1
|
Garcia-Torales G, Torres-Ortega HH, Estrada-Marmolejo R, Beltran-Gonzalez AB, Strojnik M. Thermal Bed Design for Temperature-Controlled DNA Amplification Using Optoelectronic Sensors. SENSORS (BASEL, SWITZERLAND) 2024; 24:7050. [PMID: 39517946 PMCID: PMC11548344 DOI: 10.3390/s24217050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Loop-Mediated Isothermal Loop-Mediated Isothermal Amplification (LAMP) is a widely used technique for nucleic acid amplification due to its high specificity, sensitivity, and rapid results. Advances in microfluidic lab-on-chip (LOC) technology have enabled the integration of LAMP into miniaturized devices, known as μ-LAMP, which require precise thermal control for optimal DNA amplification. This paper introduces a novel thermal bed design using PCB copper traces and FR-4 dielectric materials, providing a reliable, modular, and repairable heating platform. The system achieves accurate and stable temperature control, which is critical for μ-LAMP applications, with temperature deviations within ±1.0 °C. The thermal bed's performance is validated through finite element method (FEM) simulations, showing uniform temperature distribution and a rapid thermal response of 2.5 s to reach the target temperature. These results highlight the system's potential for applications such as disease diagnostics, biological safety, and forensic analysis, where precision and reliability are paramount.
Collapse
Affiliation(s)
- Guillermo Garcia-Torales
- Department of Electronics, University Center for Exact Sciences and Engineering, University of Guadalajara, Av. Revolucion 1500, Guadalajara 44840, Jalisco, Mexico; (H.H.T.-O.); (R.E.-M.); (A.B.B.-G.)
| | - Hector Hugo Torres-Ortega
- Department of Electronics, University Center for Exact Sciences and Engineering, University of Guadalajara, Av. Revolucion 1500, Guadalajara 44840, Jalisco, Mexico; (H.H.T.-O.); (R.E.-M.); (A.B.B.-G.)
| | - Ruben Estrada-Marmolejo
- Department of Electronics, University Center for Exact Sciences and Engineering, University of Guadalajara, Av. Revolucion 1500, Guadalajara 44840, Jalisco, Mexico; (H.H.T.-O.); (R.E.-M.); (A.B.B.-G.)
| | - Anuar B. Beltran-Gonzalez
- Department of Electronics, University Center for Exact Sciences and Engineering, University of Guadalajara, Av. Revolucion 1500, Guadalajara 44840, Jalisco, Mexico; (H.H.T.-O.); (R.E.-M.); (A.B.B.-G.)
| | - Marija Strojnik
- Optical Research Center, Leon de los Aldamas 37150, Guanajuato, Mexico;
| |
Collapse
|
2
|
Shimazu KN, Bender AT, Reinhall PG, Posner JD. Vibration mixing for enhanced paper-based recombinase polymerase amplification. LAB ON A CHIP 2024; 24:4879-4891. [PMID: 39302137 PMCID: PMC11534347 DOI: 10.1039/d4lc00592a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Isothermal nucleic acid amplification tests (NAATs) are a vital tool for point-of-care (POC) diagnostics. These assays are well-suited for rapid, low-cost POC diagnostics for infectious diseases compared to traditional PCR tests conducted in central laboratories. There has been significant development of POC NAATs using paper-based diagnostic devices because they provide an affordable, user-friendly, and easy to store format; however, the difficulties in integrating separate liquid components, resuspending dried reagents, and achieving a low limit of detection hinder their use in commercial applications. Several studies report low assay efficiencies, poor detection output, and poorer limits of detection in porous membranes compared to traditional tube-based protocols. Recombinase polymerase amplification is a rapid, isothermal NAAT that is highly suited for POC applications, but requires viscous reaction conditions that has poor performance when amplifying in a porous paper membrane. In this work, we show that we can dramatically improve the performance of membrane-based recombinase polymerase amplification (RPA) of HIV-1 DNA and viral RNA by employing a coin cell-based vibration mixing platform. We achieve a limit of detection of 12 copies of DNA per reaction, nearly 50% reduction in time to threshold (from ∼10 minutes to ∼5 minutes), and an overall fluorescence output increase up to 16-fold when compared to unmixed experiments. This active mixing strategy enables reactions where the target and reaction cofactors are isolated from each other prior to the reaction. We also demonstrate amplification using a low-cost vibration motor for both temperature control and mixing, without the requirement of any additional heating components.
Collapse
Affiliation(s)
- Kelli N Shimazu
- Department of Mechanical Engineering, University of Washington, Stevens Way, Box 352600, Seattle, Washington, 98195, USA.
| | - Andrew T Bender
- Department of Mechanical Engineering, University of Washington, Stevens Way, Box 352600, Seattle, Washington, 98195, USA.
| | - Per G Reinhall
- Department of Mechanical Engineering, University of Washington, Stevens Way, Box 352600, Seattle, Washington, 98195, USA.
| | - Jonathan D Posner
- Department of Mechanical Engineering, University of Washington, Stevens Way, Box 352600, Seattle, Washington, 98195, USA.
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Department of Family Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Kumar S, Kaushal JB, Lee HP. Sustainable Sensing with Paper Microfluidics: Applications in Health, Environment, and Food Safety. BIOSENSORS 2024; 14:300. [PMID: 38920604 PMCID: PMC11202065 DOI: 10.3390/bios14060300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024]
Abstract
This manuscript offers a concise overview of paper microfluidics, emphasizing its sustainable sensing applications in healthcare, environmental monitoring, and food safety. Researchers have developed innovative sensing platforms for detecting pathogens, pollutants, and contaminants by leveraging the paper's unique properties, such as biodegradability and affordability. These portable, low-cost sensors facilitate rapid diagnostics and on-site analysis, making them invaluable tools for resource-limited settings. This review discusses the fabrication techniques, principles, and applications of paper microfluidics, showcasing its potential to address pressing challenges and enhance human health and environmental sustainability.
Collapse
Affiliation(s)
- Sanjay Kumar
- Durham School of Architectural Engineering and Construction, University of Nebraska-Lincoln, Scott Campus, Omaha, NE 68182-0816, USA
| | - Jyoti Bala Kaushal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Heow Pueh Lee
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore;
| |
Collapse
|
4
|
Chen Y, Zhu Y, Peng C, Wang X, Wu J, Chen H, Xu J. A Point-of-Care Nucleic Acid Quantification Method by Counting Light Spots Formed by LAMP Amplicons on a Paper Membrane. BIOSENSORS 2024; 14:139. [PMID: 38534246 DOI: 10.3390/bios14030139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024]
Abstract
Nucleic acid quantification, allowing us to accurately know the copy number of target nucleic acids, is significant for diagnosis, food safety, agricultural production, and environmental protection. However, current digital quantification methods require expensive instruments or complicated microfluidic chips, making it difficult to popularize in the point-of-care detection. Paper is an inexpensive and readily available material. In this study, we propose a simple and cost-effective paper membrane-based digital loop-mediated isothermal amplification (LAMP) method for nucleic acid quantification. In the presence of DNA fluorescence dyes, the high background signals will cover up the amplicons-formed bright spots. To reduce the background fluorescence signals, a quencher-fluorophore duplex was introduced in LAMP primers to replace non-specific fluorescence dyes. After that, the amplicons-formed spots on the paper membrane can be observed; thus, the target DNA can be quantified by counting the spots. Take Vibrio parahaemolyticus DNA detection as an instance, a good linear relationship is obtained between the light spots and the copy numbers of DNA. The paper membrane-based digital LAMP detection can detect 100 copies target DNA per reaction within 30 min. Overall, the proposed nucleic acid quantification method has the advantages of a simple workflow, short sample-in and answer-out time, low cost, and high signal-to-noise, which is promising for application in resourced limited areas.
Collapse
Affiliation(s)
- Yanju Chen
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yuanyuan Zhu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Cheng Peng
- Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaofu Wang
- Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jian Wu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Huan Chen
- Hangzhou Digital-Micro Biotech Co., Ltd., Hangzhou 311215, China
| | - Junfeng Xu
- Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
5
|
Lehnert T, Gijs MAM. Microfluidic systems for infectious disease diagnostics. LAB ON A CHIP 2024; 24:1441-1493. [PMID: 38372324 DOI: 10.1039/d4lc00117f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Microorganisms, encompassing both uni- and multicellular entities, exhibit remarkable diversity as omnipresent life forms in nature. They play a pivotal role by supplying essential components for sustaining biological processes across diverse ecosystems, including higher host organisms. The complex interactions within the human gut microbiota are crucial for metabolic functions, immune responses, and biochemical signalling, particularly through the gut-brain axis. Viruses also play important roles in biological processes, for example by increasing genetic diversity through horizontal gene transfer when replicating inside living cells. On the other hand, infection of the human body by microbiological agents may lead to severe physiological disorders and diseases. Infectious diseases pose a significant burden on global healthcare systems, characterized by substantial variations in the epidemiological landscape. Fast spreading antibiotic resistance or uncontrolled outbreaks of communicable diseases are major challenges at present. Furthermore, delivering field-proven point-of-care diagnostic tools to the most severely affected populations in low-resource settings is particularly important and challenging. New paradigms and technological approaches enabling rapid and informed disease management need to be implemented. In this respect, infectious disease diagnostics taking advantage of microfluidic systems combined with integrated biosensor-based pathogen detection offers a host of innovative and promising solutions. In this review, we aim to outline recent activities and progress in the development of microfluidic diagnostic tools. Our literature research mainly covers the last 5 years. We will follow a classification scheme based on the human body systems primarily involved at the clinical level or on specific pathogen transmission modes. Important diseases, such as tuberculosis and malaria, will be addressed more extensively.
Collapse
Affiliation(s)
- Thomas Lehnert
- Laboratory of Microsystems, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland.
| | - Martin A M Gijs
- Laboratory of Microsystems, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland.
| |
Collapse
|
6
|
Jiang KP, Bennett S, Heiniger EK, Kumar S, Yager P. UbiNAAT: a multiplexed point-of-care nucleic acid diagnostic platform for rapid at-home pathogen detection. LAB ON A CHIP 2024; 24:492-504. [PMID: 38164805 DOI: 10.1039/d3lc00753g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The COVID-19 pandemic increased demands for respiratory disease testing to facilitate treatment and limit transmission, demonstrating in the process that most existing test options were too complex and expensive to perform in point-of-care or home scenarios. Lab-based molecular techniques can detect viral RNA in respiratory illnesses but are expensive and require trained personnel, while affordable antigen-based home tests lack sensitivity for early detection in newly infected or asymptomatic individuals. The few home RNA detection tests deployed were prohibitively expensive. Here, we demonstrate a point-of-care, paper-based rapid analysis device that simultaneously detects multiple viral RNAs; it is demonstrated on two common respiratory viruses (COVID-19 and influenza A) spiked onto a commercial nasal swab. The automated device requires no sample preparation by the user after insertion of the swab, minimizing user operation steps. We incorporated lyophilized amplification reagents immobilized in a porous matrix, a novel thermally actuated valve for multiplexed fluidic control, a printed circuit board that performs on-device lysis and amplification within a cell-phone-sized disposable device. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) products are visualized via fluorescent dyes using a modified cell phone, resulting in detection of as few as 104 viral copies per swab across both pathogens within 30 minutes. This integrated platform could be commercialized in a form that would be inexpensive, portable, and sensitive; it can readily be multiplexed to detect as many as 8 different RNA or DNA sequences, and adapted to any desired RNA or DNA detection assays.
Collapse
Affiliation(s)
- Kevin P Jiang
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA.
| | - Steven Bennett
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA.
| | - Erin K Heiniger
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA.
| | - Sujatha Kumar
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA.
| | - Paul Yager
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA.
| |
Collapse
|
7
|
Lee S, Bi L, Chen H, Lin D, Mei R, Wu Y, Chen L, Joo SW, Choo J. Recent advances in point-of-care testing of COVID-19. Chem Soc Rev 2023; 52:8500-8530. [PMID: 37999922 DOI: 10.1039/d3cs00709j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Advances in microfluidic device miniaturization and system integration contribute to the development of portable, handheld, and smartphone-compatible devices. These advancements in diagnostics have the potential to revolutionize the approach to detect and respond to future pandemics. Accordingly, herein, recent advances in point-of-care testing (POCT) of coronavirus disease 2019 (COVID-19) using various microdevices, including lateral flow assay strips, vertical flow assay strips, microfluidic channels, and paper-based microfluidic devices, are reviewed. However, visual determination of the diagnostic results using only microdevices leads to many false-negative results due to the limited detection sensitivities of these devices. Several POCT systems comprising microdevices integrated with portable optical readers have been developed to address this issue. Since the outbreak of COVID-19, effective POCT strategies for COVID-19 based on optical detection methods have been established. They can be categorized into fluorescence, surface-enhanced Raman scattering, surface plasmon resonance spectroscopy, and wearable sensing. We introduced next-generation pandemic sensing methods incorporating artificial intelligence that can be used to meet global health needs in the future. Additionally, we have discussed appropriate responses of various testing devices to emerging infectious diseases and prospective preventive measures for the post-pandemic era. We believe that this review will be helpful for preparing for future infectious disease outbreaks.
Collapse
Affiliation(s)
- Sungwoon Lee
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Liyan Bi
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, 264003, China
| | - Hao Chen
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Dong Lin
- School of Pharmacy, Bianzhou Medical University, Yantai, 264003, China
| | - Rongchao Mei
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Yantai 264003, China
| | - Yixuan Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Yantai 264003, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Yantai 264003, China
- School of Pharmacy, Bianzhou Medical University, Yantai, 264003, China
| | - Sang-Woo Joo
- Department of Information Communication, Materials, and Chemistry Convergence Technology, Soongsil University, Seoul 06978, South Korea
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| |
Collapse
|
8
|
Yigci D, Atçeken N, Yetisen AK, Tasoglu S. Loop-Mediated Isothermal Amplification-Integrated CRISPR Methods for Infectious Disease Diagnosis at Point of Care. ACS OMEGA 2023; 8:43357-43373. [PMID: 38027359 PMCID: PMC10666231 DOI: 10.1021/acsomega.3c04422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/26/2023] [Indexed: 12/01/2023]
Abstract
Infectious diseases continue to pose an imminent threat to global public health, leading to high numbers of deaths every year and disproportionately impacting developing countries where access to healthcare is limited. Biological, environmental, and social phenomena, including climate change, globalization, increased population density, and social inequity, contribute to the emergence of novel communicable diseases. Rapid and accurate diagnoses of infectious diseases are essential to preventing the transmission of infectious diseases. Although some commonly used diagnostic technologies provide highly sensitive and specific measurements, limitations including the requirement for complex equipment/infrastructure and refrigeration, the need for trained personnel, long sample processing times, and high cost remain unresolved. To ensure global access to affordable diagnostic methods, loop-mediated isothermal amplification (LAMP) integrated clustered regularly interspaced short palindromic repeat (CRISPR) based pathogen detection has emerged as a promising technology. Here, LAMP-integrated CRISPR-based nucleic acid detection methods are discussed in point-of-care (PoC) pathogen detection platforms, and current limitations and future directions are also identified.
Collapse
Affiliation(s)
- Defne Yigci
- School
of Medicine, Koç University, Istanbul 34450, Turkey
| | - Nazente Atçeken
- Koç
University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Turkey
| | - Ali K. Yetisen
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| | - Savas Tasoglu
- Koç
University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Turkey
- Boğaziçi
Institute of Biomedical Engineering, Boğaziçi
University, Istanbul 34684, Turkey
- Koç
University Arçelik Research Center for Creative Industries
(KUAR), Koç University, Istanbul 34450, Turkey
- Physical
Intelligence Department, Max Planck Institute
for Intelligent Systems, Stuttgart 70569, Germany
| |
Collapse
|
9
|
Liu CW, Tsutsui H. Sample-to-answer sensing technologies for nucleic acid preparation and detection in the field. SLAS Technol 2023; 28:302-323. [PMID: 37302751 DOI: 10.1016/j.slast.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/16/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Efficient sample preparation and accurate disease diagnosis under field conditions are of great importance for the early intervention of diseases in humans, animals, and plants. However, in-field preparation of high-quality nucleic acids from various specimens for downstream analyses, such as amplification and sequencing, is challenging. Thus, developing and adapting sample lysis and nucleic acid extraction protocols suitable for portable formats have drawn significant attention. Similarly, various nucleic acid amplification techniques and detection methods have also been explored. Combining these functions in an integrated platform has resulted in emergent sample-to-answer sensing systems that allow effective disease detection and analyses outside a laboratory. Such devices have a vast potential to improve healthcare in resource-limited settings, low-cost and distributed surveillance of diseases in food and agriculture industries, environmental monitoring, and defense against biological warfare and terrorism. This paper reviews recent advances in portable sample preparation technologies and facile detection methods that have been / or could be adopted into novel sample-to-answer devices. In addition, recent developments and challenges of commercial kits and devices targeting on-site diagnosis of various plant diseases are discussed.
Collapse
Affiliation(s)
- Chia-Wei Liu
- Department of Mechanical Engineering, University of California, Riverside, CA 92521, USA
| | - Hideaki Tsutsui
- Department of Mechanical Engineering, University of California, Riverside, CA 92521, USA; Department of Bioengineering, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
10
|
Reynolds J, Loeffler RS, Leigh PJ, Lopez HA, Yoon JY. Recent Uses of Paper Microfluidics in Isothermal Nucleic Acid Amplification Tests. BIOSENSORS 2023; 13:885. [PMID: 37754119 PMCID: PMC10526735 DOI: 10.3390/bios13090885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
Isothermal nucleic acid amplification tests have recently gained popularity over polymerase chain reaction (PCR), as they only require a constant temperature and significantly simplify nucleic acid amplification. Recently, numerous attempts have been made to incorporate paper microfluidics into these isothermal amplification tests. Paper microfluidics (including lateral flow strips) have been used to extract nucleic acids, amplify the target gene, and detect amplified products, all toward automating the process. We investigated the literature from 2020 to the present, i.e., since the onset of the COVID-19 pandemic, during which a significant surge in isothermal amplification tests has been observed. Paper microfluidic detection has been used extensively for recombinase polymerase amplification (RPA) and its related methods, along with loop-mediated isothermal amplification (LAMP) and rolling circle amplification (RCA). Detection was conducted primarily with colorimetric and fluorometric methods, although a few publications demonstrated flow distance- and surface-enhanced Raman spectroscopic (SERS)-based detection. A good number of publications could be found that demonstrated both amplification and detection on paper microfluidic platforms. A small number of publications could be found that showed extraction or all three procedures (i.e., fully integrated systems) on paper microfluidic platforms, necessitating the need for future work.
Collapse
Affiliation(s)
- Jocelyn Reynolds
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA; (J.R.); (R.S.L.); (P.J.L.)
| | - Reid S. Loeffler
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA; (J.R.); (R.S.L.); (P.J.L.)
| | - Preston J. Leigh
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA; (J.R.); (R.S.L.); (P.J.L.)
| | - Hannah A. Lopez
- Department of Neuroscience, The University of Arizona, Tucson, AZ 85721, USA;
| | - Jeong-Yeol Yoon
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA; (J.R.); (R.S.L.); (P.J.L.)
| |
Collapse
|
11
|
Jena S, Gaur D, Dubey NC, Tripathi BP. Advances in paper based isothermal nucleic acid amplification tests for water-related infectious diseases. Int J Biol Macromol 2023:125089. [PMID: 37245760 DOI: 10.1016/j.ijbiomac.2023.125089] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/14/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Water-associated or water-related infectious disease outbreaks are caused by pathogens such as bacteria, viruses, and protozoa, which can be transmitted through contaminated water sources, poor sanitation practices, or insect vectors. Low- and middle-income countries bear the major burden of these infections due to inadequate hygiene and subpar laboratory facilities, making it challenging to monitor and detect infections in a timely manner. However, even developed countries are not immune to these diseases, as inadequate wastewater management and contaminated drinking water supplies can also contribute to disease outbreaks. Nucleic acid amplification tests have proven to be effective for early disease intervention and surveillance of both new and existing diseases. In recent years, paper-based diagnostic devices have made significant progress and become an essential tool in detecting and managing water-associated diseases. In this review, we highlight the importance of paper and its variants as a diagnostic tool and discuss the properties, design modifications, and various paper-based device formats developed and used for detecting water-associated pathogens.
Collapse
Affiliation(s)
- Saikrushna Jena
- Department of Materials Science & Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Divya Gaur
- Department of Materials Science & Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Nidhi C Dubey
- Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Bijay P Tripathi
- Department of Materials Science & Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
12
|
de Olazarra AS, Wang SX. Advances in point-of-care genetic testing for personalized medicine applications. BIOMICROFLUIDICS 2023; 17:031501. [PMID: 37159750 PMCID: PMC10163839 DOI: 10.1063/5.0143311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/12/2023] [Indexed: 05/11/2023]
Abstract
Breakthroughs within the fields of genomics and bioinformatics have enabled the identification of numerous genetic biomarkers that reflect an individual's disease susceptibility, disease progression, and therapy responsiveness. The personalized medicine paradigm capitalizes on these breakthroughs by utilizing an individual's genetic profile to guide treatment selection, dosing, and preventative care. However, integration of personalized medicine into routine clinical practice has been limited-in part-by a dearth of widely deployable, timely, and cost-effective genetic analysis tools. Fortunately, the last several decades have been characterized by tremendous progress with respect to the development of molecular point-of-care tests (POCTs). Advances in microfluidic technologies, accompanied by improvements and innovations in amplification methods, have opened new doors to health monitoring at the point-of-care. While many of these technologies were developed with rapid infectious disease diagnostics in mind, they are well-suited for deployment as genetic testing platforms for personalized medicine applications. In the coming years, we expect that these innovations in molecular POCT technology will play a critical role in enabling widespread adoption of personalized medicine methods. In this work, we review the current and emerging generations of point-of-care molecular testing platforms and assess their applicability toward accelerating the personalized medicine paradigm.
Collapse
Affiliation(s)
- A. S. de Olazarra
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA
| | - S. X. Wang
- Author to whom correspondence should be addressed:
| |
Collapse
|
13
|
Sritong N, Sala de Medeiros M, Basing LA, Linnes JC. Promise and perils of paper-based point-of-care nucleic acid detection for endemic and pandemic pathogens. LAB ON A CHIP 2023; 23:888-912. [PMID: 36688463 PMCID: PMC10028599 DOI: 10.1039/d2lc00554a] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
From HIV and influenza to emerging pathogens like COVID-19, each new infectious disease outbreak has highlighted the need for massively-scalable testing that can be performed outside centralized laboratory settings at the point-of-care (POC) in order to prevent, track, and monitor endemic and pandemic threats. Nucleic acid amplification tests (NAATs) are highly sensitive and can be developed and scaled within weeks while protein-based rapid tests require months for production. Combining NAATs with paper-based detection platforms are promising due to the manufacturability, scalability, and simplicity of each of these components. Typically, paper-based NAATs consist of three sequential steps: sample collection and preparation, amplification of DNA or RNA from pathogens of interest, and detection. However, these exist within a larger ecosystem of sample collection and interpretation workflow, usability, and manufacturability which can be vastly perturbed during a pandemic emergence. This review aims to explore the challenges of paper-based NAATs covering sample-to-answer procedures along with three main types of clinical samples; blood, urine, and saliva, as well as broader operational, scale up, and regulatory aspects of device development and implementation. To fill the technological gaps in paper-based NAATs, a sample-in-result-out system that incorporates the integrated sample collection, sample preparation, and integrated internal amplification control while also balancing needs of users and manufacturability upfront in the early design process is required.
Collapse
Affiliation(s)
- Navaporn Sritong
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| | | | - Laud Anthony Basing
- Department of Medical Diagnostics, Kwame Nkrumah University of Science and Technology, Kumasi, Ashanti, Ghana
| | - Jacqueline C Linnes
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
14
|
Kieffer C, Genot AJ, Rondelez Y, Gines G. Molecular Computation for Molecular Classification. Adv Biol (Weinh) 2023; 7:e2200203. [PMID: 36709492 DOI: 10.1002/adbi.202200203] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/28/2022] [Indexed: 01/30/2023]
Abstract
DNA as an informational polymer has, for the past 30 years, progressively become an essential molecule to rationally build chemical reaction networks endowed with powerful signal-processing capabilities. Whether influenced by the silicon world or inspired by natural computation, molecular programming has gained attention for diagnosis applications. Of particular interest for this review, molecular classifiers have shown promising results for disease pattern recognition and sample classification. Because both input integration and computation are performed in a single tube, at the molecular level, this low-cost approach may come as a complementary tool to molecular profiling strategies, where all biomarkers are quantified independently using high-tech instrumentation. After introducing the elementary components of molecular classifiers, some of their experimental implementations are discussed either using digital Boolean logic or analog neural network architectures.
Collapse
Affiliation(s)
- Coline Kieffer
- Laboratoire Gulliver, UMR 7083, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, Paris, 75005, France
| | - Anthony J Genot
- LIMMS, CNRS-Institute of Industrial Science, IRL 2820, University of Tokyo, Tokyo, 153-8505, Japan
| | - Yannick Rondelez
- Laboratoire Gulliver, UMR 7083, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, Paris, 75005, France
| | - Guillaume Gines
- Laboratoire Gulliver, UMR 7083, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, Paris, 75005, France
| |
Collapse
|
15
|
Jawla J, Kumar RR, Mendiratta SK, Agarwal RK, Singh P, Saxena V, Kumari S, Kumar D. A novel paper based loop mediated isothermal amplification and lateral flow assay (LAMP‐LFA) for point‐of‐care detection of buffalo tissue origin in diverse foods. J Food Saf 2023. [DOI: 10.1111/jfs.13038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jyoti Jawla
- Division of Livestock Products Technology ICAR—Indian Veterinary Research Institute, Izatnagar Bareilly India
| | - Rajiv Ranjan Kumar
- Division of Livestock Products Technology ICAR—Indian Veterinary Research Institute, Izatnagar Bareilly India
| | - Sanjod Kumar Mendiratta
- Division of Livestock Products Technology ICAR—Indian Veterinary Research Institute, Izatnagar Bareilly India
| | - Ravi Kant Agarwal
- Division of Livestock Products Technology ICAR—Indian Veterinary Research Institute, Izatnagar Bareilly India
| | - Praveen Singh
- Division of Veterinary Biotechnology ICAR—Indian Veterinary Research Institute, Izatnagar Bareilly India
| | - Vikas Saxena
- Center for Vascular & Inflammatory Diseases, School of Medicine University of Maryland Baltimore Maryland USA
| | - Sarita Kumari
- Division of Livestock Products Technology ICAR—Indian Veterinary Research Institute, Izatnagar Bareilly India
| | - Dhananjay Kumar
- Division of Livestock Products Technology ICAR—Indian Veterinary Research Institute, Izatnagar Bareilly India
| |
Collapse
|
16
|
Hou C, Jin Y, Wu H, Li P, Liu L, Zheng K, Wang C. Alternative strategies for Chlamydia treatment: Promising non-antibiotic approaches. Front Microbiol 2022; 13:987662. [PMID: 36504792 PMCID: PMC9727249 DOI: 10.3389/fmicb.2022.987662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/04/2022] [Indexed: 11/24/2022] Open
Abstract
Chlamydia is an obligate intracellular bacterium where most species are pathogenic and infectious, causing various infectious diseases and complications in humans and animals. Antibiotics are often recommended for the clinical treatment of chlamydial infections. However, extensive research has shown that antibiotics may not be sufficient to eliminate or inhibit infection entirely and have some potential risks, including antibiotic resistance. The impact of chlamydial infection and antibiotic misuse should not be underestimated in public health. This study explores the possibility of new therapeutic techniques, including a review of recent studies on preventing and suppressing chlamydial infection by non-antibiotic compounds.
Collapse
Affiliation(s)
- Chen Hou
- School of Basic Medicine, Hengyang Medical College, Institute of Pathogenic Biology, University of South China, Hengyang, China
| | - Yingqi Jin
- School of Basic Medicine, Hengyang Medical College, Institute of Pathogenic Biology, University of South China, Hengyang, China
| | - Hua Wu
- Department of Clinical Laboratory, Affiliated Hengyang Hospital of Southern Medical University, Hengyang Central Hospital, Hengyang, China
| | - Pengyi Li
- School of Basic Medicine, Hengyang Medical College, Institute of Pathogenic Biology, University of South China, Hengyang, China
| | - Longyun Liu
- School of Basic Medicine, Hengyang Medical College, Institute of Pathogenic Biology, University of South China, Hengyang, China
| | - Kang Zheng
- Department of Clinical Laboratory, Affiliated Hengyang Hospital of Southern Medical University, Hengyang Central Hospital, Hengyang, China,*Correspondence: Kang Zheng
| | - Chuan Wang
- School of Basic Medicine, Hengyang Medical College, Institute of Pathogenic Biology, University of South China, Hengyang, China,Chuan Wang
| |
Collapse
|
17
|
Ganguli A, Lim J, Mostafa A, Saavedra C, Rayabharam A, Aluru NR, Wester M, White KC, Kumar J, McGuffin R, Frederick A, Valera E, Bashir R. A culture-free biphasic approach for sensitive and rapid detection of pathogens in dried whole-blood matrix. Proc Natl Acad Sci U S A 2022; 119:e2209607119. [PMID: 36161889 PMCID: PMC9546527 DOI: 10.1073/pnas.2209607119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
Blood stream infections (BSIs) cause high mortality, and their rapid detection remains a significant diagnostic challenge. Timely and informed administration of antibiotics can significantly improve patient outcomes. However, blood culture, which takes up to 5 d for a negative result, followed by PCR remains the gold standard in diagnosing BSI. Here, we introduce a new approach to blood-based diagnostics where large blood volumes can be rapidly dried, resulting in inactivation of the inhibitory components in blood. Further thermal treatments then generate a physical microscale and nanoscale fluidic network inside the dried matrix to allow access to target nucleic acid. The amplification enzymes and primers initiate the reaction within the dried blood matrix through these networks, precluding any need for conventional nucleic acid purification. High heme background is confined to the solid phase, while amplicons are enriched in the clear supernatant (liquid phase), giving fluorescence change comparable to purified DNA reactions. We demonstrate single-molecule sensitivity using a loop-mediated isothermal amplification reaction in our platform and detect a broad spectrum of pathogens, including gram-positive methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteria, gram-negative Escherichia coli bacteria, and Candida albicans (fungus) from whole blood with a limit of detection (LOD) of 1.2 colony-forming units (CFU)/mL from 0.8 to 1 mL of starting blood volume. We validated our assay using 63 clinical samples (100% sensitivity and specificity) and significantly reduced sample-to-result time from over 20 h to <2.5 h. The reduction in instrumentation complexity and costs compared to blood culture and alternate molecular diagnostic platforms can have broad applications in healthcare systems in developed world and resource-limited settings.
Collapse
Affiliation(s)
- Anurup Ganguli
- Department of Bioengineering, University of Illinois at Urbana–Champaign, Urbana, IL-61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, IL-61801, USA
| | - Jongwon Lim
- Department of Bioengineering, University of Illinois at Urbana–Champaign, Urbana, IL-61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, IL-61801, USA
| | - Ariana Mostafa
- Department of Bioengineering, University of Illinois at Urbana–Champaign, Urbana, IL-61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, IL-61801, USA
| | - Carlos Saavedra
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, IL-61801, USA
| | - Archith Rayabharam
- Department of Mechanical Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, IL-61801, USA
| | - Narayana R. Aluru
- Department of Mechanical Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, IL-61801, USA
| | - Matthew Wester
- Department of Bioengineering, University of Illinois at Urbana–Champaign, Urbana, IL-61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, IL-61801, USA
| | - Karen C. White
- Critical Care, Carle Foundation Hospital, Urbana, IL-61801, USA
- Department of Clinical Science, Carle Illinois College of Medicine, Urbana, IL-61801, USA
| | - James Kumar
- Hospital Medicine, Carle Foundation Hospital, Urbana, IL-61801, USA
- Department of Clinical Science, Carle Illinois College of Medicine, Urbana, IL-61801, USA
| | - Reubin McGuffin
- Specimen Procurement Service Center in the Research Department, Carle Foundation Hospital, Urbana, IL-61801, USA
| | - Ann Frederick
- Microbiology, Carle Foundation Hospital, Urbana,IL-61801, USA
| | - Enrique Valera
- Department of Bioengineering, University of Illinois at Urbana–Champaign, Urbana, IL-61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, IL-61801, USA
| | - Rashid Bashir
- Department of Bioengineering, University of Illinois at Urbana–Champaign, Urbana, IL-61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, IL-61801, USA
- Department of Mechanical Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, IL-61801, USA
- Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, IL-61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana–Champaign, Urbana, IL-61801,USA
- Department of Biomedical and Translational Science, Carle Illinois College of Medicine, Urbana, IL-61801, USA
| |
Collapse
|
18
|
Jiménez-Rodríguez MG, Silva-Lance F, Parra-Arroyo L, Medina-Salazar DA, Martínez-Ruiz M, Melchor-Martínez EM, Martínez-Prado MA, Iqbal HMN, Parra-Saldívar R, Barceló D, Sosa-Hernández JE. Biosensors for the detection of disease outbreaks through wastewater-based epidemiology. Trends Analyt Chem 2022; 155:116585. [PMID: 35281332 PMCID: PMC8898787 DOI: 10.1016/j.trac.2022.116585] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Wastewater-Based Epidemiology (WBE) is a novel community-wide monitoring tool that provides comprehensive real-time data of the public and environmental health status and can contribute to public health interventions, including those related to infectious disease outbreaks (e.g., the ongoing COVID-19 pandemic). Nonetheless, municipalities without centralized laboratories are likely still not able to process WBE samples. Biosensors are a potentially cost-effective solution to monitor the development of diseases through WBE to prevent local outbreaks. This review discusses the economic and technical feasibility of eighteen recently developed biosensors for the detection and monitoring of infectious disease agents in wastewater, prospecting the prevention of future pandemics.
Collapse
Affiliation(s)
| | - Fernando Silva-Lance
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Lizeth Parra-Arroyo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - D Alejandra Medina-Salazar
- Tecnológico Nacional de México-Instituto Tecnológico de Durango (TecNM-ITD), Department of Chemical and Biochemical Engineering, Blvd. Felipe Pescador 1830 Ote. Col. Nueva Vizcaya, Durango, Dgo, 34080, Mexico
| | - Manuel Martínez-Ruiz
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | | | - María Adriana Martínez-Prado
- Tecnológico Nacional de México-Instituto Tecnológico de Durango (TecNM-ITD), Department of Chemical and Biochemical Engineering, Blvd. Felipe Pescador 1830 Ote. Col. Nueva Vizcaya, Durango, Dgo, 34080, Mexico
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | | | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18-26, 08034, Barcelona, Spain
- Catalan Institute for Water Research (ICRA-CERCA), Parc Científic i Tecnològic de la Universitat de Girona, C/Emili Grahit, 101, Edifici H2O, 17003, Girona, Spain
- College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | | |
Collapse
|
19
|
Chen C, Meng H, Guo T, Deshpande S, Chen H. Development of Paper Microfluidics with 3D-Printed PDMS Barriers for Flow Control. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40286-40296. [PMID: 36001301 DOI: 10.1021/acsami.2c08541] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Paper microfluidics has been extensively exploited as a powerful tool for environmental and medical detection applications. Both flow delay and compatibility with either polar or non-polar reagents are indispensable for the automation of detections requiring multiple reaction steps. This article reports the systematic studies of a 3D-printing protocol, characterization, and application of both the partially and fully penetrated polydimethylsiloxane (PDMS) barriers for flexible flow control in paper microfluidics. The physical parameters of PDMS barriers printed using a simple liquid dispenser were found related to the printing pressure, speed, diffusion time after printing, baking temperature, and PDMS viscosity. The capability of PDMS barriers to confine the flow of non-polar solvents was demonstrated using oil flow in both wax- and PDMS-surrounded channels. It was identified that the minimum width of channels to prevent leakage was 470 ± 54 μm, which was as narrow as that fabricated using stamps from lithography. Both the partially penetrated barriers (PPBs) and constriction channels were of the capability to delay flow in paper microfluidics. Additionally, an in silico investigation led to the further understanding that the reduction of channel cross-section resulting from PPBs was the primary reason for flow delay. Our results suggest that increasing the penetration depth of the barriers is more efficient in delaying flow than increasing the PPB length. Finally, devices with four inlet channels and 0-6 PPBs across each channel were successfully applied in flow delay for sequential fluid delivery. These results improve the understanding of the major factors, affecting the 3D PDMS barrier fabrication and the resulting flow control in paper microfluidics, providing practical implications for applications in various fields.
Collapse
Affiliation(s)
- Chang Chen
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Haixu Meng
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Tianruo Guo
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Siddharth Deshpande
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Huaying Chen
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| |
Collapse
|
20
|
Seder I, Ham KM, Jun BH, Kim SJ. Mechanical Timer-Actuated Fluidic Dispensing System: Applications to an Automated Multistep Lateral Flow Immunoassay with High Sensitivity. Anal Chem 2022; 94:12884-12889. [PMID: 36069050 DOI: 10.1021/acs.analchem.2c02945] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, we present a fluidic dispensing system that can automate the sequential fluidic delivery of multiple reagents for lateral flow assays. Highly sensitive assays typically require multiple solution-based sequences, including washing steps and signal amplification. However, implementation of these types of sequences on an automated and highly sensitive point-of-care testing (POCT) platform remains challenging. Our platform consists of two disposable cartridges with reagent chambers and a test strip and an instrument that has a mechanical timer to actuate the cam-follower-gear components. The timer rotation sequentially shifts the position of the chambers and loads the reagents to the test paper strip. The dispensing intervals are controlled at a variation of <1% within a total actuation time of 60 min. Unlike other POCT devices, the timing of fluid delivery in our timer-actuated platform is not dependent on the selection of substrates and reagents, and the unique approach to fluidic delivery results in no reagent overlap or carryover, minimal reagent loss, and highly accurate fluidic timing control for highly sensitive solution-based assays. As a model application, the proposed platform applies a gold enhancement solution to amplify the detection signal and detect prostate-specific antigen with a limit of detection of 86 pg/mL within 27 min. This platform provides an opportunity for solution-based POCT applications with high sensitivity, thereby satisfying the requirement for user-friendly operations in resource-limited settings.
Collapse
Affiliation(s)
- Islam Seder
- Department of Mechanical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyeong-Min Ham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Sung-Jin Kim
- Department of Mechanical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
21
|
Nnachi RC, Sui N, Ke B, Luo Z, Bhalla N, He D, Yang Z. Biosensors for rapid detection of bacterial pathogens in water, food and environment. ENVIRONMENT INTERNATIONAL 2022; 166:107357. [PMID: 35777116 DOI: 10.1016/j.envint.2022.107357] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/10/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Conventional techniques (e.g., culture-based method) for bacterial detection typically require a central laboratory and well-trained technicians, which may take several hours or days. However, recent developments within various disciplines of science and engineering have led to a major paradigm shift in how microorganisms can be detected. The analytical sensors which are widely used for medical applications in the literature are being extended for rapid and on-site monitoring of the bacterial pathogens in food, water and the environment. Especially, within the low-resource settings such as low and middle-income countries, due to the advantages of low cost, rapidness and potential for field-testing, their use is indispensable for sustainable development of the regions. Within this context, this paper discusses analytical methods and biosensors which can be used to ensure food safety, water quality and environmental monitoring. In brief, most of our discussion is focused on various rapid sensors including biosensors and microfluidic chips. The analytical performances such as the sensitivity, specificity and usability of these sensors, as well as a brief comparison with the conventional techniques for bacteria detection, form the core part of the discussion. Furthermore, we provide a holistic viewpoint on how future research should focus on exploring the synergy of different sensing technologies by developing an integrated multiplexed, sensitive and accurate sensors that will enable rapid detection for food safety, water and environmental monitoring.
Collapse
Affiliation(s)
- Raphael Chukwuka Nnachi
- School of Water, Energy and Environment, Cranfield University, Milton Keynes MK43, 0AL, United Kingdom
| | - Ning Sui
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Bowen Ke
- Laboratory of Anesthesiology & Critical Care Medicine, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 61004, PR China
| | - Zhenhua Luo
- School of Water, Energy and Environment, Cranfield University, Milton Keynes MK43, 0AL, United Kingdom
| | - Nikhil Bhalla
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, Shore Road, BT37 0QB Jordanstown, Northern Ireland, United Kingdom; Healthcare Technology Hub, Ulster University, Jordanstown Shore Road, BT37 0QB, Northern Ireland, United Kingdom
| | - Daping He
- School of Science, Wuhan University of Technology, Wuhan 430070, China
| | - Zhugen Yang
- School of Water, Energy and Environment, Cranfield University, Milton Keynes MK43, 0AL, United Kingdom.
| |
Collapse
|
22
|
Mannier C, Yoon JY. Progression of LAMP as a Result of the COVID-19 Pandemic: Is PCR Finally Rivaled? BIOSENSORS 2022; 12:492. [PMID: 35884295 PMCID: PMC9312731 DOI: 10.3390/bios12070492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 06/01/2023]
Abstract
Reflecting on the past three years and the coronavirus disease 19 (COVID-19) pandemic, varying global tactics offer insights into the most effective public-health responses. In the US, specifically, rapid and widespread testing was quickly prioritized to lower restrictions sooner. Essentially, only two types of COVID-19 diagnostic tests were publicly employed during the peak pandemic: the rapid antigen test and reverse transcription polymerase chain reaction (RT-PCR). However, neither test ideally suited the situation, as rapid antigen tests are far too inaccurate, and RT-PCR tests require skilled personnel and sophisticated equipment, leading to long wait times. Loop-mediated isothermal amplification (LAMP) is another exceptionally accurate nucleic acid amplification test (NAAT) that offers far quicker time to results. However, RT-LAMP COVID-19 tests have not been embraced as extensively as rapid antigen tests or RT-PCR. This review will investigate the performance of current RT-LAMP-based COVID-19 tests and summarize the reasons behind the hesitancy to embrace RT-LAMP instead of RT-PCR. We will also look at other LAMP platforms to explore possible improvements in the accuracy and portability of LAMP, which could be applied to COVID-19 diagnostics and future public-health outbreaks.
Collapse
Affiliation(s)
| | - Jeong-Yeol Yoon
- Department of Biomedical Engineering, the University of Arizona, Tucson, AZ 85721, USA;
| |
Collapse
|
23
|
Yang SM, Lv S, Zhang W, Cui Y. Microfluidic Point-of-Care (POC) Devices in Early Diagnosis: A Review of Opportunities and Challenges. SENSORS (BASEL, SWITZERLAND) 2022; 22:1620. [PMID: 35214519 PMCID: PMC8875995 DOI: 10.3390/s22041620] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 12/12/2022]
Abstract
The early diagnosis of infectious diseases is critical because it can greatly increase recovery rates and prevent the spread of diseases such as COVID-19; however, in many areas with insufficient medical facilities, the timely detection of diseases is challenging. Conventional medical testing methods require specialized laboratory equipment and well-trained operators, limiting the applicability of these tests. Microfluidic point-of-care (POC) equipment can rapidly detect diseases at low cost. This technology could be used to detect diseases in underdeveloped areas to reduce the effects of disease and improve quality of life in these areas. This review details microfluidic POC equipment and its applications. First, the concept of microfluidic POC devices is discussed. We then describe applications of microfluidic POC devices for infectious diseases, cardiovascular diseases, tumors (cancer), and chronic diseases, and discuss the future incorporation of microfluidic POC devices into applications such as wearable devices and telemedicine. Finally, the review concludes by analyzing the present state of the microfluidic field, and suggestions are made. This review is intended to call attention to the status of disease treatment in underdeveloped areas and to encourage the researchers of microfluidics to develop standards for these devices.
Collapse
Grants
- BRA2017216, BE2018627,2020THRC-GD-7, D18003, LM201603, KFKT2018001 the 333 project of Jiangsu Province in 2017, the Primary Research & Development Plan of Jiangsu Province, the Taihu Lake talent plan, the Complex and Intelligent Research Center, School of Mechanical and Power Engineering, East China University of Scien
- NSFC81971511 the National Natural Sciences Foundation of China
Collapse
Affiliation(s)
- Shih-Mo Yang
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China; (S.-M.Y.); (S.L.)
| | - Shuangsong Lv
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China; (S.-M.Y.); (S.L.)
| | - Wenjun Zhang
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada;
| | - Yubao Cui
- Clinical Research Center, The Affiliated Wuxi People’s Hospital, Nanjing Medical University, 299 Qingyang Road, Wuxi 214023, China
| |
Collapse
|
24
|
Hsieh K, Melendez JH, Gaydos CA, Wang TH. Bridging the gap between development of point-of-care nucleic acid testing and patient care for sexually transmitted infections. LAB ON A CHIP 2022; 22:476-511. [PMID: 35048928 PMCID: PMC9035340 DOI: 10.1039/d1lc00665g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The incidence rates of sexually transmitted infections (STIs), including the four major curable STIs - chlamydia, gonorrhea, trichomoniasis and, syphilis - continue to increase globally, causing medical cost burden and morbidity especially in low and middle-income countries (LMIC). There have seen significant advances in diagnostic testing, but commercial antigen-based point-of-care tests (POCTs) are often insufficiently sensitive and specific, while near-point-of-care (POC) instruments that can perform sensitive and specific nucleic acid amplification tests (NAATs) are technically complex and expensive, especially for LMIC. Thus, there remains a critical need for NAAT-based STI POCTs that can improve diagnosis and curb the ongoing epidemic. Unfortunately, the development of such POCTs has been challenging due to the gap between researchers developing new technologies and healthcare providers using these technologies. This review aims to bridge this gap. We first present a short introduction of the four major STIs, followed by a discussion on the current landscape of commercial near-POC instruments for the detection of these STIs. We present relevant research toward addressing the gaps in developing NAAT-based STI POCT technologies and supplement this discussion with technologies for HIV and other infectious diseases, which may be adapted for STIs. Additionally, as case studies, we highlight the developmental trajectory of two different POCT technologies, including one approved by the United States Food and Drug Administration (FDA). Finally, we offer our perspectives on future development of NAAT-based STI POCT technologies.
Collapse
Affiliation(s)
- Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Johan H Melendez
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Charlotte A Gaydos
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tza-Huei Wang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
25
|
Mi F, Hu C, Wang Y, Wang L, Peng F, Geng P, Guan M. Recent advancements in microfluidic chip biosensor detection of foodborne pathogenic bacteria: a review. Anal Bioanal Chem 2022; 414:2883-2902. [PMID: 35064302 PMCID: PMC8782221 DOI: 10.1007/s00216-021-03872-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/16/2021] [Accepted: 12/28/2021] [Indexed: 12/19/2022]
Abstract
Foodborne diseases caused by pathogenic bacteria pose a serious threat to human health. Early and rapid detection of foodborne pathogens is an urgent task for preventing disease outbreaks. Microfluidic devices are simple, automatic, and portable miniaturized systems. Compared with traditional techniques, microfluidic devices have attracted much attention because of their high efficiency and convenience in the concentration and detection of foodborne pathogens. This article firstly reviews the bio-recognition elements integrated on microfluidic chips in recent years and the progress of microfluidic chip development for pathogen pretreatment. Furthermore, the research progress of microfluidic technology based on optical and electrochemical sensors for the detection of foodborne pathogenic bacteria is summarized and discussed. Finally, the future prospects for the application and challenges of microfluidic chips based on biosensors are presented.
Collapse
Affiliation(s)
- Fang Mi
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830017, China
- Department of Cuisine and Tourism, Xinjiang Bingtuan Xingxin Vocational and Technical College, Urumqi, 830074, China
| | - Cunming Hu
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830017, China
| | - Ying Wang
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830017, China
| | - Li Wang
- Department of Cuisine and Tourism, Xinjiang Bingtuan Xingxin Vocational and Technical College, Urumqi, 830074, China
| | - Fei Peng
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830017, China
| | - PengFei Geng
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830017, China
| | - Ming Guan
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830017, China.
| |
Collapse
|
26
|
Seder I, Jo A, Jun BH, Kim SJ. Movable Layer Device for Rapid Detection of Influenza a H1N1 Virus Using Highly Bright Multi-Quantum Dot-Embedded Particles and Magnetic Beads. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:284. [PMID: 35055303 PMCID: PMC8778663 DOI: 10.3390/nano12020284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/04/2022]
Abstract
Preventing the rapid spread of viral infectious diseases has become a major concern for global health. In this study, we present a microfluidic platform that performs an immunoassay of viral antigens in a simple, automated, yet highly sensitive manner. The device uses silica particles embedded with highly bright quantum dots (QD2) and performs the immunoassay with a vertically movable top layer and a rotating bottom layer. Through the motion of the layers and the surface tension in the liquids, reagents move from top chambers to bottom chambers and mix homogeneously. A tip in the top layer with a mobile permanent magnet moves the immune complexes comprising the magnetic beads, virus particles, and QD2 between the bottom chambers. In this way, our automated device achieves a highly sensitive magnetic bead-based sandwich immunoassay for the influenza A H1N1 virus within 32.5 min. The detection limit of our method is 5.1 × 10-4 hemagglutination units, which is 2 × 103 times more sensitive than that of the conventional hemagglutination method and is comparable to PCR. Our device is useful for the rapid and sensitive detection of infectious diseases in point-of-care applications and resource-limited environments.
Collapse
Affiliation(s)
- Islam Seder
- Department of Mechanical Engineering, Konkuk University, Seoul 05029, Korea;
| | - Ahla Jo
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea;
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea;
| | - Sung-Jin Kim
- Department of Mechanical Engineering, Konkuk University, Seoul 05029, Korea;
| |
Collapse
|
27
|
Verma N, Walia S, Pandya A. Micro/nanofluidic devices for DNA/RNA detection and separation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 186:85-107. [PMID: 35033291 DOI: 10.1016/bs.pmbts.2021.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The development and research have ramped up at a greater speed than ever in the field of diseases diagnosis. Still there is struggle in developing early detection techniques which uses complex biomolecules like RNA, DNA and proteins in order to detect diseases caused by bacteria, viruses or fungi. Until now separation techniques used before detection rely on traditional techniques like electrophoresis etc. which often require centralized services. Although efforts are made in developing devices that is capable enough on carrying out separation and detection based on microfluidic (MF) and nanofluidic (NF) or lab on chip. Hence, in this chapter, we have discussed about the advancement, limitations and future steps that needs to be taken to flourish the field of NF and MF for the detection and separation of nucleic acid.
Collapse
Affiliation(s)
- Nidhi Verma
- Department of Engineering and Physical Sciences, Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Sakshi Walia
- Department of Biological Sciences and Biotechnology, Institute of Advanced Research, Gandhinagar, India
| | - Alok Pandya
- Department of Engineering and Physical Sciences, Institute of Advanced Research, Gandhinagar, Gujarat, India.
| |
Collapse
|
28
|
Bakhshandeh B, Sorboni SG, Haghighi DM, Ahmadi F, Dehghani Z, Badiei A. New analytical methods using carbon-based nanomaterials for detection of Salmonella species as a major food poisoning organism in water and soil resources. CHEMOSPHERE 2022; 287:132243. [PMID: 34537453 DOI: 10.1016/j.chemosphere.2021.132243] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/21/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Salmonella is one of the most prevalent causing agents of food- and water-borne illnesses, posing an ongoing public health threat. These food-poisoning bacteria contaminate the resources at different stages such as production, aggregation, processing, distribution, as well as marketing. According to the high incidence of salmonellosis, effective strategies for early-stage detection are required at the highest priority. Since traditional culture-dependent methods and polymerase chain reaction are labor-intensive and time-taking, identification of early and accurate detection of Salmonella in food and water samples can prevent significant health economic burden and lessen the costs. The immense potentiality of biosensors in diagnosis, such as simplicity in operation, the ability of multiplex analysis, high sensitivity, and specificity, have driven research in the evolution of nanotechnology, innovating newer biosensors. Carbon nanomaterials enhance the detection sensitivity of biosensors while obtaining low levels of detection limits due to their possibility to immobilize huge amounts of bioreceptor units at insignificant volume. Moreover, conjugation and functionalization of carbon nanomaterials with metallic nanoparticles or organic molecules enables surface functional groups. According to these remarkable properties, carbon nanomaterials are widely exploited in the development of novel biosensors. To be specific, carbon nanomaterials such as carbon nanotubes, graphene and fullerenes function as transducers in the analyte recognition process or surface immobilizers for biomolecules. Herein the potential application of carbon nanomaterials in the development of novel Salmonella biosensors platforms is reviewed comprehensively. In addition, the current problems and critical analyses of the future perspectives of Salmonella biosensors are discussed.
Collapse
Affiliation(s)
- Behnaz Bakhshandeh
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran; Department of Microbiology, Faculty of Biology, College of Science, University of Tehran, Tehran, Iran.
| | | | - Dorrin Mohtadi Haghighi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ahmadi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Zahra Dehghani
- Department of Cellular and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
29
|
Arshavsky-Graham S, Segal E. Lab-on-a-Chip Devices for Point-of-Care Medical Diagnostics. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022. [PMID: 32435872 DOI: 10.1007/10_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
The recent coronavirus (COVID-19) pandemic has underscored the need to move from traditional lab-centralized diagnostics to point-of-care (PoC) settings. Lab-on-a-chip (LoC) platforms facilitate the translation to PoC settings via the miniaturization, portability, integration, and automation of multiple assay functions onto a single chip. For this purpose, paper-based assays and microfluidic platforms are currently being extensively studied, and much focus is being directed towards simplifying their design while simultaneously improving multiplexing and automation capabilities. Signal amplification strategies are being applied to improve the performance of assays with respect to both sensitivity and selectivity, while smartphones are being integrated to expand the analytical power of the technology and promote its accessibility. In this chapter, we review the main technologies in the field of LoC platforms for PoC medical diagnostics and survey recent approaches for improving these assays.
Collapse
Affiliation(s)
- Sofia Arshavsky-Graham
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel
- Institute of Technical Chemistry, Leibniz University Hannover, Hanover, Germany
| | - Ester Segal
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel.
- The Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
30
|
Jia Y, Sun H, Tian J, Song Q, Zhang W. Paper-Based Point-of-Care Testing of SARS-CoV-2. Front Bioeng Biotechnol 2021; 9:773304. [PMID: 34912791 PMCID: PMC8667078 DOI: 10.3389/fbioe.2021.773304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022] Open
Abstract
The COVID-19 pandemic has resulted in significant global social and economic disruption. The highly transmissive nature of the disease makes rapid and reliable detection critically important. Point-of-care (POC) tests involve performing diagnostic tests outside of a laboratory that produce a rapid and reliable result. It therefore allows the diagnostics of diseases at or near the patient site. Paper-based POC tests have been gaining interest in recent years as they allow rapid, low-cost detection without the need for external instruments. In this review, we focus on the development of paper-based POC devices for the detection of SARS-CoV-2. The review first introduces the principles of detection methods that are available to paper-based devices. It then summarizes the state-of-the-art paper devices and their analytical performances. The advantages and drawbacks among methods are also discussed. Finally, limitations of the existing devices are discussed, and prospects are given with the hope to identify research opportunities and directions in the field. We hope this review will be helpful for researchers to develop a clinically useful and economically efficient paper-based platform that can be used for rapid, accurate on-site diagnosis to aid in identifying acute infections and eventually contain the COVID-19 pandemic.
Collapse
Affiliation(s)
- Yuan Jia
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, China
| | - Hao Sun
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, China
| | - Jinpeng Tian
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, China
| | - Qiuming Song
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, China
| | - Wenwei Zhang
- Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen, China
| |
Collapse
|
31
|
Iliescu FS, Ionescu AM, Gogianu L, Simion M, Dediu V, Chifiriuc MC, Pircalabioru GG, Iliescu C. Point-of-Care Testing-The Key in the Battle against SARS-CoV-2 Pandemic. MICROMACHINES 2021; 12:1464. [PMID: 34945314 PMCID: PMC8708595 DOI: 10.3390/mi12121464] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/11/2022]
Abstract
The deleterious effects of the coronavirus disease 2019 (COVID-19) pandemic urged the development of diagnostic tools to manage the spread of disease. Currently, the "gold standard" involves the use of quantitative real-time polymerase chain reaction (qRT-PCR) for SARS-CoV-2 detection. Even though it is sensitive, specific and applicable for large batches of samples, qRT-PCR is labour-intensive, time-consuming, requires trained personnel and is not available in remote settings. This review summarizes and compares the available strategies for COVID-19: serological testing, Point-of-Care Testing, nanotechnology-based approaches and biosensors. Last but not least, we address the advantages and limitations of these methods as well as perspectives in COVID-19 diagnostics. The effort is constantly focused on understanding the quickly changing landscape of available diagnostic testing of COVID-19 at the clinical levels and introducing reliable and rapid screening point of care testing. The last approach is key to aid the clinical decision-making process for infection control, enhancing an appropriate treatment strategy and prompt isolation of asymptomatic/mild cases. As a viable alternative, Point-of-Care Testing (POCT) is typically low-cost and user-friendly, hence harbouring tremendous potential for rapid COVID-19 diagnosis.
Collapse
Affiliation(s)
- Florina Silvia Iliescu
- National Institute for Research and Development in Microtechnologies, IMT-Bucharest, 077190 Bucharest, Romania; (F.S.I.); (A.M.I.); (L.G.); (M.S.); (V.D.)
| | - Ana Maria Ionescu
- National Institute for Research and Development in Microtechnologies, IMT-Bucharest, 077190 Bucharest, Romania; (F.S.I.); (A.M.I.); (L.G.); (M.S.); (V.D.)
- Department of Biochemical Engineering, University College London, Bernard Katz Building, London WC1E 6BT, UK
| | - Larisa Gogianu
- National Institute for Research and Development in Microtechnologies, IMT-Bucharest, 077190 Bucharest, Romania; (F.S.I.); (A.M.I.); (L.G.); (M.S.); (V.D.)
| | - Monica Simion
- National Institute for Research and Development in Microtechnologies, IMT-Bucharest, 077190 Bucharest, Romania; (F.S.I.); (A.M.I.); (L.G.); (M.S.); (V.D.)
| | - Violeta Dediu
- National Institute for Research and Development in Microtechnologies, IMT-Bucharest, 077190 Bucharest, Romania; (F.S.I.); (A.M.I.); (L.G.); (M.S.); (V.D.)
| | - Mariana Carmen Chifiriuc
- Research Institute of University of Bucharest, University of Bucharest, 050095 Bucharest, Romania;
- The Romanian Academy, 25, Calea Victoriei, Sector 1, 010071 Bucharest, Romania
| | | | - Ciprian Iliescu
- National Institute for Research and Development in Microtechnologies, IMT-Bucharest, 077190 Bucharest, Romania; (F.S.I.); (A.M.I.); (L.G.); (M.S.); (V.D.)
- Academy of Romanian Scientists, 010071 Bucharest, Romania
- Faculty of Applied Chemistry and Material Science, University “Politehnica” of Bucharest, 011061 Bucharest, Romania
| |
Collapse
|
32
|
Isothermal Recombinase Polymerase Amplification (RPA) of E. coli gDNA in Commercially Fabricated PCB-Based Microfluidic Platforms. MICROMACHINES 2021; 12:mi12111387. [PMID: 34832799 PMCID: PMC8619769 DOI: 10.3390/mi12111387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/04/2021] [Accepted: 11/10/2021] [Indexed: 12/04/2022]
Abstract
Printed circuit board (PCB) technology has been recently proposed as a convenient platform for seamlessly integrating electronics and microfluidics in the same substrate, thus facilitating the introduction of integrated and low-cost microfluidic devices to the market, thanks to the inherent upscaling potential of the PCB industry. Herein, a microfluidic chip, encompassing on PCB both a meandering microchannel and microheaters to accommodate recombinase polymerase amplification (RPA), is designed and commercially fabricated for the first time on PCB. The developed microchip is validated for RPA-based amplification of two E. coli target genes compared to a conventional thermocycler. The RPA performance of the PCB microchip was found to be well-comparable to that of a thermocycler yet with a remarkably lower power consumption (0.6 W). This microchip is intended for seamless integration with biosensors in the same PCB substrate for the development of a point-of-care (POC) molecular diagnostics platform.
Collapse
|
33
|
Asif M, Xu Y, Xiao F, Sun Y. Diagnosis of COVID-19, vitality of emerging technologies and preventive measures. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 423:130189. [PMID: 33994842 PMCID: PMC8103773 DOI: 10.1016/j.cej.2021.130189] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/22/2021] [Accepted: 05/02/2021] [Indexed: 05/18/2023]
Abstract
Coronavirus diseases-2019 (COVID-19) is becoming increasing serious and major threat to public health concerns. As a matter of fact, timely testing enhances the life-saving judgments on treatment and isolation of COVID-19 infected individuals at possible earliest stage which ultimately suppresses spread of infectious diseases. Many government and private research institutes and manufacturing companies are striving to develop reliable tests for prompt quantification of SARS-CoV-2. In this review, we summarize existing diagnostic methods as manual laboratory-based nucleic acid assays for COVID-19 and their limitations. Moreover, vitality of rapid and point of care serological tests together with emerging biosensing technologies has been discussed in details. Point of care tests with characteristics of rapidity, accurateness, portability, low cost and requiring non-specific devices possess great suitability in COVID-19 diagnosis and detection. Besides, this review also sheds light on several preventive measures to track and manage disease spread in current and future outbreaks of diseases.
Collapse
Affiliation(s)
- Muhammad Asif
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yun Xu
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430205, China
| | - Fei Xiao
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430205, China
| | - Yimin Sun
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
34
|
Cao L, Guo X, Mao P, Ren Y, Li Z, You M, Hu J, Tian M, Yao C, Li F, Xu F. A Portable Digital Loop-Mediated Isothermal Amplification Platform Based on Microgel Array and Hand-Held Reader. ACS Sens 2021; 6:3564-3574. [PMID: 34606243 DOI: 10.1021/acssensors.1c00603] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Digital polymerase chain reaction (dPCR) has found widespread applications in molecular diagnosis of various diseases owing to its sensitive single-molecule detection capability. However, the existing dPCR platforms rely on the auxiliary procedure to disperse DNA samples, which needs complicated operation, expensive apparatus, and consumables. Besides, the complex and costly dPCR readers also impede the applications of dPCR for point-of-care testing (POCT). Herein, we developed a portable digital loop-mediated isothermal amplification (dLAMP) platform, integrating a microscale hydrogel (microgel) array chip for sample partition, a miniaturized heater for DNA amplification, and a hand-held reader for digital readout. In the platform, the chip with thousands of isolated microgels holds the capability of self-absorption and partition of DNA samples, thus avoiding auxiliary equipment and professional personnel operations. Using the integrated dLAMP platform, λDNA templates have been quantified with a good linear detection range of 2-1000 copies/μL and a detection limit of 1 copy/μL. As a demonstration, the epidermal growth factor receptor L858R gene mutation, a crucial factor for the susceptibility of the tyrosine kinase inhibitor in non-small-cell lung cancer treatment, has been accurately identified by the dLAMP platform with a spiked plasma sample. This work shows that the developed dLAMP platform provides a low-cost, facile, and user-friendly solution for the absolute quantification of DNA, showing great potential for the POCT of nucleic acids.
Collapse
Affiliation(s)
- Lei Cao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, China
| | - Xiaojin Guo
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, China
- Department of Chemistry, School of Science, Xi’an Jiaotong University, Xi’an 710049, China
| | - Ping Mao
- Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yulin Ren
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, China
| | - Zedong Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, China
| | - Minli You
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, China
| | - Jie Hu
- Suzhou DiYinAn Biotechnology Company Ltd., Suzhou 215000, China
| | - Miao Tian
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, China
| | - Chunyan Yao
- Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Fei Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
35
|
Kumar S, Gallagher R, Bishop J, Kline E, Buser J, Lafleur L, Shah K, Lutz B, Yager P. Long-term dry storage of enzyme-based reagents for isothermal nucleic acid amplification in a porous matrix for use in point-of-care diagnostic devices. Analyst 2021; 145:6875-6886. [PMID: 32820749 DOI: 10.1039/d0an01098g] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nucleic acid amplification test (NAAT)-based point-of-care (POC) devices are rapidly growing for use in low-resource settings. However, key challenges are the ability to store the enzyme-based reagents in dry form in the device and the long-term stability of those reagents at elevated temperatures, especially where ambient temperatures could be as high as 45 °C. Here, we describe a set of excipients including a combination of trehalose, polyethylene glycol and dextran, and a method for using them that allows long-term dry storage of enzyme-based reagents for an isothermal strand displacement amplification (iSDA) reaction in a porous matrix. Various porous materials, including nitrocellulose, cellulose, and glass fiber, were tested. Co-dried reagents for iSDA always included those that amplified the ldh1 gene in Staphylococcus aureus (a polymerase and a nicking enzyme, 4 primers, dNTPs and a buffer). Reagents also either included a capture probe and a streptavidin-Au label required for lateral flow (LF) detection after amplification, or a fluorescent probe used for real-time detection. The reagents showed the best stability in a glass fiber matrix when stored in the presence of 10% trehalose and 2.5% dextran. The reagents were stable for over a year at ∼22 °C as determined by lateral flow detection and gel electrophoresis. The reagents also exhibited excellent stability after 360 h at 45 °C; the assay still detected as few as 10 copies of ldh1 gene target by lateral flow detection, and 50 copies with real-time fluorescence detection. These results demonstrate the potential for incorporation of amplification reagents in dry form in point-of-care devices for use in a wide range of settings.
Collapse
Affiliation(s)
- Sujatha Kumar
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, Washington, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Figueredo F, Stolowicz F, Vojnov A, Coltro WKT, Larocca L, Carrillo C, Cortón E. Towards a versatile and economic Chagas Disease point-of-care testing system, by integrating loop-mediated isothermal amplification and contactless/label-free conductivity detection. PLoS Negl Trop Dis 2021; 15:e0009406. [PMID: 33989282 PMCID: PMC8153438 DOI: 10.1371/journal.pntd.0009406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/26/2021] [Accepted: 04/25/2021] [Indexed: 01/17/2023] Open
Abstract
Rapid diagnosis by using small, simple, and portable devices could represent one of the best strategies to limit the damage and contain the spread of viral, bacterial or protozoa diseases, principally when they can be transmitted by air and are highly contagious, as some respiratory viruses are. The presence of antibodies in blood or serum samples is not the best option for deciding when a person must be quarantined to stop transmission of disease, given that cured patients have antibodies, so the best diagnosis methods rely on the use of nucleic acid amplification procedures. Here we present a very simple device and detection principle, based on paper discs coupled to contactless conductivity (C4D) sensors, can provide fast and easy diagnostics that are needed when an epidemic outbreak develops. The paper device presented here solves one of the main drawbacks that nucleic acid amplification tests have when they are performed outside of central laboratories. As the device is sealed before amplification and integrally disposed in this way, amplimers release cannot occur, allowing repetitive testing in the physician’s practice, ambulances, or other places that are not prepared to avoid cross-contamination of new samples. The use of very low volume samples allows efficient reagent use and the development of low cost, simple, and disposable point-of-care diagnostic systems. In 2005, the World Health Organization (WHO) recognized Chagas Disease as a neglected tropical disease. Meanwhile the serological tests, recommended by WHO, can be performed for chronic disease diagnosis, the nucleic acid amplification tests must be performed for the detection of the acute phase of the disease. Although the existing laboratory diagnosis tests for Chagas Disease are sensitive and highly reproducible, they cannot be performed in rural, low infrastructure environments, where this disease prevails. In this sense, the use of simple and portable analytical devices may be able to offer an affordable solution to this problem, allowing fast sampling, diagnosis and treatment prescription in one simple and fast intervention, as the performed by short term medical missions. In this study we show for the first time a diagnosis test comprising low cost materials and employing a contactless and label-free conductivity detection system that is used to read the result of a nucleic acid amplification reaction. The test showed high sensitivity for Chagas Disease diagnosis showing the potential to be used in rural and low income places.
Collapse
Affiliation(s)
- Federico Figueredo
- Biological Chemistry Department, Science School and IQUIBICEN (FCEN–UBA-CONICET), Argentine
- Science and Technology Institute Cesar Milstein (ICT–Milstein–CONICET), Argentine
| | - Fabiana Stolowicz
- Science and Technology Institute Cesar Milstein (ICT–Milstein–CONICET), Argentine
| | - Adrián Vojnov
- Science and Technology Institute Cesar Milstein (ICT–Milstein–CONICET), Argentine
| | - Wendell K. T. Coltro
- Chemistry Institute, Federal University of Goiás, Campus Samambaia, Goiânia, Brazil
- National Institute of Science and Technology in Bioanalytics, Campinas, Brazil
| | - Luciana Larocca
- Science and Technology Institute Cesar Milstein (ICT–Milstein–CONICET), Argentine
| | - Carolina Carrillo
- Science and Technology Institute Cesar Milstein (ICT–Milstein–CONICET), Argentine
| | - Eduardo Cortón
- Biological Chemistry Department, Science School and IQUIBICEN (FCEN–UBA-CONICET), Argentine
- * E-mail:
| |
Collapse
|
37
|
Uddin SM, Sayad A, Chan J, Huynh DH, Skafidas E, Kwan P. Heater Integrated Lab-on-a-Chip Device for Rapid HLA Alleles Amplification towards Prevention of Drug Hypersensitivity. SENSORS (BASEL, SWITZERLAND) 2021; 21:3413. [PMID: 34068416 PMCID: PMC8153606 DOI: 10.3390/s21103413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022]
Abstract
HLA-B*15:02 screening before administering carbamazepine is recommended to prevent life-threatening hypersensitivity. However, the unavailability of a point-of-care device impedes this screening process. Our research group previously developed a two-step HLA-B*15:02 detection technique utilizing loop-mediated isothermal amplification (LAMP) on the tube, which requires two-stage device development to translate into a portable platform. Here, we report a heater-integrated lab-on-a-chip device for the LAMP amplification, which can rapidly detect HLA-B alleles colorimetrically. A gold-patterned micro-sized heater was integrated into a 3D-printed chip, allowing microfluidic pumping, valving, and incubation. The performance of the chip was tested with color dye. Then LAMP assay was conducted with human genomic DNA samples of known HLA-B genotypes in the LAMP-chip parallel with the tube assay. The LAMP-on-chip results showed a complete match with the LAMP-on-tube assay, demonstrating the detection system's concurrence.
Collapse
Affiliation(s)
- Shah Mukim Uddin
- Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, Melbourne, VIC 3050, Australia; (S.M.U.); (J.C.); (D.H.H.); (E.S.)
| | - Abkar Sayad
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia;
| | - Jianxiong Chan
- Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, Melbourne, VIC 3050, Australia; (S.M.U.); (J.C.); (D.H.H.); (E.S.)
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia;
| | - Duc Hau Huynh
- Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, Melbourne, VIC 3050, Australia; (S.M.U.); (J.C.); (D.H.H.); (E.S.)
| | - Efstratios Skafidas
- Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, Melbourne, VIC 3050, Australia; (S.M.U.); (J.C.); (D.H.H.); (E.S.)
- Department of Electrical and Electronic Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Patrick Kwan
- Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, Melbourne, VIC 3050, Australia; (S.M.U.); (J.C.); (D.H.H.); (E.S.)
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia;
- Department of Electrical and Electronic Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
38
|
Hoang TX, Phan LMT, Vo TAT, Cho S. Advanced Signal-Amplification Strategies for Paper-Based Analytical Devices: A Comprehensive Review. Biomedicines 2021; 9:biomedicines9050540. [PMID: 34066112 PMCID: PMC8150371 DOI: 10.3390/biomedicines9050540] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 11/21/2022] Open
Abstract
Paper-based analytical devices (PADs) have emerged as a promising approach to point-of-care (POC) detection applications in biomedical and clinical diagnosis owing to their advantages, including cost-effectiveness, ease of use, and rapid responses as well as for being equipment-free, disposable, and user-friendly. However, the overall sensitivity of PADs still remains weak, posing a challenge for biosensing scientists exploiting them in clinical applications. This review comprehensively summarizes the current applicable potential of PADs, focusing on total signal-amplification strategies that have been applied widely in PADs involving colorimetry, luminescence, surface-enhanced Raman scattering, photoacoustic, photothermal, and photoelectrochemical methods as well as nucleic acid-mediated PAD modifications. The advances in signal-amplification strategies in terms of signal-enhancing principles, sensitivity, and time reactions are discussed in detail to provide an overview of these approaches to using PADs in biosensing applications. Furthermore, a comparison of these methods summarizes the potential for scientists to develop superior PADs. This review serves as a useful inside look at the current progress and prospective directions in using PADs for clinical diagnostics and provides a better source of reference for further investigations, as well as innovations, in the POC diagnostics field.
Collapse
Affiliation(s)
- Thi Xoan Hoang
- Department of Life Science, Gachon University, Seongnam 13120, Gyeonggi-do, Korea; (T.X.H.); (T.A.T.V.)
| | - Le Minh Tu Phan
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Gyeonggi-do, Korea
- School of Medicine and Pharmacy, The University of Danang, Danang 550000, Vietnam
- Correspondence: (L.M.T.P.); (S.C.)
| | - Thuy Anh Thu Vo
- Department of Life Science, Gachon University, Seongnam 13120, Gyeonggi-do, Korea; (T.X.H.); (T.A.T.V.)
| | - Sungbo Cho
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Gyeonggi-do, Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
- Correspondence: (L.M.T.P.); (S.C.)
| |
Collapse
|
39
|
Wang C, Liu M, Wang Z, Li S, Deng Y, He N. Point-of-care diagnostics for infectious diseases: From methods to devices. NANO TODAY 2021; 37:101092. [PMID: 33584847 PMCID: PMC7864790 DOI: 10.1016/j.nantod.2021.101092] [Citation(s) in RCA: 218] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 05/04/2023]
Abstract
The current widespread of COVID-19 all over the world, which is caused by SARS-CoV-2 virus, has again emphasized the importance of development of point-of-care (POC) diagnostics for timely prevention and control of the pandemic. Compared with labor- and time-consuming traditional diagnostic methods, POC diagnostics exhibit several advantages such as faster diagnostic speed, better sensitivity and specificity, lower cost, higher efficiency and ability of on-site detection. To achieve POC diagnostics, developing POC detection methods and correlated POC devices is the key and should be given top priority. The fast development of microfluidics, micro electro-mechanical systems (MEMS) technology, nanotechnology and materials science, have benefited the production of a series of portable, miniaturized, low cost and highly integrated POC devices for POC diagnostics of various infectious diseases. In this review, various POC detection methods for the diagnosis of infectious diseases, including electrochemical biosensors, fluorescence biosensors, surface-enhanced Raman scattering (SERS)-based biosensors, colorimetric biosensors, chemiluminiscence biosensors, surface plasmon resonance (SPR)-based biosensors, and magnetic biosensors, were first summarized. Then, recent progresses in the development of POC devices including lab-on-a-chip (LOC) devices, lab-on-a-disc (LOAD) devices, microfluidic paper-based analytical devices (μPADs), lateral flow devices, miniaturized PCR devices, and isothermal nucleic acid amplification (INAA) devices, were systematically discussed. Finally, the challenges and future perspectives for the design and development of POC detection methods and correlated devices were presented. The ultimate goal of this review is to provide new insights and directions for the future development of POC diagnostics for the management of infectious diseases and contribute to the prevention and control of infectious pandemics like COVID-19.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Mei Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Zhifei Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Nongyue He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, PR China
| |
Collapse
|
40
|
Tarim EA, Karakuzu B, Oksuz C, Sarigil O, Kizilkaya M, Al-Ruweidi MKAA, Yalcin HC, Ozcivici E, Tekin HC. Microfluidic-based virus detection methods for respiratory diseases. EMERGENT MATERIALS 2021; 4:143-168. [PMID: 33786415 PMCID: PMC7992628 DOI: 10.1007/s42247-021-00169-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/19/2021] [Indexed: 05/04/2023]
Abstract
With the recent SARS-CoV-2 outbreak, the importance of rapid and direct detection of respiratory disease viruses has been well recognized. The detection of these viruses with novel technologies is vital in timely prevention and treatment strategies for epidemics and pandemics. Respiratory viruses can be detected from saliva, swab samples, nasal fluid, and blood, and collected samples can be analyzed by various techniques. Conventional methods for virus detection are based on techniques relying on cell culture, antigen-antibody interactions, and nucleic acids. However, these methods require trained personnel as well as expensive equipment. Microfluidic technologies, on the other hand, are one of the most accurate and specific methods to directly detect respiratory tract viruses. During viral infections, the production of detectable amounts of relevant antibodies takes a few days to weeks, hampering the aim of prevention. Alternatively, nucleic acid-based methods can directly detect the virus-specific RNA or DNA region, even before the immune response. There are numerous methods to detect respiratory viruses, but direct detection techniques have higher specificity and sensitivity than other techniques. This review aims to summarize the methods and technologies developed for microfluidic-based direct detection of viruses that cause respiratory infection using different detection techniques. Microfluidics enables the use of minimal sample volumes and thereby leading to a time, cost, and labor effective operation. Microfluidic-based detection technologies provide affordable, portable, rapid, and sensitive analysis of intact virus or virus genetic material, which is very important in pandemic and epidemic events to control outbreaks with an effective diagnosis.
Collapse
Affiliation(s)
- E. Alperay Tarim
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Betul Karakuzu
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Cemre Oksuz
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Oyku Sarigil
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Melike Kizilkaya
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | | | | | - Engin Ozcivici
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - H. Cumhur Tekin
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
- METU MEMS Center, Ankara, Turkey
| |
Collapse
|
41
|
Eftekhari A, Alipour M, Chodari L, Maleki Dizaj S, Ardalan M, Samiei M, Sharifi S, Zununi Vahed S, Huseynova I, Khalilov R, Ahmadian E, Cucchiarini M. A Comprehensive Review of Detection Methods for SARS-CoV-2. Microorganisms 2021; 9:232. [PMID: 33499379 PMCID: PMC7911200 DOI: 10.3390/microorganisms9020232] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/11/2021] [Accepted: 01/16/2021] [Indexed: 12/14/2022] Open
Abstract
Recently, the outbreak of the coronavirus disease 2019 (COVID-19), caused by the SARS-CoV-2 virus, in China and its subsequent spread across the world has caused numerous infections and deaths and disrupted normal social activity. Presently, various techniques are used for the diagnosis of SARS-CoV-2 infection, with various advantages and weaknesses to each. In this paper, we summarize promising methods, such as reverse transcription-polymerase chain reaction (RT-PCR), serological testing, point-of-care testing, smartphone surveillance of infectious diseases, nanotechnology-based approaches, biosensors, amplicon-based metagenomic sequencing, smartphone, and wastewater-based epidemiology (WBE) that can also be utilized for the detection of SARS-CoV-2. In addition, we discuss principles, advantages, and disadvantages of these detection methods, and highlight the potential methods for the development of additional techniques and products for early and fast detection of SARS-CoV-2.
Collapse
Affiliation(s)
- Aziz Eftekhari
- Pharmacology and Toxicology Department, Maragheh University of Medical Sciences, Maragheh 5515878151, Iran;
| | - Mahdieh Alipour
- Dental and Periodontal Research Center, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz 5166615731, Iran; (M.A.); (S.M.D.); (S.S.)
| | - Leila Chodari
- Physiology Department, Faculty of Medicine, Urmia University of Medical Sciences, Urmia 571478334, Iran;
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz 5166615731, Iran; (M.A.); (S.M.D.); (S.S.)
| | - Mohammadreza Ardalan
- Kidney Research Center, Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz 5166615731, Iran; (M.A.); (S.Z.V.)
| | - Mohammad Samiei
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz 5166615731, Iran;
| | - Simin Sharifi
- Dental and Periodontal Research Center, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz 5166615731, Iran; (M.A.); (S.M.D.); (S.S.)
| | - Sepideh Zununi Vahed
- Kidney Research Center, Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz 5166615731, Iran; (M.A.); (S.Z.V.)
| | - Irada Huseynova
- Institute of Molecular Biology & Biotechnologies, Azerbaijan National Academy of Sciences, 11 Izzat Nabiyev, Baku AZ 1073, Azerbaijan;
| | - Rovshan Khalilov
- Department of Biophysics and Biochemistry, Baku State University, Baku AZ 1148, Azerbaijan;
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, 82100 Drohobych, Ukraine
| | - Elham Ahmadian
- Kidney Research Center, Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz 5166615731, Iran; (M.A.); (S.Z.V.)
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg/Saar, Germany
| |
Collapse
|
42
|
Garneret P, Coz E, Martin E, Manuguerra JC, Brient-Litzler E, Enouf V, González Obando DF, Olivo-Marin JC, Monti F, van der Werf S, Vanhomwegen J, Tabeling P. Performing point-of-care molecular testing for SARS-CoV-2 with RNA extraction and isothermal amplification. PLoS One 2021; 16:e0243712. [PMID: 33428641 PMCID: PMC7799764 DOI: 10.1371/journal.pone.0243712] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 11/27/2020] [Indexed: 11/23/2022] Open
Abstract
To respond to the urgent need for COVID-19 testing, countries perform nucleic acid amplification tests (NAAT) for the detection of SARS-CoV-2 in centralized laboratories. Real-time RT-PCR (Reverse transcription-Polymerase Chain Reaction), used to amplify and detect the viral RNA., is considered, as the current gold standard for diagnostics. It is an efficient process, but the complex engineering required for automated RNA extraction and temperature cycling makes it incompatible for use in point of care settings [1]. In the present work, by harnessing progress made in the past two decades in isothermal amplification and paper microfluidics, we created a portable test, in which SARS-CoV-2 RNA is extracted, amplified isothermally by RT-LAMP (Loop-mediated Isothermal Amplification), and detected using intercalating dyes or fluorescent probes. Depending on the viral load in the tested samples, the detection takes between twenty minutes and one hour. Using a set of 16 pools of naso-pharyngal swab eluates, we estimated a limit of detection comparable to real-time RT-PCR (i.e. 1 genome copies per microliter of clinical sample) and no cross-reaction with eight major respiratory viruses currently circulating in Europe. We designed and fabricated an easy-to-use portable device called "COVIDISC" to carry out the test at the point of care. The low cost of the materials along with the absence of complex equipment will expedite the widespread dissemination of this device. What is proposed here is a new efficient tool to help managing the pandemics.
Collapse
|
43
|
Paul R, Ostermann E, Wei Q. Advances in point-of-care nucleic acid extraction technologies for rapid diagnosis of human and plant diseases. Biosens Bioelectron 2020; 169:112592. [PMID: 32942143 PMCID: PMC7476893 DOI: 10.1016/j.bios.2020.112592] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/22/2022]
Abstract
Global health and food security constantly face the challenge of emerging human and plant diseases caused by bacteria, viruses, fungi, and other pathogens. Disease outbreaks such as SARS, MERS, Swine Flu, Ebola, and COVID-19 (on-going) have caused suffering, death, and economic losses worldwide. To prevent the spread of disease and protect human populations, rapid point-of-care (POC) molecular diagnosis of human and plant diseases play an increasingly crucial role. Nucleic acid-based molecular diagnosis reveals valuable information at the genomic level about the identity of the disease-causing pathogens and their pathogenesis, which help researchers, healthcare professionals, and patients to detect the presence of pathogens, track the spread of disease, and guide treatment more efficiently. A typical nucleic acid-based diagnostic test consists of three major steps: nucleic acid extraction, amplification, and amplicon detection. Among these steps, nucleic acid extraction is the first step of sample preparation, which remains one of the main challenges when converting laboratory molecular assays into POC tests. Sample preparation from human and plant specimens is a time-consuming and multi-step process, which requires well-equipped laboratories and skilled lab personnel. To perform rapid molecular diagnosis in resource-limited settings, simpler and instrument-free nucleic acid extraction techniques are required to improve the speed of field detection with minimal human intervention. This review summarizes the recent advances in POC nucleic acid extraction technologies. In particular, this review focuses on novel devices or methods that have demonstrated applicability and robustness for the isolation of high-quality nucleic acid from complex raw samples, such as human blood, saliva, sputum, nasal swabs, urine, and plant tissues. The integration of these rapid nucleic acid preparation methods with miniaturized assay and sensor technologies would pave the road for the "sample-in-result-out" diagnosis of human and plant diseases, especially in remote or resource-limited settings.
Collapse
Affiliation(s)
- Rajesh Paul
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Emily Ostermann
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Qingshan Wei
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA; Emerging Plant Disease and Global Food Security Cluster, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
44
|
Wang L, Song K, Qu Y, Chang Y, Li Z, Dong C, Liu M, Brennan JD, Li Y. Engineering Micrometer-Sized DNA Tracks for High-Speed DNA Synthesis and Biosensing. Angew Chem Int Ed Engl 2020; 59:22947-22951. [PMID: 33007137 DOI: 10.1002/anie.202010693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/22/2020] [Indexed: 01/07/2023]
Abstract
φ29 DNA polymerase (Polφ29) is capable of synthesizing long-chain single-stranded (ss) DNA molecules by copying the sequence of a small ss circular DNA template (ssCDT) in a process known as rolling circle amplification (RCA). The use of a ssCDT in RCA, however, comes with a key drawback: the rate of DNA synthesis is significantly reduced. We hypothesize that this issue can be overcome using a very long linear ssDNA template with a repeating sequence. To test this idea, we engineered a DNA assembly, which we denote "micrometer-sized DNA track" (μDT). This μDT, with an average length of ≈13.5 μm, is made of a long chain DNA with a primer-binding domain at its 3' end and ≈1000 repeating sequence units at its 5' end, each carrying a DNA anchor. We find that Polφ29 copies μDT at a speed ≈5-time faster than it does a related ssCDT. We use this to design a simple all-in-one printed paper device for rapid and sensitive detection of microRNA let-7. This paper sensor is capable of detecting 1 pM let-7a in 10 minutes.
Collapse
Affiliation(s)
- Liying Wang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering, (Ministry of Education), Dalian University of Technology, Dalian, 116024, China
| | - Kaiyun Song
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering, (Ministry of Education), Dalian University of Technology, Dalian, 116024, China
| | - Yuanyuan Qu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering, (Ministry of Education), Dalian University of Technology, Dalian, 116024, China
| | - Yangyang Chang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering, (Ministry of Education), Dalian University of Technology, Dalian, 116024, China
| | - Zhongping Li
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Meng Liu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering, (Ministry of Education), Dalian University of Technology, Dalian, 116024, China
| | - John D Brennan
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S4O3, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S4K1, Canada
| |
Collapse
|
45
|
Wang L, Song K, Qu Y, Chang Y, Li Z, Dong C, Liu M, Brennan JD, Li Y. Engineering Micrometer‐Sized DNA Tracks for High‐Speed DNA Synthesis and Biosensing. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Liying Wang
- School of Environmental Science and Technology Key Laboratory of Industrial Ecology and Environmental Engineering, (Ministry of Education) Dalian University of Technology Dalian 116024 China
| | - Kaiyun Song
- School of Environmental Science and Technology Key Laboratory of Industrial Ecology and Environmental Engineering, (Ministry of Education) Dalian University of Technology Dalian 116024 China
| | - Yuanyuan Qu
- School of Environmental Science and Technology Key Laboratory of Industrial Ecology and Environmental Engineering, (Ministry of Education) Dalian University of Technology Dalian 116024 China
| | - Yangyang Chang
- School of Environmental Science and Technology Key Laboratory of Industrial Ecology and Environmental Engineering, (Ministry of Education) Dalian University of Technology Dalian 116024 China
| | - Zhongping Li
- Institute of Environmental Science Shanxi University Taiyuan 030006 China
| | - Chuan Dong
- Institute of Environmental Science Shanxi University Taiyuan 030006 China
| | - Meng Liu
- School of Environmental Science and Technology Key Laboratory of Industrial Ecology and Environmental Engineering, (Ministry of Education) Dalian University of Technology Dalian 116024 China
| | - John D. Brennan
- Biointerfaces Institute McMaster University 1280 Main Street West Hamilton Ontario L8S4O3 Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences McMaster University 1280 Main Street West Hamilton Ontario L8S4K1 Canada
| |
Collapse
|
46
|
Cerium metal organic framework mediated molecular threading for point-of-care colorimetric assays. Biosens Bioelectron 2020; 165:112406. [DOI: 10.1016/j.bios.2020.112406] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 05/14/2020] [Accepted: 06/21/2020] [Indexed: 01/29/2023]
|
47
|
Suea-Ngam A, Bezinge L, Mateescu B, Howes PD, deMello AJ, Richards DA. Enzyme-Assisted Nucleic Acid Detection for Infectious Disease Diagnostics: Moving toward the Point-of-Care. ACS Sens 2020; 5:2701-2723. [PMID: 32838523 PMCID: PMC7485284 DOI: 10.1021/acssensors.0c01488] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 08/25/2020] [Indexed: 02/08/2023]
Abstract
Driven by complex and interconnected factors, including population growth, climate change, and geopolitics, infectious diseases represent one of the greatest healthcare challenges of the 21st century. Diagnostic technologies are the first line of defense in the fight against infectious disease, providing critical information to inform epidemiological models, track diseases, decide treatment choices, and ultimately prevent epidemics. The diagnosis of infectious disease at the genomic level using nucleic acid disease biomarkers has proven to be the most effective approach to date. Such methods rely heavily on enzymes to specifically amplify or detect nucleic acids in complex samples, and significant effort has been exerted to harness the power of enzymes for in vitro nucleic acid diagnostics. Unfortunately, significant challenges limit the potential of enzyme-assisted nucleic acid diagnostics, particularly when translating diagnostic technologies from the lab toward the point-of-use or point-of-care. Herein, we discuss the current state of the field and highlight cross-disciplinary efforts to solve the challenges associated with the successful deployment of this important class of diagnostics at or near the point-of-care.
Collapse
Affiliation(s)
- Akkapol Suea-Ngam
- Institute for Chemical &
Bioengineering, Department of Chemistry & Applied Biosciences,
ETH Zürich,
Vladimir-Prelog-Weg 1, 8093 Zürich,
Switzerland
| | - Léonard Bezinge
- Institute for Chemical &
Bioengineering, Department of Chemistry & Applied Biosciences,
ETH Zürich,
Vladimir-Prelog-Weg 1, 8093 Zürich,
Switzerland
| | - Bogdan Mateescu
- Institute for Chemical &
Bioengineering, Department of Chemistry & Applied Biosciences,
ETH Zürich,
Vladimir-Prelog-Weg 1, 8093 Zürich,
Switzerland
- Brain Research Institute,
Medical Faculty of the University of
Zürich, Winterthurerstrasse 190, 8057
Zürich, Switzerland
| | - Philip D. Howes
- Institute for Chemical &
Bioengineering, Department of Chemistry & Applied Biosciences,
ETH Zürich,
Vladimir-Prelog-Weg 1, 8093 Zürich,
Switzerland
| | - Andrew J. deMello
- Institute for Chemical &
Bioengineering, Department of Chemistry & Applied Biosciences,
ETH Zürich,
Vladimir-Prelog-Weg 1, 8093 Zürich,
Switzerland
| | - Daniel A. Richards
- Institute for Chemical &
Bioengineering, Department of Chemistry & Applied Biosciences,
ETH Zürich,
Vladimir-Prelog-Weg 1, 8093 Zürich,
Switzerland
| |
Collapse
|
48
|
Liu M, Zhao Y, Monshat H, Tang Z, Wu Z, Zhang Q, Lu M. An IoT-enabled paper sensor platform for real-time analysis of isothermal nucleic acid amplification tests. Biosens Bioelectron 2020; 169:112651. [PMID: 33002794 DOI: 10.1016/j.bios.2020.112651] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/02/2020] [Accepted: 09/23/2020] [Indexed: 12/26/2022]
Abstract
Paper-based sensors can be exploited to develop low-cost, disposable, and rapid assays for the detection of a large variety of analytes. We report a paper-based sensor system for a point-of-care (POC) nucleic acid amplification test that can quantitatively detect multiple genes from different pathogens. The POC system combines a paper sensor chip and a portable instrument, which is built on an Internet of Things (IoT) platform. The paper-based sensor provides the functions of reagent storage, sample transportation, and nucleic acid amplification. The IoT instrument uses an Arduino microcontroller to control temperature, collect fluorescence images, and store the data in cloud storage via a WiFi network. A compact fluorescence reader was designed to measure fluorescence images of the amplicons during a loop-mediated isothermal amplification reaction in real-time. The real-time detection capability enables the quantitative analysis of target genes. The results show that the paper-based sensor cam distinguish multiple genes of the genomic DNA extracted from Escherichia coli and Campylobacter jejuni, with the concentration as low as 2 × 103 copies/μL. The affordable instrument, in conjunction with the disposable paper sensor chip, would have a great potential for POC detections of pathogens.
Collapse
Affiliation(s)
- Mingdian Liu
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Yuxin Zhao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Hosein Monshat
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Zheyuan Tang
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Zuowei Wu
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Qijing Zhang
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Meng Lu
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, 50011, USA; Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
49
|
Race M, Ferraro A, Galdiero E, Guida M, Núñez-Delgado A, Pirozzi F, Siciliano A, Fabbricino M. Current emerging SARS-CoV-2 pandemic: Potential direct/indirect negative impacts of virus persistence and related therapeutic drugs on the aquatic compartments. ENVIRONMENTAL RESEARCH 2020; 188:109808. [PMID: 32544725 PMCID: PMC7284245 DOI: 10.1016/j.envres.2020.109808] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 05/20/2023]
Abstract
The purpose of the present work is to provide a complete overview of possible direct/indirect implications on the quality of aquatic compartments due to the recent SARS-CoV-2 outbreak. With this aim, the environmental impacts are mainly related to i) the virus persistence in sewage and wastewaters, and ii) possible fate in aquatic compartments of drugs tested and administered to SARS-CoV-2 infected patients. Because SARS-CoV-2 spread is very recent, and there is a lack of specific studies on this strain, the virus persistence in wastewaters, the parameters influencing the persistence, as well as the detection methodologies are referenced to the general coronaviruses group. However, the present detailed report of up-to-date knowledge on this topic can provide a useful source for further studies focusing on more deepened investigations of SARS-CoV-2 behaviour in the environment. Such a perspective is significant not only for the control of virus diffusion but also represents a crucial point for the identification of produced alteration to the environmental quality.
Collapse
Affiliation(s)
- M Race
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via di Biasio 43, 03043, Cassino, Italy.
| | - A Ferraro
- Department of Civil, Architectural and Environmental Engineering, University of Naples "Federico II", Via Claudio 21, 80125, Naples, Italy
| | - E Galdiero
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126, Naples, Italy
| | - M Guida
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126, Naples, Italy
| | - A Núñez-Delgado
- Dept. Soil Sci. and Agric. Chem., Engineering Polytech. School, Campus Univ. Lugo, Univ. Santiago de Compostela, Spain
| | - F Pirozzi
- Department of Civil, Architectural and Environmental Engineering, University of Naples "Federico II", Via Claudio 21, 80125, Naples, Italy
| | - A Siciliano
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126, Naples, Italy
| | - M Fabbricino
- Department of Civil, Architectural and Environmental Engineering, University of Naples "Federico II", Via Claudio 21, 80125, Naples, Italy
| |
Collapse
|
50
|
Kumar R, Nagpal S, Kaushik S, Mendiratta S. COVID-19 diagnostic approaches: different roads to the same destination. Virusdisease 2020; 31:97-105. [PMID: 32656306 PMCID: PMC7293170 DOI: 10.1007/s13337-020-00599-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023] Open
Abstract
"SARS-CoV2", a previously unknown strain of coronaviruses caused a severe respiratory disease called Coronavirus disease (COVID-19) which emerged from Wuhan city of China on 30 December 2019, and declared as Global health problem by World Health Organisation within a month. In less than two and half months (11 March, 2020) it was declared as a pandemic disease due to its rapid spreading ability, it covered more than 211 countries infecting around 1.7 million persons and claiming around 1.1 lakhs lives within merely 100 days of its emergence. Containment of the infection of this virus is the only available measure to control the disease as no vaccine or specific antiviral treatment is available. Confirmed detection of the virus followed by isolation of the infected person at the earliest possible is the only measure to prevent this disease. Although there are number of methods available for detection of virus and to combat this disease in the present pandemic situation, but these available diagnostic methods have their own limitations. The speedy and exponential global spread of this disease strongly urges the fast and economic diagnostics tools. Additional to the available diagnostic methods, there is a sudden surge for development of various of methods and platforms to diagnose the COVID-19. The review summarized the advantage and disadvantage of various diagnostic approaches being used presently for COVID-19, newer detection methods in developmental stage and the feasibility of advanced platforms like newer nano-sensor based on-the-spot detection technologies.
Collapse
Affiliation(s)
- Ramesh Kumar
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Suman Nagpal
- Amity Institute of Advanced Research and Studies (Materials & Devices), Amity University, Noida, Uttar Pradesh India
| | - Samander Kaushik
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana India
| | | |
Collapse
|