simultaneously utilizing waste as a resource. This work successfully utilized waste plastic polyurethane (PU) as a support, through a unique Rapid Thermal Processing Reactor (RTPR) to synthesize an efficient Pd1/PU SACs. At 25 °C and 0.5 MPa H2, Pd1/PU displayed outstanding activity and selectivity in the hydrogenation of styrene, as well as remarkable stability. Pd1/PU performed well in hydrogenating a variety of common substrates. These findings highlight the great potential of SACs in plastic waste reuse and recycling, offering intriguing solutions to the global plastic pollution problem.
Collapse
Affiliation(s)
- Ziyue Wang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Fine Chemical Industry Research Institute, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510275, China; (Z.W.); (Y.Z.); (H.Z.); (Q.S.)
| | - Ying Zhang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Fine Chemical Industry Research Institute, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510275, China; (Z.W.); (Y.Z.); (H.Z.); (Q.S.)
| | - Hao Zhang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Fine Chemical Industry Research Institute, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510275, China; (Z.W.); (Y.Z.); (H.Z.); (Q.S.)
| | - Qingdi Sun
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Fine Chemical Industry Research Institute, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510275, China; (Z.W.); (Y.Z.); (H.Z.); (Q.S.)
| | - Xiaohui He
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Fine Chemical Industry Research Institute, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510275, China; (Z.W.); (Y.Z.); (H.Z.); (Q.S.)
- Guangdong Technology Research Center for Synthesis and Separation of Thermosensitive Chemicals, Guangzhou 510275, China
| | - Hongbing Ji
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Fine Chemical Industry Research Institute, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510275, China; (Z.W.); (Y.Z.); (H.Z.); (Q.S.)
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Institute of Green Petroleum Processing and Light Hydrocarbon Conversion, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
31
|
Djonyabe Habiba R, Malça C, Branco R. Exploring the Potential of Recycled Polymers for 3D Printing Applications: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2915. [PMID: 38930283 PMCID: PMC11205834 DOI: 10.3390/ma17122915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
The integration of recycled polymers into additive manufacturing (AM) processes offers a promising opportunity for advancing sustainability within the manufacturing industry. This review paper summarizes existing research and developments related to the use of recycled materials in AM, focusing on distinct polymers, such as polylactic acid (PLA), polyethylene terephthalate (PET), and acrylonitrile butadiene styrene (ABS), among others. Key topics explored include the availability of recycled filaments on the market, challenges associated with material variability and traceability, and efforts toward establishing ethical product standards and sustainability characterization methodologies. Regulatory considerations and standards development by organizations such as ASTM and ISO are discussed, along with recommendations for future advancements in improving the sustainability of filament recycling and achieving net-zero emissions in AM processes. The collective efforts outlined in this paper underscore the potential of recycled polymers in AM to foster a more sustainable and environmentally friendly manufacturing industry.
Collapse
Affiliation(s)
- Rachel Djonyabe Habiba
- Centre for Rapid and Sustainable Product Development (CDRSP), Polytechnic Institute of Leiria (IPL), 2430 Marinha Grande, Portugal; (R.D.H.); (C.M.)
| | - Cândida Malça
- Centre for Rapid and Sustainable Product Development (CDRSP), Polytechnic Institute of Leiria (IPL), 2430 Marinha Grande, Portugal; (R.D.H.); (C.M.)
- Coimbra Institute of Engineering (ISEC), Polytechnic Institute of Coimbra (IPC), Rua Pedro Nunes–Quinta da Nora, 3030-199 Coimbra, Portugal
| | - Ricardo Branco
- CEMMPRE, ARISE, Department of Mechanical Engineering, University of Coimbra, Rua Luis Reis Santos, 3030-788 Coimbra, Portugal
| |
Collapse
|
32
|
del Amo J, Iswar S, Vanbergen T, Borreguero AM, De Vos SDE, Verlent I, Willems J, Rodriguez Romero JF. Polyurethane Composites Recycling with Styrene-Acrylonitrile and Calcium Carbonate Recovery. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2844. [PMID: 38930213 PMCID: PMC11204646 DOI: 10.3390/ma17122844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024]
Abstract
The glycolysis process of flexible polyurethane foams containing styrene-acrylonitrile and calcium carbonate as fillers was explored in detail. The use of DABCO as a catalyst allowed us to reduce the catalyst concentration and the polyurethane-to-glycol mass ratio to 0.1% and 1:1, respectively. The glycolysis process allowed us to obtain a high-purity polyol (99%), which can totally replace raw polyols in the synthesis of new flexible polyurethane foams, maintaining the standard mechanical properties of the original one and modifying the ratio of isocyanates employed to correct the closed cell structure caused by the impurities present in the recovered polyol. This isocyanate mixture was also optimized, resulting in a ratio of 30 and 70% of the isocyanates TDI80 and TDI65, respectively. Additionally, the fillers incorporated in the glycolyzed foams were recovered. Both recovered fillers, styrene-acrylonitrile and calcium carbonate, were fully characterized, showing a quality very similar to that of commercial compounds. Finally, the replacement of commercial fillers by the recovered ones in the synthesis of new polyurethane foams was studied, demonstrating the feasibility of using them in the synthesis of new foams without significantly altering their properties.
Collapse
Affiliation(s)
- Jesús del Amo
- Chemical Engineering Department, University of Castilla-La Mancha, Institute of Chemical and Environmental Technology, ITQUIMA, Avda. Camilo José Cela s/n, 13004 Ciudad Real, Spain; (J.d.A.); (A.M.B.)
| | - Subramaniam Iswar
- Recticel Engineered Foams Belgium BV, Damstraat 2, 9230 Wetteren, Belgium; (S.I.); (I.V.); (J.W.)
| | - Thomas Vanbergen
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, P.O. Box 2454, 3001 Leuven, Belgium; (T.V.); (S.D.E.D.V.)
| | - Ana Maria Borreguero
- Chemical Engineering Department, University of Castilla-La Mancha, Institute of Chemical and Environmental Technology, ITQUIMA, Avda. Camilo José Cela s/n, 13004 Ciudad Real, Spain; (J.d.A.); (A.M.B.)
| | - Simon Dirk E. De Vos
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, P.O. Box 2454, 3001 Leuven, Belgium; (T.V.); (S.D.E.D.V.)
| | - Isabel Verlent
- Recticel Engineered Foams Belgium BV, Damstraat 2, 9230 Wetteren, Belgium; (S.I.); (I.V.); (J.W.)
| | - Jan Willems
- Recticel Engineered Foams Belgium BV, Damstraat 2, 9230 Wetteren, Belgium; (S.I.); (I.V.); (J.W.)
| | - Juan Francisco Rodriguez Romero
- Chemical Engineering Department, University of Castilla-La Mancha, Institute of Chemical and Environmental Technology, ITQUIMA, Avda. Camilo José Cela s/n, 13004 Ciudad Real, Spain; (J.d.A.); (A.M.B.)
| |
Collapse
|
33
|
Liu M, Pan ZZ, Ohwada M, Tang R, Matsui H, Tada M, Ito M, Ikura A, Nishihara H. Highly Permeable and Regenerative Microhoneycomb Filters. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29177-29187. [PMID: 38781454 DOI: 10.1021/acsami.4c02697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Allergic reactions can profoundly influence the quality of life. To address the health risks posed by allergens and overcome the permeability limitations of the current filter materials, this work introduces a novel microhoneycomb (MH) material for practical filter applications such as masks. Through a synthesis process integrating ice-templating and a gas-phase post-treatment with silane, MH achieves unprecedented levels of moisture resistance and mechanical stability while preserving the highly permeable microchannels. Notably, MH is extremely elastic, with a 92% recovery rate after being compressed to 80% deformation. The filtration efficiency surpasses 98.1% against pollutant particles that simulate airborne pollens, outperforming commercial counterparts with fifth-fold greater air permeability while ensuring unparalleled user comfort. Moreover, MH offers a sustainable solution, being easily regenerated through back-flow blowing, distinguishing it from conventional nonwoven fabrics. Finally, a prototype mask incorporating MH is presented, demonstrating its immense potential as a high-performance filtration material, effectively addressing health risks posed by allergens and other harmful particles.
Collapse
Affiliation(s)
- Minghao Liu
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Zheng-Ze Pan
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Mao Ohwada
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Rui Tang
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Hirosuke Matsui
- Department of Chemistry, Graduate School of Science/Research Center for Materials Science/Institute for Advance Science, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8602, Japan
- RIKEN SPring-8 Center, RIKEN, Koto, Sayo, Hyogo 679-5148, Japan
| | - Mizuki Tada
- Department of Chemistry, Graduate School of Science/Research Center for Materials Science/Institute for Advance Science, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8602, Japan
- RIKEN SPring-8 Center, RIKEN, Koto, Sayo, Hyogo 679-5148, Japan
| | - Masashi Ito
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- Advanced Materials and Processing Laboratory, Research Division, Nissan Motor Co., Ltd., 1 Natsushima-cho, Yokosuka, Kanagawa 237-8523, Japan
| | - Ami Ikura
- Advanced Materials and Processing Laboratory, Research Division, Nissan Motor Co., Ltd., 1 Natsushima-cho, Yokosuka, Kanagawa 237-8523, Japan
| | - Hirotomo Nishihara
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
34
|
Ahir M, Bodhak C, Gupta RK. Harnessing Enhanced Flame Retardancy in Rigid Polyurethane Composite Foams through Hemp Seed Oil-Derived Natural Fillers. Polymers (Basel) 2024; 16:1584. [PMID: 38891530 PMCID: PMC11174686 DOI: 10.3390/polym16111584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Over the past few decades, polymer composites have received significant interest and become protagonists due to their enhanced properties and wide range of applications. Herein, we examined the impact of filler and flame retardants in hemp seed oil-based rigid polyurethane foam (RPUF) composites' performance. Firstly, the hemp seed oil (HSO) was converted to a corresponding epoxy analog, followed by a ring-opening reaction to synthesize hemp bio-polyols. The hemp polyol was then reacted with diisocyanate in the presence of commercial polyols and other foaming components to produce RPUF in a single step. In addition, different fillers like microcrystalline cellulose, alkaline lignin, titanium dioxide, and melamine (as a flame retardant) were used in different wt.% ratios to fabricate composite foam. The mechanical characteristics, thermal degradation behavior, cellular morphology, apparent density, flammability, and closed-cell contents of the generated composite foams were examined. An initial screening of different fillers revealed that microcrystalline cellulose significantly improves the mechanical strength up to 318 kPa. The effect of melamine as a flame retardant in composite foam was also examined, which shows the highest compression strength of 447 kPa. Significantly better anti-flaming qualities than those of neat foam based on HSO have been reflected using 22.15 wt.% of melamine, with the lowest burning time of 4.1 s and weight loss of 1.88 wt.%. All the composite foams showed about 90% closed-cell content. The present work illustrates the assembly of a filler-based polyurethane foam composite with anti-flaming properties from bio-based feedstocks with high-performance applications.
Collapse
Affiliation(s)
- Mansi Ahir
- Department of Chemistry, Pittsburg State University, 1701 South Broadway Street, Pittsburg, KS 66762, USA;
- National Institute for Materials Advancement, Pittsburg State University, 1204 Research Road, Pittsburg, KS 66762, USA
| | - Chandan Bodhak
- National Institute for Materials Advancement, Pittsburg State University, 1204 Research Road, Pittsburg, KS 66762, USA
| | - Ram K. Gupta
- Department of Chemistry, Pittsburg State University, 1701 South Broadway Street, Pittsburg, KS 66762, USA;
- National Institute for Materials Advancement, Pittsburg State University, 1204 Research Road, Pittsburg, KS 66762, USA
| |
Collapse
|
35
|
Tatsi E, De Marzi M, Mauri L, Colombo A, Botta C, Turri S, Dragonetti C, Griffini G. Semi-Transparent Luminescent Solar Concentrators Based on Intramolecular Energy Transfer in Polyurethane Matrices. Macromol Rapid Commun 2024; 45:e2300724. [PMID: 38485136 DOI: 10.1002/marc.202300724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/12/2024] [Indexed: 03/24/2024]
Abstract
Luminescent solar concentrators (LSCs) are spectral conversion devices offering interesting opportunities for the integration of photovoltaics into the built environment and portable systems. The Förster-resonance energy transfer (FRET) process can boost the optical response of LSCs by reducing energy losses typically associated to non-radiative processes occurring within the device under operation. In this work, a new class of FRET-based thin-film LSC devices is presented, in which the synthetic versatility of linear polyurethanes (PU) is exploited to control the photophysical properties and the device performance of the resulting LSCs. A series of luminescent linear PUs are synthesized in the presence of two novel bis-hydroxyl-functionalized luminophores of suitable optical properties, used as chain extenders during the step-growth polyaddition reaction for the formation of the linear macromolecular network. By synthetically tuning their composition, the obtained luminescent PUs can achieve a high energy transfer efficiency (≈90%) between the covalently linked luminophores. The corresponding LSC devices exhibit excellent photonic response, with external and internal photon efficiencies as high as ≈4% and ≈37%, respectively. Furthermore, their optimized power conversion efficiency combined with their enhanced average visible-light transmittance highlight their suitability for potential use as transparent solar energy devices.
Collapse
Affiliation(s)
- Elisavet Tatsi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, 20133, Italy
| | - Matteo De Marzi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, 20133, Italy
| | - Luca Mauri
- Department of Chemistry, Università degli Studi di Milano, Via Camillo Golgi 19, Milano, 20133, Italy
| | - Alessia Colombo
- Department of Chemistry, Università degli Studi di Milano, Via Camillo Golgi 19, Milano, 20133, Italy
| | - Chiara Botta
- Institute of Sciences and Chemical Technologies "Giulio Natta" (SCITEC) of CNR, via Corti 12, Milano, 20133, Italy
| | - Stefano Turri
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, 20133, Italy
| | - Claudia Dragonetti
- Department of Chemistry, Università degli Studi di Milano, Via Camillo Golgi 19, Milano, 20133, Italy
| | - Gianmarco Griffini
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, 20133, Italy
| |
Collapse
|
36
|
Wu Z, Kang S, Liu Y, Wang P, Liu T, Bushra R, Khan MR, Guo J, Zhu W, Xiao H, Song J. Hydrostability, mechanical resilience, and biodegradability of paper straws fabricated through lignin-based polyurethane and chitosan binary emulsion bonding. Int J Biol Macromol 2024; 270:132155. [PMID: 38729462 DOI: 10.1016/j.ijbiomac.2024.132155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/05/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
This study focuses on enhancing the strength and water stability of paper straws through a novel approach involving a binary emulsion of lignin-based polyurethane and chitosan. Kraft lignin serves as the raw material for synthesizing a blocked waterborne polyurethane, subsequently combined with carboxylated chitosan to form a stable binary emulsion. The resulting emulsion, exhibiting remarkable stability over at least 6 months, is applied to the base paper. Following emulsion application, the paper undergoes torrefaction at 155 °C. This process deblocks isocyanate groups, enabling their reaction with hydroxyl groups on chitosan and fibers, ultimately forming ester bonds. This reaction significantly improves the mechanical strength and hydrophobicity of paper straws. The composite paper straws demonstrate exceptional mechanical properties, including a tensile strength of 47.21 MPa, Young's modulus of 4.33 GPa, and flexural strength of 32.38 MPa. Notably, its water stability is greatly enhanced, with a wet tensile strength of 40.66 MPa, surpassing commercial paper straws by 8 folds. Furthermore, the composite straw achieves complete biodegradability within 120 days, outperforming conventional paper straws in terms of environmental impact. This innovative solution presents a promising and sustainable alternative to plastic straws, addressing the urgent need for eco-friendly products.
Collapse
Affiliation(s)
- Zhenghong Wu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China; School of Automation and Electronic Information, Xiangtan University, Xiangtan 411105, China
| | - Shaomin Kang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yena Liu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Peipei Wang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Tian Liu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Rani Bushra
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jiaqi Guo
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Wenyuan Zhu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Junlong Song
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
37
|
Szpiłyk M, Lubczak R, Lubczak J. Cellulose-Based Polyurethane Foams of Low Flammability. Polymers (Basel) 2024; 16:1438. [PMID: 38794632 PMCID: PMC11125267 DOI: 10.3390/polym16101438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Decreasing oil resources creates the need to search for raw materials in the biosphere, which can be converted into polyols suitable for obtaining polyurethane foams (PUF). One such low-cost and reproducible biopolymer is cellulose. There are not many examples of cellulose-derived polyols due to the sluggish reactivity of cellulose itself. Recently, cellulose and its hydroxypropyl derivatives were applied as source materials to obtain polyols, further converted into biodegradable rigid polyurethane foams (PUFs). Those PUFs were flammable. Here, we describe our efforts to modify such PUFs in order to decrease their flammability. We obtained an ester from diethylene glycol and phosphoric(III) acid and used it as a reactive flame retardant in the synthesis of polyol-containing hydroxypropyl derivative of cellulose. The cellulose-based polyol was characterized by infrared spectra (IR) and proton nuclear magnetic resonance (1H-NMR) methods. Its properties, such as density, viscosity, surface tension, and hydroxyl numbers, were determined. Melamine was also added to the foamed composition as an additive flame retardant, obtaining PUFs, which were characterized by apparent density, water uptake, dimension stability, heat conductance, compressive strength, and heat resistance at 150 and 175 °C. Obtained rigid PUFs were tested for flammability by determining oxygen index, horizontal flammability test, and calorimetric analysis. Obtained rigid PUFs showed improved flammability resistance in comparison with non-modified PUFs and classic PUFs.
Collapse
Affiliation(s)
| | | | - Jacek Lubczak
- Faculty of Chemistry, Rzeszów University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland (R.L.)
| |
Collapse
|
38
|
Khan M. Chemical and Physical Architecture of Macromolecular Gels for Fracturing Fluid Applications in the Oil and Gas Industry; Current Status, Challenges, and Prospects. Gels 2024; 10:338. [PMID: 38786255 PMCID: PMC11121287 DOI: 10.3390/gels10050338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/01/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Hydraulic fracturing is vital in recovering hydrocarbons from oil and gas reservoirs. It involves injecting a fluid under high pressure into reservoir rock. A significant part of fracturing fluids is the addition of polymers that become gels or gel-like under reservoir conditions. Polymers are employed as viscosifiers and friction reducers to provide proppants in fracturing fluids as a transport medium. There are numerous systems for fracturing fluids based on macromolecules. The employment of natural and man-made linear polymers, and also, to a lesser extent, synthetic hyperbranched polymers, as additives in fracturing fluids in the past one to two decades has shown great promise in enhancing the stability of fracturing fluids under various challenging reservoir conditions. Modern innovations demonstrate the importance of developing chemical structures and properties to improve performance. Key challenges include maintaining viscosity under reservoir conditions and achieving suitable shear-thinning behavior. The physical architecture of macromolecules and novel crosslinking processes are essential in addressing these issues. The effect of macromolecule interactions on reservoir conditions is very critical in regard to efficient fluid qualities and successful fracturing operations. In future, there is the potential for ongoing studies to produce specialized macromolecular solutions for increased efficiency and sustainability in oil and gas applications.
Collapse
Affiliation(s)
- Majad Khan
- Department of Chemistry, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia; ; Tel.: +966-0138601671
- Interdisciplinary Research Center for Hydrogen Technologies and Energy Storage (IRC-HTCM), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Refining and Advanced Chemicals (IRC-CRAC), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| |
Collapse
|
39
|
Wu Y, Cheng J, Qi J, Hang C, Dong R, Low BC, Yu H, Jiang X. Three-dimensional liquid metal-based neuro-interfaces for human hippocampal organoids. Nat Commun 2024; 15:4047. [PMID: 38744873 PMCID: PMC11094048 DOI: 10.1038/s41467-024-48452-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 05/01/2024] [Indexed: 05/16/2024] Open
Abstract
Human hippocampal organoids (hHOs) derived from human induced pluripotent stem cells (hiPSCs) have emerged as promising models for investigating neurodegenerative disorders, such as schizophrenia and Alzheimer's disease. However, obtaining the electrical information of these free-floating organoids in a noninvasive manner remains a challenge using commercial multi-electrode arrays (MEAs). The three-dimensional (3D) MEAs developed recently acquired only a few neural signals due to limited channel numbers. Here, we report a hippocampal cyborg organoid (cyb-organoid) platform coupling a liquid metal-polymer conductor (MPC)-based mesh neuro-interface with hHOs. The mesh MPC (mMPC) integrates 128-channel multielectrode arrays distributed on a small surface area (~2*2 mm). Stretchability (up to 500%) and flexibility of the mMPC enable its attachment to hHOs. Furthermore, we show that under Wnt3a and SHH activator induction, hHOs produce HOPX+ and PAX6+ progenitors and ZBTB20+PROX1+ dentate gyrus (DG) granule neurons. The transcriptomic signatures of hHOs reveal high similarity to the developing human hippocampus. We successfully detect neural activities from hHOs via the mMPC from this cyb-organoid. Compared with traditional planar devices, our non-invasive coupling offers an adaptor for recording neural signals from 3D models.
Collapse
Affiliation(s)
- Yan Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Jinhao Cheng
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Jie Qi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Chen Hang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Ruihua Dong
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Boon Chuan Low
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Hanry Yu
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Xingyu Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
40
|
Zhu S, Dou W, Zeng X, Chen X, Gao Y, Liu H, Li S. Recent Advances in the Degradability and Applications of Tissue Adhesives Based on Biodegradable Polymers. Int J Mol Sci 2024; 25:5249. [PMID: 38791286 PMCID: PMC11121545 DOI: 10.3390/ijms25105249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
In clinical practice, tissue adhesives have emerged as an alternative tool for wound treatments due to their advantages in ease of use, rapid application, less pain, and minimal tissue damage. Since most tissue adhesives are designed for internal use or wound treatments, the biodegradation of adhesives is important. To endow tissue adhesives with biodegradability, in the past few decades, various biodegradable polymers, either natural polymers (such as chitosan, hyaluronic acid, gelatin, chondroitin sulfate, starch, sodium alginate, glucans, pectin, functional proteins, and peptides) or synthetic polymers (such as poly(lactic acid), polyurethanes, polycaprolactone, and poly(lactic-co-glycolic acid)), have been utilized to develop novel biodegradable tissue adhesives. Incorporated biodegradable polymers are degraded in vivo with time under specific conditions, leading to the destruction of the structure and the further degradation of tissue adhesives. In this review, we first summarize the strategies of utilizing biodegradable polymers to develop tissue adhesives. Furthermore, we provide a symmetric overview of the biodegradable polymers used for tissue adhesives, with a specific focus on the degradability and applications of these tissue adhesives. Additionally, the challenges and perspectives of biodegradable polymer-based tissue adhesives are discussed. We expect that this review can provide new inspirations for the design of novel biodegradable tissue adhesives for biomedical applications.
Collapse
Affiliation(s)
- Shuzhuang Zhu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Wenguang Dou
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xiaojun Zeng
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Xingchao Chen
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Yonglin Gao
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Hongliang Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Sidi Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| |
Collapse
|
41
|
Kim SY, Lim HN. Methyl Pyruvate Oxime as a Carbonyl Synthon: Synthesis of Ureas, Carbamates, Thiocarbamates, and Anilides. Org Lett 2024; 26:3850-3854. [PMID: 38683648 DOI: 10.1021/acs.orglett.4c01007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
A new strategy for the synthesis of unsymmetrical ureas, carbamates, thiocarbamates, and anilides was developed with methyl pyruvate oxime as the carbonyl synthon. The intrinsic reactivity of the reagent enabled consecutive disubstitution involving direct amidation and one-pot deoximative substitution with various nucleophiles. The utility of the method was demonstrated with the synthesis of bioactive molecules.
Collapse
Affiliation(s)
- Seo Yeon Kim
- Department of Chemistry, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Hee Nam Lim
- Department of Chemistry, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| |
Collapse
|
42
|
Rolińska K, Bakhshi H, Balk M, Parzuchowski P, Mazurek-Budzyńska M. Influence of the hard segments content on the properties of electrospun aliphatic poly(carbonate-urethane-urea)s. RSC Adv 2024; 14:15766-15775. [PMID: 38752158 PMCID: PMC11094699 DOI: 10.1039/d4ra01726a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
The study investigated the impact of hard segments (HS) content on the morphology and thermomechanical properties of electrospun aliphatic poly(carbonate-urea-urethane)s (PCUUs). The obtained nonwovens exhibited surface porosity ranging from 50% to 57%, and fiber diameters between 0.59 and 0.71 μm. Notably, the PCUUs nonwovens with the highest HS content (18%) displayed superior mechanical properties compared to those with lower HS contents. This study highlights the ability to customize the properties of polymeric nonwovens based on their chemical compositions, offering tailored solutions for specific application needs.
Collapse
Affiliation(s)
- Karolina Rolińska
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
- Faculty of Chemistry, University of Warsaw Pasteura 1 02-093 Warsaw Poland
- Łukasiewicz Research Network - Industrial Chemistry Institute Rydygiera 8 01-793 Warsaw Poland
| | - Hadi Bakhshi
- Department of Life Science and Bioprocesses, Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstraße 69 14476 Potsdam Germany
| | - Maria Balk
- Institute of Active Polymers, Helmholtz-Zentrum Hereon Kantstraße 55 14513 Teltow Germany
| | - Paweł Parzuchowski
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | | |
Collapse
|
43
|
Lee GR, Lee EJ, Shin HS, Kim J, Kim I, Hong SC. Preparation of Non-Isocyanate Polyurethanes from Mixed Cyclic-Carbonated Compounds: Soybean Oil and CO 2-Based Poly(ether carbonate). Polymers (Basel) 2024; 16:1171. [PMID: 38675090 PMCID: PMC11053720 DOI: 10.3390/polym16081171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
This study presents the synthesis and characterization of non-isocyanate polyurethanes (NIPU) derived from the copolymerization of cyclic-carbonated soybean oil (CSBO) and cyclic carbonate (CC)-terminated poly(ether carbonate) (RCC). Using a double-metal cyanide catalyst, poly(ether carbonate) polyol was first synthesized through the copolymerization of carbon dioxide and propylene oxide. The terminal hydroxyl group was then subjected to a substitution reaction with a five-membered CC group using glycerol-1,2-carbonate and oxalyl chloride, yielding RCC. Attempts to prepare NIPU solely using RCC and diamine were unsuccessful, possibly due to the low CC functionality and the aminolysis of RCC's linear carbonate repeating units. However, when combined with CSBO, solid NIPUs were successfully obtained, exhibiting good thermal stability along with enhanced mechanical properties compared to conventional CSBO-based NIPU formulations. Overall, this study underscores the potential of leveraging renewable resources and carbon capture technologies to develop sustainable NIPUs with tailored properties, thereby expanding their range of applications.
Collapse
Affiliation(s)
- Ga Ram Lee
- HMC, Department of Nanotechnology and Advanced Materials Engineering, Sejong University, 209 Neungdong-ro, Seoul 05006, Republic of Korea; (G.R.L.); (E.J.L.)
| | - Eun Jong Lee
- HMC, Department of Nanotechnology and Advanced Materials Engineering, Sejong University, 209 Neungdong-ro, Seoul 05006, Republic of Korea; (G.R.L.); (E.J.L.)
| | - Hye Sun Shin
- Industrial Gas Research TF Team, Particulate Matter Research Center, Research Institute of Industrial Science & Technology (RIST), 187-12 Geumho-ro, Gwangyang-si 57801, Republic of Korea; (H.S.S.); (J.K.)
| | - Joonwoo Kim
- Industrial Gas Research TF Team, Particulate Matter Research Center, Research Institute of Industrial Science & Technology (RIST), 187-12 Geumho-ro, Gwangyang-si 57801, Republic of Korea; (H.S.S.); (J.K.)
| | - Il Kim
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea;
| | - Sung Chul Hong
- HMC, Department of Nanotechnology and Advanced Materials Engineering, Sejong University, 209 Neungdong-ro, Seoul 05006, Republic of Korea; (G.R.L.); (E.J.L.)
| |
Collapse
|
44
|
Rapp J, Borden MA, Bhat V, Sarabia A, Leibfarth FA. Continuous Polymer Synthesis and Manufacturing of Polyurethane Elastomers Enabled by Automation. ACS POLYMERS AU 2024; 4:120-127. [PMID: 38618002 PMCID: PMC11010252 DOI: 10.1021/acspolymersau.3c00033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 04/16/2024]
Abstract
Connecting polymer synthesis and processing is an important challenge for streamlining the manufacturing of polymeric materials. In this work, the automated synthesis of acrylate-capped polyurethane oligomers is integrated with vat photopolymerization 3D printing. This strategy enabled the rapid manufacturing of a library of polyurethane-based elastomeric materials with differentiated thermal and mechanical properties. The automated semicontinuous batch synthesis approach proved enabling for resins with otherwise short shelf lives because of the intimate connection between synthesis, formulation, and processing. Structure-property studies demonstrated the ability to tune properties through systematic alteration of cross-link density and chemical composition.
Collapse
Affiliation(s)
- Johann
L. Rapp
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Meredith A. Borden
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Vittal Bhat
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Alexis Sarabia
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Frank A. Leibfarth
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| |
Collapse
|
45
|
Li D, Yu L, Lu Z, Kang H, Li L, Zhao S, Shi N, You S. Synthesis, Structure, Properties, and Applications of Fluorinated Polyurethane. Polymers (Basel) 2024; 16:959. [PMID: 38611217 PMCID: PMC11013766 DOI: 10.3390/polym16070959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/30/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
Fluorinated polyurethane (FPU) is a new kind of polyurethane (PU) material with great applicational potential, which is attributed to its high bond energy C-F bonds. Its unique low surface energy, excellent thermal stability, and chemical stability have attracted considerable research attention. FPU with targeted performance can be precisely synthesized through designing fluorochemicals as hard segments, soft segments, or additives and changes to the production process to satisfy the needs of coatings, clothing textiles, and the aerospace and biomedical industries for materials that are hydrophobic and that are resistant to weathering, heat, and flames and that have good biocompatibility. Here, the synthesis, structure, properties, and applications of FPU are comprehensively reviewed. The aims of this research are to shed light on the design scheme, synthesis method, structure, and properties of FPU synthesized from different kinds of fluorochemicals and their applications in different fields and the prospects for the future development of FPU.
Collapse
Affiliation(s)
- Donghan Li
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
- Liaoning Provincial Key Laboratory of Rubber & Elastomer, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Lu Yu
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
- Liaoning Provincial Key Laboratory of Rubber & Elastomer, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Zhan Lu
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Hailan Kang
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
- Liaoning Provincial Key Laboratory of Rubber & Elastomer, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Long Li
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
- Liaoning Provincial Key Laboratory of Rubber & Elastomer, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Shufa Zhao
- Shenyang Guide Rubber Products Co., Ltd., Shenyang 110141, China
| | - Ning Shi
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Shibo You
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| |
Collapse
|
46
|
Berglin M, Cavanagh JP, Caous JS, Thakkar BS, Vasquez JM, Stensen W, Lyvén B, Svendsen JS, Svenson J. Flexible and Biocompatible Antifouling Polyurethane Surfaces Incorporating Tethered Antimicrobial Peptides through Click Reactions. Macromol Biosci 2024; 24:e2300425. [PMID: 38009664 DOI: 10.1002/mabi.202300425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/30/2023] [Indexed: 11/29/2023]
Abstract
Efficient, simple antibacterial materials to combat implant-associated infections are much in demand. Herein, the development of polyurethanes, both cross-linked thermoset and flexible and versatile thermoplastic, suitable for "click on demand" attachment of antibacterial compounds enabled via incorporation of an alkyne-containing diol monomer in the polymer backbone, is described. By employing different polyolic polytetrahydrofurans, isocyanates, and chain extenders, a robust and flexible material comparable to commercial thermoplastic polyurethane is prepared. A series of short synthetic antimicrobial peptides are designed, synthesized, and covalently attached in a single coupling step to generate a homogenous coating. The lead material is shown to be biocompatible and does not display any toxicity against either mouse fibroblasts or reconstructed human epidermis according to ISO and OECD guidelines. The repelling performance of the peptide-coated materials is illustrated against colonization and biofilm formation by Staphylococcus aureus and Staphylococcus epidermidis on coated plastic films and finally, on coated commercial central venous catheters employing LIVE/DEAD staining, confocal laser scanning microscopy, and bacterial counts. This study presents the successful development of a versatile and scalable polyurethane with the potential for use in the medical field to reduce the impact of bacterial biofilms.
Collapse
Affiliation(s)
- Mattias Berglin
- Department of Materials and Production, RISE Research Institutes of Sweden, Gothenburg, 413 46, Sweden
- Department of Chemistry and Molecular Biology, Gothenburg University, Gothenburg, 413 90, Sweden
| | - Jorunn Pauline Cavanagh
- Amicoat A/S, Oslo Science Park, Oslo, 1386, Norway
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, 9019, Norway
| | - Josefin Seth Caous
- Department of Materials and Production, RISE Research Institutes of Sweden, Gothenburg, 413 46, Sweden
| | | | - Jeddah Marie Vasquez
- Department of Materials and Production, RISE Research Institutes of Sweden, Gothenburg, 413 46, Sweden
| | - Wenche Stensen
- Department of Chemistry, UiT The Arctic University of Norway, Tromsø, 9019, Norway
| | - Benny Lyvén
- Department of Materials and Production, RISE Research Institutes of Sweden, Gothenburg, 413 46, Sweden
| | - John-Sigurd Svendsen
- Amicoat A/S, Oslo Science Park, Oslo, 1386, Norway
- Department of Chemistry, UiT The Arctic University of Norway, Tromsø, 9019, Norway
| | - Johan Svenson
- Department of Materials and Production, RISE Research Institutes of Sweden, Gothenburg, 413 46, Sweden
| |
Collapse
|
47
|
Sintas JI, Bean RH, Zhang R, Long TE. Nonisocyanate Polyurethane Segmented Copolymers from Bis-Carbonylimidazolides. Macromol Rapid Commun 2024:e2400057. [PMID: 38471478 DOI: 10.1002/marc.202400057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/22/2024] [Indexed: 03/14/2024]
Abstract
Bis-carbonylimidazolide (BCI) functionalization enables an efficient synthetic strategy to generate high molecular weight segmented nonisocyanate polyurethanes (NIPUs). Melt phase polymerization of ED-2003 Jeffamine, 4,4'-methylenebis(cyclohexylamine), and a BCI monomer that mimics a 1,4-butanediol chain extender enables polyether NIPUs that contain varying concentrations of hard segments ranging from 40 to 80 wt. %. Dynamic mechanical analysis and differential scanning calorimetry reveal thermal transitions for soft, hard, and mixed phases. Hard segment incorporations between 40 and 60 wt. % display up to three distinct phases pertaining to the poly(ethylene glycol) (PEG) soft segment Tg , melting transition, and hard segment Tg , while higher hard segment concentrations prohibit soft segment crystallization, presumably due to restricted molecular mobility from the hard segment. Atomic force microscopy allows for visualization and size determination of nanophase-separated regimes, revealing a nanoscale rod-like assembly of HS. Small-angle X-ray scattering confirms nanophase separation within the NIPU, characterizing both nanoscale amorphous domains and varying degrees of crystallinity. These NIPUs, which are synthesized with BCI monomers, display expected phase separation that is comparable to isocyanate-derived analogues. This work demonstrates nanophase separation in BCI-derived NIPUs and the feasibility of this nonisocyanate synthetic pathway for the preparation of segmented PU copolymers.
Collapse
Affiliation(s)
- Jose I Sintas
- School of Molecular Sciences & Biodesign Center for Sustainable Macromolecular Materials and Manufacturing (SM3), Arizona State University, Tempe, AZ, 85287, USA
| | - Ren H Bean
- School of Molecular Sciences & Biodesign Center for Sustainable Macromolecular Materials and Manufacturing (SM3), Arizona State University, Tempe, AZ, 85287, USA
| | - Rui Zhang
- Eyring Materials Center, Arizona State University, Tempe, AZ, 85287, USA
| | - Timothy E Long
- School of Molecular Sciences & Biodesign Center for Sustainable Macromolecular Materials and Manufacturing (SM3), Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|
48
|
Santra S, Das S, Dey S, Sengupta A, Giri B, Molla MR. Degradable Polymer-Based Nanoassemblies for Precise Targeting and Drug Delivery to Breast Cancer Cells without Affecting Normal Healthy Cells. Biomacromolecules 2024; 25:1724-1737. [PMID: 38421316 DOI: 10.1021/acs.biomac.3c01232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Stimuli-responsive amphiphilic polymers are known to be precursors to forming promising nanoarchitectonics with tunable properties for application in biomedical sciences. Currently, self-immolative polymers are widely recognized as an emerging class of responsive materials with excellent degradability, which is one of the crucial criteria for designing a robust drug delivery vehicle. Here, we design an amphiphilic polyurethane endowed with a redox-responsive self-immolative linker and a pH-responsive tertiary amine on the backbone, which forms entropy-driven nanoscale supramolecular assemblies (average hydrodynamic diameter ∼110 nm) and is programmed to disassemble in a redox environment (GSH) due to the degradation of the polymer in a self-immolative fashion. The nanoassembly shows efficient drug sequestration and release in a controlled manner in response to glutathione (10 mM). The tertiary amine residing on the surface of the nanoassembly becomes protonated in the tumor microenvironment (pH ∼ 6.4-6.8) and generates positively charged nanoassembly (ζ-potential = +36 mV), which enhances the cancer cell-selective cellular uptake. The biological evaluation of the drug-loaded nanoassembly revealed triple-negative breast cancer (MDAMB-231) selective internalization and cell death while shielding normal cells (RBCs or PBMCs) from off-targeting toxicity. We envision that polyurethane with a redox-responsive self-immolative linker might open up new opportunities for a completely degradable polyurethane-based nanocarrier for drug delivery and diagnosis applications.
Collapse
Affiliation(s)
- Subrata Santra
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Shreya Das
- Department of Life Science & Biotechnology, Jadavpur University, 188, Raja S. C. M Road, Kolkata 700032, India
| | - Sananda Dey
- Department of Physiology, University of Gour Banga, Malda 732103, India
| | - Arunima Sengupta
- Department of Life Science & Biotechnology, Jadavpur University, 188, Raja S. C. M Road, Kolkata 700032, India
| | - Biplab Giri
- Department of Physiology, University of Gour Banga, Malda 732103, India
| | - Mijanur Rahaman Molla
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
49
|
Lin L, Tu Y, Li Z, Wu H, Mao H, Wang C. Synthesis and application of multifunctional lignin-modified cationic waterborne polyurethane in textiles. Int J Biol Macromol 2024; 262:130063. [PMID: 38340925 DOI: 10.1016/j.ijbiomac.2024.130063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/22/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Waterborne polyurethanes (WPUs) often have limitations like inadequate weathering resistance and thermal stability. To overcome these shortcomings, lignin has been selected as a modifier for its abundant availability, renewability, and biocompatibility. This study synthesized a cationic WPU using isophorone diisocyanate and polyethylene glycol as raw materials. Hydrophilicity was attained through the inclusion of dihydroxyethyl dodecylamine as a chain extender, while the introduction of epoxy monomers and lignin served to modify the polyurethane. Furthermore, a dye dispersion for cotton fabric dyeing was prepared by combining the synthesized polyurethane, chitosan, and dyes. The cationic nature of the polyurethane played a crucial role in facilitating dye adhesion and uptake on the fabric surface, resulting in improved dyeing performance. The incorporation of epoxy side chains and chitosan cross-linking contributed to the excellent color fastness of the dyed fabrics. Moreover, the incorporation of lignin and chitosan endowed the fabric with antibacterial properties. Simultaneously, it provided effective UV protection, characterized by a high UV protection factor value for the fabrics. This lignin-modified WPU exhibits tremendous potential in applications such as textile coatings, adhesives, and color fixation agents. It effectively addresses the limitations of traditional WPUs and offers notable advantages, including a renewable source, cost-effectiveness, and biocompatibility.
Collapse
Affiliation(s)
- Ling Lin
- School of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Yuanfang Tu
- School of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, China
| | - Ziyin Li
- School of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, China
| | - Huanling Wu
- School of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, China
| | - Haiyan Mao
- School of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, China
| | - Chunxia Wang
- School of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|
50
|
Pęczek E, Pamuła R, Białowiec A. Recycled Waste as Polyurethane Additives or Fillers: Mini-Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1013. [PMID: 38473487 DOI: 10.3390/ma17051013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024]
Abstract
The intensive development of the polyurethanes industry and limited resources (also due to the current geopolitical situation) of the raw materials used so far force the search for new solutions to maintain high economic development. Implementing the principles of a circular economy is an approach aimed at reducing the consumption of natural resources in PU production. This is understood as a method of recovery, including recycling, in which waste is processed into PU, and then re-used and placed on the market in the form of finished sustainable products. The effective use of waste is one of the attributes of the modern economy. Around the world, new ways to process or use recycled materials for polyurethane production are investigated. That is why innovative research is so important, in which development may change the existing thinking about the form of waste recovery. The paper presents the possibilities of recycling waste (such as biochar, bagasse, waste lignin, residual algal cellulose, residual pineapple cellulose, walnut shells, silanized walnut shells, basalt waste, eggshells, chicken feathers, turkey feathers, fiber, fly ash, wood flour, buffing dust, thermoplastic elastomers, thermoplastic polyurethane, ground corncake, Tetra Pak®, coffee grounds, pine seed shells, yerba mate, the bark of Western Red Cedar, coconut husk ash, cuttlebone, glass fibers and mussel shell) as additives or fillers in the formulation of polyurethanes, which can partially or completely replace petrochemical raw materials. Numerous examples of waste applications of one-component polyurethanes have been given. A new unexplored niche for the research on waste recycling for the production of two components has been identified.
Collapse
Affiliation(s)
- Edyta Pęczek
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 37a Chełmońskiego Str., 51-630 Wrocław, Poland
- Selena Industrial Technologies Sp. z o.o., Pieszycka 3, 58-200 Dzierżoniów, Poland
| | - Renata Pamuła
- Selena Industrial Technologies Sp. z o.o., Pieszycka 3, 58-200 Dzierżoniów, Poland
| | - Andrzej Białowiec
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 37a Chełmońskiego Str., 51-630 Wrocław, Poland
| |
Collapse
|