1
|
Hautamäki K, Heponiemi A, Tuomikoski S, Hu T, Lassi U. Preparation and characterisation of alkali-activated blast furnace slag and Na-jarosite catalysts for catalytic wet peroxide oxidation of bisphenol A. ENVIRONMENTAL TECHNOLOGY 2024; 45:4482-4494. [PMID: 37700442 DOI: 10.1080/09593330.2023.2256456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023]
Abstract
In this study, cost-effective alkali-activated materials made from industrial side streams (blast furnace slag and Na-jarosite) were developed for catalytic applications. The catalytic activity of the prepared materials was examined in catalytic wet peroxide oxidation reactions of a bisphenol A in an aqueous solution. All materials prepared revealed porous structure and characterisation expressed the incorporation of iron to the material via ion exchange in the preparation step. Furthermore, the materials prepared exhibited high specific surface areas (over 200 m2/g) and were mainly mesoporous. Moderate bisphenol A removal percentages (35%-37%) were achieved with the prepared materials during 3 h of oxidation at pH 7-8 and 50°C. Moreover, the activity of catalysts remained after four consecutive cycles (between the cycles the catalysts were regenerated) and the specific surface areas decreased only slightly and no changes in the phase structures were observed. Thus, the prepared blast furnace slag and Na-jarosite-based catalysts exhibited high mechanical stability and showed good potential in the removal of bisphenol A from wastewater through catalytic wet peroxide oxidation.
Collapse
Affiliation(s)
| | - Anne Heponiemi
- Research Unit of Sustainable Chemistry, University of Oulu, Oulu, Finland
| | - Sari Tuomikoski
- Research Unit of Sustainable Chemistry, University of Oulu, Oulu, Finland
| | - Tao Hu
- Research Unit of Sustainable Chemistry, University of Oulu, Oulu, Finland
| | - Ulla Lassi
- Research Unit of Sustainable Chemistry, University of Oulu, Oulu, Finland
| |
Collapse
|
2
|
Imran M, Raza M, Noor H, Faraz SM, Raza A, Farooq U, Khan ME, Ali SK, Bakather OY, Ali W, Bashiri AH, Zakri W. Insight into mechanism of excellent visible-light photocatalytic activity of CuO/MgO/ZnO nanocomposite for advanced solution of environmental remediation. CHEMOSPHERE 2024; 359:142224. [PMID: 38723693 DOI: 10.1016/j.chemosphere.2024.142224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024]
Abstract
Environmental remediation has sought several innovative ways for the treatment of wastewater and captivated researchers around the globe towards it. Through this study, we aim to proceed with the efforts to foster sustainable and feasible ways for the treatment of wastewater. In this work, we report the sol-gel synthesis of CuO/MgO/ZnO nanocomposite and carry out their systematic characterization with the help of state-of-the-art analytical techniques, such as FTIR, SEM, TEM, PL, XRD, Raman, and AFM. The SEM along with TEM and AFM provided useful insights into the surface morphology of the synthesized nanocomposite on both 2D and 3D surfaces and concluded the well-dispersed behavior of the nanocomposite. The characteristic functional groups responsible for carrying out the reaction of Cu-O, Mg-O, and Zn-O were identified by FTIR spectroscopy. On the other hand, crystal size, dislocation density, and microstrain of the nanocomposite were calculated by XRD. For optical studies, photoluminescence spectroscopy was performed. Once the characterization of the nanocomposite was done, they were eventually treated against the toxic organic dye, methylene blue. The calculated rate constant values of k for CuO was 2.48 × 10-3 min-1, for CuO/MgO (2.04 × 10-3 min-1), for CuO/ZnO (1.82 × 10-3 min-1) and CuO/MgO/ZnO was found to be 2.00 × 10-3 min-1. It has become increasingly evident that nanotechnology can be used in various facets of modern life, and its implementation in wastewater treatment has recently received much attention.
Collapse
Affiliation(s)
- Muhammad Imran
- Centre of Excellence in Solid State Physics, University of Punjab, Lahore, 54590, Pakistan
| | - Mohsin Raza
- Additive Manufacturing Institute, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Hadia Noor
- Centre of Excellence in Solid State Physics, University of Punjab, Lahore, 54590, Pakistan
| | - Sadia Muniza Faraz
- Department of Electronic Engineering, NED University of Engineering & Technology, Karachi, 75270, Pakistan
| | - Ali Raza
- Centre of Excellence in Solid State Physics, University of Punjab, Lahore, 54590, Pakistan
| | - Umar Farooq
- Department of Chemistry, The Islamia University of Bahawalpur, Baghdad-ul-Jadeed Campus, Bahawalpur, 63100, Pakistan
| | - Mohammad Ehtisham Khan
- Department of Chemical Engineering Technology, College of Applied Industrial Technology, Jazan University, Jazan 45142, Saudi Arabia.
| | - Syed Kashif Ali
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Kingdom of Saudi Arabia; Nanotechnology Research Unit, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Kingdom of Saudi Arabia
| | - Omer Y Bakather
- Chemical Engineering Department, College of Engineering and Computer Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Wahid Ali
- Department of Chemical Engineering Technology, College of Applied Industrial Technology, Jazan University, Jazan 45142, Saudi Arabia
| | - Abdullateef H Bashiri
- Department of Mechanical Engineering, College of Engineering, Jazan University, P. O. Box 114, Jazan 45142, Saudi Arabia
| | - Waleed Zakri
- Department of Mechanical Engineering, College of Engineering, Jazan University, P. O. Box 114, Jazan 45142, Saudi Arabia
| |
Collapse
|
3
|
Haribhau Waghchaure R, Ashok Adole V, Shivaji Kushare S, Ashok Shinde R, Sonu Jagdale B. Visible light prompted and modified ZnO catalyzed rapid and efficient removal of hazardous crystal violet dye from aqueous solution: A systematic experimental study. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
4
|
Rouibah K, Akika FZ, Rouibah C, Boudermine HR, Douafer S, Boukerche S, Boukerche G, Benamira M. Solar photocatalytic degradation of Methyl Green on CuFe2O4/α Fe2O3 heterojunction. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
5
|
Mukhtar F, Munawar T, Nadeem MS, Naveed Ur Rehman M, Khan SA, Koc M, Batool S, Hasan M, Iqbal F. Dual Z-scheme core-shell PANI-CeO 2-Fe 2O 3-NiO heterostructured nanocomposite for dyes remediation under sunlight and bacterial disinfection. ENVIRONMENTAL RESEARCH 2022; 215:114140. [PMID: 36002044 DOI: 10.1016/j.envres.2022.114140] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/08/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Nowadays, environmental pollution due to discharge of organic pollutants from food, textile, and pharmaceutical industries into clean water and development of contagious diseases due to pathogenic organisms provide impetus to material researcher to fabricate novel design for efficient photocatalyst and antimicrobial agents. In this regard, designing a core-shell heterojunction catalyst based on metal oxides is considered an auspicious approach. In present study, combating the problems of singular oxides, core-shell PANI-CeO2-Fe2O3-NiO nanocomposite (PCFN) and CeO2-Fe2O3-NiO nanocomposite (CFN) was synthesized through sol-gel and oxidative polymerization route with cetyletrimethylammonium bromide (CTAB) as surfactant. The XRD, FTIR, and Raman confirmed the formation of nanocomposites with core-shell morphology composed of PANI (shell) and oxides (Core) in PCFN with a particle size of 52 nm (TEM). Surprisingly, PCFN has lower band gap, e-/h+ recombination, and larger charge transfer character than CFN. The decomposition test using MB and MO dyes showed that PCFN degraded 99%, 98%, while CFN degraded only 73% and 54%, respectively, under 50 min sunlight illumination. The reusability was assessed up to 7th cycle for PCFN. The influence of operational parameters (catalyst dose, dye concentration, pH) was tested for PCFN. Further, the antimicrobial action against S. aureus (gram + ve), E. coli (gram -ve) were also tested. The supreme performance of PCFN has been credited to heterostructure dual Z-scheme formation and core-shell morphology supported with PANI, which suppresses the e-/h+ recombination process by promoting their separation. The present finding indicated that the PCFN is a promising modifier for bacterial disinfection and acts as a superb photocatalyst through core-shell formation with PANI support.
Collapse
Affiliation(s)
- Faisal Mukhtar
- Institute of Physics, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Tauseef Munawar
- Institute of Physics, The Islamia University of Bahawalpur, 63100, Pakistan
| | | | | | - Shoukat Alim Khan
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Muammer Koc
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Sana Batool
- Institute of Bio-Chemistry, Bio-Technology, and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Murtaza Hasan
- Institute of Bio-Chemistry, Bio-Technology, and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Faisal Iqbal
- Institute of Physics, The Islamia University of Bahawalpur, 63100, Pakistan.
| |
Collapse
|
6
|
Batool S, Hasan M, Dilshad M, Zafar A, Tariq T, Shaheen A, Iqbal R, Ali Z, Munawar T, Iqbal F, Hassan SG, Shu X, Caprioli G. Green synthesized ZnO-Fe2O3-Co3O4 nanocomposite for antioxidant, microbial disinfection and degradation of pollutants from wastewater. BIOCHEM SYST ECOL 2022. [DOI: 10.1016/j.bse.2022.104535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Enhanced sunlight-absorption of Fe2O3 covered by PANI for the photodegradation of organic pollutants and antimicrobial inactivation. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Gautam RK, Singh AK, Tiwari I. Nanoscale layered double hydroxide modified hybrid nanomaterials for wastewater treatment: A review. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118505] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
9
|
Hezam A, Drmosh QA, Ponnamma D, Bajiri MA, Qamar M, Namratha K, Zare M, Nayan MB, Onaizi SA, Byrappa K. Strategies to Enhance ZnO Photocatalyst's Performance for Water Treatment: A Comprehensive Review. CHEM REC 2022; 22:e202100299. [PMID: 35119182 DOI: 10.1002/tcr.202100299] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/22/2022] [Indexed: 01/05/2023]
Abstract
Despite the photocatalytic organic pollutant degradation using ZnO started in 1910-1911, many challenges are still ahead, and several critical issues have to be addressed. Large band gap, and short life-time of photogenerated electrons and holes are critical issues negatively affect the photocatalytic activity of ZnO. Various approaches have been introduced to overcome these issues including intrinsic doping, extrinsic doping, and heterostructure. This review introduces unique and deep insights into tuning of the photocatalytic activity of ZnO. It starts by description of how to tune the photocatalytic activity of pristine ZnO through tuning its morphology, surface area, exposed face, and intrinsic defects. Afterward, the review explains how the Z-scheme approach succeed to address the redox weakened issue of heterojunction approach. In general, this review provides a clear image that helps the researcher to tune the photocatalytic activity of pristine ZnO and its heterostructure.
Collapse
Affiliation(s)
- Abdo Hezam
- Center for Materials Science and Technology, University of Mysore, Vijana Bhavana, Manasagangothiri, 570 006, Mysuru, India.,Leibniz-Institute for Catalysis at the University of Rostock, 18059, Rostock, Germany
| | - Q A Drmosh
- Interdisciplinary Research Center for Hydrogen and Energy Storage (HES), King Fahd University of Petroleum and Minerals (KFUPM), 31261, Dhahran, Saudi Arabia
| | | | - Mohammed Abdullah Bajiri
- Department of Studies and Research in Industrial Chemistry, School of Chemical Sciences, Kuvempu University, 577 451, Shankaraghatta, India
| | - Mohammad Qamar
- Interdisciplinary Research Center for Hydrogen and Energy Storage (HES), King Fahd University of Petroleum and Minerals (KFUPM), 31261, Dhahran, Saudi Arabia
| | - K Namratha
- DOS in Earth Science, University of Mysore, Mysuru, 570 006, India
| | - Mina Zare
- Center for Materials Science and Technology, University of Mysore, Vijana Bhavana, Manasagangothiri, 570 006, Mysuru, India
| | - M B Nayan
- Center for Materials Science and Technology, University of Mysore, Vijana Bhavana, Manasagangothiri, 570 006, Mysuru, India
| | - Sagheer A Onaizi
- Interdisciplinary Research Center for Hydrogen and Energy Storage (HES), King Fahd University of Petroleum and Minerals (KFUPM), 31261, Dhahran, Saudi Arabia.,Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, 31216, Dhahran, Saudi Arabia
| | - K Byrappa
- Adichunchanagiri University, N.H.75, 571448, B. G. Nagara, Mandya District, India
| |
Collapse
|
10
|
Mohamed F, Hassaballa S, Shaban M, Ahmed AM. Highly Efficient Photocatalyst Fabricated from the Chemical Recycling of Iron Waste and Natural Zeolite for Super Dye Degradation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:235. [PMID: 35055253 PMCID: PMC8778937 DOI: 10.3390/nano12020235] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/22/2021] [Accepted: 12/17/2021] [Indexed: 12/18/2022]
Abstract
In this paper, Fe2O3 and Fe2O3-zeolite nanopowders are prepared by chemical precipitation utilizing the rusted iron waste and natural zeolite. In addition to the nanomorphologies; the chemical composition, structural parameters, and optical properties are examined using many techniques. The Fe2O3-zeolite photocatalyst showed smaller sizes and higher light absorption in visible light than Fe2O3. Both Fe2O3 and Fe2O3-zeolite are used as photocatalysts for methylene blue (MB) photodegradation under solar light. The effects of the contact time, starting MB concentration, Fe2O3-zeolite dose, and pH value on photocatalytic performance are investigated. The full photocatalytic degradation of MB dye (10 mg/L) is achieved using 75 mg of Fe2O3-zeolite under visible light after 30 s, which, to the best of our knowledge, is the highest performance yet for Fe2O3-based photocatalysts. This photocatalyst has also shown remarkable stability and recyclability. The kinetics and mechanisms of the photocatalytic process are studied. Therefore, the current work can be applied industrially as a cost-effective method for eliminating the harmful MB dye from wastewater and recycling the rusted iron wires.
Collapse
Affiliation(s)
- Fatma Mohamed
- Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; (F.M.); (A.M.A.)
- Polymer Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Safwat Hassaballa
- Department of Physics, Faculty of Science, Islamic University in Madinah, Al Madinah Al Munawwarah 42351, Saudi Arabia;
| | - Mohamed Shaban
- Department of Physics, Faculty of Science, Islamic University in Madinah, Al Madinah Al Munawwarah 42351, Saudi Arabia;
| | - Ashour M. Ahmed
- Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; (F.M.); (A.M.A.)
| |
Collapse
|
11
|
Munawar T, Mukhtar F, Yasmeen S, Naveed-Ur-Rehman M, Nadeem MS, Riaz M, Mansoor M, Iqbal F. Sunlight-induced photocatalytic degradation of various dyes and bacterial inactivation using CuO-MgO-ZnO nanocomposite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:42243-42260. [PMID: 33797716 DOI: 10.1007/s11356-021-13572-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Novel tri-phase CuO-MgO-ZnO nanocomposite was prepared using the co-precipitation technique and investigated its physical properties using characterization techniques including XRD, FTIR, Raman, IV, UV-vis, PL, and SEM. The application of grown CuO-MgO-ZnO nanocomposite for the degradation of various dyes under sunlight and antibacterial activity against different bacteria were studied. The XRD confirmed the existence of diffraction peaks related to CuO (monoclinic), MgO (cubic), and ZnO (hexagonal) with CuO phase 40%, MgO 24%, and ZnO 36%. The optical energy gap of nanocomposite was 2.9 eV, which made it an efficient catalyst under sunlight. Raman and FTIR spectra have further confirmed the formation of the nanocomposite. SEM images revealed agglomerated rod-shaped morphology. EDX results showed the atomic percentage of a constituent element in this order Cu>Zn>Mg. PL results demonstrate the presence of intrinsic defects. The photocatalytic activity against methylene blue (MB), methyl orange (MO), rhodamine-B (RhB), cresol red (CR), and P-nitroaniline (P-Nitro) dyes has shown the excellent degradation efficiencies 88.5%, 93.5%, 75.9%, 98.8%, and 98.6% at 5 ppm dye concentration and 82.6%, 83.6%, 64.3%, 93.1%, and 94.3% at 10 ppm dye concentration in 100 min, respectively, under sunlight illumination. The higher degradation is due to the generation of superoxide and hydroxyl radicals. The recyclability test showed the reusability of catalyst up to the 5th cycle. The antibacterial activity against Escherichia coli, Klebsiella pneumoniae, Proteus Vulgaris, Staphylococcus aureus, and Pseudomonas aeruginosa bacteria with the zone of inhibition 30, 31, 30, 30, and 30 mm, respectively, was achieved.
Collapse
Affiliation(s)
- Tauseef Munawar
- Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Faisal Mukhtar
- Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Sadaf Yasmeen
- Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | | | | | - Muhammad Riaz
- Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Mansoor
- School of Chemical & Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad, 24090, Pakistan
| | - Faisal Iqbal
- Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| |
Collapse
|
12
|
Abstract
In this study, novel and cost-effective alkali-activated materials (AAMs) for catalytic applications were developed by using an industrial side stream, i.e., blast furnace slag (BFS). AAMs can be prepared from aluminosilicate precursors under mild conditions (room temperature using non-hazardous chemicals). AAMs were synthesized by mixing BFS and a 50 wt % sodium hydroxide (NaOH) solution at different BFS/NaOH ratios. The pastes were poured into molds, followed by consolidation at 20 or 60 °C. As the active metal, Fe was impregnated into the prepared AAMs by ion exchange. The prepared materials were examined as catalysts for the catalytic wet peroxide oxidation (CWPO) of a bisphenol A (BPA) aqueous solution. As-prepared AAMs exhibited a moderate surface area and mesoporous structure, and they exhibited moderate activity for the CWPO of BPA, while the iron ion-exchanged, BFS-based catalyst (Fe/BFS30-60) exhibited the maximum removal of BPA (50%) during 3 h of oxidation at pH 3.5 at 70 °C. Therefore, these new, inexpensive, AAM-based catalysts could be interesting alternatives for catalytic wastewater treatment applications.
Collapse
|
13
|
Bai S, Han J, Han N, Zhang K, Sun J, Sun L, Luo R, Li D, Chen A. An α-Fe2O3/NiO p–n hierarchical heterojunction for the sensitive detection of triethylamine. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01548e] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The 4Fe/Ni composite exhibits enhanced sensing properties to TEA compared with pristine α-Fe2O3. The enhancing sensing performance is attributed to big specific surface of hierarchical structures and the formation of p–n heterojunction.
Collapse
Affiliation(s)
- Shouli Bai
- State Key Laboratory of Bio-Fibers and Eco-Textiles
- Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles
- College of Materials Science and Engineering
- Institute of Marine Biobased Materials
- Qingdao University
| | - Jingyi Han
- State Key Laboratory of Chemical Resource Engineering
- Beijing Key Laboratory of Environmentally Harmful Chemicals Analysis
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Ning Han
- State Key Laboratory of Multiphase Complex Systems
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Kewei Zhang
- State Key Laboratory of Bio-Fibers and Eco-Textiles
- Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles
- College of Materials Science and Engineering
- Institute of Marine Biobased Materials
- Qingdao University
| | - Jianhua Sun
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology
- School of Chemistry and Chemical Engineering
- Guangxi University
- Nanning
- China
| | - Lixia Sun
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology
- School of Chemistry and Chemical Engineering
- Guangxi University
- Nanning
- China
| | - Ruixian Luo
- State Key Laboratory of Chemical Resource Engineering
- Beijing Key Laboratory of Environmentally Harmful Chemicals Analysis
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Dianqing Li
- State Key Laboratory of Chemical Resource Engineering
- Beijing Key Laboratory of Environmentally Harmful Chemicals Analysis
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Aifan Chen
- State Key Laboratory of Chemical Resource Engineering
- Beijing Key Laboratory of Environmentally Harmful Chemicals Analysis
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|
14
|
Bhuvaneswari K, Palanisamy G, Pazhanivel T, Bharathi G, Nataraj D. Photocatalytic Performance on Visible Light Induced ZnS QDs-MgAl Layered Double Hydroxides Hybrids for Methylene Blue Dye Degradation. ChemistrySelect 2018. [DOI: 10.1002/slct.201803183] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kandasamy Bhuvaneswari
- Smart Materials Interface Laboratory; Department of Physics; Periyar University; Salem- 636 011, Tamil Nadu India
| | - Govindasamy Palanisamy
- Smart Materials Interface Laboratory; Department of Physics; Periyar University; Salem- 636 011, Tamil Nadu India
| | - Thangavelu Pazhanivel
- Smart Materials Interface Laboratory; Department of Physics; Periyar University; Salem- 636 011, Tamil Nadu India
| | - Ganapathi Bharathi
- Low Dimensional Materials Laboratory; Department of Physics; Bharathiyar University; Coimbatore- 641 046, Tamil Nadu India
| | - Devaraj Nataraj
- Low Dimensional Materials Laboratory; Department of Physics; Bharathiyar University; Coimbatore- 641 046, Tamil Nadu India
| |
Collapse
|
15
|
Recent developments of metal oxide based heterostructures for photocatalytic applications towards environmental remediation. J SOLID STATE CHEM 2018. [DOI: 10.1016/j.jssc.2018.08.006] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
16
|
Salehi G, Abazari R, Mahjoub AR. Visible-Light-Induced Graphitic–C3N4@Nickel–Aluminum Layered Double Hydroxide Nanocomposites with Enhanced Photocatalytic Activity for Removal of Dyes in Water. Inorg Chem 2018; 57:8681-8691. [DOI: 10.1021/acs.inorgchem.8b01636] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ghazal Salehi
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115−175, Tehran, Iran
| | - Reza Abazari
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115−175, Tehran, Iran
| | - Ali Reza Mahjoub
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115−175, Tehran, Iran
| |
Collapse
|
17
|
Pan D, Ge S, Zhao J, Shao Q, Guo L, Zhang X, Lin J, Xu G, Guo Z. Synthesis, characterization and photocatalytic activity of mixed-metal oxides derived from NiCoFe ternary layered double hydroxides. Dalton Trans 2018; 47:9765-9778. [DOI: 10.1039/c8dt01045e] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ternary NiCoFe mixed-metal oxides have demonstrated higher photoelectrocatalytic activity in degrading methylene blue (MB).
Collapse
Affiliation(s)
- Duo Pan
- College of Chemical and Environmental Engineering
- Shandong University of Science and Technology
- Qingdao 266590
- PR China
| | - Shengsong Ge
- College of Chemical and Environmental Engineering
- Shandong University of Science and Technology
- Qingdao 266590
- PR China
| | - Junkai Zhao
- College of Chemical and Environmental Engineering
- Shandong University of Science and Technology
- Qingdao 266590
- PR China
- Integrated Composites Laboratory (ICL)
| | - Qian Shao
- College of Chemical and Environmental Engineering
- Shandong University of Science and Technology
- Qingdao 266590
- PR China
| | - Lin Guo
- College of Chemical and Environmental Engineering
- Shandong University of Science and Technology
- Qingdao 266590
- PR China
| | - Xincheng Zhang
- College of Chemical and Environmental Engineering
- Shandong University of Science and Technology
- Qingdao 266590
- PR China
| | - Jing Lin
- School of Chemistry and Chemical Engineering
- Guangzhou University
- Guangzhou 510006
- P.R. China
| | - Gaofeng Xu
- College of Chemical Engineering
- Southwest Forestry University
- Kunming 650224
- China
| | - Zhanhu Guo
- Integrated Composites Laboratory (ICL)
- Department of Chemical & Biomolecular Engineering
- University of Tennessee
- Knoxville
- USA
| |
Collapse
|