1
|
Sen N, Debnath A, Bhattacharjee S, Das BK, Thakur M, Saha AK, Chattopadhyay KK. Efficient Light to Heat Conversion in Sb 2Se 3 Nanorods and the Role of Macro-channel Imprinted Sb 2Se 3 Loaded Hybrid Membrane for Superior Desalination Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2408293. [PMID: 39659105 DOI: 10.1002/smll.202408293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/20/2024] [Indexed: 12/12/2024]
Abstract
This report validates Sb2Se3 nanorods (NRs) as a potential contender for solar thermal heat generation. The water droplet experiment shows Sb2Se3's light-to-heat conversion efficiency as ≈57.8% for red (671 nm), 58% for green (532 nm) lasers. Following this PVDF(M)/ Sb2Se3 NRs hybrid membranes for solar desalination reached ≈59°C in 15 minutes of illumination. The heat generation is dominated by an electron/hole-acoustic phonon scattering mechanism. Despite having superior visNIR absorption and heat localization in Sb2Se3 NRs, the hybrid membranes show an evaporation rate of 1.72 kg m-2 h-1 only, even if mass loading is increased. The hydrophobic Sb2Se3 NRs layer restricts water diffusion to hot zones, reducing solar evaporation efficiency. A novel macro channel imprinting strategy in hybrid membranes speeds up water transport to the hot zone. Consequently, optimized macro channel membranes achieve ≈2.37 kg m-2 h-1 mass loss and 148% solar evaporation efficiency under a 1000 W m-2 mercury vapor lamp. Therefore, imprinting macro-channel can be a possible strategy, addressing the hydrophobic materials in desalination applications which can be expanded in other similar materials. Moreover, its outdoor sunlight application achieves impressive solar evaporation efficiency (≈108%). The steam generated effectively removes heavy metals, meeting World Health Organization (WHO) potable water standards.
Collapse
Affiliation(s)
- Nabanita Sen
- Thin Film and NanoScience Laboratory, Department of Physics, Jadavpur University, Kolkata, 700032, India
| | - Anup Debnath
- Thin Film and NanoScience Laboratory, Department of Physics, Jadavpur University, Kolkata, 700032, India
| | - Souvik Bhattacharjee
- Thin Film and NanoScience Laboratory, Department of Physics, Jadavpur University, Kolkata, 700032, India
- School of Physical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Bikram Kumar Das
- BCAM- Basque Center for Applied Mathematics, Bilbao, E-48009, Spain
| | - Manas Thakur
- School of Materials Science & Nanotechnology, Jadavpur University, Kolkata, 700032, India
| | - Arnab Kumar Saha
- School of Materials Science & Nanotechnology, Jadavpur University, Kolkata, 700032, India
| | - Kalyan Kumar Chattopadhyay
- Thin Film and NanoScience Laboratory, Department of Physics, Jadavpur University, Kolkata, 700032, India
- School of Materials Science & Nanotechnology, Jadavpur University, Kolkata, 700032, India
| |
Collapse
|
2
|
Liang Y, Wang D, Yu H, Wu X, Lu Y, Yang X, Owens G, Xu H. Recent innovations in 3D solar evaporators and their functionalities. Sci Bull (Beijing) 2024; 69:3590-3617. [PMID: 39353816 DOI: 10.1016/j.scib.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/08/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024]
Abstract
Interfacial solar evaporation (ISE) has emerged as a promising technology to alleviate global water scarcity via energy-efficient purification of both wastewater and seawater. While ISE was originally identified and developed during studies of simple double-layered two-dimensional (2D) evaporators, observed limitations in evaporation rate and functionality soon led to the development of three-dimensional (3D) evaporators, which is now recognized as one of the most pivotal milestones in the research field. 3D evaporators significantly enhance the evaporation rates beyond the theoretical limits of 2D evaporators. Furthermore, 3D evaporators could have multifaceted functionalities originating from various functional evaporation surfaces and 3D structures. This review summarizes recent advances in 3D evaporators, focusing on rational design, fabrication and energy nexus of 3D evaporators, and the derivative functions for improving solar evaporation performance and exploring novel applications. Future research prospects are also proposed based on the in-depth understanding of the fundamental aspects of 3D evaporators and the requirements for practical applications.
Collapse
Affiliation(s)
- Yunzheng Liang
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Deyu Wang
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Huimin Yu
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Xuan Wu
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Yi Lu
- International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaofei Yang
- International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing 210037, China.
| | - Gary Owens
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Haolan Xu
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia.
| |
Collapse
|
3
|
Yu MY, Wu J, Yin G, Jiao FZ, Yu ZZ, Qu J. Dynamic Regulation of Hydrogen Bonding Networks and Solvation Structures for Synergistic Solar-Thermal Desalination of Seawater and Catalytic Degradation of Organic Pollutants. NANO-MICRO LETTERS 2024; 17:48. [PMID: 39441385 PMCID: PMC11499520 DOI: 10.1007/s40820-024-01544-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
Although solar steam generation strategy is efficient in desalinating seawater, it is still challenging to achieve continuous solar-thermal desalination of seawater and catalytic degradation of organic pollutants. Herein, dynamic regulations of hydrogen bonding networks and solvation structures are realized by designing an asymmetric bilayer membrane consisting of a bacterial cellulose/carbon nanotube/Co2(OH)2CO3 nanorod top layer and a bacterial cellulose/Co2(OH)2CO3 nanorod (BCH) bottom layer. Crucially, the hydrogen bonding networks inside the membrane can be tuned by the rich surface -OH groups of the bacterial cellulose and Co2(OH)2CO3 as well as the ions and radicals in situ generated during the catalysis process. Moreover, both SO42- and HSO5- can regulate the solvation structure of Na+ and be adsorbed more preferentially on the evaporation surface than Cl-, thus hindering the de-solvation of the solvated Na+ and subsequent nucleation/growth of NaCl. Furthermore, the heat generated by the solar-thermal energy conversion can accelerate the reaction kinetics and enhance the catalytic degradation efficiency. This work provides a flow-bed water purification system with an asymmetric solar-thermal and catalytic membrane for synergistic solar thermal desalination of seawater/brine and catalytic degradation of organic pollutants.
Collapse
Affiliation(s)
- Ming-Yuan Yu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Jing Wu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Guang Yin
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Fan-Zhen Jiao
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Zhong-Zhen Yu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Jin Qu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
4
|
Li R, Wu M, Ma H, Zhu Y, Zhang H, Chen Q, Zhang C, Wei Y. A Single Component, Single Layer Flexile Foam Evaporator with the Higher Efficiency for Water Generation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402016. [PMID: 38733109 DOI: 10.1002/adma.202402016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/22/2024] [Indexed: 05/13/2024]
Abstract
One of the greenest and promising ways to solve the problem of freshwater crisis is surface solar steam generation from seawater. A great number of photothermal materials with multi-component and multi-layered delicate yet complex structures often suffer from either low evaporation rate or high energy loss. Here, this work presents a single component foam evaporator with steam generation rate of up to 4.32 kg m-2 h-1 under 1 sun irradiation. The evaporator is constructed from an aniline oligomer as a single light-absorbing component, covalent linked with polyethylene glycol to form a monolithic polymer foam. Floating on the seawater, the foam has absorbance of 99.5% over the entire solar spectral range and low thermal conductivity (0.0077 W K-1m-1) that effectively retains heat in the material and at the interface. After 3 months of continuous outdoor natural sunlight irradiation, the evaporator maintains a stable and durable evaporation rate. Moreover, the materials have good mechanical properties (7.48 MPa young's modulus and 57.38% elongation at break) and excellent chemical resistance in 10 common organic solvents and aqueous solutions of pH = 1 to 14. This study provides a new system and strategy for desalination, steam power generation, treatment of polluted water and sewage, etc.
Collapse
Affiliation(s)
- Ruoxin Li
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Mingrui Wu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Haijun Ma
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan, 750021, China
| | - Yongqi Zhu
- Department of Chemistry, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Hongyi Zhang
- Department of Chemistry, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Qiaomei Chen
- Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chuhong Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Yen Wei
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- School of Materials Science and Engineering, North Minzu University, Yinchuan, 750021, China
- Department of Chemistry and Center for Nanotechnology, Chung Yuan Christian University, Chung Li District, Taiwan, Taoyuan, 32023, China
| |
Collapse
|
5
|
Pati AR, Ko YS, Bae C, Choi I, Heo YJ, Lee C. Highly porous hydrogels for efficient solar water evaporation. SOFT MATTER 2024; 20:4988-4997. [PMID: 38884450 DOI: 10.1039/d4sm00388h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Solar energy is a plentiful renewable resource on Earth, with versatile applications in both domestic and industrial settings, particularly in solar steam generation (SSG). However, current SSG processes encounter challenges such as low efficiency and the requirement for extremely high concentrations of solar irradiation. Interfacial evaporation technology has emerged as a solution to these issues, offering improved solar performance compared to conventional SSG processes. Nonetheless, its implementation introduces additional complexities and costs to system construction. In this study, we present the development of hydrophilic, three-dimensional network-structured hydrogels with high porosity and swelling ratio using a facile fabrication technique. We systematically varied the mixing ratios of four key ingredients (polyethylene glycol diacrylate, PEGDA; polyethylene glycol methyl-ether acrylate, PEGMA; phosphate-buffered saline, PBS; and 2-hydroxy-2-methylpropiophenone, PI) to control the mean pore size and swelling ratio of the hydrogel. Additionally, plasmonic gold nanoparticles were incorporated into the hydrogel using a novel methodology to enhance solar light absorption and subsequent evaporation efficiency. The resulting material exhibited a remarkable solar efficiency of 77% and an evaporation rate of 1.6 kg m-2 h-1 under standard solar illumination (one sun), comparable to those of state-of-the-art SSG devices. This high efficiency can be attributed to the synergistic effects of the hydrogel's unique composition and nanoparticle concentration. These findings offer a promising avenue for the development of highly efficient solar-powered evaporation applications.
Collapse
Affiliation(s)
- Akash Ranjan Pati
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin-si 17104, Republic of Korea.
| | - Young-Su Ko
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin-si 17104, Republic of Korea.
| | - Changwoo Bae
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin-si 17104, Republic of Korea.
| | - Inhee Choi
- Department of Life Sciences, University of Seoul, Seoul 02504, Republic of Korea
| | - Yun Jung Heo
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin-si 17104, Republic of Korea.
- Integrated Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Choongyeop Lee
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin-si 17104, Republic of Korea.
| |
Collapse
|
6
|
Wang Y, Wei T, Wang Y, Zeng J, Wang T, Wang Q, Zhang S, Zeng M, Wang F, Dai P, Jiang X, Hu M, Zhao J, Hu Z, Zhu J, Wang X. Quasi-waffle solar distiller for durable desalination of seawater. SCIENCE ADVANCES 2024; 10:eadk1113. [PMID: 38809973 PMCID: PMC11135395 DOI: 10.1126/sciadv.adk1113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 04/24/2024] [Indexed: 05/31/2024]
Abstract
Water purification via interfacial solar steam generation exhibits promising potential. However, salt crystallization on evaporators reduces solar absorption and obstructs water supply. To address it, a waffle-shaped solar evaporator (WSE) has been designed. WSE is fabricated via a zinc-assisted pyrolysis route, combining low-cost biomass carbon sources, recyclable zinc, and die-stamping process. This route enables cost-effective production without the need of sophisticated processing. As compared to conventional plane-shaped evaporators, WSE is featured by extra sidewalls for triggering the convection with the synergistic solute and thermal Marangoni effects. Consequently, WSE achieves spontaneous salt rejection and durable evaporation stability. It has demonstrated continuous operation for more than 60 days in brine without fouling.
Collapse
Affiliation(s)
- Yanjun Wang
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Tianqi Wei
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Yue Wang
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Jinjue Zeng
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Tao Wang
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Qi Wang
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Shuo Zhang
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Mengyue Zeng
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Fengyue Wang
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Pengcheng Dai
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiangfen Jiang
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Ming Hu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Jin Zhao
- State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Zheng Hu
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Jia Zhu
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Xuebin Wang
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| |
Collapse
|
7
|
Wu X, Lu Y, Ren X, Wu P, Chu D, Yang X, Xu H. Interfacial Solar Evaporation: From Fundamental Research to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2313090. [PMID: 38385793 DOI: 10.1002/adma.202313090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/31/2024] [Indexed: 02/23/2024]
Abstract
In the last decade, interfacial solar steam generation (ISSG), powered by natural sunlight garnered significant attention due to its great potential for low-cost and environmentally friendly clean water production in alignment with the global decarbonization efforts. This review aims to share the knowledge and engage with a broader readership about the current progress of ISSG technology and the facing challenges to promote further advancements toward practical applications. The first part of this review assesses the current strategies for enhancing the energy efficiency of ISSG systems, including optimizing light absorption, reducing energy losses, harvesting additional energy, and lowering evaporation enthalpy. Subsequently, the current challenges faced by ISSG technologies, notably salt accumulation and bio-fouling issues in practical applications, are elucidated and contemporary methods are discussed to overcome these challenges. In the end, potential applications of ISSG, ranging from initial seawater desalination and industrial wastewater purification to power generation, sterilization, soil remediation, and innovative concept of solar sea farm, are introduced, highlighting the promising potential of ISSG technology in contributing to sustainable and environmentally conscious practices. Based on the review and in-depth understanding of these aspects, the future research focuses are proposed to address potential issues in both fundamental research and practical applications.
Collapse
Affiliation(s)
- Xuan Wu
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, Adelaide, SA, 5095, Australia
| | - Yi Lu
- International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiaohu Ren
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, Adelaide, SA, 5095, Australia
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Pan Wu
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, Adelaide, SA, 5095, Australia
- School of Civil and Environmental Engineering, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Dewei Chu
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Xiaofei Yang
- International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Haolan Xu
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, Adelaide, SA, 5095, Australia
| |
Collapse
|
8
|
Du C, Fang K, Zhang H, Xu J, Sun MA, Yang S. Improved solar-driven water purification using an eco-friendly and cost-effective aerogel-based interfacial evaporator with exceptional photocatalytic capabilities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119916. [PMID: 38150926 DOI: 10.1016/j.jenvman.2023.119916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023]
Abstract
As a promising solution to address the global challenge of freshwater scarcity, solar-powered interfacial steam generation has undergone notable advancements. This study introduces a novel solar-driven interfacial evaporation membrane (ZnIn2S4@SiO2/ACSA, ZSAS) comprising a ZnIn2S4@SiO2 composite and a black sodium alginate aerogel infused with activated carbon. The ZSAS membrane demonstrates exceptional light absorption and thermal insulation, leading to elevated surface temperatures and reduced heat dissipation into the bulk water. Furthermore, the incorporation of AC reinforces the mechanical properties of the ZSAS membrane and enhances the water purification performance. These collective features result in an impressive evaporation rate of 1.485 kg m-2 h-1 and a high photothermal conversion efficiency of 91.2% under 1 sun irradiation for the optimal ZSAS membrane. Moreover, the optimal ZSAS membrane can effectively remove salts, heavy metal ions, and organic pollutants, benefitting from its superior evaporation separation effect and the photocatalytic properties of the ZnIn2S4@SiO2 composite.
Collapse
Affiliation(s)
- Cui Du
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China
| | - Kun Fang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, Jiangsu, 225002, PR China
| | - Huanying Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, Jiangsu, 225002, PR China
| | - Jing Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, Jiangsu, 225002, PR China
| | - Ming-An Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China.
| | - Shengyang Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, Jiangsu, 225002, PR China.
| |
Collapse
|
9
|
Etemadzadeh SS, Emtiazi G, Soltanian S. Production of biosurfactant by salt-resistant Bacillus in lead-supplemented media: application and toxicity. Int Microbiol 2023; 26:869-880. [PMID: 36810942 DOI: 10.1007/s10123-023-00334-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 02/24/2023]
Abstract
A group of biosurfactants are lipopeptides that are produced by some microorganisms, especially Bacillus strains. They are new bioactive agents with anticancer, antibacterial, antifungal, and antiviral activities. Also, they are used in sanitation industries. In this study, a lead-resistant strain of Bacillus halotolerans was isolated for lipopeptide production. This isolate exhibited metal resistance (lead, calcium, chromium, nickel, copper, manganese, and mercury), salt tolerance (12%), and antimicrobial activities against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Saccharomyces cerevisiae. The production of lipopeptide was optimized, concentrated, and then extracted from the polyacrylamide gel in a simple way for the first time. The nature of the purified lipopeptide was determined by FTIR, GC/MS, and HPLC analyses. The purified lipopeptide indicated significant antioxidant properties (90.38% at a concentration of 0.8 mg ml-1). Also, it had anticancer activity by apoptosis (flow cytometry analysis) in MCF-7 cells, while it had no cytotoxicity on HEK-293 normal cells. Therefore, Bacillus halotolerans lipopeptide has the potential to be used as an antioxidant, antimicrobial, or anticancer agent in the medical and food industries.
Collapse
Affiliation(s)
- Shekoofeh Sadat Etemadzadeh
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Giti Emtiazi
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Sara Soltanian
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
10
|
Chen C, Xiong L, Zhang X, Tian K, Dai Z, Fu Q, Deng H. Gradient heating induced better balance among water transportation, salt resistance and heat supply in a high performance multi-functional solar-thermal desalination device. MATERIALS HORIZONS 2023; 10:5161-5176. [PMID: 37712534 DOI: 10.1039/d3mh01105d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Solar-driven desalination (SDD) is a promising technology for addressing water scarcity. However, how to overcome the trade-off between water transportation and heat supply of the evaporator to achieve a high evaporation rate and good salt tolerance simultaneously remains a challenge. Here, a novel all-in-one multi-functional SDD evaporator undergoing gradient heating is used. This evaporator incorporates a hydrophilic PDA (polydopamine)@CNT(carbon nanotube)/PVA (polyvinyl alcohol) aerogel with vertically aligned structures as the water evaporation layer, enabling rapid water transportation. Surrounding the evaporation layer, there is a photothermal hydrophobic CCP (cotton/CNT/polydimethylsiloxane) film that serves as the heating layer, enhancing the heat supply to the evaporation layer. This innovative design strikes a favorable balance between water transportation and heat supply, facilitating high evaporation rates and good salt tolerance simultaneously, while also maximizing electricity generation. Due to the wettability difference between the evaporation layer (PVA aerogel) and heating layer (CCP film), a record stable temperature gradient of nearly 70 °C was formed between the CCP film and the PVA aerogel under 1 sun irradiation, so that heat on the high-temperature CCP film was continuously transferred to the low-temperature aerogel through its thermal conductive network, leading to a high evaporation rate of 6.96 kg m-2 h-1 under 1 sun irradiation in 5.0 wt% sodium chloride (NaCl) brine (higher than the world average seawater salinity (3.5 wt%)). Meanwhile, high flux directional flow of brine generated 130 mV stable voltage and 120 μA circuit current. Furthermore, the evaporator illustrates good stability for consecutive 7 days of testing and shows industry-leading comprehensive performance of SDD in actual use. More importantly, it was tested in real Bohai seawater under weak natural light, and fresh water generated can meet the recommended daily intake of water for 2.6 households and the simultaneously generated voltage reaches above 60 mV. In addition, the evaporator exhibits good adsorption capacity for heavy metals and dye molecules. This simple and universal solar evaporation structure is suitable for the assembly of gradient thermal structures for most solar thermal materials reported in the literature, which provides a new route for maximizing the use of solar energy for freshwater and electricity generation.
Collapse
Affiliation(s)
- Chuanliang Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Lianhu Xiong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Xuezhong Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Ke Tian
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Zijian Dai
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Hua Deng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
11
|
Shafaee M, Goharshadi EK, Ghafurian MM, Mohammadi M, Behnejad H. A highly efficient and sustainable photoabsorber in solar-driven seawater desalination and wastewater purification. RSC Adv 2023; 13:17935-17946. [PMID: 37323434 PMCID: PMC10265138 DOI: 10.1039/d3ra01938a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/28/2023] [Indexed: 06/17/2023] Open
Abstract
Producing freshwater from seawater and wastewater is of great importance through interfacial solar steam generation (ISSG). Herein, the three-dimensional (3D) carbonized pine cone, CPC1, was fabricated via a one-step carbonization process as a low-cost, robust, efficient, and scalable photoabsorber for the ISSG of seawater as well as a sorbent/photocatalyst for use in wastewater purification. Taking advantage of the large solar-light-harvesting ability of CPC1 due to the presence of carbon black layers on the 3D structure, its inherent porosity, rapid water transportation, large water/air interface, and low thermal conductivity, a conversion efficiency of 99.8% and evaporation flux of 1.65 kg m-2 h-1 under 1 sun (kW m-2) illumination were achieved. After carbonization of the pine cone, its surface becomes black and rough, which leads to an increase in its light absorption in the UV-Vis-NIR region. The photothermal conversion efficiency and evaporation flux of CPC1 did not change significantly during 10 evaporation-condensation cycles. CPC1 exhibited good stability under corrosive conditions without significant change in its evaporation flux. More importantly, CPC1 can be used to purify seawater or wastewater by the removal of organic dyes as well as by the reduction of polluting ions, like nitrate ions in sewage.
Collapse
Affiliation(s)
- Masoomeh Shafaee
- Department of Physical Chemistry, School of Chemistry, University College of Science, University of Tehran Tehran 14155 Iran
| | - Elaheh K Goharshadi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad Mashhad Iran +98 9177948974
- Nano Research Centre, Ferdowsi University of Mashhad Mashhad Iran
- Center for Nanotechnology in Renewable Energies, Ferdowsi University of Mashhad Mashhad Iran
| | - Mohammad Mustafa Ghafurian
- Mechanical Engineering Department, Ferdowsi University of Mashhad Mashhad Iran
- Center for Nanotechnology in Renewable Energies, Ferdowsi University of Mashhad Mashhad Iran
| | - Mojtaba Mohammadi
- Department of Physics, Faculty of Science, Ferdowsi University of Mashhad Mashhad Iran
| | - Hassan Behnejad
- Department of Physical Chemistry, School of Chemistry, University College of Science, University of Tehran Tehran 14155 Iran
| |
Collapse
|
12
|
Ji Z, Zhao J, Feng S, Zhu F, Yu W, Ye Y, Zheng Q. Insight into the Charge-Ratio-Tuned Solar Vapor Generation of Polyion Complex Hydrogel/Coal Powder Composites. Polymers (Basel) 2023; 15:polym15112449. [PMID: 37299246 DOI: 10.3390/polym15112449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Solar-driven water purification has been deemed a promising technology to address the issue of clean water scarcity. However, traditional solar distillers often suffer from low evaporation rates under natural sunlight irradiation, while the high costs of the fabrication of photothermal materials further hinders their practical applications. Here, through the harnessing of the complexation process of oppositely charged polyelectrolyte solutions, a polyion complex hydrogel/coal powder composite (HCC)-based highly efficient solar distiller is reported. In particular, the influence of the charge ratio of polyanion-to-polycation on the solar vapor generation performance of HCC has been systematically investigated. Together with a scanning electron microscope (SEM) and the Raman spectrum method, it is found that a deviation from the charge balance point not only alters the microporous structure of HCC and weakens its water transporting capabilities, but also leads to a decreased content of activated water molecules and enlarges the energy barrier of water evaporation. As a result, HCC prepared at the charge balance point exhibits the highest evaporation rate of 3.12 kg m-2 h-1 under one sun irradiation, with a solar-vapor conversion efficiency as high as 88.83%. HCC also exhibits remarkable solar vapor generation (SVG) performance for the purification of various water bodies. In simulated seawater (3.5 wt% NaCl solutions), the evaporation rate can be as high as 3.22 kg m-2 h-1. In acid and alkaline solutions, HCCs are capable of maintaining high evaporation rates of 2.98 and 2.85 kg m-2 h-1, respectively. It is anticipated that this study may provide insights for the design of low-cost next-generation solar evaporators, and broaden the practical applications of SVG for seawater desalination and industrial wastewater purification.
Collapse
Affiliation(s)
- Zhiteng Ji
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jianhang Zhao
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Shanhao Feng
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Fengbo Zhu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China
| | - Wenwen Yu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yanan Ye
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China
| | - Qiang Zheng
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
13
|
Huang X, Li L, Zhao X, Zhang J. Highly Salt-Resistant interfacial solar evaporators based on Melamine@Silicone nanoparticles for stable Long-Term desalination and water harvesting. J Colloid Interface Sci 2023; 646:141-149. [PMID: 37187047 DOI: 10.1016/j.jcis.2023.05.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 05/17/2023]
Abstract
Interfacial solar-driven evaporation (ISE) is one of the most promising solutions for collecting fresh water, however, poor salt-resistance severely limits the long-term stability of solar evaporators. Here, highly salt-resistant solar evaporators for stable long-term desalination and water harvesting were fabricated by depositing silicone nanoparticles onto melamine sponge, and then modifying the hybrid sponge sequentially with polypyrrole and Au nanoparticles. The solar evaporators have a superhydrophilic hull for water transport and solar desalination, and a superhydrophobic nucleus for reducing heat loss. Spontaneous rapid salt exchange and reduction in salt concentration gradient were achieved due to ultrafast water transport and replenishment in the superhydrophilic hull with a hierachical micro-/nanostructure, which effectively prevents salt deposition during ISE. Consequently, the solar evaporators have long-term stable evaporation performance of 1.65 kg m-2h-1 for 3.5 wt% NaCl solution under 1 sun illumination. Moreover, 12.87 kg m-2 fresh water was collected during consecutive 10 h ISE of 20 wt% brine under 1 sun without any salt precipitation. We believe that this strategy will shed a new light on the design of long-term stable solar evaporators for fresh water harvesting.
Collapse
Affiliation(s)
- Xiaopeng Huang
- Department of Chemical Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China; Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Lingxiao Li
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China; Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Xia Zhao
- Department of Chemical Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Junping Zhang
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China; Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| |
Collapse
|
14
|
Du R, Zhu H, Zhao H, Lu H, Dong C, Liu M, Yang F, Yang J, Wang J, Pan J. Modulating photothermal properties by integration of fined Fe-Co in confined carbon layer of SiO 2 nanosphere for pollutant degradation and solar water evaporation. ENVIRONMENTAL RESEARCH 2023; 222:115365. [PMID: 36706906 DOI: 10.1016/j.envres.2023.115365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/15/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Environmental governance by photothermal materials especially for the separation of organic pollutants and regeneration of freshwater afford growing attention owing to their special solar-to-heat properties. Here, we construct a special functional nanosphere composed of an internal silica core coated by a thin carbon layer encapsulated plasmonic bimetallic FeCo2O4 spinel (SiO2@CoFe/C) by a facile self-assembled approach and tuned calcination. Through combining the advantage of bimetallic Fe-Co and carbon layer, this obtained nanosphere affords improved multiple environmental governing functions including peroxymonosulfate (PMS) activation to degrade pollutants and photothermal interfacial solar water evaporation. Impressively, fined bimetal (FeCo) species (20 nm) acted as main catalytic substance were distributed on the N-doping carbon thin layer, which favors electron transfer and reactive accessibility of active metals. The increasing treatment temperature of catalysts caused the optimization of the surface active metal species and tuning catalytic properties in the AOPs. Besides, the incorporation of Co in the SiO2@CoFe/C-700 could enable the improved PMS activation efficiency compared to SiO2@Fe/C-700 and the mixed SiO2@Co/C-700 and SiO2@Fe/C-700, hinting a synergetic promotion effect. The bimetal coupled catalyst SiO2@CoFe/C-700 affords enhanced photothermal properties compared to SiO2@Co/C-700. Furthermore, photothermal catalytic PMS activation using optimal SiO2@CoFe/C-700 was further explored in addressing stubborn pollutants including oxytetracycline, sulfamethoxazole, 2, 4-dichlorophenol, and phenol. The free radical quenching control suggests that both the sulfate radical, hydroxyl radical, superoxide radical, and singlet oxygen species are involved in the degradation, while the hydroxyl radical and singlet oxygen play a dominant role. Furthermore, the implementation of a solar-driven interfacial water evaporation model using SiO2@CoFe/C-700 was further studied to obtain freshwater regeneration (1.26 kg m-2 h-1, 76.81% efficiency), indicating the comprehensive ability of the constructed nanocomposites for treating complicated environmental pollution including organics removal and freshwater regeneration.
Collapse
Affiliation(s)
- Rongrong Du
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Hongyang Zhu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Hongyao Zhao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Hao Lu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Chang Dong
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Mengting Liu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Fu Yang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China; Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, China.
| | - Jun Yang
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.
| | - Jun Wang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China.
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
15
|
Ku BJ, Kim DH, Yasin AS, Mnoyan A, Kim MJ, Kim YJ, Ra H, Lee K. Solar-driven desalination using salt-rejecting plasmonic cellulose nanofiber membrane. J Colloid Interface Sci 2023; 634:543-552. [PMID: 36549203 DOI: 10.1016/j.jcis.2022.12.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/28/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Solar-driven steam generation is a promising, renewable, effective, and environment-friendly technology for desalination and water purification. However, steam generation from seawater causes severe salt formation on the photothermal material, which hinders long-term and large-scale practical applications. In this study, we develop salt-rejecting plasmonic cellulose-based membranes (CMNF-NP) composed of an optimized ratio of Au/Ag nanoparticles, cellulose micro/nanofibers, and polyethyleneimine for efficient solar-driven desalination. The CMNF-NP exhibits a water evaporation rate of 1.31 kg m-2h-1 (82.1% of solar-to-vapor conversion efficiency) for distilled water under 1-sun. The CMNF-NP shows a comparable evaporation rate for 3.5 wt% brine, which has been maintained for 10 h; the evaporation rate of the filter paper-based counterpart severely decreases because of salt-scaling. The efficient salt-rejecting capability of the CMNF-NP membrane is attributed to the compact structure and electrostatic repulsion of cationic ions of salt that originate from cellulose nanofibers and the amine-functionalized polymer, polyethyleneimine, as a structural binder. This simple fabrication method of casting the CMNF-NP solution on the substrate followed by drying allows a facile coating of a highly efficient and salt-rejecting photothermal membrane on various practical substrates.
Collapse
Affiliation(s)
- Bon-Jun Ku
- Graduate School of Energy Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Dong Hyun Kim
- Graduate School of Energy Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Ahmed S Yasin
- Graduate School of Energy Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Anush Mnoyan
- Graduate School of Energy Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Min-Jae Kim
- Graduate School of Energy Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Yong Jun Kim
- Graduate School of Energy Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Howon Ra
- Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea.
| | - Kyubock Lee
- Graduate School of Energy Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea.
| |
Collapse
|
16
|
Wang Y, Li W, Wei Y, Chen Q. Recyclable Monolithic Vitrimer Foam for High-Efficiency Solar-Driven Interfacial Evaporation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36888737 DOI: 10.1021/acsami.2c23197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
With the exponentially rapid development of solar-driven interfacial evaporation, evaporators with both high evaporation efficiency and recyclability are highly desirable to alleviate resource waste and environmental problems but remain challenging. Here, a monolithic evaporator was developed based on a dynamic disulfide vitrimer (a covalently cross-linked polymer network with associative exchangeable covalent bonds). Two types of solar absorbers, carbon nanotubes and oligoanilines, were simultaneously introduced to enhance the optical absorption. A high evaporation efficiency of 89.2% was achieved at 1 sun (1 kW m-2). When the evaporator was applied to solar desalination, it shows self-cleaning performance with long-term stability. Drinkable water with low ion concentrations satisfying the drinkable water levels of the World Health Organization and a high output (8.66 kg m-2, 8 h per day) was obtained, revealing great potential for practical seawater desalination. Moreover, a high-performance film material was obtained from the used evaporator via simple hot-pressing, indicating excellent fully closed-loop recyclability of the evaporator. This work provides a promising platform for high-efficiency and recyclable solar-driven interfacial evaporators.
Collapse
Affiliation(s)
- Yupu Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yen Wei
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Qiaomei Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
17
|
Nishikubo R, Kuwahara Y, Naito S, Kusu K, Saeki A. Elucidation of a Photothermal Energy Conversion Mechanism in Hydrogenated Molybdenum Suboxide: Interplay of Trapped Charges and Their Dielectric Interactions. J Phys Chem Lett 2023; 14:1528-1534. [PMID: 36745105 DOI: 10.1021/acs.jpclett.3c00080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Hydrogenated molybdenum suboxide (HxMoO3-y) is a promising photothermal energy conversion (PEC) material. However, its charge carrier dynamics and underlying mechanisms remain unclear. Utilizing flash-photolysis time-resolved microwave conductivity, we investigated charge carrier-dielectric interactions in the Pt/HxMoO3-y composite. The charge recombination of H2-reduced Pt/HxMoO3-y was 2-3 orders of magnitude faster than that of Pt/MoO3, indicating efficient PEC. A complex photoconductivity study revealed that Pt/HxMoO3-y has two types of trapping mechanisms, Drude-Zener (DZ) and negative permittivity effect (NPE) modes, depending on the reduction temperature. Pt/HxMoO3-y reduced at 100 °C exhibited a dominant NPE owing to the electrical interaction of trapped charges with the surrounding ions and/or OH base. This polaronic trapped state retarded the PEC process. We found Pt/HxMoO3-y reduced at 200 °C to be optimal owing to the balanced suppression of the NPE and charge diffusion. This is the first report revealing the charge dynamics in hydrogenated metal oxides and their impacts on PEC processes.
Collapse
Affiliation(s)
- Ryosuke Nishikubo
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 1-1 Yamadaoka, Suita, Osaka565-0871, Japan
| | - Yasutaka Kuwahara
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 1-1 Yamadaoka, Suita, Osaka565-0871, Japan
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka565-0871, Japan
- Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama332-0012, Japan
| | - Shintaro Naito
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka565-0871, Japan
| | - Kazuki Kusu
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka565-0871, Japan
| | - Akinori Saeki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 1-1 Yamadaoka, Suita, Osaka565-0871, Japan
| |
Collapse
|
18
|
Qu J, Li S, Zhong B, Deng Z, Shu Y, Yang X, Cai Y, Hu J, Li CM. Two-dimensional nanomaterials: synthesis and applications in photothermal catalysis. NANOSCALE 2023; 15:2455-2469. [PMID: 36655847 DOI: 10.1039/d2nr06092b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Photothermal catalysis, as one of the emerging technologies with synergistic effects of photochemistry and thermochemistry, is highly attractive in the fields of environment and energy. Two-dimensional (2D) nanomaterials have received extensive attention toward photothermal catalysis because of their ultrathin layer structures, superior physical and optical properties, and high surface areas. These merits are beneficial for shortening the transfer distance of charge carriers, improving the efficiency of solar to thermal, and providing a great opportunity for the development of photothermal chemistry. In this review, we have summarized the state-of-art advances in various 2D nanomaterials with emphasis on the driving force and relevant mechanism of photothermal catalysis, including the involved three types, namely, localized surface plasmonic resonance (LSPR), nonradiative relaxation, and thermal vibrations of molecules. Moreover, the synthesis strategies of 2D materials and their photothermal applications in carbon dioxide (CO2) conversion, hydrogen (H2) production, volatile organic compounds (VOCs) degradation, and water (H2O) purification have been discussed in detail. Ultimately, the existing challenges and prospects of future development in the field are proposed. It is believed that this review will afford a great reference for the exploration of the high-efficiency 2D nanomaterials and their structure-activity relationship.
Collapse
Affiliation(s)
- Jiafu Qu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Songqi Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Bailing Zhong
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Zhiyuan Deng
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Yinying Shu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Xiaogang Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Yahui Cai
- College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, P.R. China
| | - Jundie Hu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Chang Ming Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
19
|
Lin CY, Michinobu T. Conjugated photothermal materials and structure design for solar steam generation. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:454-466. [PMID: 37091288 PMCID: PMC10113523 DOI: 10.3762/bjnano.14.36] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/15/2023] [Indexed: 05/03/2023]
Abstract
With the development of solar steam generation (SSG) for clean water production, conjugated photothermal materials (PTMs) have attracted significant interest because of their advantages over metallic and inorganic PTMs in terms of high light absorption, designable molecular structures, flexible morphology, and solution processability. We review here the recent progress in solar steam generation devices based on conjugated organic materials. Conjugated organic materials are processed into fibers, membranes, and porous structures. Therefore, nanostructure design based on the concept of nanoarchitectonics is crucial to achieve high SSG efficiency. We discuss the considerations for designing SSG absorbers and describe commonly used conjugated organic materials and structural designs.
Collapse
Affiliation(s)
- Chia-Yang Lin
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Tsuyoshi Michinobu
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
20
|
Zhao Q, Wu Z, Xu X, Yang R, Ma H, Xu Q, Zhang K, Zhang M, Xu J, Lu B. Design of poly(3,4-ethylenedioxythiophene): polystyrene sulfonate-polyacrylamide dual network hydrogel for long-term stable, highly efficient solar steam generation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
A super absorbent resin-based solar evaporator for high-efficient various water treatment. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Dong Y, Tan Y, Wang K, Cai Y, Li J, Sonne C, Li C. Reviewing wood-based solar-driven interfacial evaporators for desalination. WATER RESEARCH 2022; 223:119011. [PMID: 36037711 DOI: 10.1016/j.watres.2022.119011] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/26/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Solar‒driven interfacial water evaporation is a convenient and efficient strategy for harvesting solar energy and desalinating seawater. However, the design and fabrication of solar evaporators still challenge reliable evaporation and practical applications. Wood-based solar-driven interfacial water evaporation emerge as a promising and environmentally friendly approach for water desalinating as it provides renewable and porous structures. In recent years, surface modifications and innovative structural designs to prepare high performance wood-based evaporators is widely explored. In this review, we firstly describe the superiority of wood for the fabrication of wood-based solar evaporators, including the pore structure, chemical structure and thermal insulation. Secondly, we summarize the recent developments in wood-based evaporators from surface carbonization, decoration with photothermal materials, bulk modification and structural design, and discuss from the aspects of water transportation capacity, thermal conductivity and photothermal efficiency. Finally, based on these previous results and analysis, we highlight the remaining challenges and potential future directions, including the selection of high-efficient photothermal materials, heat and mass transfer mechanism in wood-based evaporators including large-scale production at a low cost.
Collapse
Affiliation(s)
- Youming Dong
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yi Tan
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China
| | - Kaili Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yahui Cai
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianzhang Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China
| | - Christian Sonne
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Department of Ecoscience, Aarhus University, Frederiksborgvej 399, Roskilde DK-4000, Denmark.
| | - Cheng Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; College of Forestry, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
23
|
Gao T, Wang Y, Wu X, Wu P, Yang X, Li Q, Zhang Z, Zhang D, Owens G, Xu H. More from less: improving solar steam generation by selectively removing a portion of evaporation surface. Sci Bull (Beijing) 2022; 67:1572-1580. [PMID: 36546285 DOI: 10.1016/j.scib.2022.07.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 01/07/2023]
Abstract
Using minimal photothermal material to achieve maximum evaporation rate is extremely important for practical applications of interfacial solar evaporation technology. In this work, we found that with the increase in the size of evaporation surfaces, the evaporation rate decreased. Both experimental and numerical simulation results confirmed that when the evaporation surface size increased, the middle portion of the evaporation surface acted as a "dead evaporation zone" with little contribution to water evaporation. Based on this, the middle portion of the evaporation surface was selectively removed, and counterintuitively, both the evaporation rate and vapor output were increased due to the re-configured and enhanced convection above the entire evaporation surface. As such, this work developed an important strategy to achieve a higher evaporation rate and increased vapour output while using less material.
Collapse
Affiliation(s)
- Ting Gao
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide SA 5095, Australia
| | - Yida Wang
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide SA 5095, Australia
| | - Xuan Wu
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide SA 5095, Australia.
| | - Pan Wu
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide SA 5095, Australia
| | - Xiaofei Yang
- College of Science, Nanjing Forestry University, Nanjing 210027, China
| | - Qin Li
- Queensland Micro- and Nanotechnology Centre, Griffith University Nathan Campus, Brisbane QLD 4111, Australia
| | - Zhezi Zhang
- Centre for Energy (M473), The University of Western Australia, Crawley WA 6009, Australia
| | - Dongke Zhang
- Centre for Energy (M473), The University of Western Australia, Crawley WA 6009, Australia
| | - Gary Owens
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide SA 5095, Australia
| | - Haolan Xu
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide SA 5095, Australia.
| |
Collapse
|
24
|
Ge H, Kuwahara Y, Yamashita H. Development of defective molybdenum oxides for photocatalysis, thermal catalysis, and photothermal catalysis. Chem Commun (Camb) 2022; 58:8466-8479. [PMID: 35861347 DOI: 10.1039/d2cc02658a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The localized surface plasmon resonance (LSPR) of noble metals has been investigated for decades for applications in various catalysis reactions and optical research studies, but its development has been hampered by inefficient light absorption and high costs. In comparison, the creation of less expensive semiconductors (metal oxides) with strong plasmonic absorption is an appealing option, particularly defective molybdenum oxide (HxMoO3-y) has received considerable attention and investigation as a promising plasmonic material for a variety of catalytic reactions (photocatalysis, thermocatalysis, photothermal catalysis, etc.).The LSPR effect of HxMoO3-y can be tuned throughout a broad spectrum range from visible to near-infrared (NIR) by altering the doping amount by electrochemical control, chemical reduction, or photochemical control. Notably, defects (oxygen vacancies) in HxMoO3-y arise in conjunction with the LSPR effect, resulting in the formation of unique and useful active sites in a range of catalytic processes. In this review, we explore the formation mechanism of HxMoO3-y with plasmonic features and discuss its applications in photocatalysis, thermocatalysis, and photothermal catalysis.
Collapse
Affiliation(s)
- Hao Ge
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Osaka 565-0871, Japan.
| | - Yasutaka Kuwahara
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Osaka 565-0871, Japan. .,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan.,JST, PRESTO, 4-1-8 Hon-Cho, Kawaguchi, Saitama 332-0012, Japan
| | - Hiromi Yamashita
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Osaka 565-0871, Japan. .,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
25
|
Santoro S, Avci AH, Politano A, Curcio E. The advent of thermoplasmonic membrane distillation. Chem Soc Rev 2022; 51:6087-6125. [PMID: 35789347 DOI: 10.1039/d0cs00097c] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Freshwater scarcity is a vital societal challenge related to climate change, population pressure, and agricultural and industrial demands. Therefore, sustainable desalination/purification of salty/contaminated water for human uses is particularly relevant. Membrane distillation is an emerging hybrid thermal-membrane technology with the potential to overcome the drawbacks of conventional desalination by a synergic exploitation of the water-energy nexus. Although membrane distillation is considered a green technology, efficient heat management remains a critical concern affecting the cost of the process and hindering its viability at large scale. A multidisciplinary approach that involves materials chemistry, physical chemistry, chemical engineering, and materials and polymer science is required to solve this problem. The combination of solar energy with membrane distillation is considered a potentially feasible low-cost approach for providing high-quality freshwater with a low carbon footprint. In particular, recent discoveries about efficient light-to-heat conversion in nanomaterials have opened unprecedented perspectives for the implementation of sunlight-based renewable energy in membrane distillation. The integration of nanofillers enabling photothermal effects into membranes has been demonstrated to be able to significantly enhance the energy efficiency without impacting on economic costs. Here, we provide a comprehensive overview on the state of the art, the opportunities, open challenges and pitfalls of the emerging field of solar-driven membrane distillation. We also assess the peculiar physicochemical properties and synthesis scalability of photothermal materials, as well as the strategies for their integration into polymeric nanocomposite membranes enabling efficient light-to-heat conversion and freshwater.
Collapse
Affiliation(s)
- Sergio Santoro
- University of Calabria - Department of Environmental and Chemical Engineering, Cubo 44 A, Via Pietro Bucci, 87036 Rende CS, Italy.
| | - Ahmet H Avci
- University of Calabria - Department of Environmental and Chemical Engineering, Cubo 44 A, Via Pietro Bucci, 87036 Rende CS, Italy.
| | - Antonio Politano
- Department of Physical and Chemical Sciences, University of L'Aquila, via Vetoio, 67100 L'Aquila (AQ), Italy.
| | - Efrem Curcio
- University of Calabria - Department of Environmental and Chemical Engineering, Cubo 44 A, Via Pietro Bucci, 87036 Rende CS, Italy.
| |
Collapse
|
26
|
Seung Lee J, Kim J, Ye YS, Kim TI. Materials and device design for advanced phototherapy systems. Adv Drug Deliv Rev 2022; 186:114339. [PMID: 35568104 DOI: 10.1016/j.addr.2022.114339] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/13/2022] [Accepted: 05/06/2022] [Indexed: 12/24/2022]
Abstract
Phototherapy has recently emerged as a promising solution for cancer treatment due to its multifunctionality and minimal invasiveness. Notwithstanding the limited penetration depth of light through skin, the ability of photopharmaceutical device systems to deliver light to desired lesions is important. The device system deploys advanced biocompatible materials and fabrication technologies for electronics, and eventually enables more efficient phototherapy. In this review, we focus on diverse optical electronics to illuminate the lesion site with light. Then, moving on to the phototherapy, we highlight photo-thermal therapy with light absorbing materials, photo-activated chemotherapy with light sensitive materials, and photo-dynamic therapy using photosensitizers. Furthermore, we introduce a drug delivery system that can deliver these photopharmaceutical agents spatiotemporally to the tumor site. To this end, we provide a general overview of materials and devices for phototherapy and discuss critical issues and pending limitations of such phototherapy.
Collapse
|
27
|
Xia W, Cheng H, Zhou S, Yu N, Hu H. Synergy of copper Selenide/MXenes composite with enhanced solar-driven water evaporation and seawater desalination. J Colloid Interface Sci 2022; 625:289-296. [PMID: 35717844 DOI: 10.1016/j.jcis.2022.06.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/23/2022] [Accepted: 06/04/2022] [Indexed: 10/31/2022]
Abstract
Despite significant of solar energy to power water evaporation in seawater desalination, the commercial application of this technology is limited by the poor light absorption and low photothermal conversion of existing photothermal materials. Herein, we report a simple method for solar-driven water evaporation using a device comprising Cu2-xSe/Nb2CTx nanocomposites supported by a glass microfiber membrane, which utilizes cotton thread as water transport pathway. The proposed device demonstrates excellent light absorption, water transportation, and thermal management. Benefiting from the strong synergetic photothermal effect of Cu2-xSe and Nb2CTx, the Cu2-xSe/Nb2CTx nanocomposites function as an efficient solar absorber with excellent photothermal conversion efficiency. The rough surface, low thermal conductivity and good hydrophilicity of glass microfiber membrane could maximize light capture, limit heat loss, and timely replenish water during the water evaporation process. When evaluated as a water evaporation system for outdoor seawater desalination, the system achieved a water evaporation of 12.60 kg·m-2 within 6 h. High fresh water generation rate is an important embodiment of high photothermal conversion efficiency. This study demonstrates a new route for designing solar desalination devices with high photothermal conversion properties.
Collapse
Affiliation(s)
- Wanting Xia
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Haoyan Cheng
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Shiqian Zhou
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Ningning Yu
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Hao Hu
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang, 471023, China.
| |
Collapse
|
28
|
Yan X, Lyu S, Xu X, Chen W, Shang P, Yang Z, Zhang G, Chen W, Wang Y, Chen L. Superhydrophilic 2D Covalent Organic Frameworks as Broadband Absorbers for Efficient Solar Steam Generation. Angew Chem Int Ed Engl 2022; 61:e202201900. [DOI: 10.1002/anie.202201900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaoli Yan
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
- Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
| | - Shanzhi Lyu
- Department of Energy and Power Engineering Tsinghua University Beijing 100084 China
| | - Xiao‐Qi Xu
- Department of Chemistry Renmin University of China Beijing 100872 China
| | - Weiben Chen
- Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
| | - Pengna Shang
- Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
| | - Zongfan Yang
- Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
| | - Guang Zhang
- Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
| | - Weihua Chen
- College of Chemistry and Green Catalysis Center Zhengzhou University Henan 450001 China
| | - Yapei Wang
- Department of Chemistry Renmin University of China Beijing 100872 China
| | - Long Chen
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
- Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
| |
Collapse
|
29
|
Jin Y, Wang K, Li S, Liu J. Encapsulation of MXene/polydopamine in nitrogen-doped 3D carbon networks with high photothermal conversion efficiency for seawater desalination. J Colloid Interface Sci 2022; 614:345-354. [DOI: 10.1016/j.jcis.2022.01.080] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 01/03/2023]
|
30
|
Xie H, Xu WH, Du Y, Gong J, Niu R, Wu T, Qu JP. Cost-Effective Fabrication of Micro-Nanostructured Superhydrophobic Polyethylene/Graphene Foam with Self-Floating, Optical Trapping, Acid-/Alkali Resistance for Efficient Photothermal Deicing and Interfacial Evaporation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200175. [PMID: 35307967 DOI: 10.1002/smll.202200175] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Solar evaporation is one of the most attractive and sustainable approaches to address worldwide freshwater scarcity. Unfortunately, it is still a crucial challenge that needs to be confronted when the solar evaporator faces harsh application environments. Herein, a promising polymer molding method that combines melt blending and compression molding, namely micro extrusion compression molding, is proposed for the cost-effective fabrication of lightweight polyethylene/graphene nanosheets (PE/GNs) foam with interconnected vapor escape channels and surface micro-nanostructures. A contact angle of 155 ± 2°, a rolling angle of 5 ± 1° and reflectance of ≈1.6% in the wavelength range of 300-2500 nm appears on the micro-nanostructured PE/GNs foam surface. More interestingly, the micro-nanostructured PE/GNs foam surface can maintain a robust superhydrophobic state under dynamic impacting, high temperature and acid-/alkali solutions. These results mean that the micro-nanostructured PE/GNs foam surface possesses self-cleaning, anti-icing and photothermal deicing properties at the same time. Importantly, the foam exhibits an evaporation rate of 1.83 kg m-2 h-1 under 1 Sun illumination and excellent salt rejecting performance when it is used as a self-floating solar evaporator. The proposed method provides an ideal and industrialized approach for the mass production of solar evaporators suitable for practical application environments.
Collapse
Affiliation(s)
- Heng Xie
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure and Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Wen-Hua Xu
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Yu Du
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure and Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Jiang Gong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure and Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Ran Niu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure and Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Ting Wu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure and Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Jin-Ping Qu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure and Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou, Guangdong, 510640, China
| |
Collapse
|
31
|
|
32
|
Yan X, Lyu S, Xu X, Chen W, Shang P, Yang Z, Zhang G, Chen W, Wang Y, Chen L. Superhydrophilic 2D Covalent Organic Frameworks as Broadband Absorbers for Efficient Solar Steam Generation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaoli Yan
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
- Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
| | - Shanzhi Lyu
- Department of Energy and Power Engineering Tsinghua University Beijing 100084 China
| | - Xiao‐Qi Xu
- Department of Chemistry Renmin University of China Beijing 100872 China
| | - Weiben Chen
- Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
| | - Pengna Shang
- Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
| | - Zongfan Yang
- Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
| | - Guang Zhang
- Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
| | - Weihua Chen
- College of Chemistry and Green Catalysis Center Zhengzhou University Henan 450001 China
| | - Yapei Wang
- Department of Chemistry Renmin University of China Beijing 100872 China
| | - Long Chen
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
- Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
| |
Collapse
|
33
|
Sharma N, Swaminathan N, Chi CH, Gurung RB, Wu HF. Efficient solar steam generator using black SnOx cored PANI polymeric mesh under one Sun illumination. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.11.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
34
|
Highly efficient solar vapour generation via self-floating three-dimensional Ti2O3-based aerogels. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Yan J, Zhang Z, Shi Y, Che Q, Miao Q, Meng G, Liu Z. An anti-oil-fouling superhydrophilic composite aerogel for solar saline alkali water desalination. NEW J CHEM 2022. [DOI: 10.1039/d2nj01743a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An anti-oil-fouling superhydrophilic composite aerogel (ASG) with a rough surface and macroporous structure is prepared for the solar desalination of oil-in-water emulsion and saline alkali water.
Collapse
Affiliation(s)
- Jiayu Yan
- School of Chemistry and Chemical Engineering, Shihezi University/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region/Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bingtuan, Beisi Road, Shihezi, Xinjiang 832003, P. R. China
| | - Zhen Zhang
- School of Chemistry and Chemical Engineering, Shihezi University/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region/Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bingtuan, Beisi Road, Shihezi, Xinjiang 832003, P. R. China
| | - Yongxin Shi
- School of Chemistry and Chemical Engineering, Shihezi University/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region/Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bingtuan, Beisi Road, Shihezi, Xinjiang 832003, P. R. China
| | - Qinglai Che
- School of Chemistry and Chemical Engineering, Shihezi University/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region/Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bingtuan, Beisi Road, Shihezi, Xinjiang 832003, P. R. China
| | - Qing Miao
- School of Chemistry and Chemical Engineering, Shihezi University/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region/Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bingtuan, Beisi Road, Shihezi, Xinjiang 832003, P. R. China
| | - Guihua Meng
- School of Chemistry and Chemical Engineering, Shihezi University/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region/Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bingtuan, Beisi Road, Shihezi, Xinjiang 832003, P. R. China
| | - Zhiyong Liu
- School of Chemistry and Chemical Engineering, Shihezi University/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region/Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bingtuan, Beisi Road, Shihezi, Xinjiang 832003, P. R. China
| |
Collapse
|
36
|
Lu Q, Wang X. Recent Progress of Sub-Nanometric Materials in Photothermal Energy Conversion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104225. [PMID: 34837484 PMCID: PMC8728870 DOI: 10.1002/advs.202104225] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Sub-nanometric materials (SNMs) are an attractive scope in recent years due to their atomic-level size and unique properties. Among various performances of SNMs, photothermal energy conversion is one of the most important ones because it can efficiently utilize the light energy. Herein, the SNMs with photothermal energy conversion behaviors and their applications are reviewed. First, a hydrothermal/solvothermal method for the synthesis of SNMs is systematically discussed, including the LaMer pathway and the cluster-nuclei coassembly pathway. Based on this synthetic strategy, many kinds of SNMs with different morphologies are successfully prepared, such as nanorings, nanowires, nanosheets, and nanobelts. These SNMs exhibit excellent photothermal performance under the laser or solar irradiation according to their different light absorption ranges. These enhanced absorption performances of SNMs are induced by the mechanism of plasmonic localized heating or nonradiative relaxation. Finally, the applications of the photothermal SNMs are illustrated. The SNMs with photothermal behaviors can be widely applied in the fields of solar vapor generation, biomedicine, and light-responsive composites construction. It is hoped that this review can provide new viewpoints and profound understanding to the SNMs in photothermal energy conversion.
Collapse
Affiliation(s)
- Qichen Lu
- Key Lab of Organic Optoelectronics and Molecular EngineeringDepartment of ChemistryTsinghua UniversityBeijing100084China
| | - Xun Wang
- Key Lab of Organic Optoelectronics and Molecular EngineeringDepartment of ChemistryTsinghua UniversityBeijing100084China
| |
Collapse
|
37
|
Moini N, Jahandideh A, Shahkarami F, Kabiri K, Piri F. Linear and star-shaped π-conjugated oligoanilines: a review on molecular design in syntheses and properties. Polym Chem 2022. [DOI: 10.1039/d2py00038e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular Design and Synthesis of Linear and Star-shaped π-conjugated Oligoanilines with reversible optoelectrochemical properties.
Collapse
Affiliation(s)
- N. Moini
- Adhesive and Resin Department, Polymer Processing Faculty, Iran Polymer and Petrochemical Institute (IPPI), P.O. Box 14975-112, Tehran, Iran
| | - A. Jahandideh
- Adhesive and Resin Department, Polymer Processing Faculty, Iran Polymer and Petrochemical Institute (IPPI), P.O. Box 14975-112, Tehran, Iran
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - F. Shahkarami
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, 45371-38791, Iran
| | - K. Kabiri
- Adhesive and Resin Department, Polymer Processing Faculty, Iran Polymer and Petrochemical Institute (IPPI), P.O. Box 14975-112, Tehran, Iran
- Biobased Monomers and Polymers Division (BIOBASED Division), Iran Polymer and Petrochemical Institute (IPPI), P.O. Box 14965-115, Tehran, Iran
| | - F. Piri
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, 45371-38791, Iran
| |
Collapse
|
38
|
Lei C, Guo Y, Guan W, Yu G. Polymeric materials for solar water purification. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Chuxin Lei
- Materials Science and Engineering Program, Texas Materials Institute The University of Texas at Austin Austin Texas USA
| | - Youhong Guo
- Materials Science and Engineering Program, Texas Materials Institute The University of Texas at Austin Austin Texas USA
| | - Weixin Guan
- Materials Science and Engineering Program, Texas Materials Institute The University of Texas at Austin Austin Texas USA
| | - Guihua Yu
- Materials Science and Engineering Program, Texas Materials Institute The University of Texas at Austin Austin Texas USA
| |
Collapse
|
39
|
Kim HJ, Kim B, Auh Y, Kim E. Conjugated Organic Photothermal Films for Spatiotemporal Thermal Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005940. [PMID: 34050686 PMCID: PMC11468520 DOI: 10.1002/adma.202005940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/19/2020] [Indexed: 06/12/2023]
Abstract
With the growth of photoenergy harvesting and thermal engineering, photothermal materials (PTMs) have attracted substantial interest due to their unique functions such as localized heat generation, spatiotemporal thermal controllability, invisibility, and light harvesting capabilities. In particular, π-conjugated organic PTMs show advantages over inorganic or metallic PTMs in thin film applications due to their large light absorptivity, ease of synthesis and tunability of molecular structures for realizing high NIR absorption, flexibility, and solution processability. This review is intended to provide an overview of organic PTMs, including both molecular and polymeric PTMs. A description of the photothermal (PT) effect and conversion efficiency (ηPT ) for organic films is provided. After that, the chemical structure and optical properties of organic PTMs are discussed. Finally, emerging applications of organic PT films from the perspective of spatiotemporal thermal engineering principles are illustrated.
Collapse
Affiliation(s)
- Hee Jung Kim
- Department of Chemical and Biomolecular EngineeringYonsei University50 Yonsei‐roSeodaemun‐guSeoul03722South Korea
| | - Byeonggwan Kim
- Department of Chemical and Biomolecular EngineeringYonsei University50 Yonsei‐roSeodaemun‐guSeoul03722South Korea
| | - Yanghyun Auh
- Department of Chemical and Biomolecular EngineeringYonsei University50 Yonsei‐roSeodaemun‐guSeoul03722South Korea
| | - Eunkyoung Kim
- Department of Chemical and Biomolecular EngineeringYonsei University50 Yonsei‐roSeodaemun‐guSeoul03722South Korea
| |
Collapse
|
40
|
Ultralong polypyrrole nanotubes aerogels with excellent elasticity for efficient solar steam generation. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.07.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Liu C, Chen G, Zhang Z, You Y. Expanding the Conjugate Structure of Polymeric Carbon Nitride for Enhanced Light Absorption and Photothermal Conversion. Macromol Rapid Commun 2021; 42:e2100502. [PMID: 34587316 DOI: 10.1002/marc.202100502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/26/2021] [Indexed: 11/08/2022]
Abstract
The development of efficient and inexpensive materials for light energy conversion is very important for achieving sustainable energy supply and carbon neutrality. Polymeric carbon nitride has become a promising material for light energy conversion due to its advantages of simple preparation and high physical and chemical stability. However, the pristine polymeric carbon nitride only absorbs light with a wavelength of less than 450 nm, and the energy conversion for low-energy photons is very limited. Here, by introducing the pyromellitic dianhydride component to construct an in-plane heterostructure, the conjugated structure of polymeric carbon nitride is successfully expanded. This in-plane carbon nitride-carbon nanoribbon (C3 N4 -C) heterostructure has an ultrawide absorption range from 200 to 2000 nm. Compared with the original material, the photothermal conversion performance of C3 N4 -C is significantly improved under the irradiation of Xe lamp or infrared laser. Furthermore, C3 N4 -C exhibits good potential for synergistic photothermal and chemotherapy. This work provides a simple strategy to construct expanded conjugate structure for improved light absorption and energy conversion materials based on polymeric carbon nitride.
Collapse
Affiliation(s)
- Cheng Liu
- Department of Urologic oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Guang Chen
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Science and Medicine; Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ze Zhang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Science and Medicine; Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yezi You
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Science and Medicine; Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
42
|
Mu P, Song L, Geng L, Li J. Aligned Attapulgite-based aerogels with excellent mechanical property for the highly efficient solar steam generation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118869] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
43
|
|
44
|
Li Z, Xu X, Sheng X, Lin P, Tang J, Pan L, Kaneti YV, Yang T, Yamauchi Y. Solar-Powered Sustainable Water Production: State-of-the-Art Technologies for Sunlight-Energy-Water Nexus. ACS NANO 2021; 15:12535-12566. [PMID: 34279074 DOI: 10.1021/acsnano.1c01590] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Alternative water resources (seawater, brackish water, atmospheric water, sewage, etc.) can be converted into clean freshwater via high-efficiency, energy-saving, and cost-effective methods to cope with the global water crisis. Herein, we provide a comprehensive and systematic overview of various solar-powered technologies for alternative water utilization (i.e., "sunlight-energy-water nexus"), including solar-thermal interface desalination (STID), solar-thermal membrane desalination (STMD), solar-driven electrochemical desalination (SED), and solar-thermal atmospheric water harvesting (ST-AWH). Three strategies have been proposed for improving the evaporation rate of STID systems above the theoretical limit and designing all-weather or all-day operating STID systems by analyzing the energy transfer of the evaporation and condensation processes caused by solar-thermal conversion. This review also introduces the fundamental principles and current research hotspots of two other solar-driven seawater or brackish water desalination technologies (STMD and SED) in detail. In addition, we also cover ST-AWH and other solar-powered technologies in terms of technology design, materials evolution, device assembly, etc. Finally, we summarize the content of this comprehensive review and discuss the challenges and future outlook of different types of solar-powered alternative water utilization technologies.
Collapse
Affiliation(s)
- Zhengtong Li
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China
| | - Xingtao Xu
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Xinran Sheng
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China
| | - Peng Lin
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China
| | - Jing Tang
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, China
| | - Likun Pan
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Yusuf Valentino Kaneti
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Tao Yang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China
| | - Yusuke Yamauchi
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
45
|
Dong X, Si Y, Chen C, Ding B, Deng H. Reed Leaves Inspired Silica Nanofibrous Aerogels with Parallel-Arranged Vessels for Salt-Resistant Solar Desalination. ACS NANO 2021; 15:12256-12266. [PMID: 34151558 DOI: 10.1021/acsnano.1c04035] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Sufficient and clean freshwater is still out of reach for billions of people around the world. Solar desalination from brine is regarded as one of the most promising proposals to solve this severe crisis. However, most of the reported evaporators to date still suffer from the decreasing evaporation rate caused by salt crystallization accumulated on their surface. Here, inspired by the vascular tissue structure, transpiration, and antifouling function of reed leaves, we design biomimetic hierarchical nanofibrous aerogels with parallel-arranged vessels and hydrophobic surfaces for highly efficient and salt-resistant solar desalination. Foldable vessel walls and flexible silica nanofibers give the reed leaf-inspired nanofiber aerogels (R-NFAs) excellent mechanical properties and enable them to withstand repeated compression. Besides, the R-NFAs can efficiently absorb sunlight (light absorption efficiency: 94.8%) and evaporate the brine to vapor, similar to reed leaves (evaporation rate: 1.25 kg m-2 h-1 under 1 sun). More importantly, enabled by the hydrophobic surfaces and parallel-arranged vessels, the R-NFAs can work stably in high-concentration brine (saturated, 26.3 wt %) under high-intensity light (up to 6 sun), demonstrating potent salt resistance. It is expected that R-NFAs with combined antisalt pore and surface structures will provide a designed concept for salt-resistant solar desalination.
Collapse
Affiliation(s)
- Xiangyang Dong
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Yang Si
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Chaoji Chen
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Bin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Hongbing Deng
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| |
Collapse
|
46
|
Qi P, Ren J, Ling S. Animal Silk-Derived Amorphous Carbon Fibers for Electricity Generation and Solar Steam Evaporation. Front Chem 2021; 9:669797. [PMID: 34239857 PMCID: PMC8259506 DOI: 10.3389/fchem.2021.669797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/26/2021] [Indexed: 11/16/2022] Open
Abstract
Animal silk-derived carbon materials are of interest to various applications, such as smart cloth and wearable sensors. However, it remains a challenge to massively transform silks into continuous carbon fibers. In this work, carbon fibers based on two kinds of animal silks, i.e., Bombyx mori (B. mori) silk and Antheraea pernyi (A. pernyi) silk, are prepared by using a large-scale-capable one-step heating process without any additives or activation process. These carbon fibers and yarns are electroconductive and mechanically robust. To expand the application of these carbonized silks, we further weaved them with cotton yarns to obtain composite fabrics with different textures and evaluated their performance for solar steam evaporation. Our results confirmed that the advantages of these composite fabrics in light absorption, large surface area, and hierarchical liquid transport channels allowed them to be used as a solar steam generation for desalination and sewage treatment. In addition, we reported that these conductive carbon fibers could be assembled into fluidic nanogenerators to generate electricity from the water flow. This work is expected to guide a large-scale preparation and use of animal silk-derived amorphous carbon fibers.
Collapse
Affiliation(s)
- Ping Qi
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jing Ren
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
47
|
Etemadzadeh SS, Emtiazi G. In vitro identification of antimicrobial hemolytic lipopeptide from halotolerant Bacillus by Zymogram, FTIR, and GC mass analysis. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:666-674. [PMID: 34249269 PMCID: PMC8244604 DOI: 10.22038/ijbms.2021.53419.12022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/13/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVES The multi-drug resistant bacteria and clinical infections are some of the biggest global concerns, so new drugs are needed. Antimicrobial peptides and lipopeptides are new bioactive agents with great potential that can become a new strategy for clinical applications. MATERIALS AND METHODS Some Bacillus strains were isolated based on hemolytic antimicrobial production from the soil. The extracellular proteins were extracted by acidic precipitation and chloroform/methanol method and analyzed by SDS-PAGE electrophoresis and stained with Sudan black. The black fragment was purified and characterized by FTIR, GC/MS, and HPLC analysis to demonstrate the presence of lipids and proteins. The anti-microbial ability and stability of the purified lipopeptide were assayed by the Kirby-Bauer method. Also, it was examined for metal removal. RESULTS A new Bacillus halotolerans strain SCM 034 with hemolytic antimicrobial production was isolated. According to GC/MS (detecting C16, C17) and HPLC (detecting leucine, glutamic acid, valine, arginine, glycine, and aspartic acid) data, the black fragment was lipopeptide. Polyacrylamide hydrogel containing lipopeptide and gel purified lipopeptide showed anti-microbial activities against S. aureus and S. cerevisiae that were stable for a few months. Also, the lipopeptide was useful for cation removal and decreased cobalt, nickel, and calcium by 10.81 %, 24.39 %, and 34 %, respectively. CONCLUSION Production of antibacterial lipopeptide hemolysin from this strain is reported for the first time and according to the results, lipopeptides have unique properties with biomedical and pharmaceutical applications. Also, polyacrylamide hydrogel lipopeptide is a promising candidate for wound healing.
Collapse
Affiliation(s)
- Shekoofeh Sadat Etemadzadeh
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Giti Emtiazi
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
48
|
Huang Z, Luo YH, Geng WY, Wan Y, Li S, Lee CS. Marriage of 2D Covalent-Organic Framework and 3D Network as Stable Solar-Thermal Still for Efficient Solar Steam Generation. SMALL METHODS 2021; 5:e2100036. [PMID: 34928098 DOI: 10.1002/smtd.202100036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/26/2021] [Indexed: 06/14/2023]
Abstract
In this work, a diketopyrrolopyrrole-based 2D covalent-organic framework (COF) is realized and featured with broadband optical absorption and high solar-thermal conversion performance. Moreover, a 3D hierarchical structure, referred to as COF-based hierarchical structure (COFHS), is rationally designed to achieve an enhanced photothermal conversion efficiency. In this water evaporator, diketopyrrolopyrrole is immobilized into conjugated COF to achieve enhanced light absorption, whereas a porous PVA network scaffold is utilized to support COF sheets as well as to enhance the hydrophilicity of the evaporator. Due to this structural advantage, COFHS displays a high solar-to-vapor energy conversion efficiency of 93.2%. Under 1 sun AM1.5 G irradiation, a stable water evaporation rate of 2.5 kg m-2 h-1 can be achieved. As a proof-of-concept application, a water collection device prepared with the COFHS can achieve high solar-thermal water collection efficiency of 10.2 L m-2 d-1 under natural solar irradiation. The good solar-thermal conversion properties and high-water evaporation rate make the COFHS a promising platform for solar-thermal water production.
Collapse
Affiliation(s)
- Zhongming Huang
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Yu-Hui Luo
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu Province, 222000, P. R. China
| | - Wu-Yue Geng
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu Province, 222000, P. R. China
| | - Yingpeng Wan
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Shengliang Li
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, P. R. China
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
49
|
Poly(p-phenylene benzobisoxazole) nanofiber/reduced graphene oxide composite aerogels toward high-efficiency solar steam generation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125997] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
50
|
Yang J, Wang H, Zhou B, Shen J, Zhang Z, Du A. Versatile Direct Writing of Aerogel-Based Sol-Gel Inks. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2129-2139. [PMID: 33502207 DOI: 10.1021/acs.langmuir.0c03312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Direct ink writing (DIW) of aerogels has great potential in designing novel three-dimensional (3D) multifunctional materials with hierarchical structures ranging from the nanoscale to the macroscopic scale. In this paper, pure aerogels composed of inorganics, strongly cross-linking organics, and weakly cross-linking organics were directly written via the precise control of the gelation degree without using any additives. The rheological properties of a resorcinol-formaldehyde aerogel-based sol-gel ink (marked as RA ink) were measured at different reaction times to determine the suitable printable range (G'LVR: several 103 Pa) that ensures its good print fidelity. In addition, the rheological evolution of the RA ink during the sol-gel process and under different shear stresses was studied. The correlation of relevant parameters was established according to the Hagen-Poiseuille model. Other typical aerogel-based sol-gel inks including a silica aerogel-based sol-gel ink (SA ink) and a polyimide aerogel-based sol-gel ink (PA ink) for DIW were also demonstrated. Finally, water evaporation experiments were carried out using a 3D-printed carbonized resorcinol-formaldehyde aerogel (CA) to further exhibit the potential applications of this novel technology in solar steam generation. The evaporation rate (1.57 kg m-2 h-1) and efficiency (88.38%) of 3D-printed CA were higher than those of bulk CA (1.21 kg m-2 h-1 and 69.82%). This paper systematically studies the control of DIW parameters for aerogel-based sol-gel inks and shows a potential application in high-efficiency 3D-printed evaporators.
Collapse
Affiliation(s)
- Jianming Yang
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Hongqiang Wang
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Bin Zhou
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Jun Shen
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Zhihua Zhang
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Ai Du
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| |
Collapse
|