1
|
Behmagham F, Mustafa MA, Saraswat SK, Khalaf KA, Kaur M, Ghildiyal P, Vessally E. Recent investigations into deborylative (thio-/seleno-) cyanation of aryl boronic acids. RSC Adv 2024; 14:9184-9199. [PMID: 38505389 PMCID: PMC10949121 DOI: 10.1039/d4ra00487f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/11/2024] [Indexed: 03/21/2024] Open
Abstract
In this review, we intend to summarize the most important discoveries in the deborylative (thio-/seleno-) cyanation of aryl boronic acids from 2006 to the end of 2023. Thus, the review is divided into three parts. The first section focuses exclusively on cyanation of aryl boronic acids into aryl nitriles. The second section covers the available literature on the synthesis of aryl thiocyanates through thiocyanation of respective aryl boronic acids. The third will discuss selenocyanation of aryl boronic acids into aryl selenocyanates.
Collapse
Affiliation(s)
- Farnaz Behmagham
- Department of Chemistry, Islamic Azad University Miandoab Branch Miandoab Iran
| | | | | | | | - Mandeep Kaur
- Department of Chemistry, School of Sciences, Jain (Deemed-to-be) University Bengaluru Karnataka 560069 India
- Department of Sciences, Vivekananda Global University Jaipur Rajasthan 303012 India
| | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University Dehradun India
| | - Esmail Vessally
- Department of Chemistry, Payame Noor University P. O. Box 19395-3697 Tehran Iran
| |
Collapse
|
2
|
Kondo Y, Kimura H, Sasaki M, Koike S, Yagi Y, Hattori Y, Kawashima H, Yasui H. Effect of Water on Direct Radioiodination of Small Molecules/Peptides Using Copper-Mediated Iododeboronation in Water-Alcohol Solvent. ACS OMEGA 2023; 8:24418-24425. [PMID: 37457489 PMCID: PMC10339446 DOI: 10.1021/acsomega.3c01974] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
Direct radioiodination of peptides using copper-mediated iododeboronation is a promising radiosynthetic method for solving issues of classical direct radiolabeling, such as toxicity of the organotin precursor (iododestannylation) or formation of radio byproducts (by electrophilic iodination of a tyrosine residue). However, the parameters for optimizing the reaction conditions for various peptides are not completely understood. In particular, considering peptide solubility, the effects of water-containing solvents on labeling efficiency should be thoroughly investigated. Herein, we describe the effect of water on copper-mediated radioiododeboronation and the key factors for ensuring the successful radiolabeling of small molecules and peptides in water-organic solvents. 125I-labeled substrates containing peptides ([125I]m/p-IBTA) were obtained with high radiochemical conversions (RCCs: >95%) using an alcohol solvent, and a decrease in these RCCs was observed with increasing water content in the methanol solvent. Additionally, when using water-methanol solvents, a difference in RCC due to the substituent effect was also observed. However, the RCCs can be improved without the use of other additives by adjusting the copper catalyst and time of the labeling reaction or by utilizing substituent effects. This study contributes to the improvement of the design of boronic peptide precursors and radiolabeling protocols using copper-mediated iododeboronation.
Collapse
Affiliation(s)
- Yuto Kondo
- Department
of Analytical and Bioinorganic Chemistry, Division of Analytical and
Physical Sciences, Kyoto Pharmaceutical
University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Hiroyuki Kimura
- Department
of Analytical and Bioinorganic Chemistry, Division of Analytical and
Physical Sciences, Kyoto Pharmaceutical
University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Minon Sasaki
- Department
of Analytical and Bioinorganic Chemistry, Division of Analytical and
Physical Sciences, Kyoto Pharmaceutical
University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Sumina Koike
- Department
of Analytical and Bioinorganic Chemistry, Division of Analytical and
Physical Sciences, Kyoto Pharmaceutical
University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Yusuke Yagi
- Department
of Analytical and Bioinorganic Chemistry, Division of Analytical and
Physical Sciences, Kyoto Pharmaceutical
University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
- Department
of Radiological Technology, Faculty of Medicinal Science, Kyoto College of Medical Science, 1-3 Imakita, Oyama-higashi, Sonobe, Nantan, Kyoto 622-0022, Japan
| | - Yasunao Hattori
- Center
for Instrumental Analysis, Kyoto Pharmaceutical
University, 1 Shichono-cho, Misasagi, Yamashina-ku, Kyoto 607-8412, Japan
| | - Hidekazu Kawashima
- Radioisotope
Research Center, Kyoto Pharmaceutical University, 1 Shichono-cho,
Misasagi, Yamashina-ku, Kyoto 607-8412, Japan
| | - Hiroyuki Yasui
- Department
of Analytical and Bioinorganic Chemistry, Division of Analytical and
Physical Sciences, Kyoto Pharmaceutical
University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| |
Collapse
|
3
|
Rong J, Haider A, Jeppesen TE, Josephson L, Liang SH. Radiochemistry for positron emission tomography. Nat Commun 2023; 14:3257. [PMID: 37277339 PMCID: PMC10241151 DOI: 10.1038/s41467-023-36377-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 01/30/2023] [Indexed: 06/07/2023] Open
Abstract
Positron emission tomography (PET) constitutes a functional imaging technique that is harnessed to probe biological processes in vivo. PET imaging has been used to diagnose and monitor the progression of diseases, as well as to facilitate drug development efforts at both preclinical and clinical stages. The wide applications and rapid development of PET have ultimately led to an increasing demand for new methods in radiochemistry, with the aim to expand the scope of synthons amenable for radiolabeling. In this work, we provide an overview of commonly used chemical transformations for the syntheses of PET tracers in all aspects of radiochemistry, thereby highlighting recent breakthrough discoveries and contemporary challenges in the field. We discuss the use of biologicals for PET imaging and highlight general examples of successful probe discoveries for molecular imaging with PET - with a particular focus on translational and scalable radiochemistry concepts that have been entered to clinical use.
Collapse
Affiliation(s)
- Jian Rong
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Ahmed Haider
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Troels E Jeppesen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA.
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
4
|
Webb EW, Cheng K, Wright JS, Cha J, Shao X, Sanford MS, Scott PJH. Room-Temperature Copper-Mediated Radiocyanation of Aryldiazonium Salts and Aryl Iodides via Aryl Radical Intermediates. J Am Chem Soc 2023; 145:6921-6926. [PMID: 36917154 PMCID: PMC10065967 DOI: 10.1021/jacs.3c00422] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Radiocyanation is an attractive strategy for incorporating carbon-11 into radiotracer targets, particularly given the broad scope of acyl moieties accessible from nitriles. Most existing methods for aromatic radiocyanation require elevated temperatures (Cu-mediated reactions of aryl halides or organometallics) or involve expensive and toxic palladium complexes (Pd-mediated reactions of aryl halides). The current report discloses a complementary approach that leverages the capture of aryl radical intermediates by a Cu-11CN complex to achieve rapid and mild (5 min, room temperature) radiocyanation. In a first example, aryl radicals are generated via the reaction of a CuI mediator with an aryldiazonium salt (a Sandmeyer-type reaction) followed by radiocyanation with Cu-11CN. In a second example, aryl radicals are formed from aryl iodides via visible-light photocatalysis and then captured by a Cu-11CN species to achieve aryl-11CN coupling. This approach provides access to radiocyanated products that are challenging to access using other methods (e.g., ortho-disubstituted aryl nitriles).
Collapse
Affiliation(s)
- E. William Webb
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | - Kevin Cheng
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | - Jay S. Wright
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | - Jocelyn Cha
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | - Xia Shao
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | - Melanie S. Sanford
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Peter J. H. Scott
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
5
|
Ishii H, Yamasaki T, Okamura T, Zhang Y, Kurihara Y, Ogawa M, Nengaki N, Zhang MR. Evaluation and improvement of CuI-mediated 11 C-cyanation. J Labelled Comp Radiopharm 2023; 66:95-107. [PMID: 36791689 DOI: 10.1002/jlcr.4016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023]
Abstract
CuI-mediated 11 C-cyanation was evaluated by synthesizing [11 C]perampanel ([11 C]5) as a model compound and compared with previous reports. To a DMF solution with 5'-(2-bromophenyl)-1'-phenyl-[2,3'-bipyridin]-6'(1'H)-one (4) and CuI, [11 C]NH4 CN in a stream of ammonia/nitrogen (5:95, v/v) gas was bubbled. Subsequently, the reaction mixture was heated at 180°C for 5 min. After HPLC purification, [11 C]5 was obtained in 7.2 ± 1.0% (n = 4) non-decay corrected radiochemical yield with >99% radiochemical purity and a molar activity of 98 ± 28 GBq/μmol. In vivo evaluations of [11 C]5 were performed using small animals. PET scans to check the kinetics of [11 C]5 in the whole body of mice suggested that [11 C]5 spreads rapidly into the brain, heart, and lungs and then accumulates in the small intestine. To evaluate the performance of CuI-mediated 11 C-cyanation reaction, bromobenzene (6a) was selected as the model compound; however, it failed. Therefore, optimization of the reaction conditions has been performed, and consequently, the addition of K2 CO3 and prolonging the reaction time improved the radiochemical yield about double. With this improved method, CuI-mediated 11 C-cyanation of various (hetero)aromatic bromides was performed to exhibit the tolerance of most functional groups and to provide 11 C-cyanated products in good to moderate radiochemical yields.
Collapse
Affiliation(s)
- Hideki Ishii
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Tomoteru Yamasaki
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Toshimitsu Okamura
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yiding Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yusuke Kurihara
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- SHI Accelerator Service Ltd., Tokyo, Japan
| | - Masanao Ogawa
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- SHI Accelerator Service Ltd., Tokyo, Japan
| | - Nobuki Nengaki
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- SHI Accelerator Service Ltd., Tokyo, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| |
Collapse
|
6
|
Wu X, Chen W, Holmberg-Douglas N, Bida GT, Tu X, Ma X, Wu Z, Nicewicz DA, Li Z. 11C, 12C and 13C-Cyanation of Electron-Rich Arenes via Organic Photoredox Catalysis. Chem 2023; 9:343-362. [PMID: 36777049 PMCID: PMC9913897 DOI: 10.1016/j.chempr.2022.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
As a non-invasive imaging technology, positron emission tomography (PET) plays a crucial role in personalized medicine, including early diagnosis, patient screening, and treatment monitoring. The advancement of PET research depends on the discovery of new PET agents, which requires the development of simple and efficient radiolabeling methods in many cases. As bioisosteres for halogen and carbonyl moieties, nitriles are important functional groups in pharmaceutical and agrochemical compounds. Here, we disclose a mild organophotoredox-catalyzed method for efficient cyanation of a broad spectrum of electron-rich arenes, including abundant and readily available veratroles and pyrogallol trimethyl ethers. Notably, the transformations not only are compatible with various affordable 12C and 13C-cyanide sources, but also could be applied to carbon-11 synthons to incorporate [11C]nitriles into arenes. The aryl [11C]nitriles can be further derivatized to [11C]carboxylic acids, [11C]amides, and [11C]alkyl amines. The newly developed reaction can serve as a powerful tool for generating new PET agents.
Collapse
Affiliation(s)
- Xuedan Wu
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514, USA
| | - Wei Chen
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514, USA
| | - Natalie Holmberg-Douglas
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-3290, United States
| | - Gerald Thomas Bida
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514, USA
| | - Xianshuang Tu
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514, USA
| | - Xinrui Ma
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514, USA
| | - Zhanhong Wu
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514, USA
| | - David A. Nicewicz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-3290, United States
| | - Zibo Li
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514, USA
| |
Collapse
|
7
|
Xu Z, Liang X, Li H. Oxidative Radical Transnitrilation of Arylboronic Acids with Trityl Isocyanide. Org Lett 2022; 24:9403-9407. [PMID: 36519782 DOI: 10.1021/acs.orglett.2c03778] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We report a radical transnitrilation of arylboronic acids with trityl isocyanide in the presence of manganese(III) acetate. Many functional groups can be tolerated in this transformation, and a special positive effect of benzoic acid in this reaction has been observed.
Collapse
Affiliation(s)
- Zhiyuan Xu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Xiaojuan Liang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Huan Li
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
8
|
Chen W, Wu X, McManus JB, Bida GT, Li KP, Wu Z, Nicewicz DA, Li Z. Direct C-H Radiocyanation of Arenes via Organic Photoredox Catalysis. Org Lett 2022; 24:9316-9321. [PMID: 36507797 DOI: 10.1021/acs.orglett.2c03940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Innovative labeling methods to incorporate the short-lived positron emitter carbon-11(11C) into bioactive molecules are attractive for positron emission tomography (PET) tracer discovery. Herein, we report a direct C-H radiocyanation method that incorporates [11C]cyanide (11CN-) to a series of functional electron-rich arenes via photoredox catalysis. This photoredox-mediated radiocyanation can proceed in an aerobic environment and is not moisture sensitive, which allows for ease of reaction setup and for scalable synthesis of 11C-aryl nitriles from readily available precursors.
Collapse
Affiliation(s)
- Wei Chen
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Xuedan Wu
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Joshua B McManus
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Gerald T Bida
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kang-Po Li
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Zhanhong Wu
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - David A Nicewicz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Zibo Li
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
9
|
Sharninghausen LS, Preshlock S, Joy ST, Horikawa M, Shao X, Winton WP, Stauff J, Kaur T, Koeppe RA, Mapp AK, Scott PJH, Sanford MS. Copper-Mediated Radiocyanation of Unprotected Amino Acids and Peptides. J Am Chem Soc 2022; 144:7422-7429. [PMID: 35437016 PMCID: PMC9887455 DOI: 10.1021/jacs.2c01959] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This report describes a copper-mediated radiocyanation of aryl halides that is applicable to complex molecules. This transformation tolerates an exceptionally wide range of functional groups, including unprotected amino acids. As such, it enables the site-specific introduction of [11C]CN into peptides at an iodophenylalanine residue. The use of a diamine-ligated copper(I) mediator is crucial for achieving high radiochemical yield under relatively mild conditions, thus limiting racemization and competing side reactions of other amino acid side chains. The reaction has been scaled and automated to deliver radiolabeled peptides, including analogues of adrenocorticotropic hormone 1-27 (ACTH) and nociceptin (NOP). For instance, this Cu-mediated radiocyanation was leveraged to prepare >40 mCi of [11C]cyano-NOP to evaluate biodistribution in a primate using positron emission tomography. This investigation provides preliminary evidence that nociceptin crosses the blood-brain barrier and shows uptake across all brain regions (SUV > 1 at 60 min post injection), consistent with the known distribution of NOP receptors in the rhesus brain.
Collapse
Affiliation(s)
- Liam S. Sharninghausen
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Sean Preshlock
- Department of Radiology, University of Michigan, 1301 Catherine, Ann Arbor, Michigan 48109, United States
| | - Stephen T. Joy
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Mami Horikawa
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Xia Shao
- Department of Radiology, University of Michigan, 1301 Catherine, Ann Arbor, Michigan 48109, United States
| | - Wade P. Winton
- Department of Radiology, University of Michigan, 1301 Catherine, Ann Arbor, Michigan 48109, United States
| | - Jenelle Stauff
- Department of Radiology, University of Michigan, 1301 Catherine, Ann Arbor, Michigan 48109, United States
| | - Tanpreet Kaur
- Department of Radiology, University of Michigan, 1301 Catherine, Ann Arbor, Michigan 48109, United States
| | - Robert A. Koeppe
- Department of Radiology, University of Michigan, 1301 Catherine, Ann Arbor, Michigan 48109, United States
| | - Anna K. Mapp
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States,Corresponding Author: Peter J. H. Scott. . Melanie S. Sanford. . Anna K. Mapp.
| | - Peter J. H. Scott
- Department of Radiology, University of Michigan, 1301 Catherine, Ann Arbor, Michigan 48109, United States,Corresponding Author: Peter J. H. Scott. . Melanie S. Sanford. . Anna K. Mapp.
| | - Melanie S. Sanford
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States,Corresponding Author: Peter J. H. Scott. . Melanie S. Sanford. . Anna K. Mapp.
| |
Collapse
|
10
|
Zhou YP, Makaravage KJ, Brugarolas P. Radiolabeling with [ 11C]HCN for Positron emission tomography. Nucl Med Biol 2021; 102-103:56-86. [PMID: 34624831 PMCID: PMC8978408 DOI: 10.1016/j.nucmedbio.2021.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/20/2021] [Accepted: 09/20/2021] [Indexed: 12/22/2022]
Abstract
Hydrogen cyanide (HCN) is a versatile synthon for generating carbon‑carbon and carbon-heteroatom bonds. Unlike other one-carbon synthons (i.e., CO, CO2), HCN can function as a nucleophile (as in potassium cyanide, KCN) and an electrophile (as in cyanogen bromide, (CN)Br). The incorporation of the CN motif into organic molecules generates nitriles, hydantoins and (thio)cyanates, which can be converted to carboxylic acids, aldehydes, amides and amines. Such versatile chemistry is particularly attractive in PET radiochemistry where diverse bioactive small molecules incorporating carbon-11 in different positions need to be produced. The first examples of making [11C]HCN for radiolabeling date back to the 1960s. During the ensuing decades, [11C]cyanide labeling was popular for producing biologically important molecules including 11C-labeled α-amino acids, sugars and neurotransmitters. [11C]cyanation is now reemerging in many PET centers due to its versatility for making novel tracers. Here, we summarize the chemistry of [11C]HCN, review the methods to make [11C]HCN past and present, describe methods for labeling different types of molecules with [11C]HCN, and provide an overview of the reactions available to convert nitriles into other functional groups. Finally, we discuss some of the challenges and opportunities in [11C]HCN labeling such as developing more robust methods to produce [11C]HCN and developing rapid and selective methods to convert nitriles into other functional groups in complex molecules.
Collapse
Affiliation(s)
- Yu-Peng Zhou
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Katarina J Makaravage
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Pedro Brugarolas
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
11
|
Affiliation(s)
- Youwen Xu
- Independent Consultant/Contractor 3900 Ford Road, Unit 18O Philadelphia PA USA
| | - Wenchao Qu
- Departments of Psychiatry and Chemistry Stony Brook University New York NY USA
| |
Collapse
|
12
|
Kondo Y, Kimura H, Fukumoto C, Yagi Y, Hattori Y, Kawashima H, Yasui H. Copper-mediated radioiodination reaction through aryl boronic acid or ester precursor and its application to direct radiolabeling of a cyclic peptide. J Labelled Comp Radiopharm 2021; 64:336-345. [PMID: 33990983 DOI: 10.1002/jlcr.3925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/16/2021] [Accepted: 05/06/2021] [Indexed: 11/06/2022]
Abstract
A copper-mediated radioiodination using aryl boronic precursors is attracting attention as a solution to oxidative iododestannylation and nickel-mediated radioiodination drawbacks. The copper-mediated radiolabeling method allows radioiodination at room temperature with stable aryl boronic precursors without preparing complex starting materials or reagents and can be performed in a reaction vessel exposed to air. This method has good potential in radiochemistry; however, studies on the scope of copper-mediated radioiodination through boronic precursors are insufficient. In particular, few reports have demonstrated the effect of protecting groups on radiolabeling efficiency. Therefore, the effect of the protecting group of aryl boronic acids on the copper-mediated radioiodination was investigated. In addition, this method, which does not require heating, is expected to be useful for direct radiolabeling of peptides. Thus, we attempted direct radioiodination of c(RGDyk) as an example. The resulting radioiodination method was well tolerated in various substrates and was unaffected by the pinacol ester-type protecting group. Also, c(RGDyk) was labeled with 125 I via copper-mediated radioiodination using an aryl boronic acid precursor. The reaction time and yield were improved, compared with the indirect method. Furthermore, the large difference in polarity between the boronic acid precursor and the radiolabeled compound facilitated purification.
Collapse
Affiliation(s)
- Yuto Kondo
- Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Hiroyuki Kimura
- Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Chiaki Fukumoto
- Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yusuke Yagi
- Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
- Department of Radiological Technology, Faculty of Medical Science, Kyoto College of Medical Science, Kyoto, Japan
| | - Yasunao Hattori
- Center for Instrumental Analysis, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Hidekazu Kawashima
- Radioisotope Research Center, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Hiroyuki Yasui
- Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
13
|
Xing AP, Shen Z, Zhao Z, Tian X, Ren YL. CuO-catalyzed conversion of arylacetic acids into aromatic nitriles with K4Fe(CN)6 as the nitrogen source. CATAL COMMUN 2021. [DOI: 10.1016/j.catcom.2020.106175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
14
|
PET Radiochemistry. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00027-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
15
|
Wright JS, Kaur T, Preshlock S, Tanzey SS, Winton WP, Sharninghausen LS, Wiesner N, Brooks AF, Sanford MS, Scott PJH. Copper-Mediated Late-stage Radiofluorination: Five Years of Impact on Pre-clinical and Clinical PET Imaging. Clin Transl Imaging 2020; 8:167-206. [PMID: 33748018 PMCID: PMC7968072 DOI: 10.1007/s40336-020-00368-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 04/24/2020] [Indexed: 12/30/2022]
Abstract
PURPOSE Copper-mediated radiofluorination (CMRF) is emerging as the method of choice for the formation of aromatic C-18F bonds. This minireview examines proof-of-concept, pre-clinical, and in-human imaging studies of new and established imaging agents containing aromatic C-18F bonds synthesized with CMRF. An exhaustive discussion of CMRF methods is not provided, although key developments that have enabled or improved upon the syntheses of fluorine-18 imaging agents are discussed. METHODS A comprehensive literature search from April 2014 onwards of the Web of Science and PubMed library databases was performed to find reports that utilize CMRF for the synthesis of fluorine-18 radiopharmaceuticals, and these represent the primary body of research discussed in this minireview. Select conference proceedings, previous reports describing alternative methods for the synthesis of imaging agents, and preceding fluorine-19 methodologies have also been included for discussion. CONCLUSIONS CMRF has significantly expanded the chemical space that is accessible to fluorine-18 radiolabeling with production methods that can meet the regulatory requirements for use in Nuclear Medicine. Furthermore, it has enabled novel and improved syntheses of radiopharmaceuticals and facilitated subsequent PET imaging studies. The rapid adoption of CMRF will undoubtedly continue to simplify the production of imaging agents and inspire the development of new radiofluorination methodologies.
Collapse
Affiliation(s)
- Jay S Wright
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tanpreet Kaur
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sean Preshlock
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sean S Tanzey
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wade P Winton
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Nicholas Wiesner
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Allen F Brooks
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Melanie S Sanford
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
16
|
Duffy IR, Vasdev N, Dahl K. Copper(I)-Mediated 11C-Carboxylation of (Hetero)arylstannanes. ACS OMEGA 2020; 5:8242-8250. [PMID: 32309734 PMCID: PMC7161067 DOI: 10.1021/acsomega.0c00524] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
A novel copper-mediated carboxylation strategy of aryl- and heteroaryl-stannanes is described. The method serves as a mild (i.e., 1 atm) carboxylation method using stable carbon dioxide and is transferable as a radiosynthetic approach for carbon-11-labeled aromatic and heteroaromatic carboxylic acids using sub-stoichiometric quantities of [11C]CO2. The methodology was applied to the radiosynthesis of the retinoid X receptor agonist, [11C]bexarotene, with a decay-corrected radiochemical yield of 32 ± 5% and molar activity of 38 ± 23 GBq/μmol (n = 3).
Collapse
Affiliation(s)
- Ian R. Duffy
- Azrieli
Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T
1R8, Canada
| | - Neil Vasdev
- Azrieli
Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T
1R8, Canada
- Department
of Psychiatry, University of Toronto, 250 College Street, Toronto, ON M5T
1R8, Canada
| | - Kenneth Dahl
- Azrieli
Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T
1R8, Canada
| |
Collapse
|
17
|
Niwa T, Hosoya T. Molecular Renovation Strategy for Expeditious Synthesis of Molecular Probes. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190310] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Takashi Niwa
- Laboratory for Chemical Biology, RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Chemical Biology Team, Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies (CLST), 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Takamitsu Hosoya
- Laboratory for Chemical Biology, RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Chemical Biology Team, Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies (CLST), 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
18
|
The chemistry of labeling heterocycles with carbon-11 or fluorine-18 for biomedical imaging. ADVANCES IN HETEROCYCLIC CHEMISTRY 2020. [DOI: 10.1016/bs.aihch.2019.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Fu Z, Jiang L, Li Z, Jiang Y, Cai H. Ag/Cu-mediated decarboxylative cyanation of aryl carboxylic acids with K4Fe(CN)6 under aerobic conditions. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2018.1494840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Zhengjiang Fu
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, China
| | - Ligao Jiang
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, China
| | - Zhaojie Li
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, China
| | - Yongqing Jiang
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, China
| | - Hu Cai
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
20
|
Deng X, Rong J, Wang L, Vasdev N, Zhang L, Josephson L, Liang SH. Chemistry for Positron Emission Tomography: Recent Advances in 11 C-, 18 F-, 13 N-, and 15 O-Labeling Reactions. Angew Chem Int Ed Engl 2019; 58:2580-2605. [PMID: 30054961 PMCID: PMC6405341 DOI: 10.1002/anie.201805501] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Indexed: 01/07/2023]
Abstract
Positron emission tomography (PET) is a molecular imaging technology that provides quantitative information about function and metabolism in biological processes in vivo for disease diagnosis and therapy assessment. The broad application and rapid advances of PET has led to an increased demand for new radiochemical methods to synthesize highly specific molecules bearing positron-emitting radionuclides. This Review provides an overview of commonly used labeling reactions through examples of clinically relevant PET tracers and highlights the most recent developments and breakthroughs over the past decade, with a focus on 11 C, 18 F, 13 N, and 15 O.
Collapse
Affiliation(s)
- Xiaoyun Deng
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Jian Rong
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Lu Wang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Lei Zhang
- Medicine Design, Pfizer Inc., Cambridge, MA, 02139, USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
21
|
Deng X, Rong J, Wang L, Vasdev N, Zhang L, Josephson L, Liang SH. Chemie der Positronenemissionstomographie: Aktuelle Fortschritte bei
11
C‐,
18
F‐,
13
N‐ und
15
O‐Markierungsreaktionen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201805501] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xiaoyun Deng
- Division of Nuclear Medicine and Molecular ImagingMassachusetts General Hospital & Department of RadiologyHarvard Medical School Boston MA 02114 USA
| | - Jian Rong
- Division of Nuclear Medicine and Molecular ImagingMassachusetts General Hospital & Department of RadiologyHarvard Medical School Boston MA 02114 USA
| | - Lu Wang
- Division of Nuclear Medicine and Molecular ImagingMassachusetts General Hospital & Department of RadiologyHarvard Medical School Boston MA 02114 USA
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular ImagingMassachusetts General Hospital & Department of RadiologyHarvard Medical School Boston MA 02114 USA
| | - Lei Zhang
- Medicine DesignPfizer Inc. Cambridge MA 02139 USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular ImagingMassachusetts General Hospital & Department of RadiologyHarvard Medical School Boston MA 02114 USA
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular ImagingMassachusetts General Hospital & Department of RadiologyHarvard Medical School Boston MA 02114 USA
| |
Collapse
|
22
|
Zhang T, Qiao J, Song H, Xu F, Liu X, Xu C, Ma J, Liu H, Sun Z, Chu W. Cu(OAc)2-Mediated benzimidazole-directed C–H cyanation using 2-(4-methylpiperazin-1-yl)acetonitrile as the cyano source. NEW J CHEM 2019. [DOI: 10.1039/c9nj00776h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The C–H activation catalytic system was originally applied to the C(sp2)–H cyanation of aryls/heteroaryls to synthesize 2-(1H-benzo[d]imidazol-2-yl)aryl nitriles.
Collapse
|
23
|
Yang L, Brooks AF, Makaravage KJ, Zhang H, Sanford MS, Scott PJH, Shao X. Radiosynthesis of [ 11C]LY2795050 for Preclinical and Clinical PET Imaging Using Cu(II)-Mediated Cyanation. ACS Med Chem Lett 2018; 9:1274-1279. [PMID: 30613339 DOI: 10.1021/acsmedchemlett.8b00460] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/13/2018] [Indexed: 01/05/2023] Open
Abstract
Copper-mediated 11C-cyanation reactions have enabled the synthesis of PET radiotracers from a range of readily available precursors and avoid the need to use more toxic Pd catalysts. In this work we adapt our recently developed 11C-cyanation of arylpinacolboronate (BPin) esters for the cGMP synthesis of [11C]LY2795050, a selective antagonist radiotracer for the kappa opioid receptor (KOR). [11C]LY2795050 was synthesized in 6 ± 1% noncorrected radiochemical yield (based on [11C]HCN, n = 3) using an automated synthesis module. Quality control testing confirmed the suitability of doses for preclinical and clinical PET imaging (radiochemical purity >99%; specific activity >900 mCi/μmol; residual Cu < 0.1 μg/mL). PET imaging was conducted in rodent and nonhuman primates, showing good brain uptake of [11C]LY2795050 and the expected distribution of KOR. Analogous imaging with [11C]carfentanil (a selective mu opioid receptor (MOR) radiotracer) revealed the anticipated regional differences in MOR and KOR distribution in the primate brain.
Collapse
Affiliation(s)
- Lingyun Yang
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Allen F. Brooks
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Katarina J. Makaravage
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Huibin Zhang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Melanie S. Sanford
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Peter J. H. Scott
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Xia Shao
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
24
|
Zhang Z, Niwa T, Watanabe Y, Hosoya T. Palladium(ii)-mediated rapid 11C-cyanation of (hetero)arylborons. Org Biomol Chem 2018; 16:7711-7716. [PMID: 30288522 DOI: 10.1039/c8ob02049c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A palladium(ii)-mediated rapid 11C-cyanation of (hetero)arylborons with [11C]NH4CN/NH3 has been developed using bench-stable and readily available reagents. The method showed excellent functional-group tolerance, and allowed the highly efficient synthesis of a wide range of [11C]cyanoarenes, including PET tracers for aromatase imaging. A mechanistic study of the 11C-cyanation suggests the instantaneous formation of a mono[11C]cyanopalladium(ii) complex that reacts smoothly with arylborons.
Collapse
Affiliation(s)
- Zhouen Zhang
- Chemical Biology Team, Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies (CLST) and Laboratory for Chemical Biology, RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Takashi Niwa
- Chemical Biology Team, Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies (CLST) and Laboratory for Chemical Biology, RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Yasuyoshi Watanabe
- Chemical Biology Team, Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies (CLST) and Laboratory for Chemical Biology, RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Takamitsu Hosoya
- Chemical Biology Team, Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies (CLST) and Laboratory for Chemical Biology, RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan. and Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
25
|
Del Vecchio A, Caillé F, Chevalier A, Loreau O, Horkka K, Halldin C, Schou M, Camus N, Kessler P, Kuhnast B, Taran F, Audisio D. Late-Stage Isotopic Carbon Labeling of Pharmaceutically Relevant Cyclic Ureas Directly from CO 2. Angew Chem Int Ed Engl 2018; 57:9744-9748. [PMID: 29862657 PMCID: PMC6099343 DOI: 10.1002/anie.201804838] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Indexed: 12/22/2022]
Abstract
A robust, click-chemistry-inspired procedure for radiolabeling of cyclic ureas was developed. This protocol, suitable for all carbon isotopes (11 C, 13 C, 14 C), is based on the direct functionalization of carbon dioxide: the universal building block for carbon radiolabeling. The strategy is operationally simple and reproducible in different radiochemistry centers, exhibits remarkably wide substrate scope with short reaction times, and demonstrates superior reactivity as compared to previously reported systems. With this procedure, a variety of pharmaceuticals and an unprotected peptide were labeled with high radiochemical efficiency.
Collapse
Affiliation(s)
- Antonio Del Vecchio
- Service de Chimie Bio-organique et de Marquage, CEA-DRF-JOLIOT-SCBMUniversité Paris-Saclay91191Gif sur YvetteFrance
| | - Fabien Caillé
- UMR 1023 IMIV, Service Hospitalier Frédéric Joliot, CEAInsermUniversité Paris SudCNRS, Université Paris-SaclayOrsayFrance
| | - Arnaud Chevalier
- Service de Chimie Bio-organique et de Marquage, CEA-DRF-JOLIOT-SCBMUniversité Paris-Saclay91191Gif sur YvetteFrance
| | - Olivier Loreau
- Service de Chimie Bio-organique et de Marquage, CEA-DRF-JOLIOT-SCBMUniversité Paris-Saclay91191Gif sur YvetteFrance
| | - Kaisa Horkka
- Psychiatry SectionDepartment of Clinical NeuroscienceKarolinska Institutet171 76StockholmSweden
| | - Christer Halldin
- Psychiatry SectionDepartment of Clinical NeuroscienceKarolinska Institutet171 76StockholmSweden
| | - Magnus Schou
- Psychiatry SectionDepartment of Clinical NeuroscienceKarolinska Institutet171 76StockholmSweden
- PET Science Centre, Precision Medicine and Genomics, IMED Biotech UnitAstraZenecaKarolinska Institutet171 76StockholmSweden
| | - Nathalie Camus
- Service de Chimie Bio-organique et de Marquage, CEA-DRF-JOLIOT-SCBMUniversité Paris-Saclay91191Gif sur YvetteFrance
| | - Pascal Kessler
- Service d'Ingénierie Moléculaire des Protéines, CEA-DRF-JOLIOT-SIMOPROUniversité Paris-Saclay91191Gif sur YvetteFrance
| | - Bertrand Kuhnast
- UMR 1023 IMIV, Service Hospitalier Frédéric Joliot, CEAInsermUniversité Paris SudCNRS, Université Paris-SaclayOrsayFrance
| | - Frédéric Taran
- Service de Chimie Bio-organique et de Marquage, CEA-DRF-JOLIOT-SCBMUniversité Paris-Saclay91191Gif sur YvetteFrance
| | - Davide Audisio
- Service de Chimie Bio-organique et de Marquage, CEA-DRF-JOLIOT-SCBMUniversité Paris-Saclay91191Gif sur YvetteFrance
| |
Collapse
|
26
|
Del Vecchio A, Caillé F, Chevalier A, Loreau O, Horkka K, Halldin C, Schou M, Camus N, Kessler P, Kuhnast B, Taran F, Audisio D. Late-Stage Isotopic Carbon Labeling of Pharmaceutically Relevant Cyclic Ureas Directly from CO2. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804838] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Antonio Del Vecchio
- Service de Chimie Bio-organique et de Marquage, CEA-DRF-JOLIOT-SCBM; Université Paris-Saclay; 91191 Gif sur Yvette France
| | - Fabien Caillé
- UMR 1023 IMIV, Service Hospitalier Frédéric Joliot, CEA; Inserm; Université Paris Sud; CNRS, Université Paris-Saclay; Orsay France
| | - Arnaud Chevalier
- Service de Chimie Bio-organique et de Marquage, CEA-DRF-JOLIOT-SCBM; Université Paris-Saclay; 91191 Gif sur Yvette France
| | - Olivier Loreau
- Service de Chimie Bio-organique et de Marquage, CEA-DRF-JOLIOT-SCBM; Université Paris-Saclay; 91191 Gif sur Yvette France
| | - Kaisa Horkka
- Psychiatry Section; Department of Clinical Neuroscience; Karolinska Institutet; 171 76 Stockholm Sweden
| | - Christer Halldin
- Psychiatry Section; Department of Clinical Neuroscience; Karolinska Institutet; 171 76 Stockholm Sweden
| | - Magnus Schou
- Psychiatry Section; Department of Clinical Neuroscience; Karolinska Institutet; 171 76 Stockholm Sweden
- PET Science Centre, Precision Medicine and Genomics, IMED Biotech Unit; AstraZeneca; Karolinska Institutet; 171 76 Stockholm Sweden
| | - Nathalie Camus
- Service de Chimie Bio-organique et de Marquage, CEA-DRF-JOLIOT-SCBM; Université Paris-Saclay; 91191 Gif sur Yvette France
| | - Pascal Kessler
- Service d'Ingénierie Moléculaire des Protéines, CEA-DRF-JOLIOT-SIMOPRO; Université Paris-Saclay; 91191 Gif sur Yvette France
| | - Bertrand Kuhnast
- UMR 1023 IMIV, Service Hospitalier Frédéric Joliot, CEA; Inserm; Université Paris Sud; CNRS, Université Paris-Saclay; Orsay France
| | - Frédéric Taran
- Service de Chimie Bio-organique et de Marquage, CEA-DRF-JOLIOT-SCBM; Université Paris-Saclay; 91191 Gif sur Yvette France
| | - Davide Audisio
- Service de Chimie Bio-organique et de Marquage, CEA-DRF-JOLIOT-SCBM; Université Paris-Saclay; 91191 Gif sur Yvette France
| |
Collapse
|
27
|
Derdau V. New trends and applications in cyanation isotope chemistry. J Labelled Comp Radiopharm 2018; 61:1012-1023. [PMID: 29696683 DOI: 10.1002/jlcr.3630] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 12/24/2022]
Abstract
In this review, newly developed cyanation methods are evaluated in regards to their usefulness in synthetic isotope chemistry. In combination with already established protocols in 13/14 C- or 11 C-isotope chemistry, this manuscript should help isotope scientists to choose the best possible method for their scientific cyanation problem, but with the main focus on 14 C-applications. Perhaps, most promising of the described novel cyanation reaction is the decarboxylation-cyanation-hydrolysis approach which makes a 1-step late-stage functionalization procedure possible.
Collapse
Affiliation(s)
- Volker Derdau
- R&D, Integrated Drug Discovery, Isotope Chemistry and Metabolite Synthesis, Sanofi Germany, Frankfurt/Main, Germany
| |
Collapse
|
28
|
Zhou D, Chu W, Voller T, Katzenellenbogen JA. Copper-Mediated Nucleophilic Radiobromination of Aryl Boron Precursors: Convenient Preparation of a Radiobrominated PARP-1 Inhibitor. Tetrahedron Lett 2018; 59:1963-1967. [PMID: 30349147 DOI: 10.1016/j.tetlet.2018.04.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The copper-mediated nucleophilic radiobromination of aryl boron precursors with a radiobromide ion is a novel radiolabeling method that is efficient and robust. High radiochemical conversion (RCC) was observed using a variety of solvents, temperatures and catalysts. The reaction is also clean and is feasible for purification to obtain high chemical and radiochemical purity. This method provides a very useful route for the preparation of radiobrominated pharmaceuticals, including a radiobromine labeled PARP-1 inhibitor, and it is a valuable addition to the family of copper-mediated radiolabeling processes.
Collapse
Affiliation(s)
- Dong Zhou
- Department of Radiology, School of Medicine, Washington University in Saint Louis, Saint Louis, MO 63110
| | - Wenhua Chu
- Department of Radiology, School of Medicine, Washington University in Saint Louis, Saint Louis, MO 63110
| | - Thomas Voller
- Department of Radiology, School of Medicine, Washington University in Saint Louis, Saint Louis, MO 63110
| | | |
Collapse
|
29
|
Makaravage KJ, Shao X, Brooks AF, Yang L, Sanford MS, Scott PJH. Copper(II)-Mediated [ 11C]Cyanation of Arylboronic Acids and Arylstannanes. Org Lett 2018; 20:1530-1533. [PMID: 29484880 PMCID: PMC5892454 DOI: 10.1021/acs.orglett.8b00242] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A copper-mediated method for the transformation of diverse arylboron compounds and arylstannanes to aryl-[11C]-nitriles is reported. This method is operationally simple, uses commercially available reagents, and is compatible with a wide variety of substituted aryl- and heteroaryl substrates. This method is applied to the automated synthesis of high specific activity [11C]perampanel in 10% nondecay-corrected radiochemical yield (RCY).
Collapse
Affiliation(s)
- Katarina J. Makaravage
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Xia Shao
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | - Allen F. Brooks
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | - Lingyun Yang
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Melanie S. Sanford
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Peter J. H. Scott
- Department of Radiology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
30
|
Wang Y, Fu L, Qi H, Chen SW, Li Y. Bioinspired Synthesis of Nitriles from Primary Amides via Zinc/Anhydride Catalysis. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201700664] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yuanyuan Wang
- College of Chemistry & Pharmacy; Northwest A&F University; Yangling 712100 P.R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute of LICP; Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences; Lanzhou 730000 P.R. China
| | - Liyan Fu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute of LICP; Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences; Lanzhou 730000 P.R. China
| | - Huimin Qi
- College of Chemistry & Pharmacy; Northwest A&F University; Yangling 712100 P.R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute of LICP; Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences; Lanzhou 730000 P.R. China
| | - Shu-Wei Chen
- College of Chemistry & Pharmacy; Northwest A&F University; Yangling 712100 P.R. China
| | - Yuehui Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute of LICP; Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences; Lanzhou 730000 P.R. China
| |
Collapse
|
31
|
Wilson TC, Cailly T, Gouverneur V. Boron reagents for divergent radiochemistry. Chem Soc Rev 2018; 47:6990-7005. [DOI: 10.1039/c8cs00499d] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review discusses boron reagents as precursors for divergent radiolabelling with a focus on carbon-11, fluorine-18 and iodine-123, -125, -131.
Collapse
Affiliation(s)
| | - Thomas Cailly
- Normandie Univ
- UNICAEN
- Centre d’Etudes et de Recherche sur le Médicament de Normandie (CERMN)
- 14000 Caen
- France
| | | |
Collapse
|
32
|
Boscutti G, Huiban M, Passchier J. Use of carbon-11 labelled tool compounds in support of drug development. DRUG DISCOVERY TODAY. TECHNOLOGIES 2017; 25:3-10. [PMID: 29233265 DOI: 10.1016/j.ddtec.2017.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 06/07/2023]
Abstract
The pharmaceutical industry is facing key challenges to improve return on R&D investment. Positron emission tomography (PET), by itself or in combination with complementary technologies such as magnetic resonance imaging (MRI), provides a unique opportunity to confirm a candidate's ability to meet the so-called 'three pillars' of drug development. Positive confirmation provides confidence for go/no-go decision making at an early stage of the development process and enables informed clinical progression. Whereas fluorine-18 has probably gained wider use in the community, there are benefits to using carbon-11 given the greater flexibility the use of this isotope permits in adaptive clinical study design. This review explores the scope of available carbon-11 chemistries and provides clinical examples to highlight its value in PET studies in support of drug development.
Collapse
Affiliation(s)
- Giulia Boscutti
- Imanova Ltd., Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Mickael Huiban
- Imanova Ltd., Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Jan Passchier
- Imanova Ltd., Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
33
|
Labaree DC, Ropchan JR, Nabulsi N, Huang Y. A modification to improve the reliability of [ 11 C]CN - production in the GE radiochemistry system. J Labelled Comp Radiopharm 2017; 60:592-595. [PMID: 28833348 DOI: 10.1002/jlcr.3540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/25/2017] [Accepted: 08/08/2017] [Indexed: 11/07/2022]
Abstract
We report herein a modification to a component of the GE radiochemistry system that increases the yield and reliability of [11 C]CN- production from [11 C]carbon dioxide.
Collapse
Affiliation(s)
- David C Labaree
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jim R Ropchan
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Nabeel Nabulsi
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yiyun Huang
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|