1
|
Kurt H, Soylukan C, Çelik S, Çapkın E, Acuner IC, Topkaya AE, Yüce M. Rapid and sensitive biosensing of uropathogenic E. coli using plasmonic nanohole arrays on MIM: Bridging the gap between lab and clinical diagnostics. Biosens Bioelectron 2025; 280:117419. [PMID: 40174438 DOI: 10.1016/j.bios.2025.117419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/11/2025] [Accepted: 03/24/2025] [Indexed: 04/04/2025]
Abstract
This study introduces a novel biosensing platform, Plasmonic Array Nanohole Technology on Metal-Insulator-Metal (PANTOMIM), designed to overcome limitations of traditional plasmonic nanohole array biosensors. PANTOMIM utilizes a metal-insulator-metal structure as a lossy waveguide to dampen metal/substrate peaks, ensuring high extinction coefficients and spectral purity for biosensing. The architecture is optimized for the 800-850 nm wavelength range, with potential for future integration into nanophotonic devices. To demonstrate its clinical utility, we applied PANTOMIM to the detection of uropathogenic Escherichia coli (UPEC) in urine samples. This approach addresses the need for rapid diagnosis of urinary tract infections, providing results in 15 min and requiring minimal sample preparation. The efficacy of the technology was validated in a clinical setting with a cohort of 100 patients, showcasing its potential to revolutionize the detection of UPEC. PANTOMIM combines the advantages of plasmonic nanohole arrays, including tunable periodicity, coupled plasmonic response, and extraordinary optical transmission, while mitigating the challenges associated with thin-film plasmonic metals. This innovation paves the way for integrated nanoplasmonic biosensors for point-of-care diagnostics.
Collapse
Affiliation(s)
- Hasan Kurt
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| | - Caner Soylukan
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul, 34956, Türkiye
| | - Süleyman Çelik
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul, 34956, Türkiye
| | - Eda Çapkın
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul, 34956, Türkiye; Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Istanbul, Türkiye
| | - Ibrahim Cagatay Acuner
- Department of Microbiology and Clinical Microbiology, Faculty of Medicine, Istinye University, 34010, Istanbul, Türkiye
| | - Aynur Eren Topkaya
- Department of Medical Microbiology, Faculty of Medicine, Yeditepe University, 34755, Istanbul, Türkiye
| | - Meral Yüce
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK; SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul, 34956, Türkiye.
| |
Collapse
|
2
|
Alsaidan OA. Recent advancements in aptamers as promising nanotool for therapeutic and diagnostic applications. Anal Biochem 2025; 702:115844. [PMID: 40090606 DOI: 10.1016/j.ab.2025.115844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/09/2025] [Accepted: 03/12/2025] [Indexed: 03/18/2025]
Abstract
Aptamers are single-strand oligonucleotide molecules having certain structural interactions which allow them to bind to specific targets. Modified nucleotides are added during or after a selection procedure like Systematic Evolution of Ligands by Exponential Enrichment i.e., SELEX to enhance the characteristics and functionality of aptamers. Aptamers are extensible molecular tools with several uses such as in drug administration, biosensing, bioimaging, drug therapies and diagnostics. The ability to detect is improved by using aptamer-based sensors in conjunction with biological molecules among other sensing techniques. Chemical modification, and strong resistance to denaturation, aptamers are appropriate biological recognizing agents for developing sensitive and repeatable aptasensors. This review discusses the most current developments in the aptamers, SELEX method, applications of aptamers as innovative diagnostic, therapeutic & theragnostic tool along with major limitations & prospective directions in the future.
Collapse
Affiliation(s)
- Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, P.O. Box 2014, Sakaka, 72341, Saudi Arabia.
| |
Collapse
|
3
|
Ozkan-Ariksoysal D, Pantelidou E, Dendrinou-Samara C, Girousi S. Nanoparticle-Based DNA Biosensor: Synthesis of Novel Manganese Nanoparticles Applied in the Development of a Sensitive Electrochemical Double-Stranded/Single-Stranded DNA Biosensor. MICROMACHINES 2025; 16:232. [PMID: 40047689 PMCID: PMC11857743 DOI: 10.3390/mi16020232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/11/2025] [Accepted: 02/17/2025] [Indexed: 03/09/2025]
Abstract
The development of electrochemical DNA biosensors occurred by applying different organically coated Mn-NPs such as MnCO3@OAm, MnCO3@TEG and MnO2/Mn2O3@TEG, as well as naked MnCO3 NPs (where OAm = oleylamine and TEG = tetraethylene glycol). The detection performances of PGEs were modified with different types of Mn-NPs, according to the guanine signal magnitudes obtained after double-stranded DNA (dsDNA) or single-stranded DNA (ssDNA) immobilization at these surfaces. DNA interaction studies were realized using UV-vis, circular dichroism (CD), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) techniques. In addition, a 3- to 5.4-fold increase in guanine response in the presence of dsDNA and a 2.3-fold increase in the presence of ssDNA were obtained with the developed biosensor. The increased signals in DNA immobilization at the electrode surfaces modified with Mn-NPs compared to bare PGE clearly show that the modification of Mn-NPs increases the electroactive surface area of the electrode. The detection limit (LOD) of dsDNA was calculated as 7.86 μg·L-1 using the MnO2/Mn2O3@TEG type of the Mn-NP-modified biosensor, while the detection limit of ssDNA was calculated as 3.49 μg·L-1 with the MnCO3@OAm type Mn-NP-modified biosensor. The proposed sensor was applied to a human DNA sample where the amount of dsDNA extract was found to be 0.62 ± 0.03 mg·L-1 after applying the MnO2/Mn2O3@TEG type of Mn-NP-modified biosensor.
Collapse
Affiliation(s)
- Dilsat Ozkan-Ariksoysal
- Department of Analytical Chemistry, Faculty of Pharmacy, Ege University, Bornova 35100, Izmir, Türkiye
| | - Elpida Pantelidou
- Laboratory of Inorganic Chemistry, School of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (E.P.); (C.D.-S.)
| | - Catherine Dendrinou-Samara
- Laboratory of Inorganic Chemistry, School of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (E.P.); (C.D.-S.)
| | - Stella Girousi
- Laboratory of Analytical Chemistry, School of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| |
Collapse
|
4
|
Islam DT, Mobasser S, Kotaru S, Telli AE, Telli N, Cupples AM, Hashsham SA. Electrochemical Detection of Nucleic Acids Using Three-Dimensional Graphene Screen-Printed Electrodes. Methods Mol Biol 2025; 2852:47-64. [PMID: 39235736 DOI: 10.1007/978-1-0716-4100-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Electrochemical approaches, along with miniaturization of electrodes, are increasingly being employed to detect and quantify nucleic acid biomarkers. Miniaturization of the electrodes is achieved through the use of screen-printed electrodes (SPEs), which consist of one to a few dozen sets of electrodes, or by utilizing printed circuit boards. Electrode materials used in SPEs include glassy carbon (Chiang H-C, Wang Y, Zhang Q, Levon K, Biosensors (Basel) 9:2-11, 2019), platinum, carbon, and graphene (Cheng FF, He TT, Miao HT, Shi JJ, Jiang LP, Zhu JJ, ACS Appl Mater Interfaces 7:2979-2985, 2015). There are numerous modifications to the electrode surfaces as well (Cheng FF, He TT, Miao HT, Shi JJ, Jiang LP, Zhu JJ, ACS Appl Mater Interfaces 7:2979-2985, 2015). These approaches offer distinct advantages, primarily due to their demonstrated superior limit of detection without amplification. Using the SPEs and potentiostats, we can detect cells, proteins, DNA, and RNA concentrations in the nanomolar (nM) to attomolar (aM) range. The focus of this chapter is to describe the basic approach adopted for the use of SPEs for nucleic acid measurement.
Collapse
Affiliation(s)
- Dar Tafazul Islam
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA
| | - Shariat Mobasser
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA
| | - Sruthi Kotaru
- Portage Central High School, Portage, MI, USA
- Michigan State University High School Honors Science/Mathematics/Engineering Program (HSHSP), Michigan State University, East Lansing, MI, USA
| | - Arife Ezgi Telli
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| | - Nihat Telli
- Department of Food Technology, Vocational School of Technical Sciences, Konya Technical University, Konya, Turkey
| | - Alison M Cupples
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA
| | - Syed A Hashsham
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA.
- Center for Microbial Ecology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
5
|
Morrone E, Sancey L, Dalonneau F, Ricciardi L, La Deda M. Conjugated Human Serum Albumin/Gold-Silica Nanoparticles as Multifunctional Carrier of a Chemotherapeutic Drug. Int J Mol Sci 2024; 25:13701. [PMID: 39769463 PMCID: PMC11678608 DOI: 10.3390/ijms252413701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
We report the design and development of a novel multifunctional nanostructure, RB-AuSiO2_HSA-DOX, where tri-modal cancer treatment strategies-photothermal therapy (PTT), photodynamic therapy (PDT), chemotherapy-luminescent properties and targeting are integrated into the same scaffold. It consists of a gold core with optical and thermo-plasmonic properties and is covered by a silica shell entrapping a well-known photosensitizer and luminophore, Rose Bengal (RB). The nanoparticle surface was decorated with Human Serum Albumin (HSA) through a covalent conjugation to confer its targeting abilities and as a carrier of Doxorubicin (DOX), one of the most effective anticancer drugs in clinical chemotherapy. The obtained nanostructure was fully characterized through transmission electron microscopy (TEM), dynamic light scattering (DLS) and UV-visible spectroscopy, with a homogeneous and spherical shape, an average diameter of about 60 nm and negative ζ-potential value Singlet oxygen generation and photothermal properties were explored under green light irradiation. The interaction between DOX-HSA anchored on the nanoplatform was investigated by fluorescence spectroscopy and compared to that of DOX-HSA, pointing out different accessibility of the drug molecules to the HSA binding sites, whether the protein is free or bound to the nanoparticle surface. To the best of our knowledge, there are no studies comparing a drug-HSA interaction with that of the same protein anchored to nanoparticles. Furthermore, the uptake of RB-AuSiO2_HSA-DOX into MDA-MB-231 mammary cells was assessed by confocal imaging, highlighting-at early time of incubation and as demonstrated by the increased DOX luminescence displayed within cells-a better internalization of the carried anticancer drug compared to the free one, making the obtained nanostructure a suitable and promising platform for an anticancer multimodal approach.
Collapse
Affiliation(s)
- Elena Morrone
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy;
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy
- CNR-NANOTEC Institute of Nanotechnology, National Research Council, 87036 Rende, Italy
| | - Lucie Sancey
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences (IAB), 38000 Grenoble, France; (L.S.); (F.D.)
| | - Fabien Dalonneau
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences (IAB), 38000 Grenoble, France; (L.S.); (F.D.)
| | - Loredana Ricciardi
- CNR-NANOTEC Institute of Nanotechnology, National Research Council, 87036 Rende, Italy
| | - Massimo La Deda
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy
- CNR-NANOTEC Institute of Nanotechnology, National Research Council, 87036 Rende, Italy
| |
Collapse
|
6
|
Ellena V, Ioannou A, Kolm C, Farnleiter AH, Steiger MG. Development of a whole-cell SELEX process to select species-specific aptamers against Aspergillus niger. Fungal Biol Biotechnol 2024; 11:17. [PMID: 39501346 PMCID: PMC11536964 DOI: 10.1186/s40694-024-00185-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/20/2024] [Indexed: 11/09/2024] Open
Abstract
BACKGROUND Spores produced by the filamentous fungus Aspergillus niger are abundant in a variety of environments. The proliferation of this fungus in indoor environments has been associated to health risks and its conidia can cause allergic reaction and severe invasive disease in animals and humans. Therefore, the detection and monitoring of Aspergillus conidia is of utmost importance to prevent serious fungal infections and contaminations. Among others, aptamers could serve as biosensors for the specific detection of fungal spores. RESULTS In this study, DNA aptamers specific to conidia of A. niger were developed by optimizing a whole-cell SELEX approach. Three whole-cells SELEX experiments were performed in parallel with similar conditions. Quantification of recovered ssDNA and melting curve analyses were applied to monitor the ongoing SELEX process. Next-generation sequencing was performed on selected recovered ssDNA pools, allowing the identification of DNA aptamers which bind with high affinity to the target cells. The developed aptamers were shown to be species-specific, being able to bind to A. niger but not to A. tubingensis or to A. nidulans. The binding affinity of two aptamers (AN01-R9-006 and AN02-R9-185) was measured to be 58.97 nM and 138.71 nM, respectively, which is in the range of previously developed aptamers. CONCLUSIONS This study demonstrates that species-specific aptamers can be successfully developed via whole-cell SELEX to distinguish different Aspergillus species and opens up new opportunities in the field of diagnostics of fungal infections.
Collapse
Affiliation(s)
- Valeria Ellena
- Research Group Biochemistry, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse 18, Vienna, Austria
| | - Alexandra Ioannou
- Research Group Biochemistry, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse 18, Vienna, Austria
| | - Claudia Kolm
- Department Pharmacology, Physiology and Microbiology, Division of Waterquality and Health, Karl Landsteiner University of Health Sciences, Dr. -Karl-Dorrek-Straße 30, Krems, Austria
- Research Group Microbiology and Molecular Diagnostics, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Andreas H Farnleiter
- Department Pharmacology, Physiology and Microbiology, Division of Waterquality and Health, Karl Landsteiner University of Health Sciences, Dr. -Karl-Dorrek-Straße 30, Krems, Austria
- Research Group Microbiology and Molecular Diagnostics, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Matthias G Steiger
- Research Group Biochemistry, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria.
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse 18, Vienna, Austria.
| |
Collapse
|
7
|
Erdem A, Senturk H, Yildiz E, Maral M. Optimized aptamer-based next generation biosensor for the ultra-sensitive determination of SARS-CoV-2 S1 protein in saliva samples. Int J Biol Macromol 2024; 281:136233. [PMID: 39362419 DOI: 10.1016/j.ijbiomac.2024.136233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
COVID-19 is an infectious disease caused by the SARS-CoV-2 virus, which rapidly spread worldwide and resulted in a pandemic. Efficient and sensitive detection techniques have been devised since the onset of the epidemic and continue to be improved at present. Due to the crucial role of the SARS-CoV-2 S1 protein in facilitating the virus's entry into cells, efforts in detection and treatment have primarily centered upon this protein. In this study, a rapid, ultrasensitive, disposable, easy-to-use, cost-effective next generation biosensor based on optimized aptamer (Optimer, OPT) was developed by using a disposable pencil graphite electrode (PGE) and applied for the impedimetric determination of SARS-CoV-2 S1 protein. The S1 protein interacted with the OPT in the solution phase and then immobilized onto the PGE surface. Subsequently, measurements using electrochemical impedance spectroscopy (EIS) were conducted in a solution containing a redox probe of 1 mM [Fe(CN)6]3-/4-. Under optimum conditions, the limit of detection (LOD) for the S1 protein in buffer medium at concentrations ranging from 101 to 106 ag/mL was calculated as 8.80 ag/mL (0.11 aM). The selectivity of the developed biosensor was studied against MERS-CoV-S1 protein (MERS) and Influenza Hemagglutinin antigen (HA). Furthermore, the application of the biosensor in artificial saliva medium is demonstrated. The LOD was also calculated in artificial saliva medium in the concentration range of 101-105 ag/mL and calculated as 2.01 ag/mL (0.025 aM). This medium was also used to assess the selectivity of optimized-aptamer based biosensor.
Collapse
Affiliation(s)
- Arzum Erdem
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, Bornova, 35100 Izmir, Türkiye.
| | - Huseyin Senturk
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, Bornova, 35100 Izmir, Türkiye
| | - Esma Yildiz
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, Bornova, 35100 Izmir, Türkiye
| | - Meltem Maral
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, Bornova, 35100 Izmir, Türkiye
| |
Collapse
|
8
|
Mustafa S, Abbas RZ, Saeed Z, Baazaoui N, Khan AMA. Use of Metallic Nanoparticles Against Eimeria-the Coccidiosis-Causing Agents: A Comprehensive Review. Biol Trace Elem Res 2024:10.1007/s12011-024-04399-8. [PMID: 39354182 DOI: 10.1007/s12011-024-04399-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/25/2024] [Indexed: 10/03/2024]
Abstract
Coccidiosis is a protozoan disease caused by Eimeria species and is a major threat to the poultry industry. Different anti-coccidial drugs (diclazuril, amprolium, halofuginone, ionophores, sulphaquinoxaline, clopidol, and ethopabate) and vaccines have been used for their control. Still, due to the development of resistance, their efficacy has been limited. It is continuously damaging the economy of the poultry industry because under its control, almost $14 billion is spent, globally. Recent research has been introducing better and more effective control of coccidiosis by using metallic and metallic oxide nanoparticles. Zinc, zinc oxide, copper, copper oxide, silver, iron, and iron oxide are commonly used because of their drug delivery mechanism. These nanoparticles combined with other drugs enhance the effect of these drugs and give their better results. Moreover, by using nanotechnology, the resistance issue is also solved because by using several mechanisms at a time, protozoa cannot evolve and thus resistance cannot develop. Green nanotechnology has been giving better results due to its less toxic effects. Utilization of metallic and metallic oxide nanoparticles may present a new, profitable, and economical method of controlling chicken coccidiosis, thus by changing established treatment approaches and improving the health and production of chickens. Thus, the objective of this review is to discuss about economic burden of avian coccidiosis, zinc, zinc oxide, iron, iron oxide, copper, copper oxide, silver nanoparticles use in the treatment of coccidiosis, their benefits, and toxicity.
Collapse
Affiliation(s)
- Sahar Mustafa
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - Rao Zahid Abbas
- Department of Parasitology, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Zohaib Saeed
- Department of Parasitology, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Narjes Baazaoui
- Applied College Muhayil Assir, King Khalid University, 61421, Abha, Saudi Arabia
| | | |
Collapse
|
9
|
Ye J, Fan M, Zhan J, Zhang X, Lu S, Chai M, Zhang Y, Zhao X, Li S, Zhang D. In silico bioactivity prediction of proteins interacting with graphene-based nanomaterials guides rational design of biosensor. Talanta 2024; 277:126397. [PMID: 38865956 DOI: 10.1016/j.talanta.2024.126397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/24/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
Graphene-based nanomaterials have attracted significant attention for their potentials in biomedical and biotechnology applications in recent years, owing to the outstanding physical and chemical properties. However, the interaction mechanism and impact on biological activity of macro/micro biomolecules still require more concerns and further research in order to enhance their applicability in biosensors, etc. Herein, an integrated method has been developed to predict the protein bioactivity performance when interacting with nanomaterials for protein-based biosensor. Molecular dynamics simulation and molecular docking technique were consolidated to investigate several nanomaterials: C60 fullerene, single-walled carbon nanotube, pristine graphene and graphene oxide, and their effect when interacting with protein. The adsorption behavior, secondary structure changes and protein bioactivity changes were simulated, and the results of protein activity simulation were verified in combination with atomic force spectrum, circular dichroism spectrum fluorescence and electrochemical experiments. The best quantification alignment between bioactivity obtained by simulation and experiment measurements was further explored. The two proteins, RNase A and Exonuclease III, were regarded as analysis model for the proof of concept, and the prediction accuracy of protein bioactivity could reach up to 0.98. The study shows an easy-to-operate and systematic approach to predict the effects of graphene-based nanomaterials on protein bioactivity, which holds guiding significance for the design of protein-related biosensors. In addition, the proposed prediction model is not limited to carbon-based nanomaterials and can be extended to other types of nanomaterials. This facilitates the rapid, simple, and low-cost selection of efficient and biosafe nanomaterials candidates for protein-related applications in biosensing and biomedical systems.
Collapse
Affiliation(s)
- Jing Ye
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China
| | - Minzhi Fan
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China
| | - Jie Zhan
- Research Center for New Materials Computation, Zhejiang Laboratory, Hangzhou, 311121, China
| | - Xiaoyu Zhang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China
| | - Shasha Lu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Mengyao Chai
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China
| | - Yunshan Zhang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China
| | - Xiaoyu Zhao
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China; College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Shuang Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Diming Zhang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China.
| |
Collapse
|
10
|
Huang H, Zheng Y, Chang M, Song J, Xia L, Wu C, Jia W, Ren H, Feng W, Chen Y. Ultrasound-Based Micro-/Nanosystems for Biomedical Applications. Chem Rev 2024; 124:8307-8472. [PMID: 38924776 DOI: 10.1021/acs.chemrev.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Due to the intrinsic non-invasive nature, cost-effectiveness, high safety, and real-time capabilities, besides diagnostic imaging, ultrasound as a typical mechanical wave has been extensively developed as a physical tool for versatile biomedical applications. Especially, the prosperity of nanotechnology and nanomedicine invigorates the landscape of ultrasound-based medicine. The unprecedented surge in research enthusiasm and dedicated efforts have led to a mass of multifunctional micro-/nanosystems being applied in ultrasound biomedicine, facilitating precise diagnosis, effective treatment, and personalized theranostics. The effective deployment of versatile ultrasound-based micro-/nanosystems in biomedical applications is rooted in a profound understanding of the relationship among composition, structure, property, bioactivity, application, and performance. In this comprehensive review, we elaborate on the general principles regarding the design, synthesis, functionalization, and optimization of ultrasound-based micro-/nanosystems for abundant biomedical applications. In particular, recent advancements in ultrasound-based micro-/nanosystems for diagnostic imaging are meticulously summarized. Furthermore, we systematically elucidate state-of-the-art studies concerning recent progress in ultrasound-based micro-/nanosystems for therapeutic applications targeting various pathological abnormalities including cancer, bacterial infection, brain diseases, cardiovascular diseases, and metabolic diseases. Finally, we conclude and provide an outlook on this research field with an in-depth discussion of the challenges faced and future developments for further extensive clinical translation and application.
Collapse
Affiliation(s)
- Hui Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yi Zheng
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P. R. China
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China
| | - Jun Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Chenyao Wu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wencong Jia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wei Feng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yu Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
11
|
Dong Y, Wang J, Chen L, Chen H, Dang S, Li F. Aptamer-based assembly systems for SARS-CoV-2 detection and therapeutics. Chem Soc Rev 2024; 53:6830-6859. [PMID: 38829187 DOI: 10.1039/d3cs00774j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Nucleic acid aptamers are oligonucleotide chains with molecular recognition properties. Compared with antibodies, aptamers show advantages given that they are readily produced via chemical synthesis and elicit minimal immunogenicity in biomedicine applications. Notably, aptamer-encoded nucleic acid assemblies further improve the binding affinity of aptamers with the targets due to their multivalent synergistic interactions. Specially, aptamers can be engineered with special topological arrangements in nucleic acid assemblies, which demonstrate spatial and valence matching towards antigens on viruses, thus showing potential in the detection and therapeutic applications of viruses. This review presents the recent progress on the aptamers explored for SARS-CoV-2 detection and infection treatment, wherein applications of aptamer-based assembly systems are introduced in detail. Screening methods and chemical modification strategies for aptamers are comprehensively summarized, and the types of aptamers employed against different target domains of SARS-CoV-2 are illustrated. The evolution of aptamer-based assembly systems for the detection and neutralization of SARS-CoV-2, as well as the construction principle and characteristics of aptamer-based DNA assemblies are demonstrated. The typically representative works are presented to demonstrate how to assemble aptamers rationally and elaborately for specific applications in SARS-CoV-2 diagnosis and neutralization. Finally, we provide deep insights into the current challenges and future perspectives towards aptamer-based nucleic acid assemblies for virus detection and neutralization in nanomedicine.
Collapse
Affiliation(s)
- Yuhang Dong
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Jingping Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Ling Chen
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Haonan Chen
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Shuangbo Dang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Feng Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| |
Collapse
|
12
|
Giarola JF, Santos J, Estevez MC, Ventura S, Pallarès I, Lechuga LM. An α-helical peptide-based plasmonic biosensor for highly specific detection of α-synuclein toxic oligomers. Anal Chim Acta 2024; 1304:342559. [PMID: 38637056 DOI: 10.1016/j.aca.2024.342559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND α-Synuclein (αS) aggregation is the main neurological hallmark of a group of neurodegenerative disorders, collectively referred to as synucleinopathies, of which Parkinson's disease (PD) is the most prevalent. αS oligomers are elevated in the cerebrospinal fluid (CSF) of PD patients, standing as a biomarker for disease diagnosis. However, methods for early PD detection are still lacking. We have recently identified the amphipathic 22-residue peptide PSMα3 as a high-affinity binder of αS toxic oligomers. PSMα3 displayed excellent selectivity and reproducibility, binding to αS toxic oligomers with affinities in the low nanomolar range and without detectable cross-reactivity with functional monomeric αS. RESULTS In this work, we leveraged these PSMα3 unique properties to design a plasmonic-based biosensor for the direct detection of toxic oligomers under label-free conditions. SIGNIFICANCE AND NOVELTY We describe the integration of the peptide in a lab-on-a-chip plasmonic platform suitable for point-of-care measurements of αS toxic oligomers in CSF samples in real-time and at an affordable cost, providing an innovative biosensor for PD early diagnosis in the clinic.
Collapse
Affiliation(s)
- Juliana Fátima Giarola
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, CIBER-BBN and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Jaime Santos
- Institut de Biotecnologia I Biomedicina and Departament de Bioquímica I Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - M-Carmen Estevez
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, CIBER-BBN and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain.
| | - Salvador Ventura
- Institut de Biotecnologia I Biomedicina and Departament de Bioquímica I Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - Irantzu Pallarès
- Institut de Biotecnologia I Biomedicina and Departament de Bioquímica I Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain.
| | - Laura M Lechuga
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, CIBER-BBN and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| |
Collapse
|
13
|
Teixeira A, Sousa-Silva M, Chícharo A, Oliveira K, Moura A, Carneiro A, Piairo P, Águas H, Sampaio-Marques B, Castro I, Mariz J, Ludovico P, Abalde-Cela S, Diéguez L. Isolation of acute myeloid leukemia blasts from blood using a microfluidic device. Analyst 2024; 149:2812-2825. [PMID: 38644740 DOI: 10.1039/d4an00158c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Acute myeloid leukemia (AML) is the most common form of acute leukemia in adults and associated with poor prognosis. Unfortunately, most of the patients that achieve clinical complete remission after the treatment will ultimately relapse due to the persistence of minimal residual disease (MRD), that is not measurable using conventional technologies in the clinic. Microfluidics is a potential tool to improve the diagnosis by providing early detection of MRD. Herein, different designs of microfluidic devices were developed to promote lateral and vertical mixing of cells in microchannels to increase the contact area of the cells of interest with the inner surface of the device. Possible interactions between the cells and the surface were studied using fluid simulations. For the isolation of leukemic blasts, a positive selection strategy was used, targeting the cells of interest using a panel of specific biomarkers expressed in immature and aberrant blasts. Finally, once the optimisation was complete, the best conditions were used to process patient samples for downstream analysis and benchmarking, including phenotypic and genetic characterisation. The potential of these microfluidic devices to isolate and detect AML blasts may be exploited for the monitoring of AML patients at different stages of the disease.
Collapse
Affiliation(s)
- Alexandra Teixeira
- International Iberian Nanotechnology Laboratory (INL), Avda. Mestre José Veiga, 4715-310 Braga, Portugal.
- Life and Health Sciences Research Institute (ICVS), Escola de Medicina, Universidade do Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Maria Sousa-Silva
- International Iberian Nanotechnology Laboratory (INL), Avda. Mestre José Veiga, 4715-310 Braga, Portugal.
- RUBYnanomed LDA, Praça Conde de Agrolongo, 4700-312 Braga, Portugal
| | - Alexandre Chícharo
- International Iberian Nanotechnology Laboratory (INL), Avda. Mestre José Veiga, 4715-310 Braga, Portugal.
| | - Kevin Oliveira
- International Iberian Nanotechnology Laboratory (INL), Avda. Mestre José Veiga, 4715-310 Braga, Portugal.
| | - André Moura
- CENIMAT|i3N, Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, NOVA University of Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Adriana Carneiro
- International Iberian Nanotechnology Laboratory (INL), Avda. Mestre José Veiga, 4715-310 Braga, Portugal.
- IPO Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Paulina Piairo
- International Iberian Nanotechnology Laboratory (INL), Avda. Mestre José Veiga, 4715-310 Braga, Portugal.
| | - Hugo Águas
- CENIMAT|i3N, Department of Materials Science, NOVA School of Science and Technology, Campus de Caparica, NOVA University of Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Belém Sampaio-Marques
- Life and Health Sciences Research Institute (ICVS), Escola de Medicina, Universidade do Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Isabel Castro
- Life and Health Sciences Research Institute (ICVS), Escola de Medicina, Universidade do Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - José Mariz
- Department of Oncohematology, Portuguese Institute of Oncology Francisco Gentil Porto, Portugal
| | - Paula Ludovico
- Life and Health Sciences Research Institute (ICVS), Escola de Medicina, Universidade do Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sara Abalde-Cela
- International Iberian Nanotechnology Laboratory (INL), Avda. Mestre José Veiga, 4715-310 Braga, Portugal.
| | - Lorena Diéguez
- International Iberian Nanotechnology Laboratory (INL), Avda. Mestre José Veiga, 4715-310 Braga, Portugal.
| |
Collapse
|
14
|
Zhao Y, Qian Y, Huang Q, Hu X, Gu W, Xing H. Colourimetric and SERS dual-mode aptasensor using Au@Ag and magnetic nanoparticles for the detection of Campylobacter jejuni. Talanta 2024; 270:125585. [PMID: 38150965 DOI: 10.1016/j.talanta.2023.125585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023]
Abstract
A dual-mode aptasensor has been developed for the effective detection of Campylobacter jejuni (C. jejuni), a major cause of gastrointestinal disease worldwide. The aptasensor utilizes nanoparticles, specifically a core-shell structure consisting of gold and silver (Au@Ag NPs), along with magnetic nanoparticles (MNPs). When Campylobacter jejuni is introduced, "Au@Ag NPs-Aptamer-Campylobacter jejuni-Aptamer-MNPs" sandwich complexes are formed due to the high affinity of the aptamer for the bacterial surface membrane proteins. The dual-mode aptasensor can magnetically enrich the sample in just 15 min, and the presence of Campylobacter jejuni is determined by observing a color change. Additionally, the concentration of Campylobacter jejuni can be quantified using surface-enhanced Raman spectroscopy (SERS) and standard curves. This results in a wider linear range (1.8 × 101-108 CFU/mL) under optimal conditions, a lower limit of detection (6 CFU/mL), and a higher selectivity for the detection of bacteria compared to previously reported sensors. Compared with traditional microbial culture counting methods, the dual-mode aptasensor does not require Raman reporters. The physical action of magnetic enrichment, along with the application of Au@Ag NPs, improves the accuracy of the dual-mode aptasensor, offering the advantages of convenience and high sensitivity. Moreover, by utilizing different types of aptamers, this aptasensor can be modified to detect a wider range of harmful pathogens in various environments.
Collapse
Affiliation(s)
- Yongqiang Zhao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Yong Qian
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Qi Huang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Xiaojun Hu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Wenchao Gu
- Shanghai Putuo District Disease Control Center, Shanghai, 200336, China.
| | - Haibo Xing
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China.
| |
Collapse
|
15
|
Camorani S, Caliendo A, Morrone E, Agnello L, Martini M, Cantile M, Cerrone M, Zannetti A, La Deda M, Fedele M, Ricciardi L, Cerchia L. Bispecific aptamer-decorated and light-triggered nanoparticles targeting tumor and stromal cells in breast cancer derived organoids: implications for precision phototherapies. J Exp Clin Cancer Res 2024; 43:92. [PMID: 38532439 PMCID: PMC10964525 DOI: 10.1186/s13046-024-03014-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/17/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Based on the established role of cancer-stroma cross-talk in tumor growth, progression and chemoresistance, targeting interactions between tumor cells and their stroma provides new therapeutic approaches. Dual-targeted nanotherapeutics selectively acting on both tumor and stromal cells may overcome the limits of tumor cell-targeting single-ligand nanomedicine due to the complexity of the tumor microenvironment. METHODS Gold-core/silica-shell nanoparticles embedding a water-soluble iridium(III) complex as photosensitizer and luminescent probe (Iren-AuSiO2_COOH) were efficiently decorated with amino-terminated EGFR (CL4) and PDGFRβ (Gint4.T) aptamers (Iren-AuSiO2_Aptamer). The targeting specificity, and the synergistic photodynamic and photothermal effects of either single- and dual-aptamer-decorated nanoparticles have been assessed by confocal microscopy and cell viability assays, respectively, on different human cell types including mesenchymal subtype triple-negative breast cancer (MES-TNBC) MDA-MB-231 and BT-549 cell lines (both EGFR and PDGFRβ positive), luminal/HER2-positive breast cancer BT-474 and epidermoid carcinoma A431 cells (only EGFR positive) and adipose-derived mesenchymal stromal/stem cells (MSCs) (only PDGFRβ positive). Cells lacking expression of both receptors were used as negative controls. To take into account the tumor-stroma interplay, fluorescence imaging and cytotoxicity were evaluated in preclinical three-dimensional (3D) stroma-rich breast cancer models. RESULTS We show efficient capability of Iren-AuSiO2_Aptamer nanoplatforms to selectively enter into target cells, and kill them, through EGFR and/or PDGFRβ recognition. Importantly, by targeting EGFR+ tumor/PDGFRβ+ stromal cells in the entire tumor bulk, the dual-aptamer-engineered nanoparticles resulted more effective than unconjugated or single-aptamer-conjugated nanoparticles in either 3D spheroids cocultures of tumor cells and MSCs, and in breast cancer organoids derived from pathologically and molecularly well-characterized tumors. CONCLUSIONS Our study proposes smart, novel and safe multifunctional nanoplatforms simultaneously addressing cancer-stroma within the tumor microenvironment, which are: (i) actively delivered to the targeted cells through highly specific aptamers; (ii) localized by means of their luminescence, and (iii) activated via minimally invasive light, launching efficient tumor death, thus providing innovative precision therapeutics. Given the unique features, the proposed dual targeted nanoformulations may open a new door to precision cancer treatment.
Collapse
Affiliation(s)
- Simona Camorani
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", National Research Council, 80131, Naples, Italy
| | - Alessandra Caliendo
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", National Research Council, 80131, Naples, Italy
| | - Elena Morrone
- CNR-NANOTEC Institute of Nanotechnology, National Research Council, Rende, CS, Italy
- Department of Chemistry and Chemical Technologies, University of Calabria, Rende, CS, Italy
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Lisa Agnello
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", National Research Council, 80131, Naples, Italy
| | - Matteo Martini
- Institute of Light and Matter, UMR 5306, Claude Bernard University Lyon 1, Villeurbanne, France
| | - Monica Cantile
- Institutional Biobank-Scientific Directorate, National Cancer Institute INT-IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Margherita Cerrone
- Pathology Unit, National Cancer Institute INT-IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Antonella Zannetti
- Institute of Biostructures and Bioimaging, National Research Council, 80145, Naples, Italy
| | - Massimo La Deda
- CNR-NANOTEC Institute of Nanotechnology, National Research Council, Rende, CS, Italy
- Department of Chemistry and Chemical Technologies, University of Calabria, Rende, CS, Italy
| | - Monica Fedele
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", National Research Council, 80131, Naples, Italy
| | - Loredana Ricciardi
- CNR-NANOTEC Institute of Nanotechnology, National Research Council, Rende, CS, Italy.
| | - Laura Cerchia
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", National Research Council, 80131, Naples, Italy.
| |
Collapse
|
16
|
Balser S, Röhrl M, Spormann C, Lindhorst TK, Terfort A. Selective Quantification of Bacteria in Mixtures by Using Glycosylated Polypyrrole/Hydrogel Nanolayers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:14243-14251. [PMID: 38442898 PMCID: PMC10959108 DOI: 10.1021/acsami.3c14387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 03/07/2024]
Abstract
Here, we present a covalent nanolayer system that consists of a conductive and biorepulsive base layer topped by a layer carrying biorecognition sites. The layers are built up by electropolymerization of pyrrole derivatives that either carry polyglycerol brushes (for biorepulsivity) or glycoside moieties (as biorecognition sites). The polypyrrole backbone makes the resulting nanolayer systems conductive, opening the opportunity for constructing an electrochemistry-based sensor system. The basic concept of the sensor exploits the highly selective binding of carbohydrates by certain harmful bacteria, as bacterial adhesion and infection are a major threat to human health, and thus, a sensitive and selective detection of the respective bacteria by portable devices is highly desirable. To demonstrate the selectivity, two strains of Escherichia coli were selected. The first strain carries type 1 fimbriae, terminated by a lectin called FimH, which recognizes α-d-mannopyranosides, which is a carbohydrate that is commonly found on endothelial cells. The otherE. coli strain was of a strain that lacked this particular lectin. It could be demonstrated that hybrid nanolayer systems containing a very thin carbohydrate top layer (2 nm) show the highest discrimination (factor 80) between the different strains. Using electrochemical impedance spectroscopy, it was possible to quantify in vivo the type 1-fimbriated E. coli down to an optical density of OD600 = 0.0004 with a theoretical limit of 0.00005. Surprisingly, the selectivity and sensitivity of the sensing remained the same even in the presence of a large excess of nonbinding bacteria, making the system useful for the rapid and selective detection of pathogens in complex matrices. As the presented covalent nanolayer system is modularly built, it opens the opportunity to develop a broad band of mobile sensing devices suitable for various field applications such as bedside diagnostics or monitoring for bacterial contamination, e.g., in bioreactors.
Collapse
Affiliation(s)
- Sebastian Balser
- Department
of Chemistry, Institute of Inorganic and Analytical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
| | - Michael Röhrl
- Otto
Diels Institute of Organic Chemistry, Christiana
Albertina University of Kiel, Otto-Hahn-Platz 3/4, 24098 Kiel, Germany
| | - Carina Spormann
- Otto
Diels Institute of Organic Chemistry, Christiana
Albertina University of Kiel, Otto-Hahn-Platz 3/4, 24098 Kiel, Germany
| | - Thisbe K. Lindhorst
- Otto
Diels Institute of Organic Chemistry, Christiana
Albertina University of Kiel, Otto-Hahn-Platz 3/4, 24098 Kiel, Germany
| | - Andreas Terfort
- Department
of Chemistry, Institute of Inorganic and Analytical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
| |
Collapse
|
17
|
de Araujo WR, Lukas H, Torres MDT, Gao W, de la Fuente-Nunez C. Low-Cost Biosensor Technologies for Rapid Detection of COVID-19 and Future Pandemics. ACS NANO 2024; 18:1757-1777. [PMID: 38189684 PMCID: PMC11537281 DOI: 10.1021/acsnano.3c01629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Many systems have been designed for the detection of SARS-CoV-2, which is the virus that causes COVID-19. SARS-CoV-2 is readily transmitted, resulting in the rapid spread of disease in human populations. Frequent testing at the point of care (POC) is a key aspect for controlling outbreaks caused by SARS-CoV-2 and other emerging pathogens, as the early identification of infected individuals can then be followed by appropriate measures of isolation or treatment, maximizing the chances of recovery and preventing infectious spread. Diagnostic tools used for high-frequency testing should be inexpensive, provide a rapid diagnostic response without sophisticated equipment, and be amenable to manufacturing on a large scale. The application of these devices should enable large-scale data collection, help control viral transmission, and prevent disease propagation. Here we review functional nanomaterial-based optical and electrochemical biosensors for accessible POC testing for COVID-19. These biosensors incorporate nanomaterials coupled with paper-based analytical devices and other inexpensive substrates, traditional lateral flow technology (antigen and antibody immunoassays), and innovative biosensing methods. We critically discuss the advantages and disadvantages of nanobiosensor-based approaches compared to widely used technologies such as PCR, ELISA, and LAMP. Moreover, we delineate the main technological, (bio)chemical, translational, and regulatory challenges associated with developing functional and reliable biosensors, which have prevented their translation into the clinic. Finally, we highlight how nanobiosensors, given their unique advantages over existing diagnostic tests, may help in future pandemics.
Collapse
Affiliation(s)
- William Reis de Araujo
- Portable Chemical Sensors Lab, Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas - UNICAMP, Campinas, SP 13083-970, Brazil
| | - Heather Lukas
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Marcelo D T Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
18
|
Gangwar R, Ray D, Khatun S, Subrahmanyam C, Rengan AK, Vanjari SRK. Toll-like receptor-immobilized carbon paste electrodes with plasma functionalized amine termination: Towards real-time electrochemical based triaging of gram-negative bacteria. Biosens Bioelectron 2023; 241:115674. [PMID: 37717423 DOI: 10.1016/j.bios.2023.115674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023]
Abstract
Chronic wounds caused due to bacterial biofilms are detrimental to a patient, and an immediate diagnosis of these bacteria can aid in an effective treatment, which is still an unmet clinical need. An instant and accurate identification of bacterial type could be made by utilizing the Toll-Like Receptors (TLRs) combined with Myeloid Differentiation factor 2 (MD-2). Given this, we have developed an electrochemical sensing platform to identify the gram-negative (gram-ve) bacteria using TLR4/MD-2 complex. The nonthermal plasma (NTP) technique was utilized to functionalize amine groups onto the carbon surface to fabricate cost-effective carbon paste working electrodes (CPEs). The proposed electrochemical sensor platform with a specially engineered electrochemical cell (E-Cell) identified the Escherichia coli (E. coli) in a wide linear range of 1.5×10° - 1.5×106 C.F.U./mL, accounting for a very low detection limit of 0.087 C.F.U./mL. The novel and cost-effective sensor platform identified gram-ve bacteria predominantly in a mixture of gram positive (gram+ve) bacteria and fungi. Further, towards real-time detection of bacteria and point-of-care (PoC) applications, the effect of the pond water matrix was studied, which was minimal, and the sensor could identify E. coli concentrations selectively, showing the potential application of the proposed platform towards real-time bacterial detection.
Collapse
Affiliation(s)
- Rahul Gangwar
- Department of Electrical Engineering, Indian Institute of Technology Hyderabad, 502284, India.
| | - Debjyoti Ray
- Department of Chemistry, Indian Institute of Technology Hyderabad, 502284, India; Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong Special Administrative Region of China.
| | - Sajmina Khatun
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, 502284, India.
| | | | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, 502284, India.
| | | |
Collapse
|
19
|
Kaymaz SV, Nobar HM, Sarıgül H, Soylukan C, Akyüz L, Yüce M. Nanomaterial surface modification toolkit: Principles, components, recipes, and applications. Adv Colloid Interface Sci 2023; 322:103035. [PMID: 37931382 DOI: 10.1016/j.cis.2023.103035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/11/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023]
Abstract
Surface-functionalized nanostructures are at the forefront of biotechnology, providing new opportunities for biosensors, drug delivery, therapy, and bioimaging applications. The modification of nanostructures significantly impacts the performance and success of various applications by enabling selective and precise targeting. This review elucidates widely practiced surface modification strategies, including click chemistry, cross-coupling, silanization, aldehyde linkers, active ester chemistry, maleimide chemistry, epoxy linkers, and other protein and DNA-based methodologies. We also delve into the application-focused landscape of the nano-bio interface, emphasizing four key domains: therapeutics, biosensing, environmental monitoring, and point-of-care technologies, by highlighting prominent studies. The insights presented herein pave the way for further innovations at the intersection of nanotechnology and biotechnology, providing a useful handbook for beginners and professionals. The review draws on various sources, including the latest research articles (2018-2023), to provide a comprehensive overview of the field.
Collapse
Affiliation(s)
- Sümeyra Vural Kaymaz
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey; SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Turkey
| | | | - Hasan Sarıgül
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Turkey
| | - Caner Soylukan
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Turkey
| | - Lalehan Akyüz
- Department of Molecular Biology and Genetics, Aksaray University, 68100 Aksaray, Turkey
| | - Meral Yüce
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Turkey.
| |
Collapse
|
20
|
Günaydın B, Gülmez M, Torabfam M, Pehlivan ZS, Tütüncüoğlu A, Kayalan CI, Saatçioğlu E, Bayazıt MK, Yüce M, Kurt H. Plasmonic Titanium Nitride Nanohole Arrays for Refractometric Sensing. ACS APPLIED NANO MATERIALS 2023; 6:20612-20622. [PMID: 38037604 PMCID: PMC10684111 DOI: 10.1021/acsanm.3c03050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023]
Abstract
Group IVB metal nitrides have attracted great interest as alternative plasmonic materials. Among them, titanium nitride (TiN) stands out due to the ease of deposition and relative abundance of Ti compared to those of Zr and Hf metals. Even though they do not have Au or Ag-like plasmonic characteristics, they offer many advantages, from high mechanical stability to refractory behavior and complementary metal oxide semiconductor-compatible fabrication to tunable electrical/optical properties. In this study, we utilized reactive RF magnetron sputtering to deposit plasmonic TiN thin films. The flow rate and ratio of Ar/N2 and oxygen scavenging methods were optimized to improve the plasmonic performance of TiN thin films. The stoichiometry and structure of the TiN thin films were thoroughly investigated to assess the viability of the optimized operation procedures. To assess the plasmonic performance of TiN thin films, periodic nanohole arrays were perforated on TiN thin films by using electron beam lithography and reactive ion etching methods. The resulting TiN periodic nanohole array with varying periods was investigated by using a custom microspectroscopy setup for both reflection and transmission characteristics in various media to underline the efficacy of TiN for refractometric sensing.
Collapse
Affiliation(s)
- Beyza
Nur Günaydın
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Tuzla, Istanbul 34956, Turkey
- SUNUM
Nanotechnology Research and Application Centre, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | - Mert Gülmez
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Tuzla, Istanbul 34956, Turkey
| | - Milad Torabfam
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Tuzla, Istanbul 34956, Turkey
- SUNUM
Nanotechnology Research and Application Centre, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | - Zeki Semih Pehlivan
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Tuzla, Istanbul 34956, Turkey
- SUNUM
Nanotechnology Research and Application Centre, Sabanci University, Tuzla, Istanbul 34956, Turkey
- Department
of Materials Science and Metallurgy, University
of Cambridge, Cambridge CB2 3EQ, U.K.
| | - Atacan Tütüncüoğlu
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Tuzla, Istanbul 34956, Turkey
- SUNUM
Nanotechnology Research and Application Centre, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | - Cemre Irmak Kayalan
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Tuzla, Istanbul 34956, Turkey
- SUNUM
Nanotechnology Research and Application Centre, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | - Erhan Saatçioğlu
- Research
Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Beykoz, Istanbul 34810, Turkey
| | - Mustafa Kemal Bayazıt
- SUNUM
Nanotechnology Research and Application Centre, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | - Meral Yüce
- SUNUM
Nanotechnology Research and Application Centre, Sabanci University, Tuzla, Istanbul 34956, Turkey
- Department
of Bioengineering, Royal School of Mines, Imperial College London, London SW7 2AZ, U.K.
| | - Hasan Kurt
- Research
Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Beykoz, Istanbul 34810, Turkey
- School
of Engineering and Natural Sciences, Istanbul
Medipol University, Beykoz, Istanbul 34810, Turkey
- Department
of Bioengineering, Royal School of Mines, Imperial College London, London SW7 2AZ, U.K.
| |
Collapse
|
21
|
Moloudi K, Khani A, Najafi M, Azmoonfar R, Azizi M, Nekounam H, Sobhani M, Laurent S, Samadian H. Critical parameters to translate gold nanoparticles as radiosensitizing agents into the clinic. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1886. [PMID: 36987630 DOI: 10.1002/wnan.1886] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 03/30/2023]
Abstract
Radiotherapy is an inevitable choice for cancer treatment that is applied as combinatorial therapy along with surgery and chemotherapy. Nevertheless, radiotherapy at high doses kills normal and tumor cells at the same time. In addition, some tumor cells are resistant to radiotherapy. Recently, many researchers have focused on high-Z nanomaterials as radiosensitizers for radiotherapy. Among them, gold nanoparticles (GNPs) have shown remarkable potential due to their promising physical, chemical, and biological properties. Although few clinical trial studies have been performed on drug delivery and photosensitization with lasers, GNPs have not yet received Food and Drug Administration approval for use in radiotherapy. The sensitization effects of GNPs are dependent on their concentration in cells and x-ray energy deposition during radiotherapy. Notably, some limitations related to the properties of the GNPs, including their size, shape, surface charge, and ligands, and the radiation source energy should be resolved. At the first, this review focuses on some of the challenges of using GNPs as radiosensitizers and some biases among in vitro/in vivo, Monte Carlo, and clinical studies. Then, we discuss the challenges in the clinical translation of GNPs as radiosensitizers for radiotherapy and proposes feasible solutions. And finally, we suggest that certain areas be considered in future research. This article is categorized under: Therapeutic Approaches and Drug Discovery > NA.
Collapse
Affiliation(s)
- Kave Moloudi
- Department of Radiology and Nuclear Medicine, Alley School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Ali Khani
- Department of Radiation Sciences, Alley School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Najafi
- Department of Radiology and Nuclear Medicine, Alley School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Rasool Azmoonfar
- Department of Radiology, School of Paramedical Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehdi Azizi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Dental Implants Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Houra Nekounam
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahsa Sobhani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sophie Laurent
- Department of General, Organic and Biomedical Chemistry, Faculty of Medicine and Pharmacy, NMR and Molecular Imaging Laboratory, University of Mons, Mons, Belgium
| | - Hadi Samadian
- Dental Implants Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
22
|
Yari P, Liang S, Chugh VK, Rezaei B, Mostufa S, Krishna VD, Saha R, Cheeran MCJ, Wang JP, Gómez-Pastora J, Wu K. Nanomaterial-Based Biosensors for SARS-CoV-2 and Future Epidemics. Anal Chem 2023; 95:15419-15449. [PMID: 37826859 DOI: 10.1021/acs.analchem.3c01522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Affiliation(s)
- Parsa Yari
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Shuang Liang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Vinit Kumar Chugh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Bahareh Rezaei
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Shahriar Mostufa
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Venkatramana Divana Krishna
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Renata Saha
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Maxim C-J Cheeran
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Jian-Ping Wang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jenifer Gómez-Pastora
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Kai Wu
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
23
|
Gaviria-Arroyave MI, Arango JP, Barrientos Urdinola K, Cano JB, Peñuela Mesa GA. Fluorescent nanostructured carbon dot-aptasensor for chlorpyrifos detection: Elucidating the interaction mechanism for an environmentally hazardous pollutant. Anal Chim Acta 2023; 1278:341711. [PMID: 37709453 DOI: 10.1016/j.aca.2023.341711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 09/16/2023]
Abstract
Chlorpyrifos (CPF) is a commonly used insecticide found in many water sources and is related to several health and environmental effects. Biosensors based on aptamers (single-stranded nucleic acid oligonucleotides) are promising alternatives to achieve the detection of CPF and other pesticides in natural waters. However, several challenges need to be addressed to promote the real application of functional aptasensing devices. In this work, an ssDNA aptamer (S1) is combined with carbon quantum dots (CD) and graphene oxide (GO) to produce a stable fluorescent aptasensor characterized through spectrophotometric and electrophoretic techniques. For a deeper understanding of the system, the mechanism of molecular interaction was studied through docking modeling using free bioinformatic tools like HDOCK, showing that the stem-loops and the higher guanine (G) content are crucial for better interaction. The model also suggests the possibility of generating a truncated aptamer to improve the binding affinity. The biosensor was evaluated for CPF detection, showing a low LOD of 0.01 μg L-1 and good specificity in tap water, even compared to other organophosphates pesticides (OPs) like profenofos. Finally, the recovery of the proposed aptasensor was evaluated in some natural water using spiked samples and compared with UPLC MS-MS chromatography as the gold standard, showing a good recovery above 2.85 nM and evidencing the need of protecting ssDNA aptamers from an erratic interaction with the aromatic groups of dissolved organic matter (humic substances). This work paves the way for a better aptasensors design and the on-site implementation of novel devices for environmental monitoring.
Collapse
Affiliation(s)
| | - Juan Pablo Arango
- GIBEC Research Group, Life Sciences Faculty, Universidad EIA, Colombia
| | | | - Juan Bernardo Cano
- GIMEL Research Group. Engineering Faculty, Universidad de Antioquia, Colombia
| | | |
Collapse
|
24
|
Meng X, O'Hare D, Ladame S. Surface immobilization strategies for the development of electrochemical nucleic acid sensors. Biosens Bioelectron 2023; 237:115440. [PMID: 37406480 DOI: 10.1016/j.bios.2023.115440] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 05/20/2023] [Accepted: 05/27/2023] [Indexed: 07/07/2023]
Abstract
Following the recent pandemic and with the emergence of cell-free nucleic acids in liquid biopsies as promising biomarkers for a broad range of pathologies, there is an increasing demand for a new generation of nucleic acid tests, with a particular focus on cost-effective, highly sensitive and specific biosensors. Easily miniaturized electrochemical sensors show the greatest promise and most typically rely on the chemical functionalization of conductive materials or electrodes with sequence-specific hybridization probes made of standard oligonucleotides (DNA or RNA) or synthetic analogues (e.g. Peptide Nucleic Acids or PNAs). The robustness of such sensors is mostly influenced by the ability to control the density and orientation of the probe at the surface of the electrode, making the chemistry used for this immobilization a key parameter. This exhaustive review will cover the various strategies to immobilize nucleic acid probes onto different solid electrode materials. Both physical and chemical immobilization techniques will be presented. Their applicability to specific electrode materials and surfaces will also be discussed as well as strategies for passivation of the electrode surface as a way of preventing electrode fouling and reducing nonspecific binding.
Collapse
Affiliation(s)
- Xiaotong Meng
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK. https://in.linkedin.com/https://www.linkedin.com/profile/view?id=xiaotong-meng-888IC
| | - Danny O'Hare
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| | - Sylvain Ladame
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
25
|
Sensing and Stimulation Applications of Carbon Nanomaterials in Implantable Brain-Computer Interface. Int J Mol Sci 2023; 24:ijms24065182. [PMID: 36982255 PMCID: PMC10048878 DOI: 10.3390/ijms24065182] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/11/2023] Open
Abstract
Implantable brain–computer interfaces (BCIs) are crucial tools for translating basic neuroscience concepts into clinical disease diagnosis and therapy. Among the various components of the technological chain that increases the sensing and stimulation functions of implanted BCI, the interface materials play a critical role. Carbon nanomaterials, with their superior electrical, structural, chemical, and biological capabilities, have become increasingly popular in this field. They have contributed significantly to advancing BCIs by improving the sensor signal quality of electrical and chemical signals, enhancing the impedance and stability of stimulating electrodes, and precisely modulating neural function or inhibiting inflammatory responses through drug release. This comprehensive review provides an overview of carbon nanomaterials’ contributions to the field of BCI and discusses their potential applications. The topic is broadened to include the use of such materials in the field of bioelectronic interfaces, as well as the potential challenges that may arise in future implantable BCI research and development. By exploring these issues, this review aims to provide insight into the exciting developments and opportunities that lie ahead in this rapidly evolving field.
Collapse
|
26
|
Kohantorabi M, Wagstaffe M, Creutzburg M, Ugolotti A, Kulkarni S, Jeromin A, Krekeler T, Feuerherd M, Herrmann A, Ebert G, Protzer U, Guédez G, Löw C, Thuenauer R, Schlueter C, Gloskovskii A, Keller TF, Di Valentin C, Stierle A, Noei H. Adsorption and Inactivation of SARS-CoV-2 on the Surface of Anatase TiO 2(101). ACS APPLIED MATERIALS & INTERFACES 2023; 15:8770-8782. [PMID: 36723177 DOI: 10.1021/acsami.2c22078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We investigated the adsorption of severe acute respiratory syndrome corona virus 2 (SARS-CoV-2), the virus responsible for the current pandemic, on the surface of the model catalyst TiO2(101) using atomic force microscopy, transmission electron microscopy, fluorescence microscopy, and X-ray photoelectron spectroscopy, accompanied by density functional theory calculations. Three different methods were employed to inactivate the virus after it was loaded on the surface of TiO2(101): (i) ethanol, (ii) thermal, and (iii) UV treatments. Microscopic studies demonstrate that the denatured spike proteins and other proteins in the virus structure readsorb on the surface of TiO2 under thermal and UV treatments. The interaction of the virus with the surface of TiO2 was different for the thermally and UV treated samples compared to the sample inactivated via ethanol treatment. AFM and TEM results on the UV-treated sample suggested that the adsorbed viral particles undergo damage and photocatalytic oxidation at the surface of TiO2(101) which can affect the structural proteins of SARS-CoV-2 and denature the spike proteins in 30 min. The role of Pd nanoparticles (NPs) was investigated in the interaction between SARS-CoV-2 and TiO2(101). The presence of Pd NPs enhanced the adsorption of the virus due to the possible interaction of the spike protein with the NPs. This study is the first investigation of the interaction of SARS-CoV-2 with the surface of single crystalline TiO2(101) as a potential candidate for virus deactivation applications. Clarification of the interaction of the virus with the surface of semiconductor oxides will aid in obtaining a deeper understanding of the chemical processes involved in photoinactivation of microorganisms, which is important for the design of effective photocatalysts for air purification and self-cleaning materials.
Collapse
Affiliation(s)
- Mona Kohantorabi
- Center for X-ray and Nano Science (CXNS), Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, Hamburg 22607, Germany
| | - Michael Wagstaffe
- Center for X-ray and Nano Science (CXNS), Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, Hamburg 22607, Germany
| | - Marcus Creutzburg
- Center for X-ray and Nano Science (CXNS), Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, Hamburg 22607, Germany
| | - Aldo Ugolotti
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca, Via Cozzi 55, Milano 20125, Italy
| | - Satishkumar Kulkarni
- Center for X-ray and Nano Science (CXNS), Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, Hamburg 22607, Germany
| | - Arno Jeromin
- Center for X-ray and Nano Science (CXNS), Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, Hamburg 22607, Germany
| | - Tobias Krekeler
- Electron Microscopy Unit, Hamburg University of Technology, Eissendorfer Strasse 42, Hamburg 21073, Germany
| | - Martin Feuerherd
- Institute of Virology, Technical University of Munich/Helmholtz Munich, Munich 81675, Germany
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Alexander Herrmann
- Institute of Virology, Helmholtz Munich, Ingolstädter Landstraße 1, Neuherberg 85764, Germany
| | - Gregor Ebert
- Institute of Virology, Technical University of Munich/Helmholtz Munich, Munich 81675, Germany
| | - Ulrike Protzer
- Institute of Virology, Technical University of Munich/Helmholtz Munich, Munich 81675, Germany
| | - Gabriela Guédez
- Centre for Structural Systems Biology (CSSB), Deutsches Elektronen-Synchrotron (DESY), EMBL Hamburg, Notkestr. 85, Hamburg 22607, Germany
| | - Christian Löw
- Centre for Structural Systems Biology (CSSB), Deutsches Elektronen-Synchrotron (DESY), EMBL Hamburg, Notkestr. 85, Hamburg 22607, Germany
| | - Roland Thuenauer
- Technology Platform Light Microscopy and Image Analysis (TP MIA), Leibniz Institute for Experimental Virology (HPI), Hamburg 20251, Germany
- Centre for Structural Systems Biology (CSSB), Notkestr. 85, Hamburg 22607, Germany
| | - Christoph Schlueter
- Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, Hamburg 22607, Germany
| | - Andrei Gloskovskii
- Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, Hamburg 22607, Germany
| | - Thomas F Keller
- Center for X-ray and Nano Science (CXNS), Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, Hamburg 22607, Germany
- Department of Physics, University of Hamburg, Notkestraße 9-11, Hamburg 22607, Germany
| | - Cristiana Di Valentin
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca, Via Cozzi 55, Milano 20125, Italy
| | - Andreas Stierle
- Center for X-ray and Nano Science (CXNS), Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, Hamburg 22607, Germany
- Department of Physics, University of Hamburg, Notkestraße 9-11, Hamburg 22607, Germany
| | - Heshmat Noei
- Center for X-ray and Nano Science (CXNS), Deutsches Elektronen-Synchrotron (DESY), Notkestr. 85, Hamburg 22607, Germany
| |
Collapse
|
27
|
Dhara M, Al Hoque A, Sen R, Dutta D, Mukherjee B, Paul B, Laha S. Phosphorothioated amino-AS1411 aptamer functionalized stealth nanoliposome accelerates bio-therapeutic threshold of apigenin in neoplastic rat liver: a mechanistic approach. J Nanobiotechnology 2023; 21:28. [PMID: 36694259 PMCID: PMC9875447 DOI: 10.1186/s12951-022-01764-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/30/2022] [Indexed: 01/26/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of death globally. Even though the progressive invention of some very potent therapeutics has been seen, the success is limited due to the chemotherapeutic resistance and recurrence in HCC. Advanced targeted treatment options like immunotherapy, molecular therapy or surface-engineered nanotherapeutics could offer the benefits here owing to drug resistance over tumor heterogenicity. We have developed tumor-sensing phosphorothioate and amino-modified aptamer (AS1411)-conjugated stealth nanoliposomes, encapsulating with apigenin for precise and significant biodistribution of apigenin into the target tumor to exploit maximum bio-therapeutic assistances. The stable aptamer functionalized PEGylated nanoliposomes (Apt-NLCs) had an average vesicle size of 100-150 nm, a smooth surface, and an intact lamellarity, as ensured by DLS, FESEM, AFM, and Cryo-TEM. This study has specified in vitro process of optimum drug (apigenin) extrusion into the cancer cells by nucleolin receptor-mediated cellular internalization when delivered through modified AS1411 functionalized PEGylated nanoliposomes and ensured irreversible DNA damage in HCC. Significant improvement in cancer cell apoptosis in animal models, due to reduced clearance and higher intratumor drug accumulation along with almost nominal toxic effect in liver, strongly supports the therapeutic potential of aptamer-conjugated PEGylated nanoliposomes compared to the nonconjugated formulations in HCC. The study has established a robust superiority of modified AS1411 functionalized PEGylated nanoliposomes as an alternative drug delivery approach with momentous reduction of HCC tumor incidences.
Collapse
Affiliation(s)
- Moumita Dhara
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Ashique Al Hoque
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.,Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, USA
| | - Ramkrishna Sen
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Debasmita Dutta
- Dana Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Biswajit Mukherjee
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | - Brahamacharry Paul
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Soumik Laha
- Central Instrument Facility, CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India
| |
Collapse
|
28
|
Byakodi M, Shrikrishna NS, Sharma R, Bhansali S, Mishra Y, Kaushik A, Gandhi S. Emerging 0D, 1D, 2D, and 3D nanostructures for efficient point-of-care biosensing. BIOSENSORS & BIOELECTRONICS: X 2022; 12:100284. [PMID: 36448023 PMCID: PMC9691282 DOI: 10.1016/j.biosx.2022.100284] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 04/12/2023]
Abstract
The recent COVID-19 infection outbreak has raised the demand for rapid, highly sensitive POC biosensing technology for intelligent health and wellness. In this direction, efforts are being made to explore high-performance nano-systems for developing novel sensing technologies capable of functioning at point-of-care (POC) applications for quick diagnosis, data acquisition, and disease management. A combination of nanostructures [i.e., 0D (nanoparticles & quantum dots), 1D (nanorods, nanofibers, nanopillars, & nanowires), 2D (nanosheets, nanoplates, nanopores) & 3D nanomaterials (nanocomposites and complex hierarchical structures)], biosensing prototype, and micro-electronics makes biosensing suitable for early diagnosis, detection & prevention of life-threatening diseases. However, a knowledge gap associated with the potential of 0D, 1D, 2D, and 3D nanostructures for the design and development of efficient POC sensing is yet to be explored carefully and critically. With this focus, this review highlights the latest engineered 0D, 1D, 2D, and 3D nanomaterials for developing next-generation miniaturized, portable POC biosensors development to achieve high sensitivity with potential integration with the internet of medical things (IoMT, for miniaturization and data collection, security, and sharing), artificial intelligence (AI, for desired analytics), etc. for better diagnosis and disease management at the personalized level.
Collapse
Affiliation(s)
- Manisha Byakodi
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, 500032, Telangana, India
| | - Narlawar Sagar Shrikrishna
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, 500032, Telangana, India
- DBT-Regional Centre for Biotechnology (RCB), Faridabad, 121001, Haryana (NCR Delhi), India
| | - Riya Sharma
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, 500032, Telangana, India
| | - Shekhar Bhansali
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL, 33174, USA
| | - Yogendra Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL, USA
| | - Sonu Gandhi
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, 500032, Telangana, India
- DBT-Regional Centre for Biotechnology (RCB), Faridabad, 121001, Haryana (NCR Delhi), India
| |
Collapse
|
29
|
Basak M, Mitra S, Gogoi M, Sinha S, Nemade HB, Bandyopadhyay D. Point-of-Care Biosensing of Urinary Tract Infections Employing Optoplasmonic Surfaces Embedded with Metal Nanotwins. ACS APPLIED BIO MATERIALS 2022; 5:5321-5332. [PMID: 36222059 DOI: 10.1021/acsabm.2c00720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We report the synthesis of gold nanotwins (Au NTs) on a solid and transparent glass substrate which in turn has been employed for the selective optoplasmonic detection of Escherichia coli (EC) bacteria in human urine for the point-of-care diagnosis of urinary tract infections (UTIs). As compared to the single nanoparticle systems (Au NPs), the Au NTs show an enriched localized surface plasmon resonance (LSPR) due to the enhancement of the electric field under electromagnetic irradiation, e.g., photon, which helps in improving the limits of detection. For this purpose, initially a simple glass surface has been coated with Au NPs, with the help of the linker 3-aminopropyl-triethoxysilane - APTES. The surface has been linked further with another Au NP with the help of the 1,10-alkane-dithiol linker with two thiol ends, which eventually leads to the development of the optoplasmonic surface with Au NTs and an enhanced LSPR response. Subsequently, the EC specific aptamer has been chemically immobilized on the surface of Au NTs with the blocking of free sites via bovine serum albumin (BSA). Remarkably, Raman spectroscopy unfolds a 7-fold increase in the peak intensities with the Au NTs on the glass surface as compared to the surface coated with isolated Au NPs. The enhancement in the LSPR response of glass substrates coated with Au NTs and the EC specific aptamer has been further utilized for the selective and sensitive detection of UTIs. The results have been verified with the help of UV-visible spectroscopy to establish the utility of the proposed sensing methodology. An extensive interference study with other bacterial species unveils the selectivity and specificity of the proposed optoplasmonic sensors toward EC with a detection range of 5 × 103 to 107 CFU/mL. Intuitively, the method is more versatile in a sense that the sensor can be made specific to any other pathogens by simply changing the design of the aptamer. Finally, a low-cost, portable, and point-of-care optoplasmonic transduction setup is designed with a laser light illumination source, a sample holder, and a sensitive photodetector for the detection of UTIs in human urine.
Collapse
Affiliation(s)
- Mitali Basak
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam781039, India
| | - Shirsendu Mitra
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam781039, India
| | - Mousumi Gogoi
- Altanostics Laboratories Private Limited, Indian Institute of Technology Guwahati, Guwahati, Assam781039, India
| | - Swapnil Sinha
- Altanostics Laboratories Private Limited, Indian Institute of Technology Guwahati, Guwahati, Assam781039, India
| | - Harshal B Nemade
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam781039, India
| | - Dipankar Bandyopadhyay
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam781039, India.,Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam781039, India.,School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, Assam781039, India
| |
Collapse
|
30
|
Effect of Recombinant Antibodies and MIP Nanoparticles on the Electrical Behavior of Impedimetric Biorecognition Surfaces for SARS-CoV-2 Spike Glycoprotein: A Short Report. ELECTROCHEM 2022. [DOI: 10.3390/electrochem3030037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Electrochemical immunosensors are often described as innovative strategies to tackle urgent epidemiological needs, such as the detection of SARS-CoV-2 main biomarker, the spike glycoprotein. Nevertheless, there is a great variety of receptors, especially recombinant antibodies, that can be used to develop these biosensing platforms, and very few reports compare their suitability in analytical device design and their sensing performances. Therefore, this short report targeted a brief and straightforward investigation of the performance of different impedimetric biorecognition surfaces (BioS) for SARS-CoV-2, which were crafted from three commonly reported recombinant antibodies and molecularly-imprinted polymer (MIP) nanoparticles (nanoMIP). The selected NanoMIP were chosen due to their reported selectivity to the receptor binding domain (RBD) of SARS-CoV-2 spike glycoprotein. Results showed that the surface modification protocol based on MUDA and crosslinking with EDC/NHS was successful for the anchoring of each tested receptor, as the semicircle diameter of the Nyquist plots of EIS increased upon each modification, which suggests the increase of Rct due to the binding of dielectric materials on the conductive surface. Furthermore, the type of monoclonal antibody used to craft the BioS and the artificial receptors led to very distinct responses, being the RBD5305 and the NanoMIP-based BioS the ones that showcased the highest increment of signal in the conditions herein reported, which suggests their adequacy in the development of impedimetric immunosensors for SARS-CoV-2 spike glycoprotein.
Collapse
|
31
|
La Barbera L, Mauri E, D’Amelio M, Gori M. Functionalization strategies of polymeric nanoparticles for drug delivery in Alzheimer's disease: Current trends and future perspectives. Front Neurosci 2022; 16:939855. [PMID: 35992936 PMCID: PMC9387393 DOI: 10.3389/fnins.2022.939855] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/11/2022] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD), the most common form of dementia, is a progressive and multifactorial neurodegenerative disorder whose primary causes are mostly unknown. Due to the increase in life expectancy of world population, including developing countries, AD, whose incidence rises dramatically with age, is at the forefront among neurodegenerative diseases. Moreover, a definitive cure is not yet within reach, imposing substantial medical and public health burdens at every latitude. Therefore, the effort to devise novel and effective therapeutic strategies is still of paramount importance. Genetic, functional, structural and biochemical studies all indicate that new and efficacious drug delivery strategies interfere at different levels with various cellular and molecular targets. Over the last few decades, therapeutic development of nanomedicine at preclinical stage has shown to progress at a fast pace, thus paving the way for its potential impact on human health in improving prevention, diagnosis, and treatment of age-related neurodegenerative disorders, including AD. Clinical translation of nano-based therapeutics, despite current limitations, may present important advantages and innovation to be exploited in the neuroscience field as well. In this state-of-the-art review article, we present the most promising applications of polymeric nanoparticle-mediated drug delivery for bypassing the blood-brain barrier of AD preclinical models and boost pharmacological safety and efficacy. In particular, novel strategic chemical functionalization of polymeric nanocarriers that could be successfully employed for treating AD are thoroughly described. Emphasis is also placed on nanotheranostics as both potential therapeutic and diagnostic tool for targeted treatments. Our review highlights the emerging role of nanomedicine in the management of AD, providing the readers with an overview of the nanostrategies currently available to develop future therapeutic applications against this chronic neurodegenerative disease.
Collapse
Affiliation(s)
- Livia La Barbera
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Santa Lucia Foundation, IRCSS, Rome, Italy
| | - Emanuele Mauri
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Marcello D’Amelio
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Santa Lucia Foundation, IRCSS, Rome, Italy
| | - Manuele Gori
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Institute of Biochemistry and Cell Biology (IBBC) - National Research Council (CNR), Rome, Italy
| |
Collapse
|
32
|
Lim RRX, Ang WL, Ambrosi A, Sofer Z, Bonanni A. Electroactive nanocarbon materials as signaling tags for electrochemical PCR. Talanta 2022; 245:123479. [DOI: 10.1016/j.talanta.2022.123479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 11/15/2022]
|
33
|
Electrochemical detection of human epidermal growth factor receptor 2 using an aptamer on cobalt phthalocyanines – Cerium oxide nanoparticle conjugate. Bioelectrochemistry 2022; 146:108146. [DOI: 10.1016/j.bioelechem.2022.108146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 01/03/2023]
|
34
|
Khalili L, Dehghan G, Sheibani N, Khataee A. Smart active-targeting of lipid-polymer hybrid nanoparticles for therapeutic applications: Recent advances and challenges. Int J Biol Macromol 2022; 213:166-194. [PMID: 35644315 DOI: 10.1016/j.ijbiomac.2022.05.156] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 12/24/2022]
Abstract
The advances in producing multifunctional lipid-polymer hybrid nanoparticles (LPHNs) by combining the biomimetic behavior of liposomes and architectural advantages of polymers have provided great opportunities for selective and efficient therapeutics delivery. The constructed LPHNs exhibit different therapeutic efficacies for special uses based on characteristics of different excipients. However, the high mechanical/structural stability of hybrid nano-systems could be viewed as both a negative property and a positive feature, where the concomitant release of drug molecules in a controllable manner is required. In addition, difficulties in scaling up the LPHNs production, due to involvement of several criteria, limit their application for biomedical fields, especially in monitoring, bioimaging, and drug delivery. To address these challenges bio-modifications have exhibited enormous potential to prepare reproducible LPHNs for site-specific therapeutics delivery, diagnostic and preventative applications. The ever-growing surface bio-functionality has provided continuous vitality to this biotechnology and has also posed desirable biosafety to nanoparticles (NPs). As a proof-of-concept, this manuscript provides a crucial review of coated lipid and polymer NPs displaying excellent surface functionality and architectural advantages. We also provide a description of structural classifications and production methodologies, as well as the biomedical possibilities and translational obstacles in the development of surface modified nanocarrier technology.
Collapse
Affiliation(s)
- Leila Khalili
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran.
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, Cell and Regenerative Biology, and Biomedical Engineering, University of Wisconsin School of Medicine, Madison, WI, USA
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, Mersin 10, Turkey.
| |
Collapse
|
35
|
Sut TN, Park H, Koo DJ, Yoon BK, Jackman JA. Distinct Binding Properties of Neutravidin and Streptavidin Proteins to Biotinylated Supported Lipid Bilayers: Implications for Sensor Functionalization. SENSORS 2022; 22:s22145185. [PMID: 35890865 PMCID: PMC9316181 DOI: 10.3390/s22145185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022]
Abstract
The exceptional strength and stability of noncovalent avidin-biotin binding is widely utilized as an effective bioconjugation strategy in various biosensing applications, and neutravidin and streptavidin proteins are two commonly used avidin analogues. It is often regarded that the biotin-binding abilities of neutravidin and streptavidin are similar, and hence their use is interchangeable; however, a deeper examination of how these two proteins attach to sensor surfaces is needed to develop reliable surface functionalization options. Herein, we conducted quartz crystal microbalance-dissipation (QCM-D) biosensing experiments to investigate neutravidin and streptavidin binding to biotinylated supported lipid bilayers (SLBs) in different pH conditions. While streptavidin binding to biotinylated lipid receptors was stable and robust across the tested pH conditions, neutravidin binding strongly depended on the solution pH and was greater with increasingly acidic pH conditions. These findings led us to propose a two-step mechanistic model, whereby streptavidin and neutravidin binding to biotinylated sensing interfaces first involves nonspecific protein adsorption that is mainly influenced by electrostatic interactions, followed by structural rearrangement of adsorbed proteins to specifically bind to biotin functional groups. Practically, our findings demonstrate that streptavidin is preferable to neutravidin for constructing SLB-based sensing platforms and can improve sensing performance for detecting antibody–antigen interactions.
Collapse
Affiliation(s)
- Tun Naw Sut
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Korea; (T.N.S.); (H.P.); (D.J.K.)
| | - Hyeonjin Park
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Korea; (T.N.S.); (H.P.); (D.J.K.)
| | - Dong Jun Koo
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Korea; (T.N.S.); (H.P.); (D.J.K.)
| | - Bo Kyeong Yoon
- School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Korea
- Correspondence: (B.K.Y.); (J.A.J.)
| | - Joshua A. Jackman
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Korea; (T.N.S.); (H.P.); (D.J.K.)
- Correspondence: (B.K.Y.); (J.A.J.)
| |
Collapse
|
36
|
Gangwar R, Ray D, Rao KT, Khatun S, Subrahmanyam C, Rengan AK, Vanjari SRK. Plasma Functionalized Carbon Interfaces for Biosensor Application: Toward the Real-Time Detection of Escherichia coli O157: H7. ACS OMEGA 2022; 7:21025-21034. [PMID: 35755381 PMCID: PMC9219096 DOI: 10.1021/acsomega.2c01802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Nonthermal plasma, a nondestructive, fast, and highly reproducible surface functionalization technique, was used to introduce desired functional groups onto the surface of carbon powder. The primary benefit is that it is highly scalable, with a high throughput, making it easily adaptable to bulk production. The plasma functionalized carbon powder was later used to create highly specific and low-cost electrochemical biosensors. The functional groups on the carbon surface were confirmed using NH3-temperature-programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS) analysis. In addition, for biosensing applications, a novel, cost-effective, robust, and scalable electrochemical sensor platform comprising in-house-fabricated carbon paste electrodes and a miniaturized E-cell was developed. Biotin-Streptavidin was chosen as a model ligand-analyte combination to demonstrate its applicability toward biosensor application, and then, the specific identification of the target Escherchia coli O157:H7 was accomplished using an anti-E. coli O157:H7 antibody-modified electrode. The proposed biosensing platform detected E. coli O157:H7 in a broad linear range of (1 × 10-1-1 × 106) CFU/mL, with a limit of detection (LOD) of 0.1 CFU/mL. In addition, the developed plasma functionalized carbon paste electrodes demonstrated high specificity for the target E. coli O157:H7 spiked in pond water, making them ideal for real-time bacterial detection.
Collapse
Affiliation(s)
- Rahul Gangwar
- Department
of Electrical Engineering, Indian Institute
of Technology Hyderabad, Hyderabad 502284, India
| | - Debjyoti Ray
- Department
of Chemistry, Indian Institute of Technology
Hyderabad, Hyderabad 502284, India
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin, NT 00000, Hong Kong SAR, China
| | - Karri Trinadha Rao
- Department
of Electrical Engineering, Indian Institute
of Technology Hyderabad, Hyderabad 502284, India
| | - Sajmina Khatun
- Department
of Biomedical Engineering, Indian Institute
of Technology Hyderabad, Hyderabad 502284, India
| | | | - Aravind Kumar Rengan
- Department
of Biomedical Engineering, Indian Institute
of Technology Hyderabad, Hyderabad 502284, India
| | - Siva Rama Krishna Vanjari
- Department
of Electrical Engineering, Indian Institute
of Technology Hyderabad, Hyderabad 502284, India
| |
Collapse
|
37
|
Hybrid Nanobioengineered Nanomaterial-Based Electrochemical Biosensors. Molecules 2022; 27:molecules27123841. [PMID: 35744967 PMCID: PMC9229873 DOI: 10.3390/molecules27123841] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/03/2022] [Accepted: 06/11/2022] [Indexed: 02/05/2023] Open
Abstract
Nanoengineering biosensors have become more precise and sophisticated, raising the demand for highly sensitive architectures to monitor target analytes at extremely low concentrations often required, for example, for biomedical applications. We review recent advances in functional nanomaterials, mainly based on novel organic-inorganic hybrids with enhanced electro-physicochemical properties toward fulfilling this need. In this context, this review classifies some recently engineered organic-inorganic metallic-, silicon-, carbonaceous-, and polymeric-nanomaterials and describes their structural properties and features when incorporated into biosensing systems. It further shows the latest advances in ultrasensitive electrochemical biosensors engineered from such innovative nanomaterials highlighting their advantages concerning the concomitant constituents acting alone, fulfilling the gap from other reviews in the literature. Finally, it mentioned the limitations and opportunities of hybrid nanomaterials from the point of view of current nanotechnology and future considerations for advancing their use in enhanced electrochemical platforms.
Collapse
|
38
|
Guselnikova O, Lim H, Kim HJ, Kim SH, Gorbunova A, Eguchi M, Postnikov P, Nakanishi T, Asahi T, Na J, Yamauchi Y. New Trends in Nanoarchitectured SERS Substrates: Nanospaces, 2D Materials, and Organic Heterostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107182. [PMID: 35570326 DOI: 10.1002/smll.202107182] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/23/2022] [Indexed: 06/15/2023]
Abstract
This article reviews recent fabrication methods for surface-enhanced Raman spectroscopy (SERS) substrates with a focus on advanced nanoarchitecture based on noble metals with special nanospaces (round tips, gaps, and porous spaces), nanolayered 2D materials, including hybridization with metallic nanostructures (NSs), and the contemporary repertoire of nanoarchitecturing with organic molecules. The use of SERS for multidisciplinary applications has been extensively investigated because the considerably enhanced signal intensity enables the detection of a very small number of molecules with molecular fingerprints. Nanoarchitecture strategies for the design of new NSs play a vital role in developing SERS substrates. In this review, recent achievements with respect to the special morphology of metallic NSs are discussed, and future directions are outlined for the development of available NSs with reproducible preparation and well-controlled nanoarchitecture. Nanolayered 2D materials are proposed for SERS applications as an alternative to the noble metals. The modern solutions to existing limitations for their applications are described together with the state-of-the-art in bio/environmental SERS sensing using 2D materials-based composites. To complement the existing toolbox of plasmonic inorganic NSs, hybridization with organic molecules is proposed to improve the stability of NSs and selectivity of SERS sensing by hybridizing with small or large organic molecules.
Collapse
Affiliation(s)
- Olga Guselnikova
- JST-ERATO Yamauchi Materials Space Tectonics Project, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, 634050, Russian Federation
| | - Hyunsoo Lim
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- New & Renewable Energy Research Center, Korea Electronics Technology Institute (KETI), 25, Saenari-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13509, Republic of Korea
| | - Hyun-Jong Kim
- Surface Technology Group, Korea Institute of Industrial Technology (KITECH), Incheon, 21999, Republic of Korea
| | - Sung Hyun Kim
- New & Renewable Energy Research Center, Korea Electronics Technology Institute (KETI), 25, Saenari-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13509, Republic of Korea
| | - Alina Gorbunova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, 634050, Russian Federation
| | - Miharu Eguchi
- JST-ERATO Yamauchi Materials Space Tectonics Project, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Pavel Postnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, 634050, Russian Federation
| | - Takuya Nakanishi
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo, 169-0051, Japan
| | - Toru Asahi
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo, 169-0051, Japan
| | - Jongbeom Na
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- Research and Development (R&D) Division, Green Energy Institute, Mokpo, Jeollanamdo, 58656, Republic of Korea
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space Tectonics Project, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo, 169-0051, Japan
| |
Collapse
|
39
|
Luminescent Self-Assembled Monolayer on Gold Nanoparticles: Tuning of Emission According to the Surface Curvature. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10050176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Until now, the ability to form a self-assembled monolayer (SAM) on a surface has been investigated according to deposition techniques, which in turn depend on surface-coater interactions. In this paper, we pursued two goals: to form a SAM on a gold nanosurface and to correlate its formation to the nanosurface curvature. To achieve these objectives, gold nanoparticles of different shapes (spheres, rods, and triangles) were functionalized with a luminescent thiolated bipyridine (Bpy-SH), and the SAM formation was studied by investigating the photo-physics of Bpy-SH. We have shown that emission wavelength and excited-state lifetime of Bpy-SH are strongly correlated to the formation of specific aggregates within SAMs, the nature of these aggregates being in close correlation to the shape of the nanoparticles. Micro-Raman spectroscopy investigation was used to test the SERS effect of gold nanoparticles on thiolated bipyridine forming SAMs.
Collapse
|
40
|
Mirkasymov AB, Zelepukin IV, Ivanov IN, Belyaev IB, Sh. Dzhalilova D, Trushina DB, Yaremenko AV, Yu. Ivanov V, Nikitin MP, Nikitin PI, Zvyagin AV, Deyev SM. Macrophage Blockade using Nature-Inspired Ferrihydrite for Enhanced Nanoparticle Delivery to Tumor. Int J Pharm 2022; 621:121795. [DOI: 10.1016/j.ijpharm.2022.121795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/28/2022] [Accepted: 04/29/2022] [Indexed: 11/28/2022]
|
41
|
Khan N, Ruchika, Kumar Dhritlahre R, Saneja A. Recent advances in dual-ligand targeted nanocarriers for cancer therapy. Drug Discov Today 2022; 27:2288-2299. [DOI: 10.1016/j.drudis.2022.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/05/2022] [Accepted: 04/11/2022] [Indexed: 12/30/2022]
|
42
|
Ibarra LE, Camorani S, Agnello L, Pedone E, Pirone L, Chesta CA, Palacios RE, Fedele M, Cerchia L. Selective Photo-Assisted Eradication of Triple-Negative Breast Cancer Cells through Aptamer Decoration of Doped Conjugated Polymer Nanoparticles. Pharmaceutics 2022; 14:626. [PMID: 35336001 PMCID: PMC8955042 DOI: 10.3390/pharmaceutics14030626] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023] Open
Abstract
Photodynamic therapy (PDT) may be an excellent alternative in the treatment of breast cancer, mainly for the most aggressive type with limited targeted therapies such as triple-negative breast cancer (TNBC). We recently generated conjugated polymer nanoparticles (CPNs) as efficient photosensitizers for the photo-eradication of different cancer cells. With the aim of improving the selectivity of PDT with CPNs, the nanoparticle surface conjugation with unique 2'-Fluoropyrimidines-RNA-aptamers that act as effective recognition elements for functional surface signatures of TNBC cells was proposed and designed. A coupling reaction with carbodiimide was used to covalently bind NH2-modified aptamers with CPNs synthetized with two polystyrene-based polymer donors of COOH groups for the amide reaction. The selectivity of recognition for TNBC membrane receptors and PDT efficacy were assayed in TNBC cells and compared with non-TNBC cells by flow cytometry and cell viability assays. Furthermore, in vitro PDT efficacy was assayed in different TNBC cells with significant improvement results using CL4, sTN29 and sTN58 aptamers compared to unconjugated CPNs and SCR non-specific aptamer. In a chemoresistance TNBC cell model, sTN58 was the candidate for improving labelling and PDT efficacy with CPNs. We proposed sTN58, sTN29 and CL4 aptamers as valuable tools for selective TNBC targeting, cell internalization and therapeutic improvements for CPNs in PDT protocols.
Collapse
Affiliation(s)
- Luis Exequiel Ibarra
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Río Cuarto y CONICET, Río Cuarto X5800BIA, Argentina
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto X5800BIA, Argentina
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy; (S.C.); (L.A.); (M.F.)
| | - Simona Camorani
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy; (S.C.); (L.A.); (M.F.)
| | - Lisa Agnello
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy; (S.C.); (L.A.); (M.F.)
| | - Emilia Pedone
- Institute of Biostructures and Bioimaging, National Research Council (CNR), 80145 Naples, Italy; (E.P.); (L.P.)
| | - Luciano Pirone
- Institute of Biostructures and Bioimaging, National Research Council (CNR), 80145 Naples, Italy; (E.P.); (L.P.)
| | - Carlos Alberto Chesta
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Rio Cuarto y CONICET, Río Cuarto X5800BIA, Argentina; (C.A.C.); (R.E.P.)
- Departamento de Química, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto X5800BIA, Argentina
| | - Rodrigo Emiliano Palacios
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Rio Cuarto y CONICET, Río Cuarto X5800BIA, Argentina; (C.A.C.); (R.E.P.)
- Departamento de Química, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto X5800BIA, Argentina
| | - Monica Fedele
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy; (S.C.); (L.A.); (M.F.)
| | - Laura Cerchia
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy; (S.C.); (L.A.); (M.F.)
| |
Collapse
|
43
|
Production of pentaglycine-fused proteins using Escherichia coli expression system without in vitro peptidase treatment. Protein Expr Purif 2022; 194:106068. [DOI: 10.1016/j.pep.2022.106068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 11/22/2022]
|
44
|
Kastner S, Pritzke P, Csáki A, Fritzsche W. The effect of layer thickness and immobilization chemistry on the detection of CRP in LSPR assays. Sci Rep 2022; 12:836. [PMID: 35039589 PMCID: PMC8763948 DOI: 10.1038/s41598-022-04824-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/17/2021] [Indexed: 11/08/2022] Open
Abstract
The immobilization of a capture molecule represents a crucial step for effective usage of gold nanoparticles in localized surface plasmon resonance (LSPR)-based bioanalytics. Depending on the immobilization method used, the resulting capture layer is of varying thickness. Thus, the target binding event takes place at different distances to the gold surface. Using the example of a C-reactive protein immunoassay, different immobilization methods were tested and investigated with regard to their resulting target signal strength. The dependency of the target signal on the distance to the gold surface was investigated utilizing polyelectrolyte bilayers of different thickness. It could be experimentally demonstrated how much the LSPR-shift triggered by a binding event on the gold nanoparticles decreases with increasing distance to the gold surface. Thus, the sensitivity of an LSPR assay is influenced by the choice of immobilization chemistry.
Collapse
Affiliation(s)
- Stephan Kastner
- Department Nanobiophotonics, Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Strasse 9, 07745, Jena, Germany
| | - Pia Pritzke
- Department Nanobiophotonics, Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Strasse 9, 07745, Jena, Germany
| | - Andrea Csáki
- Department Nanobiophotonics, Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Strasse 9, 07745, Jena, Germany
| | - Wolfgang Fritzsche
- Department Nanobiophotonics, Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Strasse 9, 07745, Jena, Germany.
| |
Collapse
|
45
|
Lu HW, Kane AA, Parkinson J, Gao Y, Hajian R, Heltzen M, Goldsmith B, Aran K. The promise of graphene-based transistors for democratizing multiomics studies. Biosens Bioelectron 2022; 195:113605. [PMID: 34537553 DOI: 10.1016/j.bios.2021.113605] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/22/2021] [Accepted: 08/29/2021] [Indexed: 12/28/2022]
Abstract
As biological research has synthesized genomics, proteomics, metabolomics, and transcriptomics into systems biology, a new multiomics approach to biological research has emerged. Today, multiomics studies are challenging and expensive. An experimental platform that could unify the multiple omics approaches to measurement could increase access to multiomics data by enabling more individual labs to successfully attempt multiomics studies. Field effect biosensing based on graphene transistors have gained significant attention as a potential unifying technology for such multiomics studies. This review article highlights the outstanding performance characteristics that makes graphene field effect transistor an attractive sensing platform for a wide variety of analytes important to system biology. In addition to many studies demonstrating the biosensing capabilities of graphene field effect transistors, they are uniquely suited to address the challenges of multiomics studies by providing an integrative multiplex platform for large scale manufacturing using the well-established processes of semiconductor industry. Furthermore, the resulting digital data is readily analyzable by machine learning to derive actionable biological insight to address the challenge of data compatibility for multiomics studies. A critical stage of systems biology will be democratizing multiomics study, and the graphene field effect transistor is uniquely positioned to serve as an accessible multiomics platform.
Collapse
Affiliation(s)
- Hsiang-Wei Lu
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, 91711, USA; Cardea Bio, San Diego, CA, 92121, USA
| | | | | | | | - Reza Hajian
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, 91711, USA; Cardea Bio, San Diego, CA, 92121, USA
| | | | | | - Kiana Aran
- Keck Graduate Institute, The Claremont Colleges, Claremont, CA, 91711, USA; Cardea Bio, San Diego, CA, 92121, USA.
| |
Collapse
|
46
|
Hock N, Racaniello GF, Aspinall S, Denora N, Khutoryanskiy VV, Bernkop‐Schnürch A. Thiolated Nanoparticles for Biomedical Applications: Mimicking the Workhorses of Our Body. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102451. [PMID: 34773391 PMCID: PMC8728822 DOI: 10.1002/advs.202102451] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/13/2021] [Indexed: 05/03/2023]
Abstract
Advances in nanotechnology have generated a broad range of nanoparticles (NPs) for numerous biomedical applications. Among the various properties of NPs are functionalities being related to thiol substructures. Numerous biological processes that are mediated by cysteine or cystine subunits of proteins representing the workhorses of the bodies can be transferred to NPs. This review focuses on the interface between thiol chemistry and NPs. Pros and cons of different techniques for thiolation of NPs are discussed. Furthermore, the various functionalities gained by thiolation are highlighted. These include overall bio- and mucoadhesive, cellular uptake enhancing, and permeation enhancing properties. Drugs being either covalently attached to thiolated NPs via disulfide bonds or being entrapped in thiolated polymeric NPs that are stabilized via inter- and intrachain crosslinking can be released at the diseased tissue or in target cells under reducing conditions. Moreover, drugs, targeting ligands, biological analytes, and enzymes bearing thiol substructures can be immobilized on noble metal NPs and quantum dots for therapeutic, theranostic, diagnostic, biosensing, and analytical reasons. Within this review a concise summary and analysis of the current knowledge, future directions, and potential clinical use of thiolated NPs are provided.
Collapse
Affiliation(s)
- Nathalie Hock
- Thiomatrix Forschungs und Beratungs GmbHTrientlgasse 65Innsbruck6020Austria
| | | | - Sam Aspinall
- Reading School of PharmacyUniversity of ReadingWhiteknights PO Box 224, Room 122 (Chemistry and Pharmacy Building)ReadingRG66DXUK
| | - Nunzio Denora
- Department of Pharmacy – Pharmaceutical SciencesUniversity of Bari “Aldo Moro”Bari70125Italy
| | - Vitaliy V. Khutoryanskiy
- Reading School of PharmacyUniversity of ReadingWhiteknights PO Box 224, Room 122 (Chemistry and Pharmacy Building)ReadingRG66DXUK
| | - Andreas Bernkop‐Schnürch
- Department of Pharmaceutical Technology, Institute of PharmacyUniversity of InnsbruckInnrain 80/82Innsbruck6020Austria
| |
Collapse
|
47
|
Dual-enhancement and dual-tag design for SERS-based sandwich immunoassays: evaluation of a metal-metal effect in 3D architecture. Mikrochim Acta 2021; 189:32. [PMID: 34932168 PMCID: PMC8692285 DOI: 10.1007/s00604-021-05125-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/02/2021] [Indexed: 01/07/2023]
Abstract
The design of a sandwich-type SERS immunoassay (surface-enhanced Raman spectroscopy) is demonstrated operating in dual surface enhancement and dual-tag paradigm. The capture and detection antibodies are linked to two SERS-active substrates and form together the three-dimensional (3D) structure after specific binding to interleukin 6. A variety of metal combinations is tested (Au–Ag, Au–Au, and Ag–Ag), but an enhanced electromagnetic field is generated only due to coupling of Ag and Au nanoparticles with an Au hexagonal nanoarray. The amplified in that way Raman signals improve the limit of detection over 3 times in comparison to the assay with only one SERS-active substrate. It is also shown that the proper readout of the true-positive signal can be achieved in assays with two Raman tags, and this approach also improves LOD. For the optimal combination of the metal–metal junction and Raman tags, a linear relationship between the Raman signal and the concentration of IL-6 is obtained in the range 0–1000 pg⋅mL−1with LOD of 25.2 pg mL−1and RSD < 10%. The presented proof-of-concept of the SERS immunoassay with the dual-enhancement and dual-tag opens additional opportunities for engineering reliable SERS biosensing.
Collapse
|
48
|
Nanoplasmonic biosensors: Theory, structure, design, and review of recent applications. Anal Chim Acta 2021; 1185:338842. [PMID: 34711322 DOI: 10.1016/j.aca.2021.338842] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 11/20/2022]
Abstract
Nanoplasmonic biosensing shows an immense potential to satisfy the needs of the global health industry - low-cost, fast, and portable automated systems; highly sensitive and real-time detection; multiplexing and miniaturization. In this review, we presented the theory of nanoplasmonic biosensing for popular detection schemes - SPR, LSPR, and EOT - and underline the consideration for nanostructure design, material selection, and their effects on refractometric sensing performance. Later, we covered the bottom-up and top-down nanofabrication methods for nanoplasmonic biosensors. Subsequently, we reviewed the recent examples of nanoplasmonic biosensors over a wide range of clinically relevant analytes in the diagnosis and prognosis of a wide range of diseases and conditions such as biomarker proteins, infectious bacteria, viral agents. Finally, we discussed the challenges of nanoplasmonic biosensing toward clinical translation and proposed strategic avenues to be competitive against current clinical detection methods. Hopefully, nanoplasmonic biosensing can realize its potential through successful demonstrations of clinical translation in the upcoming years.
Collapse
|
49
|
|
50
|
A photonic dual nano-hybrid assay for detection of cell-free circulating mitochondrial DNA. J Pharm Biomed Anal 2021; 208:114441. [PMID: 34749106 DOI: 10.1016/j.jpba.2021.114441] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 10/07/2021] [Accepted: 10/21/2021] [Indexed: 12/22/2022]
Abstract
Circulating cell free mitochondrial DNA (ccf-mtDNA) has emerged as a potential marker for diagnosis and prognosis of different chronic and age associated non-communicable diseases. Therefore, owing to its biomarker potential, we herein assessed a novel nano-photonic dual hybrid assay system for rapid and specific detection of ccf-mtDNA. The assay comprised of two systems, i.e. a capture and screen facet containing aminopyrene tethered carbon quantum dots for effective screening of circulating cell free nucleic acids (ccf-NAs) and a quantum dot conjugated probe for precise detection of ccf-mtDNA in the screened ccf-NAs. Our observations suggested that the developed dual-assay system possesses high feasibility and selectivity in screening of ccf-NAs and estimation of ccfmtDNA in a given sample. It also offers high versatility of measurement in different analytical platforms, indicating the translational potential of the method for possible disease risk assessment in control and field settings.
Collapse
|