1
|
Nadeem TB, Imran M, Tandis E. Applications of MOF-Based Nanocomposites in Heat Exchangers: Innovations, Challenges, and Future Directions. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:205. [PMID: 39940181 PMCID: PMC11820813 DOI: 10.3390/nano15030205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/14/2025]
Abstract
Metal-organic frameworks (MOFs) have garnered significant attention in recent years for their potential to revolutionize heat exchanger performance, thanks to their high surface area, tunable porosity, and exceptional adsorption capabilities. This review focuses on the integration of MOFs into heat exchangers to enhance heat transfer efficiency, improve moisture management, and reduce energy consumption in Heating, Ventilation and Air Conditioning (HVAC) and related systems. Recent studies demonstrate that MOF-based coatings can outperform traditional materials like silica gel, achieving superior water adsorption and desorption rates, which is crucial for applications in air conditioning and dehumidification. Innovations in synthesis techniques, such as microwave-assisted and surface functionalization methods, have enabled more cost-effective and scalable production of MOFs, while also enhancing their thermal stability and mechanical strength. However, challenges related to the high costs of MOF synthesis, stability under industrial conditions, and large-scale integration remain significant barriers. Future developments in hybrid nanocomposites and collaborative efforts between academia and industry will be key to advancing the practical adoption of MOFs in heat exchanger technologies. This review aims to provide a comprehensive understanding of current advancements, challenges, and opportunities, with the goal of guiding future research toward more sustainable and efficient thermal management solutions.
Collapse
Affiliation(s)
- Talha Bin Nadeem
- Department of Mechatronics and Biomedical Engineering, College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK or (T.B.N.); (E.T.)
- Department of Mechanical Engineering, NED University of Engineering and Technology, Karachi 75270, Pakistan
| | - Muhammad Imran
- Department of Mechatronics and Biomedical Engineering, College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK or (T.B.N.); (E.T.)
- Energy Systems Group, Energy and Bioproduct Research Institute, College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK
| | - Emad Tandis
- Department of Mechatronics and Biomedical Engineering, College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK or (T.B.N.); (E.T.)
| |
Collapse
|
2
|
Zhang W, Wu X, Peng X, Tian Y, Yuan H. Solution Processable Metal-Organic Frameworks: Synthesis Strategy and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412708. [PMID: 39470040 DOI: 10.1002/adma.202412708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/30/2024] [Indexed: 10/30/2024]
Abstract
Metal-organic frameworks (MOFs), constructed by inorganic secondary building units with organic linkers via reticular chemistry, inherently suffer from poor solution processability due to their insoluble nature, resulting from their extensive crystalline networks and structural rigidity. The ubiquitous occurrence of precipitation and agglomeration of MOFs upon formation poses a significant obstacle to the scale-up production of MOF-based monolith, aerogels, membranes, and electronic devices, thus restricting their practical applications in various scenarios. To address the previously mentioned challenge, significant strides have been achieved over the past decade in the development of various strategies aimed at preparing solution-processable MOF systems. In this review, the latest advance in the synthetic strategies for the construction of solution-processable MOFs, including direct dispersion in ionic liquids, surface modification, controllable calcination, and bottom-up synthesis, is comprehensively summarized. The respective advantages and disadvantages of each method are discussed. Additionally, the intriguing applications of solution-processable MOF systems in the fields of liquid adsorbent, molecular capture, sensing, and separation are systematically discussed. Finally, the challenges and opportunities about the continued advancement of solution-processable MOFs and their potential applications are outlooked.
Collapse
Affiliation(s)
- Wanglin Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xuanhao Wu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiaoyan Peng
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yefei Tian
- School of Materials Science and Engineering, Chang'an University, No. 75 Changan Middle Road, Xi'an, Shaanxi, 710064, P. R. China
| | - Hongye Yuan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
3
|
Kang MS, Heo I, Park SH, Bae J, Kim S, Kim G, Kim BH, Jeong NC, Yoo WC. Time-efficient atmospheric water harvesting using Fluorophenyl oligomer incorporated MOFs. Nat Commun 2024; 15:9793. [PMID: 39532870 PMCID: PMC11557930 DOI: 10.1038/s41467-024-53853-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Adsorption-based atmospheric water harvesting (AWH) has the potential to address water scarcity in arid regions. However, developing adsorbents that effectively capture water at a low relative humidity (RH < 30%) and release it with minimal energy consumption remains a challenge. Herein, we report a fluorophenyl oligomer (FO)-incorporated metal-organic framework (MOF), HKUST-1 (FO@HK), which exhibits fast adsorption kinetics at low RH levels and facile desorption by sunlight. The incorporated fluorophenyl undergoes vapor-phase polymerization at the metal center to generate fluorophenyl oligomers that enhance the hydrolytic stability of FO@HK while preserving its characteristic water sorption behavior. The FO@HK exhibited vapor sorption rates of 8.04 and 11.76 L kg-1MOF h-1 at 20 and 30% RH, respectively, which are better than the state-of-the-art AWH sorbents. Outdoor tests using a solar-driven large-scale AWH device demonstrate that the sorbent can harvest 264.8 mL of water at a rate of 2.62 L kg-1MOF per day. This study provides a ubiquitous strategy for transforming water-sensitive MOFs into AWH sorbents.
Collapse
Affiliation(s)
- Min Seok Kang
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University, ERICA, Ansan, 15588, Republic of Korea
| | - Incheol Heo
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University, ERICA, Ansan, 15588, Republic of Korea
| | - Sun Ho Park
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Jinhee Bae
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Sangyeop Kim
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University, ERICA, Ansan, 15588, Republic of Korea
| | - Gyuchan Kim
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University, ERICA, Ansan, 15588, Republic of Korea
| | - Byung-Hyun Kim
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University, ERICA, Ansan, 15588, Republic of Korea
- Department of Chemical and Molecular Engineering, Hanyang University, ERICA, Ansan, 15588, Republic of Korea
| | - Nak Cheon Jeong
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea.
- Center for Basic Science, DGIST, Daegu, 42988, Republic of Korea.
| | - Won Cheol Yoo
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University, ERICA, Ansan, 15588, Republic of Korea.
- Department of Chemical and Molecular Engineering, Hanyang University, ERICA, Ansan, 15588, Republic of Korea.
| |
Collapse
|
4
|
Shen J, Kumar A, Wahiduzzaman M, Barpaga D, Maurin G, Motkuri RK. Engineered Nanoporous Frameworks for Adsorption Cooling Applications. Chem Rev 2024; 124:7619-7673. [PMID: 38683669 DOI: 10.1021/acs.chemrev.3c00450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The energy demand for traditional vapor-compressed technology for space cooling continues to soar year after year due to global warming and the increasing human population's need to improve living and working conditions. Thus, there is a growing demand for eco-friendly technologies that use sustainable or waste energy resources. This review discusses the properties of various refrigerants used for adsorption cooling applications followed by a brief discussion on the thermodynamic cycle. Next, sorbents traditionally used for cooling are reviewed to emphasize the need for advanced capture materials with superior properties to improve refrigerant sorption. The remainder of the review focus on studies using engineered nanoporous frameworks (ENFs) with various refrigerants for adsorption cooling applications. The effects of the various factors that play a role in ENF-refrigerant pair selection, including pore structure/dimension/shape, morphology, open-metal sites, pore chemistry and possible presence of defects, are reviewed. Next, in-depth insights into the sorbent-refrigerant interaction, and pore filling mechanism gained through a combination of characterization techniques and computational modeling are discussed. Finally, we outline the challenges and opportunities related to using ENFs for adsorption cooling applications and provide our views on the future of this technology.
Collapse
Affiliation(s)
- Jian Shen
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, P.R. China
| | - Abhishek Kumar
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | | | - Dushyant Barpaga
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Guillaume Maurin
- ICGM, University of Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Radha Kishan Motkuri
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
5
|
Rozaini MT, Grekov DI, Bustam MA, Pré P. Low-Hydrophilic HKUST-1/Polymer Extrudates for the PSA Separation of CO 2/CH 4. Molecules 2024; 29:2069. [PMID: 38731559 PMCID: PMC11085341 DOI: 10.3390/molecules29092069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
HKUST-1 is an MOF adsorbent industrially produced in powder form and thus requires a post-shaping process for use as an adsorbent in fixed-bed separation processes. HKUST-1 is also sensitive to moisture, which degrades its crystalline structure. In this work, HKUST-1, in the form of crystalline powder, was extruded into pellets using a hydrophobic polymeric binder to improve its moisture stability. Thermoplastic polyurethane (TPU) was used for that purpose. The subsequent HKUST-1/TPU extrudate was then compared to HKUST-1/PLA extrudates synthesized with more hydrophilic polymer: polylactic acid (PLA), as the binder. The characterization of the composites was determined via XRD, TGA, SEM-EDS, and an N2 adsorption isotherm analysis. Meanwhile, the gas-separation performances of HKUST-1/TPU were investigated and compared with HKUST-1/PLA from measurements of CO2 and CH4 isotherms at three different temperatures, up to 10 bars. Lastly, the moisture stability of the composite materials was investigated via an aging analysis during storage under humid conditions. It is shown that HKUST-1's crystalline structure was preserved in the HKUST-1/TPU extrudates. The composites also exhibited good thermal stability under 523 K, whilst their textural properties were not significantly modified compared with the pristine HKUST-1. Furthermore, both extrudates exhibited larger CO2 and CH4 adsorption capacities in comparison to the pristine HKUST-1. After three months of storage under atmospheric humid conditions, CO2 adsorption capacities were reduced to only 10% for HKUST-1/TPU, whereas reductions of about 25% and 54% were observed for HKUST-1/PLA and the pristine HKUST-1, respectively. This study demonstrates the interest in shaping MOF powders by extrusion using a hydrophobic thermoplastic binder to operate adsorbents with enhanced moisture stability in gas-separation columns.
Collapse
Affiliation(s)
- Muhamad Tahriri Rozaini
- Centre of Research in Ionic Liquids, CORIL, Chemical Engineering Department, Universiti Teknologi Petronas, Bandar Seri Iskandar 32610, Perak, Malaysia or
- GEnie des Procédés Environnement-Agroalimentaire (GEPEA) UMR-CNRS 6144, Department of Energy Systems and Environment, IMT Atlantique, 44300 Nantes, France;
| | - Denys I. Grekov
- GEnie des Procédés Environnement-Agroalimentaire (GEPEA) UMR-CNRS 6144, Department of Energy Systems and Environment, IMT Atlantique, 44300 Nantes, France;
| | - Mohamad Azmi Bustam
- Centre of Research in Ionic Liquids, CORIL, Chemical Engineering Department, Universiti Teknologi Petronas, Bandar Seri Iskandar 32610, Perak, Malaysia or
| | - Pascaline Pré
- GEnie des Procédés Environnement-Agroalimentaire (GEPEA) UMR-CNRS 6144, Department of Energy Systems and Environment, IMT Atlantique, 44300 Nantes, France;
| |
Collapse
|
6
|
Zhang W, Pinna N. Metal Organic Frameworks Synthesis: The Versatility of Triethylamine. Chemistry 2024; 30:e202304256. [PMID: 38300687 DOI: 10.1002/chem.202304256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/18/2024] [Accepted: 02/01/2024] [Indexed: 02/02/2024]
Abstract
Metal Organic Frameworks (MOFs) are organic-inorganic hybrid materials with exceptionally customizable composition and properties. MOFs intrinsically possess open metal sites, tunable pore size/shape and an ultra-large specific surface area, and have obtained significant attention over the past 30 years. Furthermore, through the integration of functional moieties such as, molecules, functional groups, noble metal clusters and nanocrystals or nanoparticles into MOFs, the resulting composites have greatly enriched the physical and chemical properties of pure MOFs, enabling their application in a wider range of fields. Triethylamine (TEA) as an organic base has consistently played a fundamental role in the development of MOFs. In this Concept, the versatility of triethylamine when involved in the synthesis of MOFs is discussed. Four sections are used to elaborate on the role of TEA including: (1) Single crystal synthesis; (2) Size and morphology control; (3) Counterion of MOFs; (4) MOFs composites synthesis. In the last part, we highlight the potential of TEA for further developments.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Chemistry and The Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Nicola Pinna
- Department of Chemistry and The Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| |
Collapse
|
7
|
Mumtaz F, Zhang B, Subramaniyam N, Roman M, Holtmann P, Hungund AP, O'Malley R, Spudich TM, Davis M, Gerald Ii RE, Huang J. Miniature Optical Fiber Fabry-Perot Interferometer Based on a Single-Crystal Metal-Organic Framework for the Detection and Quantification of Benzene and Ethanol at Low Concentrations in Nitrogen Gas. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13071-13081. [PMID: 38431899 DOI: 10.1021/acsami.3c18702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
This study reports for the first time, to the best of our knowledge, a real-time detection of ultralow-concentration chemical gases using fiber-optic technology, combining a miniaturized Fabry-Perot interferometer (FPI) with metal-organic frameworks (MOFs). The sensor consists of a short and thick-walled silica capillary segment spliced to a lead-in single-mode fiber (SMF), housing a tiny single crystal of HKUST-1 MOF, imparting chemoselectivity features. Ethanol and benzene gases were tested, resulting in a shift in the FPI interference signal. The sensor demonstrated high sensitivity, detecting ethanol gas concentrations (EGCs) with a sensitivity of 0.428 nm/ppm between 24.9 and 40.11 ppm and benzene gas concentrations (BGCs) with a sensitivity of 0.15 nm/ppm between 99 and 124 ppm. The selectivity study involved a combination of three ultralow concentrations of ethanol, benzene, and toluene gases, revealing an enhancement factor of 436% for benzene and 140% for toluene, attributed to the improved miscibility of these conjugated ring molecules with the alkane chains of the ethanol-modified HKUST-1. Experimental tests confirmed the sensor's viability, demonstrating significantly improved response time and spectral characteristics through crystal polishing, indicating its potential for quantifying and detecting chemical gases at ultralow concentrations. This technology may prevent energy resource losses, and the sensor's small size and robust construction make it applicable in confined and hazardous locations.
Collapse
Affiliation(s)
- Farhan Mumtaz
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-0040, United States
| | - Bohong Zhang
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-0040, United States
| | - Narasimman Subramaniyam
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-0040, United States
| | - Mohammad Roman
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-0040, United States
| | - Peter Holtmann
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-0040, United States
| | - Abhishek Prakash Hungund
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-0040, United States
| | - Ryan O'Malley
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-0040, United States
| | - Thomas M Spudich
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-0040, United States
| | - Michael Davis
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-0040, United States
| | - Rex E Gerald Ii
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-0040, United States
| | - Jie Huang
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-0040, United States
| |
Collapse
|
8
|
Yang L, Wang K, Guo L, Hu X, Zhou M. Unveiling the potential of HKUST-1: synthesis, activation, advantages and biomedical applications. J Mater Chem B 2024; 12:2670-2690. [PMID: 38411271 DOI: 10.1039/d3tb02929h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Metal-organic frameworks (MOFs) have emerged as a unique class of nanostructured materials, resulting from the self-assembly of metal ions or clusters with organic ligands, offering a wide range of applications in fields such as drug delivery, gas catalysis, and electrochemical sensing. Among them, HKUST-1, a copper-based MOF, has gained substantial attention due to its remarkable three-dimensional porous structure. Comprising copper ions and benzene-1,3,5-tricarboxylic acid, HKUST-1 exhibits an extraordinary specific surface area and pronounced porosity, making it a promising candidate in biomedicine. Notably, the incorporation of copper ions endows HKUST-1 with noteworthy activities, including antitumor, antibacterial, and wound healing-promoting properties. In this comprehensive review, we delve into the various synthesis methods and activation pathways employed in the preparation of HKUST-1. We also explore the distinct advantages of HKUST-1 in terms of its structural properties and functionalities. Furthermore, we investigate the exciting and rapidly evolving biomedical applications of HKUST-1. From its role in tumor treatment to its antibacterial effects and its ability to promote wound healing, we showcase the multifaceted potential of HKUST-1 in addressing critical challenges in biomedicine.
Collapse
Affiliation(s)
- Liuxuan Yang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
- Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Ke Wang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
- Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Ling Guo
- National Engineering Technology Research Center for Miao Medicine, Guizhou Engineering Technology Research Center for Processing and Preparation of Traditional Chinese Medicine and Ethnic Medicine, College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Xiao Hu
- Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Meiling Zhou
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
9
|
Evangelou D, Pournara AD, Karagianni VI, Dimitriou C, Andreou EK, Deligiannakis Y, Armatas GS, Manos MJ. Just Soaping Them: The Simplest Method for Converting Metal Organic Frameworks into Superhydrophobic Materials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:12672-12685. [PMID: 38421719 PMCID: PMC11191008 DOI: 10.1021/acsami.3c19536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
The incorporation of superhydrophobic properties into metal organic framework (MOF) materials is highly desirable to enhance their hydrolytic stability, gas capture selectivity in the presence of humidity and efficiency in oil-water separations, among others. The existing strategies for inducing superhydrophobicity into MOFs have several weaknesses, such as increased cost, utilization of toxic reagents and solvents, applicability for limited MOFs, etc. Here, we report the simplest, most eco-friendly, and cost-effective process to impart superhydrophobicity to MOFs, involving a rapid (90 min) treatment of MOF materials with solutions of sodium oleate, a main component of soap. The method can be applied to both hydrolytically stable and unstable MOFs, with the porosity of modified MOFs approaching, in most cases, that of the pristine materials. Interestingly, this approach was used to isolate superhydrophobic magnetic MOF composites, and one of these materials formed stable liquid marbles, whose motion could be easily guided using an external magnetic field. We also successfully fabricated superhydrophobic MOF-coated cotton fabric and fiber composites. These composites exhibited exceptional oil sorption properties achieving rapid removal of floating crude oil from water, as well as efficient purification of oil-in-water emulsions. They are also regenerable and reusable for multiple sorption processes. Overall, the results described here pave the way for an unprecedented expansion of the family of MOF-based superhydrophobic materials, as virtually any MOF could be converted into a superhydrophobic compound by applying the new synthetic approach.
Collapse
Affiliation(s)
| | | | | | - Christos Dimitriou
- Department
of Physics, University of Ioannina, Ioannina GR-45110, Greece
| | - Evangelos K. Andreou
- Department
of Materials Science and Technology, University
of Crete, Heraklion GR-70013, Greece
| | | | - Gerasimos S. Armatas
- Department
of Materials Science and Technology, University
of Crete, Heraklion GR-70013, Greece
| | - Manolis J. Manos
- Department
of Chemistry, University of Ioannina, Ioannina GR-45110, Greece
| |
Collapse
|
10
|
Panagiotou N, Evangelou DA, Manos MJ, Plakatouras JC, Tasiopoulos AJ. Fine Tuning the Hydrophobicity of a New Three-Dimensional Cu 2+ MOF through Single Crystal Coordinating Ligand Exchange Transformations. Inorg Chem 2024; 63:3824-3834. [PMID: 38335458 PMCID: PMC10900299 DOI: 10.1021/acs.inorgchem.3c04060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
The synthesis, characterization, and single-crystal-to-single-crystal (SCSC) exchange reactions of a new 3D Cu2+ MOF based on 5-aminoisophthalic acid (H2AIP), [Cu6(μ3-ΟΗ)3(ΑΙΡ)4(HΑΙΡ)]n·6nDMF·nH2O - UCY-16·6nDMF·nH2O, are reported. It exhibits a 3D structure based on two [Cu4(μ3-OH)2]6+ butterfly-like secondary building units, differing in their peripheral ligation, bridged through HAIP-/AIP2- ligands. This compound displays the capability to exchange the coordinating ligand(s) and/or guest solvent molecules through SCSC reactions. Interestingly, heterogeneous reactions of single crystals of UCY-16·6nDMF·nH2O with primary alcohols resulted not only in the removal of the lattice DMF molecules but also in an unprecedented structural alteration that involved the complete or partial replacement of the monoatomic bridging μ3-OH- anion(s) of the [Cu4(μ3-OH)2]6+ butterfly structural core by various alkoxy groups. Similar crystal-to-crystal exchange reactions of UCY-16·6nDMF·nH2O with long-chain aliphatic alcohols (CxH2x+1OH, x = 8-10, 12, 14, and 16) led to analogues containing fatty alcohols. Notably, the exchanged products with the bulkier alcohols UCY-16/n-CxH2x+1OH·S' (x = 6-10, 12, 14, and 16) do not mix with H2O being quite stable in this solvent, in contrast to the pristine MOF, and exhibit a hydrophobic/superhydrophobic surface as confirmed from the investigation of their water contact angles and capability to remove hydrophobic pollutants from aqueous media.
Collapse
Affiliation(s)
- Nikos Panagiotou
- Department
of Chemistry, University of Cyprus, 1678 Nicosia, Cyprus
| | | | - Manolis J. Manos
- Department
of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | | | | |
Collapse
|
11
|
Narea P, Brito I, Quintero Y, Camú E. Novel Hydrophobic Functionalized UiO-66 Series: Synthesis, Characterization, and Evaluation of Their Structural and Physical-Chemical Properties. Int J Mol Sci 2023; 25:199. [PMID: 38203370 PMCID: PMC10778709 DOI: 10.3390/ijms25010199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
A novel set of four functionalized hydrophobic UiO-66-NHR series were synthesized through postsynthetic procedures, utilizing various benzoyl chlorides and UiO-66-NH2 as starting materials. This synthesis method was carried out by employing p- (1) and o-toluoyl (2), as well as 2- (3) and 4-fluorobenzoyl (4) substituents. The analysis of the resulting compounds was performed using conventional spectroscopic methods such as FT-IR and 1H NMR to quantify the conversion rate into amide. Furthermore, SEM and XPS techniques were employed for morphological and surface analysis. Finally, the evaluation of the chemical stability and contact angle using the sessile drop method was performed to evaluate the technological potential of these compounds for application in aqueous and acidic media (such as selective separation of different metals and wastewater recovery).
Collapse
Affiliation(s)
- Pilar Narea
- Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Campus Coloso, Antofagasta 1240000, Chile;
| | - Iván Brito
- Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Campus Coloso, Antofagasta 1240000, Chile;
| | - Yurieth Quintero
- Materials Science and Process Engineering Ph.D. Program, Universidad Tecnologica Metropolitana (UTEM), Santiago 8940577, Chile;
- Advanced Mining Technology Center (AMTC), Universidad de Chile, Santiago 8370451, Chile
| | - Esteban Camú
- Departamento de Ingeniería Química y Bioprocesos, Facultad de Ingeniería, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
| |
Collapse
|
12
|
Ursueguía D, Díaz E, Ordóñez S. Effect of Water and Carbon Dioxide on the Performance of Basolite Metal-Organic Frameworks for Methane Adsorption. ENERGY & FUELS : AN AMERICAN CHEMICAL SOCIETY JOURNAL 2023; 37:14836-14844. [PMID: 37817863 PMCID: PMC10561151 DOI: 10.1021/acs.energyfuels.3c02393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/15/2023] [Indexed: 10/12/2023]
Abstract
MOFs are potential adsorbents for methane separation from nitrogen, including recovery in diluted streams. However, water and carbon dioxide can seriously affect the adsorption performance. Three commercial MOFs, basolite C300, F300, and A100, were studied under similar conditions to fugitive methane streams, such as water (75 and 100% relative humidity) and carbon dioxide (0.33%) presence in a fixed bed. The presence of available open metal sites of copper (Cu2+) and aluminum (Al3+) in the case of basolite C300 and A100, respectively, constitutes a clear drawback under humid conditions, since water adsorbs on them, leading to significant methane capacity losses. Surprisingly, basolite F300 is the most resistant material due to its amorphous structure, which hinders water access. The combination of carbon dioxide and water creates a synergy that seriously affects basolite A100, closely related to its breathing effect, but does not constitute an important issue for basolite C300 and F300.
Collapse
Affiliation(s)
- David Ursueguía
- Catalysis, Reactors and Control
Research Group (CRC), Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería s/n, 33006 Oviedo, Spain
| | - Eva Díaz
- Catalysis, Reactors and Control
Research Group (CRC), Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería s/n, 33006 Oviedo, Spain
| | - Salvador Ordóñez
- Catalysis, Reactors and Control
Research Group (CRC), Department of Chemical and Environmental Engineering, University of Oviedo, Julián Clavería s/n, 33006 Oviedo, Spain
| |
Collapse
|
13
|
Malhotra JS, Kubus M, Pedersen KS, Andersen SI, Sundberg J. Room-Temperature Monitoring of CH 4 and CO 2 Using a Metal-Organic Framework-Based QCM Sensor Showing Inherent Analyte Discrimination. ACS Sens 2023; 8:3478-3486. [PMID: 37669038 DOI: 10.1021/acssensors.3c01058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
The detection of methane and carbon dioxide is of growing importance due to their negative impact on global warming. This is true for both environmental monitoring and leak detection in industrial processes. Although solid-state sensors are technologically mature, they have limitations that prohibit their use in certain situations, e.g., explosive atmospheres. Thus, there is a need to develop new types of sensor materials. Herein, we demonstrate a simple, low-cost, metal-organic framework (MOF)-based gas leak detection sensor. The system is based on gravimetric sensing by using a quartz crystal microbalance. The quartz crystal is functionalized by layer-by-layer growth of a thin metal-organic framework film. This film shows selective uptake of methane or carbon dioxide under atmospheric conditions. The hardware has low cost, simple operation, and theoretically high sensitivity. Overall, the sensor is characterized by simplicity and high robustness. Furthermore, by exploiting the different adsorption kinetics as measured by multiple harmonic analyses, it is possible to discriminate whether the response is due to methane or carbon dioxide. In summary, we demonstrate data relevant toward new applications of metal-organic frameworks and microporous hybrid materials in sensing.
Collapse
Affiliation(s)
| | - Mariusz Kubus
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kongens Lyngby, Denmark
| | - Kasper S Pedersen
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kongens Lyngby, Denmark
| | - Simon I Andersen
- DTU Offshore, Technical University of Denmark, Elektrovej 375, 2800 Kongens Lyngby, Denmark
| | - Jonas Sundberg
- DTU Offshore, Technical University of Denmark, Elektrovej 375, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
14
|
Kim D, Kim IJ, Kwon HT, Paeng K, Lee H. CuBTC Metal-Organic Framework Decorated with FeBTC Nanoparticles with Enhance Water Stability for Environmental Remediation Applications. ACS OMEGA 2023; 8:14900-14906. [PMID: 37151529 PMCID: PMC10157670 DOI: 10.1021/acsomega.2c05338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 03/30/2023] [Indexed: 05/09/2023]
Abstract
Metal-organic frameworks (MOFs) based on Cu-benzene tricarboxylate (CuBTC) are widely used for gas storage and removal applications. However, they readily lose their crystal structures under humid conditions, limiting their practical applications. This structural decomposition reduces the specific surface area, gas adsorption capability, and recyclability of CuBTC considerably. In this study, a stable MOF against water exposure was designed based on FeBTC nanoparticle-covered CuBTC (FeCuBTC). A simple one-pot solvothermal process that enables the epitaxial growth of FeBTC on the CuBTC surface was proposed. Structural and morphological analyses after water exposure revealed that the water stability of FeCuBTC was better than that of CuBTC, which completely lost its crystallinity. This observed improvement in the water stability of the synthesized MOF proved to be beneficial for the adsorption of formaldehyde under humid conditions. The proposed strategy herein is simple yet highly effective in the design of hetero-bimetallic MOFs with considerably improved water resistance and extended applicability for environmental remediation processes.
Collapse
Affiliation(s)
- Donghun Kim
- Advanced
Textile R&D Department, Korea Institute
of Industrial Technology (KITECH), 143 Hanggaulro, Sangnok-gu, Ansan-si, Gyeonggi-do 15588, Republic of Korea
- Department
of Chemistry, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic
of Korea
| | - Ik Ji Kim
- Department
of Chemical Engineering, Pukyong National
University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| | - Hyuk Taek Kwon
- Department
of Chemical Engineering, Pukyong National
University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| | - Keewook Paeng
- Department
of Chemistry, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic
of Korea
| | - Hoik Lee
- Advanced
Textile R&D Department, Korea Institute
of Industrial Technology (KITECH), 143 Hanggaulro, Sangnok-gu, Ansan-si, Gyeonggi-do 15588, Republic of Korea
| |
Collapse
|
15
|
Gumber N, Pai RV, Bahadur J, Sengupta S, Das D, Goutam UK. γ-Resistant Microporous CAU-1 MOF for Selective Remediation of Thorium. ACS OMEGA 2023; 8:12268-12282. [PMID: 37033815 PMCID: PMC10077452 DOI: 10.1021/acsomega.2c08274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
A simple solvothermal method was used to synthesize a metal-organic framework (MOF) with an Al metal entity, viz., CAU-1 NH2. The synthesized MOF was characterized using different techniques like X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy (SEM), field emission SEM (FE-SEM), transmission electron microscopy, small-angle X-ray scattering, positron annihilation lifetime spectroscopy, and X-ray photoelectron spectroscopy. The radiation stability was evaluated by irradiating the material up to a cumulative dose of 2 MGy using 60Co for the first time. The studies showed a remarkable gamma irradiation stability of the material up to 1 MGy. The porosity and surface area of the synthesized MOF were determined by Brunauer-Emmett-Teller, which showed a high specific surface area of 550 m2/g. The pH dependence study of Th uptake from an aqueous solution was performed from pH 2-8, followed by adsorption isotherm and adsorption kinetics studies. These results revealed that the Langmuir and pseudo-second-order kinetic models can be well adapted for understanding the Th uptake and kinetics, respectively. The synthesized MOF exhibited an ∼404 mg/g thorium adsorption capacity. Selectivity studies of adsorption of Th w.r.t. to U and different metal ions such as Cu, Co, Ni, and Fe showed that Th gets adsorbed preferentially as compared to other metal ions. In addition, the MOF could be used multiple times without much deterioration.
Collapse
Affiliation(s)
- Nitin Gumber
- Fuel
Chemistry Division, Bhabha Atomic Research
Centre, Mumbai 400085, India
- Homi Bhabha
National Institute, Anushaktinagar, Mumbai 400094, India
| | - Rajesh V. Pai
- Fuel
Chemistry Division, Bhabha Atomic Research
Centre, Mumbai 400085, India
- Homi Bhabha
National Institute, Anushaktinagar, Mumbai 400094, India
| | - Jitendra Bahadur
- Solid
State Physics Division, Bhabha Atomic Research
Centre, Mumbai 400085, India
- Homi Bhabha
National Institute, Anushaktinagar, Mumbai 400094, India
| | - Somnath Sengupta
- Material
Chemistry and Metal Fuel Cycle Group, Indira
Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603102, India
| | - Debarati Das
- Radiochemistry
Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha
National Institute, Anushaktinagar, Mumbai 400094, India
| | - Uttam Kumar Goutam
- Technical
Physics Division, Bhabha Atomic Research
Centre, Mumbai 400085, India
| |
Collapse
|
16
|
Ko Y, Azbell TJ, Milner P, Hinestroza JP. Upcycling of Dyed Polyester Fabrics into Copper-1,4-Benzenedicarboxylate (CuBDC) Metal–Organic Frameworks. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.3c00226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
|
17
|
Gan L, Andres-Garcia E, Mínguez Espallargas G, Planas JG. Adsorptive Separation of CO 2 by a Hydrophobic Carborane-Based Metal-Organic Framework under Humid Conditions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5309-5316. [PMID: 36691894 PMCID: PMC9906620 DOI: 10.1021/acsami.2c20373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
We report that the carborane-based metal-organic framework (MOF) mCB-MOF-1 can achieve high adsorptive selectivity for CO2:N2 mixtures. This hydrophobic MOF presenting open metal sites shows high CO2 adsorption capacity and remarkable selectivity values that are maintained even under extremely humid conditions. The comparison of mCB-MOF-1' with MOF-74(Ni) demonstrates the superior performance of the former under challenging moisture operation conditions.
Collapse
Affiliation(s)
- Lei Gan
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193Bellaterra, Spain
| | - Eduardo Andres-Garcia
- Instituto
de Ciencia Molecular (ICMol), Universidad de Valencia, c/Catedrático José
Beltrán, 2, 46980Paterna, Spain
| | | | - José Giner Planas
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193Bellaterra, Spain
| |
Collapse
|
18
|
Room-temperature rapid self-assembled biocompatible MOFs as an Instant, temporary tooth sealant. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Nam DH, Shekhah O, Ozden A, McCallum C, Li F, Wang X, Lum Y, Lee T, Li J, Wicks J, Johnston A, Sinton D, Eddaoudi M, Sargent EH. High-Rate and Selective CO 2 Electrolysis to Ethylene via Metal-Organic-Framework-Augmented CO 2 Availability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2207088. [PMID: 36245317 DOI: 10.1002/adma.202207088] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/03/2022] [Indexed: 06/16/2023]
Abstract
High-rate conversion of carbon dioxide (CO2 ) to ethylene (C2 H4 ) in the CO2 reduction reaction (CO2 RR) requires fine control over the phase boundary of the gas diffusion electrode (GDE) to overcome the limit of CO2 solubility in aqueous electrolytes. Here, a metal-organic framework (MOF)-functionalized GDE design is presented, based on a catalysts:MOFs:hydrophobic substrate materials layered architecture, that leads to high-rate and selective C2 H4 production in flow cells and membrane electrode assembly (MEA) electrolyzers. It is found that using electroanalysis and operando X-ray absorption spectroscopy (XAS), MOF-induced organic layers in GDEs augment the local CO2 concentration near the active sites of the Cu catalysts. MOFs with different CO2 adsorption abilities are used, and the stacking ordering of MOFs in the GDE is varied. While sputtering Cu on poly(tetrafluoroethylene) (PTFE) (Cu/PTFE) exhibits 43% C2 H4 Faradaic efficiency (FE) at a current density of 200 mA cm- 2 in a flow cell, 49% C2 H4 FE at 1 A cm- 2 is achieved on MOF-augmented GDEs in CO2 RR. MOF-augmented GDEs are further evaluated in an MEA electrolyzer, achieving a C2 H4 partial current density of 220 mA cm-2 for CO2 RR and 121 mA cm-2 for the carbon monoxide reduction reaction (CORR), representing 2.7-fold and 15-fold improvement in C2 H4 production rate, compared to those obtained on bare Cu/PTFE.
Collapse
Affiliation(s)
- Dae-Hyun Nam
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno jungang-daero, Daegu, 42988, Republic of Korea
| | - Osama Shekhah
- Division of Physical Sciences and Engineering, Advanced Membranes and Porous Materials Center, Functional Materials Design, Discovery and Development Research Group (FMD3), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Adnan Ozden
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Christopher McCallum
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Fengwang Li
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Xue Wang
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Yanwei Lum
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Taemin Lee
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno jungang-daero, Daegu, 42988, Republic of Korea
| | - Jun Li
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Joshua Wicks
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Andrew Johnston
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - David Sinton
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Mohamed Eddaoudi
- Division of Physical Sciences and Engineering, Advanced Membranes and Porous Materials Center, Functional Materials Design, Discovery and Development Research Group (FMD3), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| |
Collapse
|
20
|
|
21
|
François M, Sigot L, Vallières C. Impact of humidity on HKUST-1 performance for the removal of acetaldehyde in air: an experimental study. ADSORPTION 2022. [DOI: 10.1007/s10450-022-00368-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Cheng Y, Datta SJ, Zhou S, Jia J, Shekhah O, Eddaoudi M. Advances in metal-organic framework-based membranes. Chem Soc Rev 2022; 51:8300-8350. [PMID: 36070414 DOI: 10.1039/d2cs00031h] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Membrane-based separations have garnered considerable attention owing to their high energy efficiency, low capital cost, small carbon footprint, and continuous operation mode. As a class of highly porous crystalline materials with well-defined pore systems and rich chemical functionalities, metal-organic frameworks (MOFs) have demonstrated great potential as promising membrane materials over the past few years. Different types of MOF-based membranes, including polycrystalline membranes, mixed matrix membranes (MMMs), and nanosheet-based membranes, have been developed for diversified applications with remarkable separation performances. In this comprehensive review, we first discuss the general classification of membranes and outline the historical development of MOF-based membranes. Subsequently, particular attention is devoted to design strategies for MOF-based membranes, along with detailed discussions on the latest advances on these membranes for various gas and liquid separation processes. Finally, challenges and future opportunities for the industrial implementation of these membranes are identified and outlined with the intent of providing insightful guidance on the design and fabrication of high-performance membranes in the future.
Collapse
Affiliation(s)
- Youdong Cheng
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Shuvo Jit Datta
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Sheng Zhou
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Jiangtao Jia
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Osama Shekhah
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Mohamed Eddaoudi
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| |
Collapse
|
23
|
Puerto-Rodríguez M, López-Cartes C, Ayala R. On the adsorption properties and applications of mixed-linker MOFs based on HKUST-1. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Sukatis FF, Wee SY, Aris AZ. Potential of biocompatible calcium-based metal-organic frameworks for the removal of endocrine-disrupting compounds in aqueous environments. WATER RESEARCH 2022; 218:118406. [PMID: 35525031 DOI: 10.1016/j.watres.2022.118406] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/28/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Rapid urbanization, industrialization and population growth have accelerated the amount and variety of emerging contaminants being released into the aqueous environment, including endocrine-disrupting compounds (EDCs). The introduction of these compounds constitutes a threat to human health and the environment, even at trace levels. Hence, new water treatment technologies are urgently required to effectively remove EDCs from water. The currently available technologies used in water remediation processes are expensive and ineffective, and some produce harmful by-products. Calcium-based metal-organic frameworks (Ca-MOFs) are porous synthetic materials that can potentially be applied as adsorbents. These MOFs are hydrolytically stable, biocompatible and low-cost compared with conventional porous materials. The structure of Ca-MOFs is maintained even though calcium metal centers in the structure can easily coordinate with water. Ca-MOFs and their composite derivatives have the potential for use in water purification because these biocompatible adsorbents have been shown to selectively extract a significant quantity of contaminants. This review highlights the potential of Ca-MOFs to adsorb EDCs from aqueous environments and discusses adsorbent preparation methods, adsorption mechanisms, removal capacity, water stability and recyclability. This review will support future efforts in synthesizing new biocompatible MOFs as an environmental treatment technology that can effectively remove EDCs from water, thereby improving environmental and human health.
Collapse
Affiliation(s)
- Fahren Fazzer Sukatis
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Sze Yee Wee
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Ahmad Zaharin Aris
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia.
| |
Collapse
|
25
|
Broadband Dielectric Spectroscopic Detection of Ethanol: A Side-by-Side Comparison of ZnO and HKUST-1 MOFs as Sensing Media. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10070241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The most common gas sensors are based on chemically induced changes in electrical resistivity and necessarily involve making imperfect electrical contacts to the sensing materials, which introduce errors into the measurements. We leverage thermal- and chemical-induced changes in microwave propagation characteristics (i.e., S-parameters) to compare ZnO and surface-anchored metal–organic-framework (HKUST-1 MOF) thin films as sensing materials for detecting ethanol vapor, a typical volatile organic compound (VOC), at low temperatures. We show that the microwave propagation technique can detect ethanol at relatively low temperatures (<100 °C), and afford new mechanistic insights that are inaccessible with the traditional dc-resistance-based measurements. In addition, the metrological technique avoids the inimical measurand distortions due to parasitic electrical effects inherent in the conductometric volatile organic compound detection.
Collapse
|
26
|
The Dielectric Behavior of Protected HKUST-1. CHEMISTRY 2022. [DOI: 10.3390/chemistry4020041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We investigated the adsorption properties and the dielectric behavior of a very well-known metal-organic framework (MOF), namely Cu3(BTC)2 (known as HKUST-1; BTC = 1,3,5-benzenetricarboxylate), before and after protection with some amines. This treatment has the purpose of reducing the inherent hygroscopic nature of HKUST-1, which is a serious drawback in its application of as low-dielectric-constant (low-κ) material. Moreover, we investigated the structure of HKUST-1 under a strong electric field, confirming the robustness of the framework. Even under dielectric perturbation, the water molecules adsorbed by the MOF remained almost invisible to X-ray diffraction, apart from those directly bound to the metal ions. However, the replacement of H2O with a more visible guest molecule such as CH2Br2 made the cavity that traps the guest more visible. Finally, in this work we demonstrate that impedance spectroscopy is a valuable tool for identifying water sorption in porous materials, providing information that is complementary to that of adsorption isotherms.
Collapse
|
27
|
Chen C, Yu Z, Sholl DS, Walton KS. Effect of Loading on the Water Stability of the Metal-Organic Framework DMOF-1 [Zn(bdc)(dabco) 0.5]. J Phys Chem Lett 2022; 13:4891-4896. [PMID: 35621704 DOI: 10.1021/acs.jpclett.2c00693] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, the degradation of the metal-organic framework (MOF) DMOF-1 as a function of water adsorption was investigated. As the quantity of water vapor adsorbed by DMOF-1 increases, degradation of the MOF from hydrolysis accelerates. Degradation was attributed to clustering of water molecules in the void space of DMOF-1, as seen in NVT Monte Carlo simulations. Our molecular simulations strongly suggest that degradation of DMOF-1 by water is driven by water adsorption at defect sites in the MOF. Interestingly, it was observed that DMOF-1 can remain stable if it adsorbs less water than the 1 mmol/g necessary to initiate degradation within the framework. Even though the rate of hydrolysis increases at higher temperatures, the degradation threshold for DMOF-1 remains 1 mmol/g regardless of temperature. This suggests that at sufficiently elevated temperatures (above ∼50 °C) DMOF-1 is stable toward water vapor at all relative humidities.
Collapse
Affiliation(s)
- Carmen Chen
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, United States
| | - Zhenzi Yu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, United States
| | - David S Sholl
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, United States
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Krista S Walton
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, United States
| |
Collapse
|
28
|
Role of Bimetallic Solutions in the Growth and Functionality of Cu-BTC Metal-Organic Framework. MATERIALS 2022; 15:ma15082804. [PMID: 35454498 PMCID: PMC9033043 DOI: 10.3390/ma15082804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 03/28/2022] [Accepted: 04/05/2022] [Indexed: 11/29/2022]
Abstract
Bimetallic solutions play a vital role in the growth and functionality of copper trimesate (Cu-BTC) metal–organic frameworks (MOFs). The effect of Ag+, Ca2+, Mn2+, Co2+, and Zn2+ on the growth of Cu-BTC was studied by fabricating M-Cu-BTC MOFs at room temperature using bimetallic M-Cu solutions. While Ag+ in the MOF had a rod-like morphology and surface properties, divalent cations deteriorated it. Moreover, unconventional Cu+ presence in the MOF formed a new building unit, which was confirmed in all the MOFs. Apart from Ag and Mn, no other MOF showed any presence of secondary cations in the structure. While Ag-Cu-BTC showed an improved H2S uptake capacity, other M-Cu-BTC MOFs had superior organic pollutant adsorption behavior. Thus, we have demonstrated that the physicochemical properties of Cu-BTC could be modified by growing it in bimetallic solutions.
Collapse
|
29
|
Alivand MS, Mazaheri O, Wu Y, Zavabeti A, Christofferson AJ, Meftahi N, Russo SP, Stevens GW, Scholes CA, Mumford KA. Engineered assembly of water-dispersible nanocatalysts enables low-cost and green CO 2 capture. Nat Commun 2022; 13:1249. [PMID: 35273166 PMCID: PMC8913730 DOI: 10.1038/s41467-022-28869-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 01/31/2022] [Indexed: 12/03/2022] Open
Abstract
Catalytic solvent regeneration has attracted broad interest owing to its potential to reduce energy consumption in CO2 separation, enabling industry to achieve emission reduction targets of the Paris Climate Accord. Despite recent advances, the development of engineered acidic nanocatalysts with unique characteristics remains a challenge. Herein, we establish a strategy to tailor the physicochemical properties of metal-organic frameworks (MOFs) for the synthesis of water-dispersible core-shell nanocatalysts with ease of use. We demonstrate that functionalized nanoclusters (Fe3O4-COOH) effectively induce missing-linker deficiencies and fabricate mesoporosity during the self-assembly of MOFs. Superacid sites are created by introducing chelating sulfates on the uncoordinated metal clusters, providing high proton donation capability. The obtained nanomaterials drastically reduce the energy consumption of CO2 capture by 44.7% using only 0.1 wt.% nanocatalyst, which is a ∽10-fold improvement in efficiency compared to heterogeneous catalysts. This research represents a new avenue for the next generation of advanced nanomaterials in catalytic solvent regeneration. Catalytic solvent regeneration is of interest to reduce energy consumption in CO2 separation, however, the development of engineered nanocatalysts remains a challenge. Here, a new avenue is presented for the next generation of advanced metal-organic frameworks (MOFs) in energy-efficient CO2 capture.
Collapse
Affiliation(s)
- Masood S Alivand
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Vic, 3010, Australia
| | - Omid Mazaheri
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Vic, 3010, Australia.,School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Vic, 3010, Australia
| | - Yue Wu
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Vic, 3010, Australia
| | - Ali Zavabeti
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Vic, 3010, Australia.,School of Science, RMIT University, Melbourne, Vic, 3001, Australia
| | - Andrew J Christofferson
- School of Science, RMIT University, Melbourne, Vic, 3001, Australia.,ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, Vic, 3000, Australia
| | - Nastaran Meftahi
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, Vic, 3000, Australia
| | - Salvy P Russo
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, Vic, 3000, Australia
| | - Geoffrey W Stevens
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Vic, 3010, Australia
| | - Colin A Scholes
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Vic, 3010, Australia
| | - Kathryn A Mumford
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Vic, 3010, Australia.
| |
Collapse
|
30
|
Krstić M, Fink K, Sharapa DI. The Adsorption of Small Molecules on the Copper Paddle-Wheel: Influence of the Multi-Reference Ground State. Molecules 2022; 27:912. [PMID: 35164179 PMCID: PMC8840508 DOI: 10.3390/molecules27030912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 11/16/2022] Open
Abstract
We report a theoretical study of the adsorption of a set of small molecules (C2H2, CO, CO2, O2, H2O, CH3OH, C2H5OH) on the metal centers of the "copper paddle-wheel"-a key structural motif of many MOFs. A systematic comparison between DFT of different rungs, single-reference post-HF methods (MP2, SOS-MP2, MP3, DLPNO-CCSD(T)), and multi-reference approaches (CASSCF, DCD-CAS(2), NEVPT2) is performed in order to find a methodology that correctly describes the complicated electronic structure of paddle-wheel structure together with a reasonable description of non-covalent interactions. Apart from comparison with literature data (experimental values wherever possible), benchmark calculations with DLPNO-MR-CCSD were also performed. Despite tested methods show qualitative agreement in the majority of cases, we showed and discussed reasons for quantitative differences as well as more fundamental problems of specific cases.
Collapse
Affiliation(s)
- Marjan Krstić
- Institute for Theoretical Solid State Physics (TFP), Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Str. 1, 76131 Karlsruhe, Germany;
| | - Karin Fink
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany;
| | - Dmitry I. Sharapa
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
31
|
Andrade PHM, Gomes ALM, Palhares HG, Volkringer C, Moissette A, Victória HFV, Hatem NMA, Krambrock K, Houmard M, Nunes EHM. Post-synthetic modification of aluminum trimesate and copper trimesate with TiO 2 nanoparticles for photocatalytic applications. JOURNAL OF MATERIALS SCIENCE 2022; 57:4481-4503. [PMID: 35125514 PMCID: PMC8796608 DOI: 10.1007/s10853-021-06842-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Organic pollutants have been a significant source of concern in recent years due to their facile dissemination and harmful effects. In this work, two different metal-organic frameworks (MOFs) were initially prepared by hydrothermal treatment, namely aluminum trimesate (MIL-100(Al)) and copper trimesate (HKUST-1). These materials were subsequently submitted to a post-synthetic modification step to grow titania nanoparticles on their surface. Anatase nanoparticles with sizes around 5 nm were successfully anchored on MIL-100(Al), and the concentration of TiO2 in this sample was about 68 wt.%. This is the first time that this composite (TiO2@MIL-100(Al)) is reported in the literature. It showed an improved photocatalytic activity, removing 90% of methylene blue (k app = 1.29 h-1), 55% of sodium diclofenac (k app = 0.21 h-1), and 62% of ibuprofen (k app = 0.37 h-1) after four hours of illumination with UV-A light. A significant concentration (14 µM) of reactive oxygen species (ROS) was detected for this composite. HKUST-1 showed a structural collapse during its post-synthetic modification, leading to a non-porous material and providing fewer sites for the heterogeneous nucleation of titania. This behavior led to a low concentration of rutile nanoparticles on HKUST-1 (9 wt.%). However, the obtained composite (TiO2@HKUST) also showed an improved photoactivity compared to HKUST-1, increasing the photodegradation rates evaluated for methylene blue (0.05 h-1 vs. 0.29 h-1), sodium diclofenac (negligible vs. 0.03 h-1), and ibuprofen (0.01 h-1 vs. 0.02 h-1). This work brings new insights concerning the preparation of photocatalysts by growing semiconductor nanoparticles on trimesate-based MOFs.
Collapse
Affiliation(s)
- Pedro H. M. Andrade
- Departamento de Engenharia Metalúrgica E de Materiais, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, MG CEP 31270-901 Brazil
- Laboratoire de Spectroscopie Pour Les Interactions, La Réactivité Et L’Environnement, Université de Lille—Sciences et Technologies, 59655 Villeneuve d’Ascq, France
| | - Ana L. M. Gomes
- Departamento de Engenharia Metalúrgica E de Materiais, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, MG CEP 31270-901 Brazil
| | - Hugo G. Palhares
- Departamento de Engenharia Metalúrgica E de Materiais, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, MG CEP 31270-901 Brazil
| | - Christophe Volkringer
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, UCCS—Unité de Catalyse Et Chimie du Solide, 59000 Lille, France
| | - Alain Moissette
- Laboratoire de Spectroscopie Pour Les Interactions, La Réactivité Et L’Environnement, Université de Lille—Sciences et Technologies, 59655 Villeneuve d’Ascq, France
| | - Henrique F. V. Victória
- Departamento de Física, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, MG CEP 31270-901 Brazil
| | - Nádia M. A. Hatem
- Departamento de Física, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, MG CEP 31270-901 Brazil
| | - Klaus Krambrock
- Departamento de Física, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, MG CEP 31270-901 Brazil
| | - Manuel Houmard
- Departamento de Engenharia Química, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, MG CEP 31270-901 Brazil
| | - Eduardo H. M. Nunes
- Departamento de Engenharia Metalúrgica E de Materiais, Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, MG CEP 31270-901 Brazil
| |
Collapse
|
32
|
Li C, Li N, Chang L, Gu Z, Zhang J. Research Progresses of Metal-organic Framework HKUST-1-Based Membranes in Gas Separations ※. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21120545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
33
|
Oh J, Yoon SM. Resistive Memory Devices Based on Reticular Materials for Electrical Information Storage. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56777-56792. [PMID: 34842430 DOI: 10.1021/acsami.1c16332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recently, reticular materials, such as metal-organic frameworks and covalent organic frameworks, have been proposed as an active insulating layer in resistive switching memory systems through their chemically tunable porous structure. A resistive random access memory (RRAM) cell, a digital memristor, is one of the most outstanding emergent memory devices that achieves high-density electrical information storage with variable electrical resistance states between two terminals. The overall design of the RRAM devices comprises an insulating layer sandwiched between two metal electrodes (metal/insulator/metal). RRAM devices with fast switching speeds and enhanced storage density have the potential to be manufactured with excellent scalability owing to their relatively simple device architecture. In this review, recent progress on the development of reticular material-based RRAM devices and the study of their operational mechanisms are reviewed, and new challenges and future perspectives related to reticular material-based RRAM are discussed.
Collapse
Affiliation(s)
- Jongwon Oh
- Department of Chemistry, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
- Wonkwang Materials Institute of Science and Technology, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
| | - Seok Min Yoon
- Department of Chemistry, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
- Wonkwang Materials Institute of Science and Technology, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
| |
Collapse
|
34
|
Green synthesis of polyacrylamide/polyanionic cellulose hydrogels composited with Zr-based coordination polymer and their enhanced mechanical and adsorptive properties. Polym J 2021. [DOI: 10.1038/s41428-021-00590-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Zeng D, Yuan L, Zhang P, Wang L, Li Z, Wang Y, Liu Y, Shi W. Hydrolytically stable foamed HKUST-1@CMC composites realize high-efficient separation of U(VI). iScience 2021; 24:102982. [PMID: 34485864 PMCID: PMC8405966 DOI: 10.1016/j.isci.2021.102982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/01/2021] [Accepted: 08/10/2021] [Indexed: 11/28/2022] Open
Abstract
HKUST-1@CMC (HK@CMC) composites that show good acid and alkali resistance and radiation resistance were successfully synthesized by introducing carboxymethyl cellulose (CMC) onto the surface of HKUST-1 using a foaming strategy. For the first time, the composites were explored as efficient adsorbents for U(VI) trapping from aqueous solution, with encouraging results of large adsorption capacity, fast adsorption kinetics, and desirable selectivity toward U(VI) over a series of competing ions. More importantly, a hybrid derivative film was successfully prepared for the dynamic adsorption of U(VI). The results show that ∼90% U(VI) can be removed when 45 mg L-1 U(VI) was passed through the film one time, and the removal percentage is still more than 80% even after four adsorption-desorption cycles, ranking one of the most practical U(VI) scavengers. This work offers new clues for application of the Metal-organic-framework-based materials in the separation of radionuclides from wastewater.
Collapse
Affiliation(s)
- Dejun Zeng
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China
| | - Liyong Yuan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Pengcheng Zhang
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Lin Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zijie Li
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Youqun Wang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China
| | - Yunhai Liu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China
| | - Weiqun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
36
|
Kujawa J, Al-Gharabli S, Muzioł TM, Knozowska K, Li G, Dumée LF, Kujawski W. Crystalline porous frameworks as nano-enhancers for membrane liquid separation – Recent developments. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
37
|
Mohanadas D, Mohd Abdah MAA, Azman NHN, Ravoof TBSA, Sulaiman Y. Facile synthesis of PEDOT-rGO/HKUST-1 for high performance symmetrical supercapacitor device. Sci Rep 2021; 11:11747. [PMID: 34083589 PMCID: PMC8175570 DOI: 10.1038/s41598-021-91100-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/20/2021] [Indexed: 12/03/2022] Open
Abstract
A novel poly(3,4-ethylenedioxythiophene)-reduced graphene oxide/copper-based metal-organic framework (PrGO/HKUST-1) has been successfully fabricated by incorporating electrochemically synthesized poly(3,4-ethylenedioxythiophene)-reduced graphene oxide (PrGO) and hydrothermally synthesized copper-based metal-organic framework (HKUST-1). The field emission scanning microscopy (FESEM) and elemental mapping analysis revealed an even distribution of poly(3,4-ethylenedioxythiophene) (PEDOT), reduced graphene oxide (rGO) and HKUST-1. The crystalline structure and vibration modes of PrGO/HKUST-1 were validated utilizing X-ray diffraction (XRD) as well as Raman spectroscopy, respectively. A remarkable specific capacitance (360.5 F/g) was obtained for PrGO/HKUST-1 compared to HKUST-1 (103.1 F/g), PrGO (98.5 F/g) and PEDOT (50.8 F/g) using KCl/PVA as a gel electrolyte. Moreover, PrGO/HKUST-1 composite with the longest charge/discharge time displayed excellent specific energy (21.0 Wh/kg), specific power (479.7 W/kg) and an outstanding cycle life (95.5%) over 4000 cycles. Thus, the PrGO/HKUST-1 can be recognized as a promising energy storage material.
Collapse
Affiliation(s)
- Dharshini Mohanadas
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | | | - Nur Hawa Nabilah Azman
- Functional Devices Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Thahira B S A Ravoof
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Foundry of Reticular Materials for Sustainability (FORMS), Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Yusran Sulaiman
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Functional Devices Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
38
|
Lee SJ, Lim HW, Park SH. Adsorptive seawater desalination using MOF-incorporated Cu-alginate/PVA beads: Ion removal efficiency and durability. CHEMOSPHERE 2021; 268:128797. [PMID: 33172669 DOI: 10.1016/j.chemosphere.2020.128797] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
With the worsening water scarcity problem, seawater desalination has been receiving gradually increasing attention. Ion adsorptive desalination was introduced as one of the seawater desalination techniques. In our previous study, metal-organic framework (MOF)-incorporated single-network alginate (MOF-Alg(Cu)) beads were used to adsorb ions in seawater. In the present study, MOF-incorporated Cu-based alginate/PVA hydrogel (MOF-Alg(Cu)/PVA) beads were fabricated to enhance the ion adsorption desalination technique. Cu-based MOFs were successfully synthesized in situ on an interpenetrating polymer network (IPN). Given that the IPN hydrogel beads have high stability, the amount of MOF particles extracted during the adsorption of ions is reduced. The fabricated MOF-Alg(Cu)/PVA beads exhibit efficient removal of dissolved ions in artificial seawater and NaCl solution with varied concentrations. The ion adsorption characteristics were evaluated on the basis of adsorption kinetics, adsorption isotherms, and dosage of adsorbent. The repeat cycle tests show that more than half of the ion removal efficiency was maintained after 10 cycle tests. The concentration of artificial seawater was reduced to 1500 ppm by employing MOF-Alg(Cu)/PVA beads through a multistage experiment. Compared with other seawater desalination techniques, the proposed adsorptive desalination technique using MOF-Alg(Cu)/PVA beads will pave the way for developing a new ecofriendly and energy-saving approach.
Collapse
Affiliation(s)
- Sang Joon Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, South Korea.
| | - Hyeong Woo Lim
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, South Korea.
| | - Sung Ho Park
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, South Korea.
| |
Collapse
|
39
|
González-Galán C, Balestra SRG, Luna-Triguero A, Madero-Castro RM, Zaderenko AP, Calero S. Effect of diol isomer/water mixtures on the stability of Zn-MOF-74. Dalton Trans 2021; 50:1808-1815. [PMID: 33464245 DOI: 10.1039/d0dt03787g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The stability of metal-organic frameworks is a key factor in many applications in some fields that require working under harsh conditions. It is known that a large number of MOFs are vulnerable to humid air. It means that when they are exposed to water, a structural collapse of the crystal happens. In this work, Molecular Dynamics simulations using a reactive force field have been performed to study the stability of MOF-74 against the adsorption of catechol, resorcinol and hydroquinone in the presence of water. We reproduced the water instability of Zn-MOF-74 and we studied the resistance of the structure. Our simulations showed that the three isomers generate a volume change in the framework but the structural collapse does not happen. In contrast, for water-isomer mixtures, there is structural collapse. Not only do catechol, resorcinol and hydroquinone not behave as stabilizing agents but they do enhance the hydration effect on the structure.
Collapse
Affiliation(s)
- Carmen González-Galán
- Department of Physical, Chemical, and Natural Systems, Universidad Pablo de Olavide, Ctra. Utrera km 1, ES-41013 Seville, Spain
| | - Salvador R G Balestra
- Department of Physical, Chemical, and Natural Systems, Universidad Pablo de Olavide, Ctra. Utrera km 1, ES-41013 Seville, Spain and Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Sor Juana Inés de la Cruz 3, 28039 Madrid, Spain.
| | - Azahara Luna-Triguero
- Department of Physical, Chemical, and Natural Systems, Universidad Pablo de Olavide, Ctra. Utrera km 1, ES-41013 Seville, Spain and Energy Technology, Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Rafael Maria Madero-Castro
- Department of Physical, Chemical, and Natural Systems, Universidad Pablo de Olavide, Ctra. Utrera km 1, ES-41013 Seville, Spain
| | - Ana Paula Zaderenko
- Department of Physical, Chemical, and Natural Systems, Universidad Pablo de Olavide, Ctra. Utrera km 1, ES-41013 Seville, Spain
| | - Sofia Calero
- Department of Physical, Chemical, and Natural Systems, Universidad Pablo de Olavide, Ctra. Utrera km 1, ES-41013 Seville, Spain and Materials Simulation and Modelling, Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
| |
Collapse
|
40
|
Duan W, Qiao S, Zhuo M, Sun J, Guo M, Xu F, Liu J, Wang T, Guo X, Zhang Y, Gao J, Huang Y, Zhang Z, Cheng P, Ma S, Chen Y. Multifunctional Platforms: Metal-Organic Frameworks for Cutaneous and Cosmetic Treatment. Chem 2021. [DOI: 10.1016/j.chempr.2020.11.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
41
|
Mylonas-Margaritis I, Mayans J, McArdle P, Papatriantafyllopoulou C. Zn II and Cu II-Based Coordination Polymers and Metal Organic Frameworks by the of Use of 2-Pyridyl Oximes and 1,3,5-Benzenetricarboxylic Acid. Molecules 2021; 26:491. [PMID: 33477697 PMCID: PMC7831896 DOI: 10.3390/molecules26020491] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 11/23/2022] Open
Abstract
The simultaneous use of 2-pyridyl oximes (pyridine-2 amidoxime, H2pyaox; 2-methyl pyridyl ketoxime, Hmpko) and 1,3,5-benzenetricarboxylic acid (H3btc) provided access to five new compounds, namely [Zn(H2btc)2(H2pyaox)2]•2H2O (1•2H2O), [Zn(Hbtc)(H2pyaox)2]n (2), [Cu(Hbtc)(H2pyaox)]n (3), [Cu(Hbtc)(HmpKo)]n (4) and [Cu2(Hbtc)2(Hmpko)2(H2O)2]•4H2O (5•4H2O). Among them, 3 is the first example of a metal-organic framework (MOF) containing H2pyaox. Its framework can be described as a 3-c uninodal net of hcb topology with the layers being parallel to the (1,0,1) plane. Furthermore, 3 is the third reported MOF based on a 2-pyridyl oxime in general. 2 and 4 are new members of a small family of coordination polymers containing an oximic ligand. 1-5 form 3D networks through strong intermolecular interactions. Dc magnetic susceptibility studies were carried out in a crystalline sample of 3 and revealed the presence of weak exchange interactions between the metal centres; the experimental data were fitted to a theoretical model with the fitting parameters being J = -0.16(1) cm-1 and g = 2.085(1). The isotropic g value was also confirmed by electronic paramagnetic resonance (EPR) spectroscopy. Reactivity studies were performed for 3 in the presence of metal ions; the reaction progress was studied and discussed for Fe(NO3)3 by the use of several characterization techniques, including single crystal X-ray crystallography and IR spectroscopy.
Collapse
Affiliation(s)
- Ioannis Mylonas-Margaritis
- School of Chemistry, College of Science and Engineering, National University of Ireland Galway, University Road, H91 TK33 Galway, Ireland; (I.M.-M.); (P.M.)
| | - Julia Mayans
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltran 2, 46980 Paterna Valencia, Spain;
| | - Patrick McArdle
- School of Chemistry, College of Science and Engineering, National University of Ireland Galway, University Road, H91 TK33 Galway, Ireland; (I.M.-M.); (P.M.)
| | - Constantina Papatriantafyllopoulou
- School of Chemistry, College of Science and Engineering, National University of Ireland Galway, University Road, H91 TK33 Galway, Ireland; (I.M.-M.); (P.M.)
| |
Collapse
|
42
|
Maia RA, Louis B, Gao W, Wang Q. CO2 adsorption mechanisms on MOFs: a case study of open metal sites, ultra-microporosity and flexible framework. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00090j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this review the CO2 adsorption mechanisms of MOF-74-Mg, HKUST-1, SIFSIX-3-M, and ZIF-8 are explored, highlighting their preferential adsorption sites, CO2–MOF complex configuration, adsorption dynamics, bonding angle, and water stability.
Collapse
Affiliation(s)
- Renata Avena Maia
- Université de Strasbourg
- Strasbourg
- France
- Université de Strasbourg
- Strasbourg Cedex 2
| | - Benoît Louis
- Université de Strasbourg
- Strasbourg Cedex 2
- France
| | - Wanlin Gao
- College of Environmental Science and Engineering
- Beijing Forestry University
- Beijing 100083
- P. R. China
| | - Qiang Wang
- College of Environmental Science and Engineering
- Beijing Forestry University
- Beijing 100083
- P. R. China
| |
Collapse
|
43
|
Kanno M, Kitao T, Ito T, Terashima K. Synthesis of a metal–organic framework by plasma in liquid to increase reduced metal ions and enhance water stability. RSC Adv 2021; 11:22756-22760. [PMID: 35480462 PMCID: PMC9034360 DOI: 10.1039/d1ra00942g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/18/2021] [Indexed: 11/21/2022] Open
Abstract
Synthesis of a metal–organic framework by plasma in liquid was demonstrated with HKUST-1 as an example. HKUST-1 synthesized by this method contains a higher amount of monovalent copper ions than that synthesized by other conventional methods. The enhanced water stability was also confirmed. Plasma in liquid provides a method for the synthesis of HKUST-1 with increased reduced metal ions and high water stability.![]()
Collapse
Affiliation(s)
- Moriyuki Kanno
- Department of Advanced Materials Science
- Graduate School of Frontier Sciences
- The University of Tokyo
- Kashiwa
- Japan
| | - Takashi Kitao
- Department of Advanced Materials Science
- Graduate School of Frontier Sciences
- The University of Tokyo
- Kashiwa
- Japan
| | - Tsuyohito Ito
- Department of Advanced Materials Science
- Graduate School of Frontier Sciences
- The University of Tokyo
- Kashiwa
- Japan
| | - Kazuo Terashima
- Department of Advanced Materials Science
- Graduate School of Frontier Sciences
- The University of Tokyo
- Kashiwa
- Japan
| |
Collapse
|
44
|
Cotlame-Salinas VDC, López-Olvera A, Islas-Jácome A, González-Zamora E, Ibarra IA. CO 2 capture enhancement in MOFs via the confinement of molecules. REACT CHEM ENG 2021. [DOI: 10.1039/d0re00410c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review focuses on exploring a new approach to improve the CO2 adsorption properties of MOFs by confining small amounts of molecules with different nature, such as: water, alcohols, amines, and even aromatic molecules.
Collapse
Affiliation(s)
| | - Alfredo López-Olvera
- Laboratorio de Fisicoquímica y Reactividad de Superficies
- Instituto de Investigaciones en Materiales
- Universidad Nacional Autónoma de México
- Coyoacán
- Mexico
| | | | | | - Ilich A. Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies
- Instituto de Investigaciones en Materiales
- Universidad Nacional Autónoma de México
- Coyoacán
- Mexico
| |
Collapse
|
45
|
Rani R, Deep A, Mizaikoff B, Singh S. Copper Based Organic Framework Modified Electrosensor for Selective and Sensitive Detection of Ciprofloxacin. ELECTROANAL 2020. [DOI: 10.1002/elan.202060274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Reetu Rani
- Central Scientific Instruments Organisation (CSIR-CSIO) Chandigarh 160030 India
- Academy of Scientific & Innovative Research (AcSIR) 201002 Ghaziabad India
| | - Akash Deep
- Central Scientific Instruments Organisation (CSIR-CSIO) Chandigarh 160030 India
- Academy of Scientific & Innovative Research (AcSIR) 201002 Ghaziabad India
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry University of Ulm 89081 Ulm Germany
| | - Suman Singh
- Central Scientific Instruments Organisation (CSIR-CSIO) Chandigarh 160030 India
- Academy of Scientific & Innovative Research (AcSIR) 201002 Ghaziabad India
| |
Collapse
|
46
|
Han S, Mullins CB. Current Progress and Future Directions in Gas-Phase Metal-Organic Framework Thin-Film Growth. CHEMSUSCHEM 2020; 13:5433-5442. [PMID: 32785977 DOI: 10.1002/cssc.202001504] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Deposition of materials as a thin film is important for various applications, such as sensors, microelectronic devices, and membranes. There have been breakthroughs in gas-phase metal-organic framework (MOF) thin-film growth, which is more applicable to micro- and nanofabrication processes and also less harmful to the environment than solvent-based methods. Three different types of gas-phase MOF thin film deposition methods have been developed using chemical vapor deposition (CVD), atomic layer deposition (ALD), and physical vapor deposition (PVD)-CVD combined techniques. The CVD-based method basically converts metal oxide layers into MOF thin films by exposing the surface to ligand vapor. The ALD-based method allows growing MOF thin films following layer-by-layer (LBL) growth by sequentially exposing gas-phase metal and ligand precursors. The PVD-CVD method uses PVD for metal deposition and CVD for ligand deposition, which is similar to LBL growth. These gas-phase growth methods can broaden the use of MOFs in diverse areas. Herein, the current progress of gas-phase MOF thin film growth is discussed and future directions suggested.
Collapse
Affiliation(s)
- Sungmin Han
- Department of Chemistry, University of Texas at Austin, Austin, Texas, 78712-0231, United States
| | - C Buddie Mullins
- Department of Chemistry, University of Texas at Austin, Austin, Texas, 78712-0231, United States
- McKetta Department of Chemical Engineering, Texas Materials Institute, Center for Electrochemistry, University of Texas at Austin, Austin, Texas, 78712-0231, United States
| |
Collapse
|
47
|
Pilgrim BS, Champness NR. Metal-Organic Frameworks and Metal-Organic Cages - A Perspective. Chempluschem 2020; 85:1842-1856. [PMID: 32833342 DOI: 10.1002/cplu.202000408] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/31/2020] [Indexed: 12/20/2022]
Abstract
The fields of metal-organic cages (MOCs) and metal-organic frameworks (MOFs) are both highly topical and continue to develop at a rapid pace. Despite clear synergies between the two fields, overlap is rarely observed. This article discusses the peculiarities and similarities of MOCs and MOFs in terms of synthetic strategies and approaches to system characterisation. The stability of both classes of material is compared, particularly in relation to their applications in guest storage and catalysis. Lastly, suggestions are made for opportunities for each field to learn and develop in partnership with the other.
Collapse
Affiliation(s)
- Ben S Pilgrim
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Neil R Champness
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
48
|
Georgiadis AG, Charisiou N, Yentekakis IV, Goula MA. Hydrogen Sulfide (H 2S) Removal via MOFs. MATERIALS 2020; 13:ma13163640. [PMID: 32824534 PMCID: PMC7476052 DOI: 10.3390/ma13163640] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/30/2020] [Accepted: 08/13/2020] [Indexed: 01/09/2023]
Abstract
The removal of the environmentally toxic and corrosive hydrogen sulfide (H2S) from gas streams with varying overall pressure and H2S concentration is a long-standing challenge faced by the oil and gas industries. The present work focuses on H2S capture using a relatively new type of material, namely metal-organic frameworks (MOFs), in an effort to shed light on their potential as adsorbents in the field of gas storage and separation. MOFs hold great promise as they make possible the design of structures from organic and inorganic units, but also as they have provided an answer to a long-term challenging objective, i.e., how to design extended structures of materials. Moreover, in designing MOFs, one may functionalize the organic units and thus, in essence, create pores with different functionalities, and also to expand the pores in order to increase pore openings. The work presented herein provides a detailed discussion, by thoroughly combining the existing literature on new developments in MOFs for H2S removal, and tries to provide insight into new areas for further research.
Collapse
Affiliation(s)
- Amvrosios G. Georgiadis
- Laboratory of Alternative Fuels and Environmental Catalysis (LAFEC), Department of Chemical Engineering, University of Western Macedonia, GR-50100 Koila, Greece; (A.G.G.); (N.C.)
| | - Nikolaos Charisiou
- Laboratory of Alternative Fuels and Environmental Catalysis (LAFEC), Department of Chemical Engineering, University of Western Macedonia, GR-50100 Koila, Greece; (A.G.G.); (N.C.)
| | - Ioannis V. Yentekakis
- Laboratory of Physical Chemistry & Chemical Processes, School of Environmental Engineering, Technical University of Crete, GR-73100 Chania, Greece;
| | - Maria A. Goula
- Laboratory of Alternative Fuels and Environmental Catalysis (LAFEC), Department of Chemical Engineering, University of Western Macedonia, GR-50100 Koila, Greece; (A.G.G.); (N.C.)
- Correspondence: ; Tel.: +30-246-1068-296
| |
Collapse
|
49
|
Connolly BM, Madden DG, Wheatley AEH, Fairen-Jimenez D. Shaping the Future of Fuel: Monolithic Metal-Organic Frameworks for High-Density Gas Storage. J Am Chem Soc 2020; 142:8541-8549. [PMID: 32294384 DOI: 10.1021/jacs.0c00270] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The environmental benefits of cleaner, gaseous fuels such as natural gas and hydrogen are widely reported. Yet, practical usage of these fuels is inhibited by current gas storage technology. Here, we discuss the wide-ranging potential of gas-fuels to revolutionize the energy sector and introduce the limitations of current storage technology that prevent this transition from taking place. The practical capabilities of adsorptive gas storage using porous, crystalline metal-organic frameworks (MOFs) are examined with regard to recent benchmark results and ultimate storage targets in this field. In particular, the industrial limitations of typically powdered MOFs are discussed while recent breakthroughs in MOF processing are highlighted. We offer our perspective on the future of practical, rather than purely academic, MOF developments in the increasingly critical field of environmental fuel storage.
Collapse
Affiliation(s)
- Bethany M Connolly
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.,Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
| | - David G Madden
- Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
| | - Andrew E H Wheatley
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - David Fairen-Jimenez
- Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
| |
Collapse
|
50
|
Hashem T, Valadez Sánchez EP, Weidler PG, Gliemann H, Alkordi MH, Wöll C. Liquid-Phase Quasi-Epitaxial Growth of Highly Stable, Monolithic UiO-66-NH 2 MOF thin Films on Solid Substrates. ChemistryOpen 2020; 9:515-518. [PMID: 32373421 PMCID: PMC7197087 DOI: 10.1002/open.201900324] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/17/2020] [Indexed: 12/02/2022] Open
Abstract
High quality, monolithic UiO-66-NH2 thin films on diverse solid substrates have been prepared via a low temperature liquid phase epitaxy method. The achievement of continuous films with low defect densities and great stability against high temperatures and hot water is proven, clearly outperforming other reported types of MOF thin films.
Collapse
Affiliation(s)
- Tawheed Hashem
- Institute of Functional Interfaces (IFG)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Elvia P. Valadez Sánchez
- Institute of Functional Interfaces (IFG)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
- Institute for Micro Process Engineering (IMVT)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Peter G. Weidler
- Institute of Functional Interfaces (IFG)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Hartmut Gliemann
- Institute of Functional Interfaces (IFG)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Mohamed H. Alkordi
- Center for Materials ScienceZewail City of Science and Technology October Gardens, 6th of OctoberGiza12578Egypt
| | - Christof Wöll
- Institute of Functional Interfaces (IFG)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| |
Collapse
|