1
|
Kalandia G, Liu CL, Salazar Marcano DE, Moussawi MA, Bleus S, Van Meerbeek B, Dehaen W, Parac-Vogt TN. Host-Guest Assemblies of Polyoxovanadate Clusters as Supramolecular Catalysts. Angew Chem Int Ed Engl 2025; 64:e202420773. [PMID: 39535733 DOI: 10.1002/anie.202420773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 11/16/2024]
Abstract
Supramolecular functional materials can be used to overcome some of the most challenging tasks in materials science, where the dynamic nature of supramolecular interactions can be leveraged to fine-tune the properties of the material for a given task. The Lindqvist hexavanadate family of polyoxometalates (POMs) have emerged as particularly interesting candidates to be used in supramolecular materials due to their redox and Lewis acid properties that enable their application in the fields of energy conversion/storage or catalysis. Despite their promising potential, hexavanadate clusters are underrepresented in the field of supramolecular materials, mainly due to the synthetic challenges related to their inherent reactivity. In this work, pillar[5]arene was successfully grafted onto a Lindqvist hexavanadate and the resulting structure was confirmed by single crystal X-ray diffraction (SC-XRD), presenting the first example of a crystal structure of a POMcovalently functionalized with a pillar[5]arene. By introducing a ditopic guest molecule that could interlink pillar[5]arene moieties, host-guest interactions were leveraged as the driving force for the formation of supramolecular assemblies incorporating hexavanadate clusters in a controlled manner. The enhanced catalytic performance of the resulting aggregates confirmed their potential application as functional catalytic materials. This novel approach for developing hexavanadate-based catalysts reported here showcases the potential of using host-guest interactions as a means to introduce catalytically active metal-oxo clusters into supramolecular frameworks.
Collapse
Affiliation(s)
- Givi Kalandia
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Cui-Lian Liu
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | | | - Mhamad Aly Moussawi
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Sem Bleus
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Bart Van Meerbeek
- Department of Oral Health Sciences, BIOMAT & UZ Leuven, Dentistry KU Leuven Kapucijnenvoer 7, 3000, Leuven, Belgium
| | - Wim Dehaen
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | | |
Collapse
|
2
|
Salazar Marcano DE, Chen JJ, Moussawi MA, Kalandia G, Anyushin AV, Parac-Vogt TN. Redox-active polyoxovanadates as cofactors in the development of functional protein assemblies. J Inorg Biochem 2024; 260:112687. [PMID: 39142056 DOI: 10.1016/j.jinorgbio.2024.112687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024]
Abstract
The interactions of polyoxovanadates (POVs) with proteins have increasingly attracted interest in recent years due to their potential biomedical applications. This is especially the case because of their redox and catalytic properties, which make them interesting for developing artificial metalloenzymes. Organic-inorganic hybrid hexavanadates in particular offer several advantages over all-inorganic POVs. However, they have been scarcely investigated in biological systems even though, as shown in this work, hybrid hexavanadates are highly stable in aqueous solutions up to relatively high pH. Therefore, a novel bis-biotinylated hexavanadate was synthesized and shown to selectively interact with two biotin-binding proteins, avidin and streptavidin. Bridging interactions between multiple proteins led to their self-assembly into supramolecular bio-inorganic hybrid systems that have potential as artificial enzymes with the hexavanadate core as a redox-active cofactor. Moreover, the structure and charge of the hexavanadate core were determined to enhance the binding affinity and slightly alter the secondary structure of the proteins, which affected the size and speed of formation of the assemblies. Hence, tuning the polyoxometalate (POM) core of hybrid POMs (HPOMs) with protein-binding ligands has been demonstrated to be a potential strategy for controlling the self-assembly process while also enabling the formation of novel POM-based biomaterials that could be of interest in biomedicine.
Collapse
Affiliation(s)
| | - Jieh-Jang Chen
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Mhamad Aly Moussawi
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Givi Kalandia
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | | | | |
Collapse
|
3
|
Salazar Marcano DE, Kalandia G, Moussawi MA, Van Hecke K, Parac-Vogt TN. Rational synthesis of elusive organic-inorganic hybrid metal-oxo clusters: formation and post-functionalization of hexavanadates. Chem Sci 2023; 14:5405-5414. [PMID: 37234890 PMCID: PMC10207889 DOI: 10.1039/d3sc00038a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023] Open
Abstract
Paving the way towards new functional materials relies increasingly on the challenging task of forming organic-inorganic hybrid compounds. In that regard, discrete atomically-precise metal-oxo nanoclusters have received increasing attention due to the wide range of organic moieties that can be grafted onto them through functionalization reactions. The Lindqvist hexavanadate family of clusters, such as [V6O13{(OCH2)3C-R}2]2- (V6-R), is particularly interesting due to the magnetic, redox, and catalytic properties of these clusters. However, compared to other metal-oxo cluster types, V6-R clusters have been less extensively explored, which is mainly due to poorly understood synthetic challenges and the limited number of viable post-functionalization strategies. In this work, we present an in-depth investigation of the factors that influence the formation of hybrid hexavanadates (V6-R HPOMs) and leverage this knowledge to develop [V6O13{(OCH2)3CNHCOCH2Cl}2]2- (V6-Cl) as a new and tunable platform for the facile formation of discrete hybrid structures based on metal-oxo clusters in relatively high yields. Moreover, we showcase the versatility of the V6-Cl platform through its post-functionalization via nucleophilic substitution with various carboxylic acids of differing complexity and with functionalities that are relevant in multiple disciplines, such as supramolecular chemistry and biochemistry. Hence, V6-Cl was shown to be a straightforward and versatile starting point for the formation of functional supramolecular structures or other hybrid materials, thereby enabling their exploration in various fields.
Collapse
Affiliation(s)
| | - Givi Kalandia
- Department of Chemistry, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | | | - Kristof Van Hecke
- XStruct, Department of Chemistry, Ghent University Krijgslaan 281, S-3 9000 Ghent Belgium
| | | |
Collapse
|
4
|
Palacios-Corella M, García-López V, Waerenborgh JC, Vieira BJC, Mínguez Espallargas G, Clemente-León M, Coronado E. Redox and guest tunable spin-crossover properties in a polymeric polyoxometalate. Chem Sci 2023; 14:3048-3055. [PMID: 36937587 PMCID: PMC10016358 DOI: 10.1039/d2sc05800f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/21/2023] [Indexed: 02/24/2023] Open
Abstract
A bifunctionalized polyoxometalate (POM), [V6O19(C16H15N6O)2]2-, which contains a redox active hexavanadate moiety covalently linked to two tridentate 2,6-bis(pyrazol-1-yl)pyridine (1-bpp) ligands, has been prepared and characterized. Reaction of this hybrid molecule with Fe(ii) or Zn(ii) ions produces crystalline neutral 1D networks of formula Fe[V6O19(C16H15N6O)2]·solv (2) and Zn[V6O19(C16H15N6O)2]·solv (3) (solv = solvent molecules). Magnetic properties of 2 show an abrupt spin-crossover (SCO) with the temperature, which can be induced by light irradiation at 10 K (Light-Induced Excited Spin-State Trapping, LIESST effect). Interestingly, this porous and flexible structure enables reversible exchange of solvents in 2, which allows tuning the temperature of the thermal SCO. In 2 and 3, the hexavanadate unit can be reduced by electrochemical or chemical means in a reversible way. Chemical reduction and reoxidation by a postsynthetic method is accompanied by the insertion in the structure of the reductant and oxidant molecules (cobaltocene and tribromide, respectively), which provokes drastic changes in the spin state of Fe(ii). This leads to an elegant switching multifunctional material in which SCO properties of the Fe(ii) complexes coexist with the redox properties of the POM and can be tuned by a variety of stimuli such as temperature, light, solvent exchange or electron transfer. During the reduction process, 3 undergoes a single-crystal-to-single-crystal one-electron reduction, which confirms the presence of cobaltocenium cations by single crystal X-ray diffraction.
Collapse
Affiliation(s)
- Mario Palacios-Corella
- Instituto de Ciencia Molecular (ICMol), Universitat de València C/Catedrático José Beltrán 2 46980 Paterna Spain +34 963543273 +34 963544419
| | - Víctor García-López
- Instituto de Ciencia Molecular (ICMol), Universitat de València C/Catedrático José Beltrán 2 46980 Paterna Spain +34 963543273 +34 963544419
| | - Joao Carlos Waerenborgh
- Centro de Ciências e Tecnologias Nucleares, DECN, Instituto Superior Técnico, Universidade de Lisboa 2695-066 Bobadela LRS Portugal
| | - Bruno J C Vieira
- Centro de Ciências e Tecnologias Nucleares, DECN, Instituto Superior Técnico, Universidade de Lisboa 2695-066 Bobadela LRS Portugal
| | - Guillermo Mínguez Espallargas
- Instituto de Ciencia Molecular (ICMol), Universitat de València C/Catedrático José Beltrán 2 46980 Paterna Spain +34 963543273 +34 963544419
| | - Miguel Clemente-León
- Instituto de Ciencia Molecular (ICMol), Universitat de València C/Catedrático José Beltrán 2 46980 Paterna Spain +34 963543273 +34 963544419
| | - Eugenio Coronado
- Instituto de Ciencia Molecular (ICMol), Universitat de València C/Catedrático José Beltrán 2 46980 Paterna Spain +34 963543273 +34 963544419
| |
Collapse
|
5
|
Lu X, Cheng T, Geletii YV, Hill CL. Catalytic System for Aerobic Oxidation That Simultaneously Functions as Its Own Redox Buffer. Inorg Chem 2023; 62:2404-2414. [PMID: 36696689 PMCID: PMC9906773 DOI: 10.1021/acs.inorgchem.2c04209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The control of the solution electrochemical potential as well as pH impacts products in redox reactions, but the former gets far less attention. Redox buffers facilitate the maintenance of potentials and have been noted in diverse cases, but they have not been a component of catalytic systems. We report a catalytic system that contains its own built-in redox buffer. Two highly synergistic components (a) the tetrabutylammonium salt of hexavanadopolymolybdate TBA4H5[PMo6V6O40] (PV6Mo6) and (b) Cu(ClO4)2 in acetonitrile catalyze the aerobic oxidative deodorization of thiols by conversion to the corresponding nonodorous disulfides at 23 °C (each catalyst alone is far less active). For example, the reaction of 2-mercaptoethanol with ambient air gives a turnover number (TON) = 3 × 102 in less than one hour with a turnover frequency (TOF) of 6 × 10-2 s-1 with respect to PV6Mo6. Multiple electrochemical, spectroscopic, and other methods establish that (1) PV6Mo6, a multistep and multielectron redox buffering catalyst, controls the speciation and the ratio of Cu(II)/Cu(I) complexes and thus keeps the solution potential in different narrow ranges by involving multiple POM redox couples and simultaneously functions as an oxidation catalyst that receives electrons from the substrate; (2) Cu catalyzes two processes simultaneously, oxidation of the RSH by PV6Mo6 and reoxidation of reduced PV6Mo6 by O2; and (3) the analogous polytungstate-based system, TBA4H5[PW6V6O40] (PV6W6), has nearly identical cyclic voltammograms (CV) as PV6Mo6 but has almost no catalytic activity: it does not exhibit self-redox buffering.
Collapse
|
6
|
Snider VG, Hill CL. Functionalized reactive polymers for the removal of chemical warfare agents: A review. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130015. [PMID: 36166906 DOI: 10.1016/j.jhazmat.2022.130015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/11/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Protection from and removal of chemical warfare agents (CWAs) from the environment remains a global goal. Activated charcoal, metal oxides, metal organic frameworks (MOFs), polyoxometalates (POMs) and reactive polymers have all been investigated for CWA removal. Composite polymeric materials are rapidly gaining traction as versatile building blocks for personal protective equipment (PPE) and catalytic devices. Polymers are inexpensive to produce and easily engineered into a wide range of materials including films, electro-spun fibers, mixed-matrix membranes/reactors, and other forms. When containing reactive side-chains, hydrolysis catalysts, and/or oxidative catalysts polymeric devices are primed for CWA decontamination. In this review, recent advances in reactive polymeric materials for CWA removal are summarized. To aid in comparing the effectiveness of the different solid catalysts, particular attention is paid to the stoichiometric ratio of reactive species to toxic substrate (CWA or CWA simulant).
Collapse
Affiliation(s)
| | - Craig L Hill
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
7
|
Hu Y, Huang D, Yan J, Miao Z, Yu L, Cai N, Fang Q, Zhang Q, Yan Y. Polyoxovanadate-Based Cyclomatrix Polyphosphazene Microspheres as Efficient Heterogeneous Catalysts for the Selective Oxidation and Desulfurization of Sulfides. Molecules 2022; 27:molecules27238560. [PMID: 36500654 PMCID: PMC9738953 DOI: 10.3390/molecules27238560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
The [V6O13]2- cluster is successfully immobilized to the polymeric framework of cyclomatrix polyphosphazene via the facile precipitation polymerization between the phenol group symmetrically modified [V6O13]2- and hexachlorocyclotriphosphazene. The structure of the as-prepared polyoxometalate-containing polyphosphazene (HCCP-V) was characterized by FT-IR, XPS, TGA, BET, as well as SEM and zeta potential. The presence of a rigid polyoxometalate cluster not only supports the porous structure of the polymeric framework but also provides an improved catalytic oxidation property. By using H2O2 as an oxidant, the as-prepared HCCP-V exhibited improved catalytic oxidation activity toward MPS, DBT, and CEES, which can achieve as high as 99% conversion. More importantly, the immobilization of POMs in the network of cyclomatrix polyphosphazene also provides better recyclability and stability of the heterogeneous catalyst.
Collapse
Affiliation(s)
- Yinghui Hu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, China
| | - Diping Huang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, China
| | - Jing Yan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, China
- Correspondence: (J.Y.); (Y.Y.)
| | - Zhiliang Miao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, China
| | - Lize Yu
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi’an 710129, China
| | - Ningjing Cai
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi’an 710129, China
| | - Quanhai Fang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, China
| | - Qiuyu Zhang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, China
| | - Yi Yan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an 710129, China
- Correspondence: (J.Y.); (Y.Y.)
| |
Collapse
|
8
|
Yin J, Huang C, Zhou Y, Zhang L, Li N, Sun R. Selective Oxidation of 2-Chloroethyl Ethyl Sulfide in Aqueous Media Catalyzed by {Mo 72M 30} Nano-polyoxometalate Clusters Differentiating the Catalytic Activity of Nodal Metals. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jianbo Yin
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chengcheng Huang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yunshan Zhou
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lijuan Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Nan Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ran Sun
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
9
|
Ma L, Xie J, Yan X, Fan Z, Li H, Lu L, Chen L, Xin Y, Yin P. Wearable membranes from zirconium-oxo clusters cross-linked polymer networks for ultrafast chemical warfare agents decontamination. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
A ring-shaped 12-Ti-substituted poly(polyoxometalate): synthesis, structure, and catalytic properties. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1215-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Salazar Marcano DE, Moussawi MA, Anyushin AV, Lentink S, Van Meervelt L, Ivanović-Burmazović I, Parac-Vogt TN. Versatile post-functionalisation strategy for the formation of modular organic-inorganic polyoxometalate hybrids. Chem Sci 2022; 13:2891-2899. [PMID: 35382468 PMCID: PMC8905796 DOI: 10.1039/d1sc06326j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/07/2022] [Indexed: 11/28/2022] Open
Abstract
Hybrid structures incorporating different organic and inorganic constituents are emerging as a very promising class of materials since they synergistically combine the complementary and diverse properties of the individual components. Hybrid materials based on polyoxometalate clusters (POMs) are particularly interesting due to their versatile catalytic, redox, electronic, and magnetic properties, yet the controlled incorporation of different clusters into a hybrid structure is challenging and has been scarcely reported. Herein we propose a novel and general strategy for combining multiple types of metal-oxo clusters in a single hybrid molecule. Two novel hybrid POM structures (HPOMs) bis-functionalised with dipentaerythritol (R-POM1-R; R = (OCH2)3CCH2OCH2C(CH2OH)) were synthesised as building-blocks for the formation of heterometallic hybrid triads (POM2-R-POM1-R-POM2). Such a modular approach resulted in the formation of four novel heterometallic hybrids combing the Lindqvist {V6}, Anderson-Evans {XMo6} (X = Cr or Al) and trisubstituted Wells-Dawson {P2V3W15} POM structures. Their formation was confirmed by multinuclear Nuclear Magnetic Resonance (NMR), infrared (IR) and UV-Vis spectroscopy, as well as Mass Spectrometry, Diffusion Ordered Spectroscopy (DOSY) and elemental analysis. The thermal stability of the hybrids was also examined by Thermogravimetric Analysis (TGA), which showed that the HPOM triads exhibit higher thermal stability than comparable hybrid structures containing only one type of POM. The one-pot synthesis of these novel compounds was achieved in high yields in aqueous and organic media under simple reflux conditions, without the need of any additives, and could be translated to create other hybrid materials based on a variety of metal-oxo cluster building-blocks.
Collapse
Affiliation(s)
- David E Salazar Marcano
- Laboratory of Bioinorganic Chemistry, KU Leuven Department of Chemistry Celestijnenlaan 200F 3001 Leuven Belgium
| | - Mhamad Aly Moussawi
- Laboratory of Bioinorganic Chemistry, KU Leuven Department of Chemistry Celestijnenlaan 200F 3001 Leuven Belgium
| | - Alexander V Anyushin
- Laboratory of Bioinorganic Chemistry, KU Leuven Department of Chemistry Celestijnenlaan 200F 3001 Leuven Belgium
| | - Sarah Lentink
- Laboratory of Bioinorganic Chemistry, KU Leuven Department of Chemistry Celestijnenlaan 200F 3001 Leuven Belgium
| | - Luc Van Meervelt
- Biomolecular Architecture, KU Leuven Department of Chemistry Celestijnenlaan 200F 3001 Leuven Belgium
| | - Ivana Ivanović-Burmazović
- Department of Chemistry, Ludwig-Maximilian-University Butenandtstr. 5-13, Haus D 81377 Munich Germany
| | - Tatjana N Parac-Vogt
- Laboratory of Bioinorganic Chemistry, KU Leuven Department of Chemistry Celestijnenlaan 200F 3001 Leuven Belgium
| |
Collapse
|
12
|
Giles SL, Kastl AM, Purdy AP, Leff AC, Ratchford DC, Maza WA, Baturina OA. Surface- and Structural-Dependent Reactivity of Titanium Oxide Nanostructures with 2-Chloroethyl Ethyl Sulfide under Ambient Conditions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9655-9666. [PMID: 35134290 DOI: 10.1021/acsami.1c18180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Robust materials capable of heterogeneous reactivity are valuable for addressing toxic chemical clean up. Synthetic manipulations for generating titanium oxide nanomaterials have been utilized to alter both photochemical (1000 nm > λ > 400 nm) and chemical heterogeneous reactivity with 2-chloroethyl ethyl sulfide (2-CEES). Synthesizing TiO2 nanomaterials in the presence of long-chain alkylphosphonic acids enhanced the visible light-driven oxidation of the thioether sulfur of 2-CEES. Photooxidation reaction rates of 99 and 168 μmol/g/h (quantum yields of 5.07 × 10-4 and 8.58 × 10-4 molecules/photon, respectively) were observed for samples made with two different alkylphosphonic acids (C14H29PO3H2 and C9H19PO3H2, respectively). These observations are correlated with (i) generation of new surface defects/states (i.e., oxygen vacancies) as a result of TiO2 grafting by alkylphosphonic acid that may serve as reaction active sites, (ii) better light absorption by assemblies of nanorods and nanowires in comparison to individual nanorods, (iii) surface area differences, and (iv) the exclusion of OH groups due to the surface functionalization with alkylphosphonic acids via Ti-O-P bonds on the TiO2. Alternatively, nanowire-form H2Ti2O5·H2O was produced and found to be capable of highly efficient hydrolysis of the carbon-chlorine (C-Cl) bond of 2-CEES in the dark with a reaction rate of 279.2 μmol/g/h due to the high surface area and chemical nature of the titanate structure.
Collapse
Affiliation(s)
- Spencer L Giles
- Chemistry Division, United States Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Anastasia M Kastl
- NREIP Intern, Chemistry Division, United States Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Andrew P Purdy
- Chemistry Division, United States Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Asher C Leff
- Sensors & Electron Devices Directorate, U.S. Army Research Laboratory, Adelphi, Maryland 20783, United States
- General Technical Services, Adelphi, Maryland 20783, United States
| | - Daniel C Ratchford
- Chemistry Division, United States Naval Research Laboratory, Washington, D.C. 20375, United States
| | - William A Maza
- Chemistry Division, United States Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Olga A Baturina
- Chemistry Division, United States Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
13
|
Snider VG, Alshehri R, Slaugenhaupt RM, Hill CL. Materials for the Simultaneous Entrapment and Catalytic Aerobic Oxidative Removal of Sulfur Mustard Simulants. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51519-51524. [PMID: 34665594 DOI: 10.1021/acsami.1c15588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Materials that both sequester chemical warfare agents (CWAs) and then catalytically decontaminate the entrapped CWAs are highly sought. This article reports such a system for air-based catalytic removal of the sulfur mustard (HD) simulant, 2-chloroethyl ethyl sulfide (CEES). Hypercrosslinked polymers (HCPs) sequester CEES, and an HCP-embedded oxidation system comprising tribromide, nitrate, and acid (NOxBrxH+) simultaneously catalyzes the aerobic and selective, oxidative conversion of the entrapped CEES to the desired far less-toxic sulfoxide under ambient conditions (air and temperature). (NOxBrxH+) has been incorporated into three HCPs, a fluorobenzene HCP (HCP-F), a methylated HCP (HCP-M), and an HCP with acidic moieties (HCP-A). HCP-A acts as both an absorbing material and a catalytic component due to its acidic side chains. All three HCP/NOxBrxH+ systems work rapidly under these optimally mild conditions. No light or added oxidants are required. The HCP/NOxBrxH+ systems are recyclable.
Collapse
Affiliation(s)
- Victoria G Snider
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Rawan Alshehri
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | | | - Craig L Hill
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
14
|
Polyoxometalates and Metal–Organic Frameworks Based Dual-Functional Catalysts for Detoxification of Bis(2-Chloroethyl) Sulfide and Organophosphorus Agents. CATALYSIS SURVEYS FROM ASIA 2021. [DOI: 10.1007/s10563-021-09347-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Bezdek M, Luo SXL, Liu RY, He Q, Swager TM. Trace Hydrogen Sulfide Sensing Inspired by Polyoxometalate-Mediated Aerobic Oxidation. ACS CENTRAL SCIENCE 2021; 7:1572-1580. [PMID: 34584959 PMCID: PMC8461779 DOI: 10.1021/acscentsci.1c00746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Indexed: 05/23/2023]
Abstract
A high-performance chemiresistive gas sensor is described for the detection of hydrogen sulfide (H2S), an acutely toxic and corrosive gas. The chemiresistor operates at room temperature with low power requirements potentially suitable for wearable sensors or for rapid in-field detection of H2S in settings such as pipelines and wastewater treatment plants. Specifically, we report chemiresistors based on single-walled carbon nanotubes (SWCNTs) containing highly oxidizing platinum-polyoxometalate (Pt-POM) selectors. We show that by tuning the vanadium content and thereby the oxidation reactivity of the constituent POMs, an efficient chemiresistive sensor is obtained that is proposed to operate by modulating CNT doping during aerobic H2S oxidation. The sensor shows exceptional sensitivity to trace H2S in air with a ppb-level detection limit, multimonth stability under ambient conditions, and high selectivity for H2S over a wide range of interferants, including thiols, thioethers, and thiophene. Finally, we demonstrate that the robust sensing material can be used to fabricate flexible devices by covalently immobilizing the SWCNT-P4VP network onto a polyimide substrate, further extending the potentially broad utility of the chemiresistors. The strategy presented herein highlights the applicability of concepts in molecular aerobic oxidation catalysis to the development of low-cost analyte detection technologies.
Collapse
|
16
|
Finnegan TJ, Gunawardana VWL, Badjić JD. Molecular Recognition of Nerve Agents and Their Organophosphorus Surrogates: Toward Supramolecular Scavengers and Catalysts. Chemistry 2021; 27:13280-13305. [PMID: 34185362 PMCID: PMC8453132 DOI: 10.1002/chem.202101532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Indexed: 12/19/2022]
Abstract
Nerve agents are tetrahedral organophosphorus compounds (OPs) that were developed in the last century to irreversibly inhibit acetylcholinesterase (AChE) and therefore impede neurological signaling in living organisms. Exposure to OPs leads to a rapid development of symptoms from excessive salivation, nasal congestion and chest pain to convulsion and asphyxiation which if left untreated may lead to death. These potent toxins are prepared on a large scale from inexpensive staring materials, making it feasible for terrorist groups or states to use them against military and civilians. The existing antidotes provide limited protection and are difficult to apply to a large number of affected individuals. While new prophylactics are currently being developed, there is still need for therapeutics capable of both preventing and reversing the effects of OP poisoning. In this review, we describe how the science of molecular recognition can expand the pallet of tools for rapid and safe sequestration of nerve agents.
Collapse
Affiliation(s)
- Tyler J Finnegan
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, USA
| | | | - Jovica D Badjić
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, USA
| |
Collapse
|
17
|
|
18
|
Salazar Marcano DE, Lentink S, Moussawi MA, Parac-Vogt TN. Solution Dynamics of Hybrid Anderson-Evans Polyoxometalates. Inorg Chem 2021; 60:10215-10226. [PMID: 33881856 DOI: 10.1021/acs.inorgchem.1c00511] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding the stability and speciation of metal-oxo clusters in solution is essential for many of their applications in different areas. In particular, hybrid organic-inorganic polyoxometalates (HPOMs) have been attracting increasing attention as they combine the complementary properties of organic ligands and metal-oxygen nanoclusters. Nevertheless, the speciation and solution behavior of HPOMs have been scarcely investigated. Hence, in this work, a series of HPOMs based on the archetypical Anderson-Evans structure, δ-[MnMo6O18{(OCH2)3C-R}2]3-, with different functional groups (R = -NH2, -CH3, -NHCOCH2Cl, -N═CH(2-C5H4N) {pyridine; -Pyr}, and -NHCOC9H15N2OS {biotin; -Biot}) and countercations (tetrabutylammonium {TBA}, Li, Na, and K) were synthesized, and their solution behavior was studied in detail. In aqueous solutions, decomposition of HPOMs into the free organic ligand, [MoO4]2-, and free Mn3+ was observed over time and was shown to be highly dependent on the pH, temperature, and nature of the ligand functional group but largely independent of ionic strength or the nature of the countercation. Furthermore, hydrolysis of the amide and imine bonds often present in postfunctionalized HPOMs was also observed. Hence, HPOMs were shown to exhibit highly dynamic behavior in solution, which needs to be carefully considered when designing HPOMs, particularly for biological applications.
Collapse
Affiliation(s)
| | - Sarah Lentink
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Mhamad A Moussawi
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | | |
Collapse
|
19
|
Collins-Wildman DL, Sullivan KP, Geletii YV, Snider VG, Gordon WO, Balboa A, Tian Y, Slaugenhaupt RM, Kaledin AL, Karwacki CJ, Frenkel AI, Musaev DG, Hill CL. A solvent-free solid catalyst for the selective and color-indicating ambient-air removal of sulfur mustard. Commun Chem 2021; 4:33. [PMID: 36697596 PMCID: PMC9814880 DOI: 10.1038/s42004-021-00465-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/27/2021] [Indexed: 01/28/2023] Open
Abstract
Bis(2-chloroethyl) sulfide or sulfur mustard (HD) is one of the highest-tonnage chemical warfare agents and one that is highly persistent in the environment. For decontamination, selective oxidation of HD to the substantially less toxic sulfoxide is crucial. We report here a solvent-free, solid, robust catalyst comprising hydrophobic salts of tribromide and nitrate, copper(II) nitrate hydrate, and a solid acid (NafionTM) for selective sulfoxidation using only ambient air at room temperature. This system rapidly removes HD as a neat liquid or a vapor. The mechanisms of these aerobic decontamination reactions are complex, and studies confirm reversible formation of a key intermediate, the bromosulfonium ion, and the role of Cu(II). The latter increases the rate four-fold by increasing the equilibrium concentration of bromosulfonium during turnover. Cu(II) also provides a colorimetric detection capability. Without HD, the solid is green, and with HD, it is brown. Bromine K-edge XANES and EXAFS studies confirm regeneration of tribromide under catalytic conditions. Diffuse reflectance infrared Fourier transform spectroscopy shows absorption of HD vapor and selective conversion to the desired sulfoxide, HDO, at the gas-solid interface.
Collapse
Affiliation(s)
| | - Kevin P. Sullivan
- grid.189967.80000 0001 0941 6502Department of Chemistry, Emory University, Atlanta, GA 30322 USA
| | - Yurii V. Geletii
- grid.189967.80000 0001 0941 6502Department of Chemistry, Emory University, Atlanta, GA 30322 USA
| | - Victoria G. Snider
- grid.189967.80000 0001 0941 6502Department of Chemistry, Emory University, Atlanta, GA 30322 USA
| | - Wesley O. Gordon
- grid.420176.6U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen, MD 21010 USA
| | - Alex Balboa
- grid.420176.6U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen, MD 21010 USA
| | - Yiyao Tian
- grid.36425.360000 0001 2216 9681Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794 USA
| | - Rachel M. Slaugenhaupt
- grid.189967.80000 0001 0941 6502Department of Chemistry, Emory University, Atlanta, GA 30322 USA
| | - Alexey L. Kaledin
- grid.189967.80000 0001 0941 6502Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, GA 30322 USA
| | - Christopher J. Karwacki
- grid.420176.6U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen, MD 21010 USA
| | - Anatoly I. Frenkel
- grid.36425.360000 0001 2216 9681Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794 USA ,grid.202665.50000 0001 2188 4229Chemistry Division, Brookhaven National Laboratory, Upton, NY 11973 USA
| | - Djamaladdin G. Musaev
- grid.189967.80000 0001 0941 6502Department of Chemistry, Emory University, Atlanta, GA 30322 USA ,grid.189967.80000 0001 0941 6502Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, GA 30322 USA
| | - Craig L. Hill
- grid.189967.80000 0001 0941 6502Department of Chemistry, Emory University, Atlanta, GA 30322 USA
| |
Collapse
|
20
|
Decavanadate-based clusters as bifunctional catalysts for efficient treatment of carbon dioxide and simulant sulfur mustard. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2020.101419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
21
|
Tian HR, Zhang Z, Dang TY, Liu SM, Lu Y, Liu SX. Hollow Lindqvist-like-Shaped {V6} Cluster-Based Metal–Organic Framework for the Highly Efficient Detoxification of Mustard Gas Simulant. Inorg Chem 2021; 60:840-845. [DOI: 10.1021/acs.inorgchem.0c02890] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Hong-Rui Tian
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Zhong Zhang
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Tian-Yi Dang
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Shu-Mei Liu
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Ying Lu
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Shu-Xia Liu
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| |
Collapse
|
22
|
Synthesis and characterization of four 2D-3D Zn/Cd/Pb coordination polymers assembled by diverse SBUs and based on isomeric N-heterocyclic multicarboxylate ligands. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Xu Q, Liang X, Xu B, Wang J, He P, Ma P, Feng J, Wang J, Niu J. 36-Nuclearity Organophosphonate-Functionalized Polyoxomolybdates: Synthesis, Characterization and Selective Catalytic Oxidation of Sulfides. Chemistry 2020; 26:14896-14902. [PMID: 32543759 DOI: 10.1002/chem.202001468] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Indexed: 01/02/2023]
Abstract
The crown-shaped 36-molybdate cluster organophosphonate-functionalized polyoxomolybdates with the highest nuclearity in organophosphonate-based polyoxometalate chemistry, (NH4 )19 Na7 H10 [Cu(H2 O)TeMo6 O21 {N(CH2 PO3 )3 }]6 ⋅31 H2 O, has been reported for the first time. The synthesized 36-molybdate cluster was characterized by routine techniques and tested as a heterogeneous catalyst for selective oxidation of sulfides with impressive catalytic and selective performances after heat treatment. High efficiency (TON=15333) was achieved in the selective oxidation of sulfides to sulfoxides, caused by the synergic effect between copper and polyoxomolybdates and the generation of the cuprous species during the heat treatment.
Collapse
Affiliation(s)
- Qiaofei Xu
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Xinmiao Liang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Baijie Xu
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Jiawei Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Peipei He
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Jiwen Feng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan, 475004, P. R. China
| |
Collapse
|
24
|
Oheix E, Gravel E, Doris E. Catalytic Processes for the Neutralization of Sulfur Mustard. Chemistry 2020; 27:54-68. [DOI: 10.1002/chem.202003665] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Emmanuel Oheix
- Université Paris-Saclay, CEA, INRAE Département Médicaments et Technologies pour la Santé (DMTS), SCBM 91191 Gif-sur-Yvette France
| | - Edmond Gravel
- Université Paris-Saclay, CEA, INRAE Département Médicaments et Technologies pour la Santé (DMTS), SCBM 91191 Gif-sur-Yvette France
| | - Eric Doris
- Université Paris-Saclay, CEA, INRAE Département Médicaments et Technologies pour la Santé (DMTS), SCBM 91191 Gif-sur-Yvette France
| |
Collapse
|
25
|
A New Scheme to Prepare Polyoxovanadate-Polymer Hybrid Materials. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01907-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Pashirova TN, Fetin PA, Lezov AA, Kadnikov MV, Valeeva FG, Burilova EA, Bilibin AY, Zorin IM. Self-Assembled Quaternary Ammonium-Containing Comb-Like Polyelectrolytes for the Hydrolysis of Organophosphorous Esters: Effect of Head Groups and Counter-Ions. Chempluschem 2020; 85:1939-1948. [PMID: 32865345 DOI: 10.1002/cplu.202000417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/27/2020] [Indexed: 12/17/2022]
Abstract
The aim of this work was to increase the efficiency of catalytic systems for the hydrolytic cleavage of 4-nitrophenyl esters of phosphonic acids. Quaternary ammonium-containing comb-like polyelectrolytes («polymerized micelles») with ester cleavable fragments and a low aggregation threshold were used as catalysts. The synthesis of poly(11-acryloyloxyundecylammonium) surfactants with different counterions (Br- , NO3 - , CH3 C6 H4 SO3 - ) and head groups was realized by micellar free-radical polymerization. Molecular weight, critical association concentration, particle sizes and solubilization properties toward Orange OT were determined. Self-assemblies organized by poly(11-acryloyloxyundecyltrimethyl ammonium) bromide successfully catalyze the hydrolysis of 4-nitrophenyl butylchloromethylphosphonate up to two orders of magnitude compared to aqueous alkaline hydrolysis. The development of these catalysts is promising for industrial applications and organophosphorus compound detoxification.
Collapse
Affiliation(s)
- Tatiana N Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| | - Petr A Fetin
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab, St., Petersburg, 199034, Russian Federation
| | - Alexey A Lezov
- Department of Molecular Biophysics and Polymer Physics, Physical Faculty, St. Petersburg State University, 7/9 Universitetskaya nab, St., Petersburg, 199034, Russian Federation
| | - Matvey V Kadnikov
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab, St., Petersburg, 199034, Russian Federation
| | - Farida G Valeeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| | - Evgenia A Burilova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov St., 8, Kazan, 420088, Russian Federation
| | - Alexander Yu Bilibin
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab, St., Petersburg, 199034, Russian Federation
| | - Ivan M Zorin
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab, St., Petersburg, 199034, Russian Federation
| |
Collapse
|
27
|
Ma L, Xu Z, Chen Y, Zhang M, Yin J, Li M, Chen K, Yin P. Sub-nanoscaled Metal Oxide Cluster-Integrated Polymer Network for Quasi-Homogeneous Catalysis. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38655-38661. [PMID: 32846496 DOI: 10.1021/acsami.0c09666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The simultaneous improvement of catalytic activity and recyclability of metal oxides is exciting, however challenging, due to the paradox for particle size requirements. Herein, we report the design of polymer nanocomposites (PNCs) by covalently integrating a sub-nanoscaled metal oxide cluster (∼0.7 nm) into a polymer network with superelasticity. Due to the ultrasmall sizes of loaded clusters and the high swelling ratios (SRs) of PNCs, the swelled organogels from PNCs claim similar catalytic efficiencies to homogeneous catalysts, while their recyclability can be simply achieved after the catalytic reactions. Thanks to their robust mechanical properties, the PNCs can be processed into microgel particles for column reactors, enabling large-scale and continuous-flow catalysis.
Collapse
Affiliation(s)
- Litao Ma
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510641, P. R. China
| | - Zhewei Xu
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510641, P. R. China
| | - Yidan Chen
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510641, P. R. China
| | - Mingxin Zhang
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510641, P. R. China
| | - Jiafu Yin
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510641, P. R. China
| | - Mu Li
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510641, P. R. China
| | - Kun Chen
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510641, P. R. China
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510641, P. R. China
| |
Collapse
|
28
|
|
29
|
Ebrahim AM, Plonka AM, Tian Y, Senanayake SD, Gordon WO, Balboa A, Wang H, Collins-Wildman DL, Hill CL, Musaev DG, Morris JR, Troya D, Frenkel AI. Multimodal Characterization of Materials and Decontamination Processes for Chemical Warfare Protection. ACS APPLIED MATERIALS & INTERFACES 2020; 12:14721-14738. [PMID: 31815428 DOI: 10.1021/acsami.9b19494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
This Review summarizes the recent progress made in the field of chemical threat reduction by utilizing new in situ analytical techniques and combinations thereof to study multifunctional materials designed for capture and decomposition of nerve gases and their simulants. The emphasis is on the use of in situ experiments that simulate realistic operating conditions (solid-gas interface, ambient pressures and temperatures, time-resolved measurements) and advanced synchrotron methods, such as in situ X-ray absorption and scattering methods, a combination thereof with other complementary measurements (e.g., XPS, Raman, DRIFTS, NMR), and theoretical modeling. The examples presented in this Review range from studies of the adsorption and decomposition of nerve agents and their simulants on Zr-based metal organic frameworks to Nb and Zr-based polyoxometalates and metal (hydro)oxide materials. The approaches employed in these studies ultimately demonstrate how advanced synchrotron-based in situ X-ray absorption spectroscopy and diffraction can be exploited to develop an atomic- level understanding of interfacial binding and reaction of chemical warfare agents, which impacts the development of novel filtration media and other protective materials.
Collapse
Affiliation(s)
- Amani M Ebrahim
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Anna M Plonka
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Yiyao Tian
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Sanjaya D Senanayake
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Wesley O Gordon
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Maryland 21010, United States
| | - Alex Balboa
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Maryland 21010, United States
| | - Hui Wang
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Maryland 21010, United States
| | | | - Craig L Hill
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Djamaladdin G Musaev
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
- Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - John R Morris
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Diego Troya
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Anatoly I Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
30
|
An H, Hou Y, Chang S, Zhang J, Zhu Q. Highly efficient oxidation of various thioethers catalyzed by organic ligand-modified polyoxomolybdates. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01098j] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Herein, four hybrid dimers based on the carboxylic acid ligand-modified polyoxomolybdates were prepared, which could rapidly and selectively oxidize various phenyl sulfides and the sulfur mustard simulant 2-chloroethyl ethyl sulfide (CEES).
Collapse
Affiliation(s)
- Haiyan An
- College of Chemistry
- Dalian University of Technology
- Dalian 116023
- P. R. China
| | - Yujiao Hou
- College of Chemistry
- Dalian University of Technology
- Dalian 116023
- P. R. China
| | - Shenzhen Chang
- College of Chemistry
- Dalian University of Technology
- Dalian 116023
- P. R. China
| | - Jie Zhang
- College of Chemistry
- Dalian University of Technology
- Dalian 116023
- P. R. China
| | - Qingshan Zhu
- College of Chemistry
- Dalian University of Technology
- Dalian 116023
- P. R. China
| |
Collapse
|
31
|
Huang B, Xiao Z, Wang Y, Ke D, Zhu C, Zhang S, H u X, Wu P. Destroy the inherent symmetry of vanadium-based inorganic cluster through chiral organic ligand: Synthesis and characterization of a polyoxovanadate-derived amino acid ester hybrid. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.05.114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Karton-Lifshin N, Katalan S, Columbus I, Chen R, Yehezkel L, Madmon M, Dagan S, Elias S, Fridkin G, Zafrani Y. Effective neutralization of chemical warfare agents (HD, VX) by Me-DABCOF: a small molecule with dual action. Chem Commun (Camb) 2019; 55:12471-12474. [PMID: 31566634 DOI: 10.1039/c9cc07011g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Me-DABCOF, a mild universal, non-corrosive, water-soluble decontamination agent that effectively neutralizes chemical warfare agents (HD, VX).
Collapse
Affiliation(s)
- Naama Karton-Lifshin
- Departments of Organic Chemistry
- Israel Institute for Biological Research
- Ness-Ziona 74000
- Israel
| | - Shahaf Katalan
- Pharmacology
- Israel Institute for Biological Research
- Ness-Ziona 74000
- Israel
| | - Ishay Columbus
- Departments of Organic Chemistry
- Israel Institute for Biological Research
- Ness-Ziona 74000
- Israel
| | - Ravit Chen
- Departments of Organic Chemistry
- Israel Institute for Biological Research
- Ness-Ziona 74000
- Israel
| | - Lea Yehezkel
- Departments of Organic Chemistry
- Israel Institute for Biological Research
- Ness-Ziona 74000
- Israel
| | - Moran Madmon
- Analytical Chemistry
- Israel Institute for Biological Research
- Ness-Ziona 74000
- Israel
| | - Shai Dagan
- Analytical Chemistry
- Israel Institute for Biological Research
- Ness-Ziona 74000
- Israel
| | - Shlomi Elias
- Departments of Organic Chemistry
- Israel Institute for Biological Research
- Ness-Ziona 74000
- Israel
| | - Gil Fridkin
- Departments of Organic Chemistry
- Israel Institute for Biological Research
- Ness-Ziona 74000
- Israel
| | - Yossi Zafrani
- Departments of Organic Chemistry
- Israel Institute for Biological Research
- Ness-Ziona 74000
- Israel
| |
Collapse
|
33
|
Hou Y, An H, Chang S, Zhang J. Versatile catalysts constructed from hybrid polyoxomolybdates for simultaneously detoxifying sulfur mustard and organophosphate simulants. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00094a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Twelve new hybrid dimers based on carboxylic acid ligand modified polyoxomolybdates were prepared, which can rapidly oxidize the mustard gas simulant, CEES, and hydrolyze the nerve agent simulant, DECP, at room temperature.
Collapse
Affiliation(s)
- Yujiao Hou
- College of Chemistry
- Dalian University of Technology
- Dalian 116023
- P. R. China
| | - Haiyan An
- College of Chemistry
- Dalian University of Technology
- Dalian 116023
- P. R. China
| | - Shenzhen Chang
- College of Chemistry
- Dalian University of Technology
- Dalian 116023
- P. R. China
| | - Jie Zhang
- College of Chemistry
- Dalian University of Technology
- Dalian 116023
- P. R. China
| |
Collapse
|
34
|
Henych J, Mattsson A, Tolasz J, Štengl V, Österlund L. Solar light decomposition of warfare agent simulant DMMP on TiO2/graphene oxide nanocomposites. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00059c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Solar light-induced photodecomposition of organophosphorus warfare agent simulant dimethyl methylphosphonate (DMMP) on the surfaces of TiO2/graphene oxide (GO) nanocomposites was studied by in situ DRIFT spectroscopy.
Collapse
Affiliation(s)
- Jiří Henych
- Materials Chemistry Department
- Institute of Inorganic Chemistry of the Czech Academy of Sciences
- 25068 Řež
- Czech Republic
| | - Andreas Mattsson
- Department of Engineering Sciences
- The Ångström Laboratory
- Uppsala University
- SE-751 21 Uppsala
- Sweden
| | - Jakub Tolasz
- Materials Chemistry Department
- Institute of Inorganic Chemistry of the Czech Academy of Sciences
- 25068 Řež
- Czech Republic
| | - Václav Štengl
- Materials Chemistry Department
- Institute of Inorganic Chemistry of the Czech Academy of Sciences
- 25068 Řež
- Czech Republic
| | - Lars Österlund
- Department of Engineering Sciences
- The Ångström Laboratory
- Uppsala University
- SE-751 21 Uppsala
- Sweden
| |
Collapse
|
35
|
Dong J, Lv H, Sun X, Wang Y, Ni Y, Zou B, Zhang N, Yin A, Chi Y, Hu C. A Versatile Self‐Detoxifying Material Based on Immobilized Polyoxoniobate for Decontamination of Chemical Warfare Agent Simulants. Chemistry 2018; 24:19208-19215. [DOI: 10.1002/chem.201804523] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/20/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Jing Dong
- Key Laboratory of Cluster Science Ministry of EducationBeijing Key Laboratory of Photoelectronic/Electrophotonic, Conversion MaterialsSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Hongjin Lv
- Key Laboratory of Cluster Science Ministry of EducationBeijing Key Laboratory of Photoelectronic/Electrophotonic, Conversion MaterialsSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Xiangrong Sun
- Key Laboratory of Cluster Science Ministry of EducationBeijing Key Laboratory of Photoelectronic/Electrophotonic, Conversion MaterialsSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Yin Wang
- Key Laboratory of Cluster Science Ministry of EducationBeijing Key Laboratory of Photoelectronic/Electrophotonic, Conversion MaterialsSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Yuanman Ni
- Key Laboratory of Cluster Science Ministry of EducationBeijing Key Laboratory of Photoelectronic/Electrophotonic, Conversion MaterialsSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Bo Zou
- Key Laboratory of Cluster Science Ministry of EducationBeijing Key Laboratory of Photoelectronic/Electrophotonic, Conversion MaterialsSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Nan Zhang
- Key Laboratory of Cluster Science Ministry of EducationBeijing Key Laboratory of Photoelectronic/Electrophotonic, Conversion MaterialsSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Anxiang Yin
- Key Laboratory of Cluster Science Ministry of EducationBeijing Key Laboratory of Photoelectronic/Electrophotonic, Conversion MaterialsSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Yingnan Chi
- Key Laboratory of Cluster Science Ministry of EducationBeijing Key Laboratory of Photoelectronic/Electrophotonic, Conversion MaterialsSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Changwen Hu
- Key Laboratory of Cluster Science Ministry of EducationBeijing Key Laboratory of Photoelectronic/Electrophotonic, Conversion MaterialsSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| |
Collapse
|
36
|
Synthesis of Negative‐Charged Metal‐Containing Cyclomatrix Polyphosphazene Microspheres Based on Polyoxometalates and Application in Charge‐Selective Dye Adsorption. Macromol Rapid Commun 2018; 40:e1800730. [DOI: 10.1002/marc.201800730] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/07/2018] [Indexed: 01/09/2023]
|
37
|
Yu Z, Ke D, Huang B, Zhang Y, Luo Z, Wang H, Xiao Z, Wu P. Spectroscopic Studies of a Novel Inorganic–Organic Hybrid Based on Polyoxovanadates Under a Wide Range of Wavelengths. J CLUST SCI 2018. [DOI: 10.1007/s10876-018-1453-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
38
|
Sullivan KP, Yin Q, Collins-Wildman DL, Tao M, Geletii YV, Musaev DG, Lian T, Hill CL. Multi-Tasking POM Systems. Front Chem 2018; 6:365. [PMID: 30186830 PMCID: PMC6111459 DOI: 10.3389/fchem.2018.00365] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 07/30/2018] [Indexed: 11/13/2022] Open
Abstract
Polyoxometalate (POM)-based materials of current interest are summarized, and specific types of POM-containing systems are described in which material facilitates multiple complex interactions or catalytic processes. We specifically highlight POM-containing multi-hydrogen-bonding polymers that form gels upon exposure to select organic liquids and simultaneously catalyze hydrolytic or oxidative decontamination, as well as water oxidation catalysts (WOCs) that can be interfaced with light-absorbing photoelectrode materials for photoelectrocatalytic water splitting.
Collapse
Affiliation(s)
- Kevin P Sullivan
- Department of Chemistry, Emory University, Atlanta, GA, United States
| | - Qiushi Yin
- Department of Chemistry, Emory University, Atlanta, GA, United States
| | | | - Meilin Tao
- Department of Chemistry, Emory University, Atlanta, GA, United States
| | - Yurii V Geletii
- Department of Chemistry, Emory University, Atlanta, GA, United States
| | - Djamaladdin G Musaev
- Department of Chemistry, Emory University, Atlanta, GA, United States.,Emerson Center for Scientific Computation, Emory University, Atlanta, GA, United States
| | - Tianquan Lian
- Department of Chemistry, Emory University, Atlanta, GA, United States
| | - Craig L Hill
- Department of Chemistry, Emory University, Atlanta, GA, United States
| |
Collapse
|
39
|
Collins-Wildman DL, Kim M, Sullivan KP, Plonka AM, Frenkel AI, Musaev DG, Hill CL. Buffer-Induced Acceleration and Inhibition in Polyoxometalate-Catalyzed Organophosphorus Ester Hydrolysis. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00394] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | | | | | - Anna M. Plonka
- Department of Material Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Anatoly I. Frenkel
- Department of Material Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | | | | |
Collapse
|
40
|
Hou Y, An H, Zhang Y, Hu T, Yang W, Chang S. Rapid Destruction of Two Types of Chemical Warfare Agent Simulants by Hybrid Polyoxomolybdates Modified by Carboxylic Acid Ligands. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00972] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yujiao Hou
- College of Chemistry, Dalian University of Technology, Dalian 116023, People’s Republic of China
| | - Haiyan An
- College of Chemistry, Dalian University of Technology, Dalian 116023, People’s Republic of China
| | - Yumeng Zhang
- College of Chemistry, Dalian University of Technology, Dalian 116023, People’s Republic of China
| | - Tao Hu
- College of Chemistry, Dalian University of Technology, Dalian 116023, People’s Republic of China
| | - Wei Yang
- College of Chemistry, Dalian University of Technology, Dalian 116023, People’s Republic of China
| | - Shenzhen Chang
- College of Chemistry, Dalian University of Technology, Dalian 116023, People’s Republic of China
| |
Collapse
|
41
|
Two Anderson-type polyoxometalate-induced various Co-complexes based on a rigid pyrazine-bis(triazole) ligand. INORG CHEM COMMUN 2018. [DOI: 10.1016/j.inoche.2018.04.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Wang X, Lin L, Yu X, Liu J, Lin H, Liu G. Two organic–inorganic hybrids constructed from metal/ttb segments and different polyoxometalates: Syntheses, structures and multifunctional catalytic properties. Polyhedron 2018. [DOI: 10.1016/j.poly.2017.11.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Wang Z, Ren Y, Cao J, Tang L, Zhang M, Zhou S. Structural assembly from 1D to 3D motivated by the linear co-ligands, and the magnetic and photocatalytic properties of five Ni II coordination polymers with 5-(4′-carboxylphenyl)nicotinic acid. NEW J CHEM 2018. [DOI: 10.1039/c8nj02921k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Five structural diversity nickel(ii) complexes based on 5-(4′-carboxylphenyl) nicotinic acid and linear co-ligands are described. The antiferromagnetic interactions exist in them expect for 2. All of them could accelerate the degradation rate of MO under visible light irradiation.
Collapse
Affiliation(s)
- Zhixiang Wang
- College of Chemistry and Chemical Engineering
- Shaanxi Key Laboratory of Chemical Reaction Engineering
- Affiliated Hospital
- Yan’an University
- Yan’an 716000
| | - Yixia Ren
- College of Chemistry and Chemical Engineering
- Shaanxi Key Laboratory of Chemical Reaction Engineering
- Affiliated Hospital
- Yan’an University
- Yan’an 716000
| | - Jia Cao
- College of Chemistry and Chemical Engineering
- Shaanxi Key Laboratory of Chemical Reaction Engineering
- Affiliated Hospital
- Yan’an University
- Yan’an 716000
| | - Long Tang
- College of Chemistry and Chemical Engineering
- Shaanxi Key Laboratory of Chemical Reaction Engineering
- Affiliated Hospital
- Yan’an University
- Yan’an 716000
| | - Meili Zhang
- College of Chemistry and Chemical Engineering
- Shaanxi Key Laboratory of Chemical Reaction Engineering
- Affiliated Hospital
- Yan’an University
- Yan’an 716000
| | - Shanhong Zhou
- College of Chemistry and Chemical Engineering
- Shaanxi Key Laboratory of Chemical Reaction Engineering
- Affiliated Hospital
- Yan’an University
- Yan’an 716000
| |
Collapse
|
44
|
Linnenberg O, Mayerl L, Monakhov KY. The Heck reaction as a tool to expand polyoxovanadates towards thiol-sensitive organic–inorganic hybrid fluorescent switches. Dalton Trans 2018; 47:14402-14407. [DOI: 10.1039/c8dt02340a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pd-catalysed Heck cross-coupling reactions between organically-tailored polyoxovanadates and a variety of olefins were realised. The synthesised organic–inorganic hybrids pave the way for the redox-driven luminescence switching, opening up great perspectives in tracing smart reducing agents such as e.g. toxic thiols.
Collapse
Affiliation(s)
- Oliver Linnenberg
- Institut für Anorganische Chemie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Lisa Mayerl
- Institut für Anorganische Chemie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | | |
Collapse
|