1
|
Moutcine A, Laghlimi C, Ziat Y, El Bahraoui S, Belkhanchi H, Jouaiti A. Advanced design of chemically modified electrodes for the electrochemical analysis of uric acid and xanthine. J Pharm Biomed Anal 2025; 253:116536. [PMID: 39476436 DOI: 10.1016/j.jpba.2024.116536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 12/31/2024]
Abstract
This study reviews advances in chemical detection methods applied to the metabolic products known as uric acid (UA) and xanthine (XA), which are residues of purine metabolism, with XA being an important intermediate preceding UA. UA and XA play crucial roles in maintaining physiological homeostasis in organisms. Chemical modification of electrodes is a widely used method to address the issues of poor sensitivity and selectivity encountered with bare electrodes. This article reviews various materials commonly used to modify electrode surfaces for the detection of uric acid and xanthine, focusing on properties that enhance electrocatalytic activity. We highlight recent trends in detecting these compounds using electrochemical methods with microfabricated devices and explore cutting-edge modification techniques involving novel nanomaterials, carbon derivatives, metallic nanoparticles, and polymers. The review includes a comparative analysis of these materials, addressing their strengths, limitations, and recent advancements, such as in carbon-based materials and metal-organic frameworks (MOFs). Finally, we critically examine the challenges and future prospects of electrochemical detection of UA and XA in real samples, offering strategies to address these issues. The challenges associated with determination of UA and XA in real samples are also discussed.
Collapse
Affiliation(s)
- Abdelaziz Moutcine
- Faculty of Science and Technology, Sultan Moulay Slimane University, Beni Mellal, Morocco; The Moroccan Association of Sciences and Techniques for Sustainable Development (MASTSD), Beni Mellal, Morocco.
| | - Charaf Laghlimi
- ERCI2A, FSTH, Abdelmalek Essaadi University, Tetouan, Morocco; The Moroccan Association of Sciences and Techniques for Sustainable Development (MASTSD), Beni Mellal, Morocco
| | - Younes Ziat
- Engineering and Applied Physics Team (EAPT), Superior School of Technology, Sultan Moulay Slimane University, Beni Mellal, Morocco; The Moroccan Association of Sciences and Techniques for Sustainable Development (MASTSD), Beni Mellal, Morocco
| | - Soumia El Bahraoui
- Université du Québec à Chicoutimi, Canada; The Moroccan Association of Sciences and Techniques for Sustainable Development (MASTSD), Beni Mellal, Morocco
| | - Hamza Belkhanchi
- Engineering and Applied Physics Team (EAPT), Superior School of Technology, Sultan Moulay Slimane University, Beni Mellal, Morocco; The Moroccan Association of Sciences and Techniques for Sustainable Development (MASTSD), Beni Mellal, Morocco
| | - Ahmed Jouaiti
- Laboratory of Sustainable Development, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, Beni Mellal, Morocco
| |
Collapse
|
2
|
Salehirozveh M, Dehghani P, Mijakovic I. Synthesis, Functionalization, and Biomedical Applications of Iron Oxide Nanoparticles (IONPs). J Funct Biomater 2024; 15:340. [PMID: 39590545 PMCID: PMC11595413 DOI: 10.3390/jfb15110340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/31/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Iron oxide nanoparticles (IONPs) have garnered significant attention in biomedical applications due to their unique magnetic properties, biocompatibility, and versatility. This review comprehensively examines the synthesis methods, surface functionalization techniques, and diverse biomedical applications of IONPs. Various chemical and physical synthesis techniques, including coprecipitation, sol-gel processes, thermal decomposition, hydrothermal synthesis, and sonochemical routes, are discussed in detail, highlighting their advantages and limitations. Surface functionalization strategies, such as ligand exchange, encapsulation, and silanization, are explored to enhance the biocompatibility and functionality of IONPs. Special emphasis is placed on the role of IONPs in biosensing technologies, where their magnetic and optical properties enable significant advancements, including in surface-enhanced Raman scattering (SERS)-based biosensors, fluorescence biosensors, and field-effect transistor (FET) biosensors. The review explores how IONPs enhance sensitivity and selectivity in detecting biomolecules, demonstrating their potential for point-of-care diagnostics. Additionally, biomedical applications such as magnetic resonance imaging (MRI), targeted drug delivery, tissue engineering, and stem cell tracking are discussed. The challenges and future perspectives in the clinical translation of IONPs are also addressed, emphasizing the need for further research to optimize their properties and ensure safety and efficacy in medical applications. This review aims to provide a comprehensive understanding of the current state and future potential of IONPs in both biosensing and broader biomedical fields.
Collapse
Affiliation(s)
- Mostafa Salehirozveh
- Systems and Synthetic Biology Division, Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden;
| | - Parisa Dehghani
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Ivan Mijakovic
- Systems and Synthetic Biology Division, Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden;
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
3
|
Silva FWL, Bernardino CAR, Ferreira JHA, Mahler CF, Santelli RE, Canevari TC, Cincotto FH. Disposable electrochemical sensor: Highly sensitive determination of nitrofurazone antibiotic in environmental samples and pharmaceutical formulations. CHEMOSPHERE 2024; 361:142481. [PMID: 38823428 DOI: 10.1016/j.chemosphere.2024.142481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
The study presents the successful development of a new electrochemical sensor with low cost and disposability for application in nitrofurazone detection in environmental and pharmaceutical samples. The sensors were fabricated using materials obtained from local storage and conductive carbon ink. The modification of the screen-printed electrodes with the hybrid nanomaterial based on silver nanoparticles, carbon quantum dots, and carbon nanotubes showed synergistic contributions in the nitrofurazone electrooxidation, as observed in the wide linear range (0.008 at 15.051 μM), with a sensitivity of 0.650 μA/μM. The limit of detection obtained was 4.6 nM. Differential pulse voltammetry, cyclic voltammetry, X-ray photoelectron spectroscopy, X-ray diffraction analysis, and high-resolution transmission electron microscopy were used to evaluate the electrochemical and structural characteristics. Studies of possible interferences were considered with nitrofurazone in the presence of the ions and organic molecules. The results were satisfactory, with a variation of 93.3% ± 4.39% at 100% ± 2.40%. The low volume used in the analyses (50 μL), disposability, high sensibility, selectivity, and low limit of detection are advantages that make the proposed sensor an electrochemical tool of high viability for the NFZ detection in environmental matrices and pharmaceutical formulations.
Collapse
Affiliation(s)
- Francisco Walison Lima Silva
- Departamento de Química Analítica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - João H A Ferreira
- LabNaHm: Multifunctional Hybrid Nanomaterials Laboratory. Engineering School, Mackenzie Presbyterian University, 01302-907, São Paulo, SP, Brazil
| | - Claudio Fernando Mahler
- Departamento de Engenharia Civil, COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo Erthal Santelli
- Departamento de Química Analítica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; National Institute of Science & Technology of Bioanalytics (INCTBio), Campinas, Brazil
| | - Thiago C Canevari
- LabNaHm: Multifunctional Hybrid Nanomaterials Laboratory. Engineering School, Mackenzie Presbyterian University, 01302-907, São Paulo, SP, Brazil.
| | - Fernando Henrique Cincotto
- Departamento de Química Analítica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; National Institute of Science & Technology of Bioanalytics (INCTBio), Campinas, Brazil.
| |
Collapse
|
4
|
Elugoke SE, Ganesh P, Kim S, Ebenso EE. Common Transition Metal Oxide Nanomaterials in Electrochemical Sensors for the Diagnosis of Monoamine Neurotransmitter‐Related Disorders. ChemElectroChem 2024; 11. [DOI: 10.1002/celc.202300578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Indexed: 07/23/2024]
Abstract
AbstractMonoamine neurotransmitters are essential for learning, mental alertness, emotions, and blood flow, among other functions. Fatal neurological disorders that signal the imbalance of these biomolecules in the human system include Parkinson's disease, myocardial infarction, Alzheimer's disease, hypoglycemia, Schizophrenia, and a host of other ailments. The diagnosis of these monoamine neurotransmitter‐related conditions revolves around the development of analytical tools with high sensitivity for the four major monoamine neurotransmitters namely dopamine, epinephrine, norepinephrine, and serotonin. The application of electrochemical sensors made from notable metal oxide nanoparticles or composites containing the metal oxide nanoparticles for the detection of these monoamine neurotransmitters was discussed herein. More importantly, the feasibility of the application of the ZnO, CuO, and TiO2 nanoparticle‐based electrochemical sensors for a comprehensive diagnosis of monoamine neurotransmitter‐related conditions was critically investigated in this review.
Collapse
Affiliation(s)
- Saheed E. Elugoke
- Centre for Material Science College of Science, Engineering and Technology University of South Africa Johannesburg 1709 South Africa
- Institute for Nanotechnology and Water Sustainability (iNanoWS) College of Science, Engineering and Technology University of South Africa Johannesburg 1709 South Africa
| | - Pattan‐Siddappa Ganesh
- Interaction Laboratory Advanced Technology Research Center Future Convergence Engineering Korea University of Technology and Education Cheonan 31253 Republic of Korea
| | - Sang‐Youn Kim
- Interaction Laboratory Advanced Technology Research Center Future Convergence Engineering Korea University of Technology and Education Cheonan 31253 Republic of Korea
| | - Eno E. Ebenso
- Centre for Material Science College of Science, Engineering and Technology University of South Africa Johannesburg 1709 South Africa
- Institute for Nanotechnology and Water Sustainability (iNanoWS) College of Science, Engineering and Technology University of South Africa Johannesburg 1709 South Africa
| |
Collapse
|
5
|
Gado WS, Al-Gamal AG, Badawy MSEM, Labena A, Zakaria K, Kabel KI. Detectable quorum signaling molecule via PANI-metal oxides nanocomposites sensors. Sci Rep 2024; 14:10041. [PMID: 38693218 PMCID: PMC11063039 DOI: 10.1038/s41598-024-60093-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 04/18/2024] [Indexed: 05/03/2024] Open
Abstract
The detection of N-hexanoyl-l-homoserine lactone (C6-HSL), a crucial signal in Gram-negative bacterial communication, is essential for addressing microbiologically influenced corrosion (MIC) induced by sulfate-reducing bacteria (SRB) in oil and gas industries. Metal oxides (MOx) intercalated into conducting polymers (CPs) offer a promising sensing approach due to their effective detection of biological molecules such as C6-HSL. In this study, we synthesized and characterized two MOx/polyaniline-dodecyl benzene sulfonic acid (PANI-DBSA) nanocomposites, namely ZnO/PANI-DBSA and Fe2O3/PANI-DBSA. These nanocomposites were applied with 1% by-weight carbon paste over a carbon working electrode (WE) for qualitative and quantitative detection of C6-HSL through electrochemical analysis. The electrochemical impedance spectroscopy (EIS) confirmed the composites' capability to monitor C6-HSL produced by SRB-biofilm, with detection limits of 624 ppm for ZnO/PANI-DBSA and 441 ppm for Fe2O3/PANI-DBSA. Furthermore, calorimetric measurements validated the presence of SRB-biofilm, supporting the EIS analysis. The utilization of these MOx/CP nanocomposites offers a practical approach for detecting C6-HSL and monitoring SRB-biofilm formation, aiding in MIC management in oil and gas wells. The ZnO/PANI-DBSA-based sensor exhibited higher sensitivity towards C6-HSL compared to Fe2O3/PANI-DBSA, indicating its potential for enhanced detection capabilities in this context. Stability tests revealed ZnO/PANI-DBSA's superior stability over Fe2O3/PANI-DBSA, with both sensors retaining approximately 85-90% of their initial current after 1 month, demonstrating remarkable reproducibility and durability.
Collapse
Affiliation(s)
- Walaa S Gado
- Egyptian Petroleum Research Institute (EPRI), 11727, Nasr City, Cairo, Egypt.
| | | | - Mona Shaban E M Badawy
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - A Labena
- Egyptian Petroleum Research Institute (EPRI), 11727, Nasr City, Cairo, Egypt
| | - Khaled Zakaria
- Egyptian Petroleum Research Institute (EPRI), 11727, Nasr City, Cairo, Egypt
| | - Khalid I Kabel
- Egyptian Petroleum Research Institute (EPRI), 11727, Nasr City, Cairo, Egypt
| |
Collapse
|
6
|
Jjagwe J, Olupot PW, Kulabako R, Carrara S. Electrochemical sensors modified with iron oxide nanoparticles/nanocomposites for voltammetric detection of Pb (II) in water: A review. Heliyon 2024; 10:e29743. [PMID: 38665564 PMCID: PMC11044046 DOI: 10.1016/j.heliyon.2024.e29743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Permissible limits of Pb2+ in drinking water are being reduced from 10 μgL-1 to 5 μgL-1, which calls for rapid, and highly reliable detection techniques. Electrochemical sensors have garnered attention in detection of heavy metal ions in environmental samples due to their ease of operation, low cost, and rapid detection responses. Selectivity, sensitivity and detection capabilities of these sensors, can be enhanced by modifying their working electrodes (WEs) with iron oxide nanoparticles (IONPs) and/or their composites. Therefore, this review is an in-depth analysis of the deployment of IONPs/nanocomposites in modification of electrochemical sensors for detection of Pb2+ in drinking water over the past decade. From the analyzed studies (n = 23), the optimal solution pH, deposition potential, and deposition time ranged between 3 and 5.6, -0.7 to -1.4 V vs Ag/AgCl, and 100-400 s, respectively. Majority of the studies employed square wave anodic stripping voltammetry (n = 16), in 0.1 M acetate buffer solution (n = 19) for detection of Pb2+. Limits of detection obtained (2.5 x 10-9 - 4.5 μg/L) were below the permissible levels which indicated good sensitivities of the modified electrodes. Despite the great performance of these modified electrodes, the primary source of IONPs has always been commercial iron-based salts in addition to the use of so many materials as modifying agents of these IONPs. This may limit reproducibility and sustainability of the WEs due to lengthy and costly preparation protocols. Steel and/or iron industrial wastes can be alternatively employed in generation of IONPs for modification of electrochemical sensors. Additionally, biomass-based activated carbons enriched with surface functional groups are also used in modification of bare IONPs, and subsequently bare electrodes. However, these two areas still need to be fully explored.
Collapse
Affiliation(s)
- Joseph Jjagwe
- Department of Mechanical Engineering, College of Engineering, Design, Art and Technology, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Peter Wilberforce Olupot
- Department of Mechanical Engineering, College of Engineering, Design, Art and Technology, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Robinah Kulabako
- Department of Civil and Environmental Engineering, College of Engineering, Design, Art and Technology, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Sandro Carrara
- Bio/CMOS Interfaces Laboratory, School of Engineering, Institute of Microengineering, École Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel, Switzerland
| |
Collapse
|
7
|
Kubiak A, Voronkina A, Pajewska-Szmyt M, Kotula M, Leśniewski B, Ereskovsky A, Heimler K, Rogoll A, Vogt C, Rahimi P, Falahi S, Galli R, Langer E, Förste M, Charitos A, Joseph Y, Ehrlich H, Jesionowski T. Creation of a 3D Goethite-Spongin Composite Using an Extreme Biomimetics Approach. Biomimetics (Basel) 2023; 8:533. [PMID: 37999174 PMCID: PMC10668986 DOI: 10.3390/biomimetics8070533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
The structural biopolymer spongin in the form of a 3D scaffold resembles in shape and size numerous species of industrially useful marine keratosan demosponges. Due to the large-scale aquaculture of these sponges worldwide, it represents a unique renewable source of biological material, which has already been successfully applied in biomedicine and bioinspired materials science. In the present study, spongin from the demosponge Hippospongia communis was used as a microporous template for the development of a new 3D composite containing goethite [α-FeO(OH)]. For this purpose, an extreme biomimetic technique using iron powder, crystalline iodine, and fibrous spongin was applied under laboratory conditions for the first time. The product was characterized using SEM and digital light microscopy, infrared and Raman spectroscopy, XRD, thermogravimetry (TG/DTG), and confocal micro X-ray fluorescence spectroscopy (CMXRF). A potential application of the obtained goethite-spongin composite in the electrochemical sensing of dopamine (DA) in human urine samples was investigated, with satisfactory recoveries (96% to 116%) being obtained.
Collapse
Affiliation(s)
- Anita Kubiak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland; (M.K.); (B.L.)
- Center of Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland; (M.P.-S.); (H.E.)
| | - Alona Voronkina
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 3, 09599 Freiberg, Germany; (A.V.); (P.R.); (S.F.); (Y.J.)
- Department of Pharmacy, National Pirogov Memorial Medical University, Vinnytsya, Pyrogov Street 56, 21018 Vinnytsia, Ukraine
| | - Martyna Pajewska-Szmyt
- Center of Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland; (M.P.-S.); (H.E.)
| | - Martyna Kotula
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland; (M.K.); (B.L.)
- Center of Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland; (M.P.-S.); (H.E.)
| | - Bartosz Leśniewski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland; (M.K.); (B.L.)
- Center of Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland; (M.P.-S.); (H.E.)
| | - Alexander Ereskovsky
- IMBE, CNRS, IRD, Aix Marseille University, Station Marine d’Endoume, Rue de la Batterie des Lions, 13007 Marseille, France;
| | - Korbinian Heimler
- Institute of Analytical Chemistry, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany; (K.H.); (A.R.); (C.V.)
| | - Anika Rogoll
- Institute of Analytical Chemistry, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany; (K.H.); (A.R.); (C.V.)
| | - Carla Vogt
- Institute of Analytical Chemistry, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany; (K.H.); (A.R.); (C.V.)
| | - Parvaneh Rahimi
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 3, 09599 Freiberg, Germany; (A.V.); (P.R.); (S.F.); (Y.J.)
| | - Sedigheh Falahi
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 3, 09599 Freiberg, Germany; (A.V.); (P.R.); (S.F.); (Y.J.)
| | - Roberta Galli
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307 Dresden, Germany;
| | - Enrico Langer
- Institute of Semiconductors and Microsystems, TU Dresden, Nöthnitzer Str. 64, 01187 Dresden, Germany
| | - Maik Förste
- Institute for Nonferrous Metallurgy and Purest Materials (INEMET), TU Bergakademie Freiberg, Leipziger Str. 34, 09599 Freiberg, Germany; (M.F.); (A.C.)
| | - Alexandros Charitos
- Institute for Nonferrous Metallurgy and Purest Materials (INEMET), TU Bergakademie Freiberg, Leipziger Str. 34, 09599 Freiberg, Germany; (M.F.); (A.C.)
| | - Yvonne Joseph
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 3, 09599 Freiberg, Germany; (A.V.); (P.R.); (S.F.); (Y.J.)
| | - Hermann Ehrlich
- Center of Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland; (M.P.-S.); (H.E.)
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Teofil Jesionowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| |
Collapse
|
8
|
Kubiak A, Pajewska-Szmyt M, Kotula M, Leśniewski B, Voronkina A, Rahimi P, Falahi S, Heimler K, Rogoll A, Vogt C, Ereskovsky A, Simon P, Langer E, Springer A, Förste M, Charitos A, Joseph Y, Jesionowski T, Ehrlich H. Spongin as a Unique 3D Template for the Development of Functional Iron-Based Composites Using Biomimetic Approach In Vitro. Mar Drugs 2023; 21:460. [PMID: 37755073 PMCID: PMC10532518 DOI: 10.3390/md21090460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
Marine sponges of the subclass Keratosa originated on our planet about 900 million years ago and represent evolutionarily ancient and hierarchically structured biological materials. One of them, proteinaceous spongin, is responsible for the formation of 3D structured fibrous skeletons and remains enigmatic with complex chemistry. The objective of this study was to investigate the interaction of spongin with iron ions in a marine environment due to biocorrosion, leading to the occurrence of lepidocrocite. For this purpose, a biomimetic approach for the development of a new lepidocrocite-containing 3D spongin scaffold under laboratory conditions at 24 °C using artificial seawater and iron is described for the first time. This method helps to obtain a new composite as "Iron-Spongin", which was characterized by infrared spectroscopy and thermogravimetry. Furthermore, sophisticated techniques such as X-ray fluorescence, microscope technique, and X-Ray diffraction were used to determine the structure. This research proposed a corresponding mechanism of lepidocrocite formation, which may be connected with the spongin amino acids functional groups. Moreover, the potential application of the biocomposite as an electrochemical dopamine sensor is proposed. The conducted research not only shows the mechanism or sensor properties of "Iron-spongin" but also opens the door to other applications of these multifunctional materials.
Collapse
Affiliation(s)
- Anita Kubiak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland; (M.K.); (B.L.)
- Center of Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland;
| | - Martyna Pajewska-Szmyt
- Center of Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland;
| | - Martyna Kotula
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland; (M.K.); (B.L.)
- Center of Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland;
| | - Bartosz Leśniewski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland; (M.K.); (B.L.)
- Center of Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland;
| | - Alona Voronkina
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 3, 09599 Freiberg, Germany; (A.V.); (P.R.); (S.F.); (Y.J.)
- Department of Pharmacy, National Pirogov Memorial Medical University, Vinnytsya, Pyrogov Street. 56, 21018 Vinnytsia, Ukraine
| | - Parvaneh Rahimi
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 3, 09599 Freiberg, Germany; (A.V.); (P.R.); (S.F.); (Y.J.)
| | - Sedigheh Falahi
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 3, 09599 Freiberg, Germany; (A.V.); (P.R.); (S.F.); (Y.J.)
| | - Korbinian Heimler
- Institute of Analytical Chemistry, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany; (K.H.); (A.R.); (C.V.)
| | - Anika Rogoll
- Institute of Analytical Chemistry, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany; (K.H.); (A.R.); (C.V.)
| | - Carla Vogt
- Institute of Analytical Chemistry, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany; (K.H.); (A.R.); (C.V.)
| | - Alexander Ereskovsky
- IMBE, CNRS, IRD, Aix Marseille University, Station Marine d’Endoume, Rue de la Batterie des Lions, 13007 Marseille, France;
| | - Paul Simon
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden, Germany;
| | - Enrico Langer
- Institute of Semiconductors and Microsystems, TU Dresden, Nöthnitzer Str. 64, 01187 Dresden, Germany;
| | - Armin Springer
- Department Life, Light & Matter, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany;
- Medical Biology and Electron Microscopy Centre, Rostock University Medical Center, Strempelstr. 14, 18057 Rostock, Germany
| | - Maik Förste
- Institute for Nonferrous Metallurgy and Purest Materials (INEMET), TU Bergakademie Freiberg, Leipziger Str. 34, D-09599 Freiberg, Germany; (M.F.); (A.C.)
| | - Alexandros Charitos
- Institute for Nonferrous Metallurgy and Purest Materials (INEMET), TU Bergakademie Freiberg, Leipziger Str. 34, D-09599 Freiberg, Germany; (M.F.); (A.C.)
| | - Yvonne Joseph
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 3, 09599 Freiberg, Germany; (A.V.); (P.R.); (S.F.); (Y.J.)
| | - Teofil Jesionowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland;
| | - Hermann Ehrlich
- Center of Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland;
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland;
| |
Collapse
|
9
|
Rational incorporation of strontium pyrophosphate/hexagonal boron nitride composite for trace level electrochemical sensing of dopamine. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Zhu LY, Yuan K, Li ZC, Miao XY, Wang JC, Sun S, Devi A, Lu HL. Highly sensitive and stable MEMS acetone sensors based on well-designed α-Fe2O3/C mesoporous nanorods. J Colloid Interface Sci 2022; 622:156-168. [DOI: 10.1016/j.jcis.2022.04.081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 04/12/2022] [Indexed: 10/18/2022]
|
11
|
Amara U, Mahmood K, Hassan M, Hanif M, Khalid M, Usman M, Shafiq Z, Latif U, Ahmed MM, Hayat A, Nawaz MH. Functionalized thiazolidone-decorated lanthanum-doped copper oxide: novel heterocyclic sea sponge morphology for the efficient detection of dopamine. RSC Adv 2022; 12:14439-14449. [PMID: 35702245 PMCID: PMC9096811 DOI: 10.1039/d2ra01406h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/24/2022] [Indexed: 01/10/2023] Open
Abstract
Herein, we synthesized lanthanum (La)-doped sea sponge-shaped copper oxide (CuO) nanoparticles and wrapped them with novel O-, N- and S-rich (2Z,5Z)-3-acetyl-2-((3,4-dimethylphenyl)imino)-5-(2-oxoindolin-3-ylidene)thiazolidin-4-one (La@CuO-DMT). The shape and composition of the designed materials were confirmed by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and Raman spectroscopy. The graphitic pencil electrode (GPE) fabricated using La@CuO-DMT showed excellent sensing efficacy against dopamine (DA) with good selectivity, reproducibility and ideal stability. The unique morphology and massive surface defects by La@CuO offer good accessibility to DA and enhance smooth and robust channeling of electrons at the electrode-electrolyte interface. Consequently, these properties resulted in improved reaction kinetics and robust DA oxidation with an amplified faradaic response. Meanwhile, O-, N-, and S-enriched carbon support, i.e. DMT, inhibited the leaching of electrode matrixes, resulting in a superior detection limit of 423 nm and an improved sensitivity of 13.9 μA μM-1 cm-2 in the linear range of 10 μM to 1500 μM. Additionally, the developed sensing interface was successfully employed to analyze DA from tear samples with excellent percentage recoveries. We expect that such engineered morphology-based nanoparticles with a O-, N-, and S-rich C support will facilitate the development of DA sensors for in vitro screening of rarely studied tear samples with good sensitivity and selectivity.
Collapse
Affiliation(s)
- Umay Amara
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus 54000 Pakistan
| | - Khalid Mahmood
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan
| | - Maria Hassan
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan
| | - Muhammad Hanif
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University Multan 608000 Pakistan
| | - Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Muhammad Usman
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University 308 Ningxia Road Qingdao Shangdong 266071 China
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan
| | - Usman Latif
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus 54000 Pakistan
| | | | - Akhtar Hayat
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus 54000 Pakistan
| | - Mian Hasnain Nawaz
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus 54000 Pakistan
| |
Collapse
|
12
|
Amara U, Mahmood K, Awais M, Khalid M, Nasir M, Riaz S, Hayat A, Nawaz MH. Nickel -doped iron oxide nanoparticle-conjugated porphyrin interface (porphyrin/Fe 2O 3@Ni) for the non-enzymatic detection of dopamine from lacrimal fluid. Dalton Trans 2022; 51:5098-5107. [PMID: 35266502 DOI: 10.1039/d2dt00074a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, we synthesized nickel (Ni)-doped iron oxide nanoparticles (Fe2O3). The presence of the dopant afforded anchoring sites for the porphyrinic hetero cavity of 5,10,15,20-(tetra-4-carboxyphenyl)porphyrin to produce the porphyrin/Fe2O3@Ni composite. The crystalline structure and morphology of porphyrin/Fe2O3@Ni were assessed using various tools including Fourier transform spectroscopy (FTIR), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD) and Raman spectroscopy. Porphyrin/Fe2O3@Ni has proven to be an excellent dopamine (DA) probe material with good selectivity, reproducibility, stability and reliability owing to its clever morphology, which induces numerous active sites along with good active surface area. It consequently provides good accessibility to DA and allows for the smooth tunneling of electrons between the analyte and sensing interface. Meanwhile, the porphyrin molecules provide good carbon-based resilient support, inhibit the leaching of the electrode matrix and enhance electron shuttling, resulting in the robust oxidation of DA with amplified transduction signals. The designed porphyrin/Fe2O3@Ni interface showed a low detection limit (1.2 nm) with good sensitivity (1.2 nM) in the linear bounds of 10 μM to 3500 μM. Additionally, the interface was employed successfully to analyze DA from lacrimal fluid with good percentage recoveries (99.8% to 100.1%). We anticipate that such a design will simplify the in vitro screening of DA in rarely studied tear samples with sensitivity and selectivity.
Collapse
Affiliation(s)
- Umay Amara
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus 54000, Pakistan. .,Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Khalid Mahmood
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Muhammad Awais
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Muhammad Khalid
- Department of Basic Sciences & Humanities, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Muhammad Nasir
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus 54000, Pakistan.
| | - Sara Riaz
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus 54000, Pakistan
| | - Akhtar Hayat
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus 54000, Pakistan.
| | - Mian Hasnain Nawaz
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus 54000, Pakistan.
| |
Collapse
|
13
|
Nikhil, Srivastava SK, Srivastava A, Srivastava M, Prakash R. Electrochemical Sensing of Roxarsone on Natural Biomass-Derived Two-Dimensional Carbon Material as Promising Electrode Material. ACS OMEGA 2022; 7:2908-2917. [PMID: 35097285 PMCID: PMC8792922 DOI: 10.1021/acsomega.1c05800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/29/2021] [Indexed: 08/13/2023]
Abstract
Herein, we report the electrochemical detection of roxarsone (ROX) on a two-dimensional (2D) activated carbon (AC)-modified glassy carbon electrode (GCE). Meso/microporous 2D-AC is synthesized from a natural biomass Desmostachya bipinnata, commonly known as Kusha in India. This environment-friendly material is synthesized by chemical activation using potassium hydroxide (KOH) and used as a sensitive electrochemical platform for the determination of ROX. It is an arsenic-based medicine, also used as a coccidiostat drug. It is widely used in poultry production as a feed additive to increase weight gain and improve feed efficiency. Long-term exposure to arsenic leads to serious health problems in humans and demands an urgent call for sensitive detection of ROX. Therefore, the green synthesis of 2D-AC is introduced as new carbon support for the electrochemical sensing of ROX. It provides a large surface area and efficiently supports enhanced electron transfer. Its electrocatalytic activity is seen in potassium ferri/ferrocyanide by cyclic voltammetry, where the 2D-AC-modified GCE delivered five to six times higher electrochemical performance as compared to the unmodified GCE. Electrochemical impedance spectroscopy is also performed to show that the prepared material has faster electron transfer and permits a diffusion-controlled process. It works well in real samples and also on disposable screen-printed carbon electrodes, thereby showing great potential for its application in clinical diagnosis. Our results exemplify a modest and innovative style for the synthesis of excellent electrode material in the electrochemical sensing platform and thus offer an inexpensive and highly sensitive novel approach for the electrochemical sensing of ROX and other similar drugs.
Collapse
Affiliation(s)
- Nikhil
- School
of Materials Science and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - S. K. Srivastava
- Department
of Physics, Institute of Science, Banaras
Hindu University, Varanasi 221005, India
| | - Amit Srivastava
- Department
of Physics, Institute of Science, Banaras
Hindu University, Varanasi 221005, India
| | - Monika Srivastava
- School
of Materials Science and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Rajiv Prakash
- School
of Materials Science and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
14
|
Amara U, Sarfraz B, Mahmood K, Mehran MT, Muhammad N, Hayat A, Nawaz MH. Fabrication of ionic liquid stabilized MXene interface for electrochemical dopamine detection. Mikrochim Acta 2022; 189:64. [PMID: 35038033 DOI: 10.1007/s00604-022-05162-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/26/2021] [Indexed: 01/26/2023]
Abstract
Development of MXene (Ti3C2Cl2)-based sensing platforms by exploiting their inherent active electrochemistry is highly challenging due to their characteristic poor stability in air and water. Herein, we report a cost-effective methodology to deposit MXene on a conductive graphitic pencil electrode (GPE). MXenes can provide active surface area due to their clever morphology of accordion-like sheets; however, the disposition to stack together limits their potential applications. A task-specific ionic liquid (1-methyl imidazolium acetate) is utilized as a multiplex host material to engineer MXene interface via π-π interactions as well as to act as a selective binding site for biomolecules. The resulting IL-MXene/GPE interface proved to be a highly stable interface owing to good interactions between MXene and IL that inhibited electrode leaching and boosted electron transfer at the electrode-electrolyte interface. It resulted in robust dopamine (DA) oxidation with amplified faradaic response and enhanced sensitivity (9.61 µA µM-1 cm-2) for DA detection. This fabricated sensor demonstrated large linear range (10 µM - 2000 µM), low detection limit (702 nM), high reproducibility, and good selectivity. We anticipate that such platform will pave the way for the development of stable and economically viable MXene-based sensors without sacrificing their inherent properties. Scheme 1 Schematic illustration of the IL-MXene/GPE fabrication and oxidative process towards non-enzymatic dopamine sensor.
Collapse
Affiliation(s)
- Umay Amara
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Bilal Sarfraz
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad, H-12, Pakistan
| | - Khalid Mahmood
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Muhammad Taqi Mehran
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad, H-12, Pakistan
| | - Nawshad Muhammad
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Akhtar Hayat
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan
| | - Mian Hasnain Nawaz
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan.
| |
Collapse
|
15
|
Goswami B, Mahanta D. Fe 3O 4-Polyaniline Nanocomposite for Non-enzymatic Electrochemical Detection of 2,4-Dichlorophenoxyacetic Acid. ACS OMEGA 2021; 6:17239-17246. [PMID: 34278110 PMCID: PMC8280687 DOI: 10.1021/acsomega.1c00983] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/28/2021] [Indexed: 05/13/2023]
Abstract
This study proposes the development of an electrochemical sensor based on fabrication of a glassy carbon electrode (GCE) with Fe3O4-polyaniline (Fe3O4-PANI) nanocomposite, which was further used for enzyme-less detection of 2,4-dichlorophenoxyacetic acid (2,4-D) in aqueous medium. Spectroscopic studies, microstructural studies, and elemental analysis established the formation of Fe3O4 nanoparticles with polyaniline coating. The fabricated Fe3O4-PANI-GCE was characterized by electrochemical techniques like cyclic voltammetry and electrochemical impedance spectroscopy. The electrochemical response of 2,4-D on Fe3O4-PANI-GCE was evaluated by performing cyclic voltammetry and amperometry experiments. The synergistic effect of the composite causes the superior electrochemical behavior of Fe3O4-PANI-GCE toward the detection of 2,4-D. Amperometric measurements exhibited a linear concentration range from 1.35 to 2.7 μM. The sensitivity and detection limit were evaluated from the amperometric responses, which were found to be 4.62 × 10-7 μA μM-1 cm-2 and 0.21 μM, respectively. The electrochemical sensing response could be attributed to adsorption of 2,4-D onto the Fe3O4-PANI-modified GCE (Fe3O4-PANI-GCE) surface. Fe3O4-PANI-GCE is found to be a simple, low-cost, and biocompatible non-enzymatic sensor for detection of 2,4-D in aqueous medium at ambient temperature.
Collapse
Affiliation(s)
- Bhanita Goswami
- Department of Chemistry, Gauhati University, Guwahati, Assam 781014, India
| | - Debajyoti Mahanta
- Department of Chemistry, Gauhati University, Guwahati, Assam 781014, India
| |
Collapse
|
16
|
Amara U, Riaz S, Mahmood K, Akhtar N, Nasir M, Hayat A, Khalid M, Yaqub M, Nawaz MH. Copper oxide integrated perylene diimide self-assembled graphitic pencil for robust non-enzymatic dopamine detection. RSC Adv 2021; 11:25084-25095. [PMID: 35481009 PMCID: PMC9036951 DOI: 10.1039/d1ra03908c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/05/2021] [Indexed: 01/13/2023] Open
Abstract
Exploring a robust, extremely sensitive, cost-effective and reliable assay platform for the precise analysis of dopamine (DA) has become a big challenge predominantly at the clinical level. To participate in this quest, herein, we fabricated a perylene diimide (PDI) self-assembled graphitic surface of the graphitic pencil electrode (GPE) anchored copper oxide (CuO). The self-assembled N-rich PDI led to the fast movement of ions by decreasing the bandgap and improved the electron transport kinetics with more exposed catalytic active sites, thus resulting in the robust electrochemical sensing of DA. The designed sensor exhibited good sensitivity (4 μM-1 cm-2), high structural stability, repeatability and excellent reproducibility with an RSD value of 2.9%. Moreover, the developed system showed a wide linear range (5 μM to 500 μM) and reliable selectivity even in the presence of co-existing interferants, such as ascorbic acid and uric acid. The fabricated nanohybrid was eventually employed to analyze DA in spiked physiological fluids and provided satisfactory recoveries. The designed PDI-CuO based interface also showed a very low detection limit of 6 nM (S/N = 3), consequently confirming its suitability for clinical and biological applications.
Collapse
Affiliation(s)
- Umay Amara
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus 54000 Pakistan
| | - Sara Riaz
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus 54000 Pakistan
| | - Khalid Mahmood
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan
| | - Naeem Akhtar
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus 54000 Pakistan
| | - Muhammad Nasir
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus 54000 Pakistan
| | - Akhtar Hayat
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus 54000 Pakistan
| | - Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering and Technology Rahim Yar Khan 64200 Pakistan
| | - Muhammad Yaqub
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan
| | - Mian Hasnain Nawaz
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus 54000 Pakistan
| |
Collapse
|
17
|
Tibbits G, Wall N, Saunders S, Babauta J, Beyenal H. Electrochemical detection of flavin mononucleotide using mineral-filmed microelectrodes. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
18
|
Ganesan M, Ramadhass KD, Chuang HC, Gopalakrishnan G. Synthesis of nitrogen-doped carbon quantum dots@Fe2O3/multiwall carbon nanotubes ternary nanocomposite for the simultaneous electrochemical detection of 5-fluorouracil, uric acid, and xanthine. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115768] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Joseph XB, Umesh NM, Wang SF, Jesila JA. CoFe 2O 4 supported g-C 3N 4 nanocomposite for the sensitive electrochemical detection of dopamine. NEW J CHEM 2021. [DOI: 10.1039/d1nj02188e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The CoFe2O4@g-CN modified electrode has been applied for the real-time detection of DA in human biological samples with appreciable recovery results.
Collapse
Affiliation(s)
- Xavier Benadict Joseph
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taiwan
| | - N. M. Umesh
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taiwan
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taiwan
| | - J. Antolin Jesila
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taiwan
| |
Collapse
|
20
|
Madhurantakam S, Karnam JB, Brabazon D, Takai M, Ahad IU, Balaguru Rayappan JB, Krishnan UM. "Nano": An Emerging Avenue in Electrochemical Detection of Neurotransmitters. ACS Chem Neurosci 2020; 11:4024-4047. [PMID: 33285063 DOI: 10.1021/acschemneuro.0c00355] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The growing importance of nanomaterials toward the detection of neurotransmitter molecules has been chronicled in this review. Neurotransmitters (NTs) are chemicals that serve as messengers in synaptic transmission and are key players in brain functions. Abnormal levels of NTs are associated with numerous psychotic and neurodegenerative diseases. Therefore, their sensitive and robust detection is of great significance in clinical diagnostics. For more than three decades, electrochemical sensors have made a mark toward clinical detection of NTs. The superiority of these electrochemical sensors lies in their ability to enable sensitive, simple, rapid, and selective determination of analyte molecules while remaining relatively inexpensive. Additionally, these sensors are capable of being integrated in robust, portable, and miniaturized devices to establish point-of-care diagnostic platforms. Nanomaterials have emerged as promising materials with significant implications for electrochemical sensing due to their inherent capability to achieve high surface coverage, superior sensitivity, and rapid response in addition to simple device architecture and miniaturization. Considering the enormous significance of the levels of NTs in biological systems and the advances in sensing ushered in with the integration of nanotechnology in electrochemistry, the analysis of NTs by employing nanomaterials as interface materials in various matrices has emerged as an active area of research. This review explores the advancements made in the field of electrochemical sensors for the sensitive and selective determination of NTs which have been described in the past two decades with a distinctive focus on extremely innovative attributes introduced by nanotechnology.
Collapse
Affiliation(s)
- Sasya Madhurantakam
- Department of Molecular Physiology, Niigata University School of Medicine, Niigata 951-8510, Japan
| | - Jayanth Babu Karnam
- School of Electrical and Electronics Engineering, SASTRA Deemed University, Thanjavur 613401, India
- Centre for Nanotechnology and Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur 613401, India
| | - Dermot Brabazon
- I-Form, Advanced Manufacturing Research Centre, Advanced Processing Technology Research Centre, Dublin City University, Dublin, Ireland
| | - Madoka Takai
- Department of Bioengineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Inam Ul Ahad
- I-Form, Advanced Manufacturing Research Centre, Advanced Processing Technology Research Centre, Dublin City University, Dublin, Ireland
| | | | - Uma Maheswari Krishnan
- Centre for Nanotechnology and Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur 613401, India
- School of Arts, Science & Humanities, SASTRA Deemed University, Thanjavur 613401, India
| |
Collapse
|
21
|
Poolakkandy RR, Menamparambath MM. Transition metal oxide based non‐enzymatic electrochemical sensors: An arising approach for the meticulous detection of neurotransmitter biomarkers. ELECTROCHEMICAL SCIENCE ADVANCES 2020. [DOI: 10.1002/elsa.202000024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
22
|
Alam MM, Asiri AM, Rahman MM, Islam MA. Selective detection of ascorbic acid with wet-chemically prepared CdO/SnO2/V2O5 micro-sheets by electrochemical approach. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03689-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
23
|
Deshpande SS, Potekar DB, Shelke PB, Deshpande MD. Theoretical study of interaction of Fe 13O 8@Zn 48O 48 cluster with dopamine: Magnetic and optical properties. J Mol Graph Model 2020; 99:107640. [PMID: 32599508 DOI: 10.1016/j.jmgm.2020.107640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 10/24/2022]
Abstract
In this study, we modelled the interaction of Fe13O8 and Fe13O8@Zn48O48 (core@shell) cluster with a biologically active dopamine molecule using density functional theory. First, the electronic, magnetic and optical properties of core@shell, Fe13O8@Zn48O48 cluster investigated and compared with isolated Fe13O8 and Zn48O48 clusters. Fe13O8@Zn48O48 cluster is found to be energetically stable. For Fe13O8 and Fe13O8@Zn48O48 clusters have the net magnetic moment 42 μB. The decrease in HOMO-LUMO gap of core@shell cluster as compared to that of isolated clusters reflects the higher reactivity. The results of the site dependent interaction of Fe13O8 and Fe13O8@Zn48O48 clusters with dopamine molecule are presented. The interaction strength is determined in terms of the cluster-dopamine complex binding energy and found to be enhanced for core@shell cluster than the Fe13O8. Furthermore, the calculated results predict that in presence of dopamine, the magnetic moment of Fe13O8 and Fe13O8@Zn48O48 cluster remains unaffected. The analysis of optical spectra of core@shell indicates the obvious red shift compared to Zn48O48 clusters. The optical spectra of Fe13O8@Zn48O48-dopamine shows the higher oscillator strength as compared to that of Fe13O8-dopamine complex. Fe13O8-dopamine complex gives rise to more quenched oscillator strengths as compared to that of bare iron oxide cluster. These results indicate interesting magneto-optical behaviour, which can be useful for biomedical applications.
Collapse
Affiliation(s)
- Swapnil S Deshpande
- Department of Physics, H.P.T. Arts and R.Y.K. Science College, Nasik, 422005, Maharashtra, India
| | - Dipali B Potekar
- Department of Physics, H.P.T. Arts and R.Y.K. Science College, Nasik, 422005, Maharashtra, India; Department of Physics, Ahmednagar College, Ahmednagar, 414001, Maharashtra, India
| | - Pradip B Shelke
- Department of Physics, Ahmednagar College, Ahmednagar, 414001, Maharashtra, India
| | - Mrinalini D Deshpande
- Department of Physics, H.P.T. Arts and R.Y.K. Science College, Nasik, 422005, Maharashtra, India.
| |
Collapse
|
24
|
Hira SA, Nallal M, Rajendran K, Song S, Park S, Lee JM, Joo SH, Park KH. Ultrasensitive detection of hydrogen peroxide and dopamine using copolymer-grafted metal-organic framework based electrochemical sensor. Anal Chim Acta 2020; 1118:26-35. [PMID: 32418601 DOI: 10.1016/j.aca.2020.04.043] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/13/2020] [Accepted: 04/18/2020] [Indexed: 01/05/2023]
Abstract
We reported the synthesis of a copolymer- and metal-organic framework-based electrochemical sensor, UiO-66-NH2@P(ANI-co-ANA) using the polymerization method for the highly sensitive and selective detection of hydrogen peroxide (H2O2) and dopamine (DA). The as-synthesized material was characterized via Fourier transform infrared spectroscopy, X-ray diffraction analysis, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis. The electrochemical characteristics of the proposed sensor were evaluated via impedance spectroscopy and cyclic voltammetry (CV). The electrochemical oxidation of DA and the reduction of H2O2 were determined via CV, square-wave voltammetry, and chronoamperometric techniques. The fabricated sensor exhibited a wide linear range of 25-500 μM, with a sensitivity of 1396.1 μAμM-1cm-2 and a limit of detection of 0.6 μM, for the electrochemical reduction of H2O2. Additionally, it exhibited a wide linear range of 10-110 μM, with a sensitivity of 1110.2 μAμM-1cm-2 and a limit of detection of 0.3 μM, for the electrochemical detection of DA. The practical utility of the fabricated sensor was evaluated via the detection of H2O2 in milk samples and DA in human urine samples.
Collapse
Affiliation(s)
- Shamim Ahmed Hira
- Department of Chemistry, Pusan National University, Busan, 46241, South Korea
| | - Muthuchamy Nallal
- Department of Chemistry, Pusan National University, Busan, 46241, South Korea
| | - Karkuzhali Rajendran
- Department of Industrial Chemistry, Alagappa University, Karaikudi, 630003, Tamil Nadu, India
| | - Sehwan Song
- Department of Physics, Pusan National University, Busan, 46241, South Korea
| | - Sungkyun Park
- Department of Physics, Pusan National University, Busan, 46241, South Korea
| | - Jae-Myung Lee
- Department of Naval Architecture, Pusan National University, Busan, 46241, South Korea
| | - Sang Hoon Joo
- Department of Energy Engineering and School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, South Korea
| | - Kang Hyun Park
- Department of Chemistry, Pusan National University, Busan, 46241, South Korea.
| |
Collapse
|
25
|
Cairós C, González-Sálamo J, Hernández-Borges J. The current binomial Sonochemistry-Analytical Chemistry. J Chromatogr A 2020; 1614:460511. [DOI: 10.1016/j.chroma.2019.460511] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/17/2019] [Accepted: 09/02/2019] [Indexed: 01/02/2023]
|
26
|
Lanthanum cobaltite supported on graphene nanosheets for non-enzymatic electrochemical determination of catechol. Mikrochim Acta 2020; 187:189. [DOI: 10.1007/s00604-020-4165-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 02/13/2020] [Indexed: 11/26/2022]
|
27
|
Kokulnathan T, Chen SM. Robust and selective electrochemical detection of antibiotic residues: The case of integrated lutetium vanadate/graphene sheets architectures. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121304. [PMID: 31581009 DOI: 10.1016/j.jhazmat.2019.121304] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/10/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Lutetium vanadate (LuVO4) is a promising material for electrochemical application owing to its good conductivity and electrocatalytic activity. Herein, we demonstrate a facile technique for the synthesis of a LuVO4/ graphene sheet (GRS) nanocomposite where LuVO4 is encapsulated with an ultrathin GRS to form a hierarchical structure (LuVO4/GRS). The resulting hierarchical LuVO4/GRS architecture was characterized by several analytical and spectroscopic techniques. The resultant electrocatalyst shows superior electrochemical sensing for nitrofurantoin (NFT) with a low detection limit (0.001 μM), wide linear range (0.008-256.0 μM) and excellent sensitivity (1.709 μA μM-1 cm-2). It has been demonstrated that the enhanced electrocatalytic performance of LuVO4/GRS nanocomposite is due to their excellent electrical conductivity, suitable surface area, high redox reaction and large number of electron transport. In addition, the LuVO4/GRS nanocomposite exhibited excellent response towards NFT detection with adequate reproducibility, good repeatability, long-term stability and excellent selectivity over its structural analogs and common interferents. Furthermore, the practical applicability of the proposed electrochemical sensor was successfully applied for determination of NFT in environmental samples with satisfactory results. The LuVO4/GRS nanocomposite presented here can serve as a favorable candidate for developing electrochemical sensor and plays an important role in widespread fields.
Collapse
Affiliation(s)
- Thangavelu Kokulnathan
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC.
| |
Collapse
|
28
|
Arumugasamy SK, Chellasamy G, Gopi S, Govindaraju S, Yun K. Current advances in the detection of neurotransmitters by nanomaterials: An update. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115766] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
29
|
Hwa KY, Karuppaiah P, Gowthaman NSK, Balakumar V, Shankar S, Lim HN. Ultrasonic synthesis of CuO nanoflakes: A robust electrochemical scaffold for the sensitive detection of phenolic hazard in water and pharmaceutical samples. ULTRASONICS SONOCHEMISTRY 2019; 58:104649. [PMID: 31450344 DOI: 10.1016/j.ultsonch.2019.104649] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 06/10/2023]
Abstract
Hydroquinone (HQ), a phenolic compound is expansively used in many industrial applications and due to the utilization of HQ, water pollution tragedies frequently found by the improper handling and accidental outflows. When HQ is adsorbed directly through the skin that create toxic effects to human by affecting kidney, liver, lungs, and urinary tract and hence, a highly selective and sensitive technique is required for its quantification. Herein, we have developed the ultrasonic synthesis of copper oxide nanoflakes (CuO-NFs) using ultrasonic bath (20 kHz, 100 W) and successfully employed for the sensitive detection of the environmental hazardous pollutant HQ. The formed CuO-NFs were confirmed by X-ray diffraction, field emission scanning electron microscopy (FE-SEM), FT-IR spectroscopy and UV-visible spectroscopy and fabricated with the screen-printed carbon electrode (SPCE). The SEM images exhibited the uniform CuO-NFs with an average width of 85 nm. The linker-free CuO-NFs fabricated electrode showed the appropriate wide range of concentrations from 0.1 to 1400 µM and the limit of detection was found to be 10.4 nM towards HQ. The fabricated sensor having long term stability and sensitivity was successfully applied for the environmental and commercial real sample analysis and exhibited good recovery percentage, implying that the SPCE/CuO-NFs is an economically viable and benign robust scaffold for the determination of HQ.
Collapse
Affiliation(s)
- KuO Yuan Hwa
- Graduate Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei, Taiwan 106, People's Republic of China.
| | - Palpandi Karuppaiah
- Graduate Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei, Taiwan 106, People's Republic of China
| | - N S K Gowthaman
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Vellaichamy Balakumar
- Department of Advanced Organic Materials Engineering, Chungnam National University, Yuseong-gu, Daejeon 305-764, South Korea
| | - Sekar Shankar
- Centre for Nanoscience and Nanotechnology, Department of Chemistry, The Gandhigram Rural Institute - Deemed to be University, Gandhigram 624302, India
| | - Hong Ngee Lim
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
30
|
Posha B, Kuttoth H, Sandhyarani N. 1-Pyrene carboxylic acid functionalized carbon nanotube-gold nanoparticle nanocomposite for electrochemical sensing of dopamine and uric acid. Mikrochim Acta 2019; 186:672. [DOI: 10.1007/s00604-019-3783-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/21/2019] [Indexed: 12/31/2022]
|
31
|
Sajid M, Baig N, Alhooshani K. Chemically modified electrodes for electrochemical detection of dopamine: Challenges and opportunities. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.042] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
32
|
Gold nanoparticles anchored onto three-dimensional graphene: simultaneous voltammetric determination of dopamine and uric acid. Mikrochim Acta 2019; 186:573. [DOI: 10.1007/s00604-019-3663-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 06/27/2019] [Indexed: 01/05/2023]
|
33
|
Yi W, Li Z, Dong C, Li HW, Li J. Electrochemical detection of chloramphenicol using palladium nanoparticles decorated reduced graphene oxide. Microchem J 2019. [DOI: 10.1016/j.microc.2019.05.049] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Kokulnathan T, Chen SM. Praseodymium Vanadate-Decorated Sulfur-Doped Carbon Nitride Hybrid Nanocomposite: The Role of a Synergistic Electrocatalyst for the Detection of Metronidazole. ACS APPLIED MATERIALS & INTERFACES 2019; 11:7893-7905. [PMID: 30681329 DOI: 10.1021/acsami.8b09204] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The construction of efficient and superior nanostructured materials for the precise determination of contaminants that are hazardous to the environment has gained significant attention by the scientific community. In this regard, we fabricated a nanocomposite consisting of praseodymium vanadate (PrVO4; PrV) anchored to sulfur-doped carbon nitride (PrV/SCN) and applied it to the electrochemical detection of the antibiotic drug metronidazole (MTZ). The structural and crystalline features of the as-prepared PrV/SCN nanocomposite were characterized by various analytical and spectroscopic methods. More distinctly, the PrV/SCN nanocomposite-modified glassy carbon electrode (GCE) exhibits an outstanding linear range (0.001-2444 μM), high sensitivity (1.386 μA/μM cm2), low detection limit (0.8 nM), good reproducibility, and strong anti-interference ability. Notably, the PrV/SCN sensor can determine MTZ in spiked urine and water samples with high recoveries, suggesting its feasibility for real-time applications. Our findings establish PrV/SCN as a robust and promising platform for electrochemical detection. This promotes innovative design for the synthesis of novel functional nanocomposites.
Collapse
Affiliation(s)
- Thangavelu Kokulnathan
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology , National Taipei University of Technology , No. 1, Section 3, Chung-Hsiao East Road , Taipei 106 , Taiwan , ROC
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology , National Taipei University of Technology , No. 1, Section 3, Chung-Hsiao East Road , Taipei 106 , Taiwan , ROC
| |
Collapse
|
35
|
Carbon fiber based electrochemical sensor for sweat cortisol measurement. Sci Rep 2019; 9:403. [PMID: 30674991 PMCID: PMC6344552 DOI: 10.1038/s41598-018-37243-w] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 10/18/2018] [Indexed: 01/25/2023] Open
Abstract
This study examines the use of a conductive carbon fiber to construct a flexible biosensing platform for monitoring biomarkers in sweat. Cortisol was chosen as a model analyte. Functionalization of the conductive carbon yarn (CCY) with ellipsoidal Fe2O3 has been performed to immobilize the antibodies specific to cortisol. 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-Hydroxysuccinimide (NHS) chemistry has been used to immobilize the antibodies onto the Fe2O3 modified CCY. Crystallinity, structure, morphology, flexibility, surface area, and elemental analysis were studied using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, Field emission scanning electron microscopy with energy dispersive X-ray spectroscopy (FE-SEM/EDS) and Brunauer–Emmett–Teller (BET) analysis. Mechanical properties of the fiber such as tensile strength, young’s modulus have also been investigated. Under optimal parameters, the fabric sensor exhibited a good linearity (r2 = 0.998) for wide a linear range from 1 fg to 1 μg with a detection limit of 0.005 fg/mL for the sensitive detection of cortisol. Repeatability, reliability, reproducibility, and anti-interference properties of the current sensor have been investigated. Detection of cortisol levels in human sweat samples has also been investigated and the results were validated with commercial chemiluminescence immunoassay (CLIA) method.
Collapse
|
36
|
Nanomaterial-based electrochemical sensors for the detection of neurochemicals in biological matrices. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.08.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
37
|
Kokulnathan T, Suvina V, Wang TJ, Balakrishna RG. Synergistic design of a tin phosphate-entrapped graphene flake nanocomposite as an efficient catalyst for electrochemical determination of the antituberculosis drug isoniazid in biological samples. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00254e] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A SnP/GRF-modified electrode has potential application in the electrochemical detection of ISZ.
Collapse
Affiliation(s)
- Thangavelu Kokulnathan
- Department of Electro-Optical Engineering
- National Taipei University of Technology
- Taipei-10608
- Taiwan
| | - V. Suvina
- Centre for Nano and Material Sciences
- Jain Global Campus
- Jain University
- Bangalore-562112
- India
| | - Tzyy-Jiann Wang
- Department of Electro-Optical Engineering
- National Taipei University of Technology
- Taipei-10608
- Taiwan
| | - R. Geetha Balakrishna
- Centre for Nano and Material Sciences
- Jain Global Campus
- Jain University
- Bangalore-562112
- India
| |
Collapse
|
38
|
Kokulnathan T, Manikandan R, Chen SM, Ponnusamy VK. Synthesis and characterization of nanostructured nickel phosphate as a robust electrocatalyst for the highly sensitive voltammetric determination of chlorpromazine in biological sample. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Kokulnathan T, Sharma TSK, Chen SM, Chen TW, Dinesh B. Ex-situ decoration of graphene oxide with palladium nanoparticles for the highly sensitive and selective electrochemical determination of chloramphenicol in food and biological samples. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.04.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
40
|
Kokulnathan T, Sakthinathan S, Chen SM, Karthik R, Chiu TW. Hexammine cobalt(iii) coordination complex grafted reduced graphene oxide composite for sensitive and selective electrochemical determination of morin in fruit samples. Inorg Chem Front 2018. [DOI: 10.1039/c8qi00055g] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The RGO/[Co(NH3)6]3+/GCE modified GCE was potentially applied for the electrochemical detection of MR.
Collapse
Affiliation(s)
- Thangavelu Kokulnathan
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- R.O.C
| | - Subramanian Sakthinathan
- Department of Materials and Mineral Resources Engineering
- National Taipei University of Technology
- Taipei-106
- Taiwan
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- R.O.C
| | - Raj Karthik
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- R.O.C
| | - Te-Wei Chiu
- Department of Materials and Mineral Resources Engineering
- National Taipei University of Technology
- Taipei-106
- Taiwan
| |
Collapse
|