1
|
Hughes KJ, Cheng J, Iyer KA, Ralhan K, Ganesan M, Hsu CW, Zhan Y, Wang X, Zhu B, Gao M, Wang H, Zhang Y, Huang J, Zhou QA. Unveiling Trends: Nanoscale Materials Shaping Emerging Biomedical Applications. ACS NANO 2024; 18:16325-16342. [PMID: 38888229 DOI: 10.1021/acsnano.4c04514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The realm of biomedical materials continues to evolve rapidly, driven by innovative research across interdisciplinary domains. Leveraging big data from the CAS Content Collection, this study employs quantitative analysis through natural language processing (NLP) to identify six emerging areas within nanoscale materials for biomedical applications. These areas encompass self-healing, bioelectronic, programmable, lipid-based, protein-based, and antibacterial materials. Our Nano Focus delves into the multifaceted utilization of nanoscale materials in these domains, spanning from augmenting physical and electronic properties for interfacing with human tissue to facilitating intricate functionalities like programmable drug delivery.
Collapse
Affiliation(s)
- Kevin J Hughes
- CAS, a division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Jianjun Cheng
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Kavita A Iyer
- ACS International India Pvt. Ltd., Pune 411044, India
| | | | | | - Chia-Wei Hsu
- CAS, a division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Yutao Zhan
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Xinning Wang
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Bowen Zhu
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Menghua Gao
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Huaimin Wang
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Yue Zhang
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Jiaxing Huang
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | | |
Collapse
|
2
|
Wei C, Xing S, Li Y, Koosha M, Wang S, Chen H, Zhai Y, Wang L, Yang X, Fakhrullin R. Gelatin/carboxymethyl chitosan/aloe juice hydrogels with skin-like endurance and quick recovery: Preparation, characterization, and properties. Int J Biol Macromol 2024; 261:129720. [PMID: 38296139 DOI: 10.1016/j.ijbiomac.2024.129720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/14/2024] [Accepted: 01/22/2024] [Indexed: 03/09/2024]
Abstract
Gelatin-based hydrogels have gained considerable attention due to their resemblance to the extracellular matrix and hydrophilic three-dimensional network structure. Apart from providing an air-permeable and moist environment, these hydrogels optimize the inflammatory microenvironment of the wounds. These properties make gelatin-based hydrogels highly competitive in the field of wound dressings. In this study, a series of composite hydrogels were prepared using gelatin (Gel) and carboxymethyl chitosan (CMCh) as primary materials, glutaraldehyde as a crosslinker, and aloe vera juice as an anti-inflammatory component. The properties of the hydrogel, including its rheological properties, microscopic structures, mechanical properties, swelling ratios, thermal stability, antibacterial properties, and biocompatibility, were investigated. The results demonstrate that the gelatin-based hydrogels exhibit good elasticity and rapid self-healing ability. The hydrogels exhibited slight shear behavior, which is advantageous for skin care applications. Furthermore, the inclusion of aloe vera juice into the hydrogel resulted in a dense structure, improved mechanical properties and enhanced swelling ratio. The Gel/CMCh/Aloe hydrogels tolerate a compressive strength similar to that of human skin. Moreover, the hydrogels displayed excellent cytocompatibility with HFF-1 cells, and exhibited antibacterial activity against E. coli and S. aureus. Lomefloxacin was used as a model drug to study the releasing behavior of the Gel/CMCh/aloe hydrogels. The results showed that the drug was released rapidly at the initial stage, and could continue to be released for 12 h, the maximum releasing rate exceeded 20 %. These findings suggest that the gelatin-based hydrogels hold great promise as effective wound dressings.
Collapse
Affiliation(s)
- Chunyan Wei
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China
| | - Shu Xing
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China
| | - Yan Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China
| | - Mojtaba Koosha
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China; Faculty of New Technologies and Aerospace Engineering, Shahid Beheshti University, Tehran, Iran
| | - Shoujuan Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China
| | - Hua Chen
- Interventional department of Shandong Provincial Cancer Hospital Affiliated to Shandong First Medical University, Jinan 250117, China.
| | - Yuan Zhai
- Interventional department of Shandong Provincial Cancer Hospital Affiliated to Shandong First Medical University, Jinan 250117, China.
| | - Ling Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China.
| | - Xiaodeng Yang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China.
| | - Rawil Fakhrullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, Russian Federation
| |
Collapse
|
3
|
Mohanto S, Narayana S, Merai KP, Kumar JA, Bhunia A, Hani U, Al Fatease A, Gowda BHJ, Nag S, Ahmed MG, Paul K, Vora LK. Advancements in gelatin-based hydrogel systems for biomedical applications: A state-of-the-art review. Int J Biol Macromol 2023; 253:127143. [PMID: 37793512 DOI: 10.1016/j.ijbiomac.2023.127143] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023]
Abstract
A gelatin-based hydrogel system is a stimulus-responsive, biocompatible, and biodegradable polymeric system with solid-like rheology that entangles moisture in its porous network that gradually protrudes to assemble a hierarchical crosslinked arrangement. The hydrolysis of collagen directs gelatin construction, which retains arginyl glycyl aspartic acid and matrix metalloproteinase-sensitive degeneration sites, further confining access to chemicals entangled within the gel (e.g., cell encapsulation), modulating the release of encapsulated payloads and providing mechanical signals to the adjoining cells. The utilization of various types of functional tunable biopolymers as scaffold materials in hydrogels has become highly attractive due to their higher porosity and mechanical ability; thus, higher loading of proteins, peptides, therapeutic molecules, etc., can be further modulated. Furthermore, a stimulus-mediated gelatin-based hydrogel with an impaired concentration of gellan demonstrated great shear thinning and self-recovering characteristics in biomedical and tissue engineering applications. Therefore, this contemporary review presents a concise version of the gelatin-based hydrogel as a conceivable biomaterial for various biomedical applications. In addition, the article has recapped the multiple sources of gelatin and their structural characteristics concerning stimulating hydrogel development and delivery approaches of therapeutic molecules (e.g., proteins, peptides, genes, drugs, etc.), existing challenges, and overcoming designs, particularly from drug delivery perspectives.
Collapse
Affiliation(s)
- Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India.
| | - Soumya Narayana
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Khushboo Paresh Merai
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujrat, India
| | - Jahanvee Ashok Kumar
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujrat, India
| | - Adrija Bhunia
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - B H Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India; School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast BT9 7BL, UK.
| | - Sagnik Nag
- Department of Bio-Sciences, School of Biosciences & Technology, Vellore Institute of Technology (VIT), Tiruvalam Rd, 632014, Tamil Nadu, India
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Karthika Paul
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast BT9 7BL, UK
| |
Collapse
|
4
|
Ahn M, Cho WW, Lee H, Park W, Lee SH, Back JW, Gao Q, Gao G, Cho DW, Kim BS. Engineering of Uniform Epidermal Layers via Sacrificial Gelatin Bioink-Assisted 3D Extrusion Bioprinting of Skin. Adv Healthc Mater 2023; 12:e2301015. [PMID: 37537366 DOI: 10.1002/adhm.202301015] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/19/2023] [Indexed: 08/05/2023]
Abstract
To reconstruct an ideal full-thickness skin model, basal keratinocytes must be distributed as a confluent monolayer on the dermis. However, the currently available extrusion bioprinting method for the skin is limited when producing an air-exposed cellular monolayer because the cells are encapsulated within a bioink. This is the first study to use sacrificial gelatin-assisted extrusion bioprinting to reproduce a uniform and stratified epidermal layer. Experimental analyses of the rheological properties, printability, cell viability, and initial keratinocyte adhesion shows that the optimal gelatin bioink concentration is 4 wt.%. The appropriate thickness of the bioprinted gelatin structure for achieving a confluent keratinocyte layer is determined to be 400 µm. The suggested strategy generates a uniform keratinocyte monolayer with tight junctions throughout the central and peripheral regions, whereas manual seeding generates non-uniform cellular aggregates and vacancies. These results influence gene expression, exhibiting a propensity for epidermal differentiation. Finally, the gelatin-assisted keratinocytes are bioprinted onto a dermis composed of gelatin methacryloyl and dermis-derived decellularized extracellular matrix to establish a full-thickness skin model. Thus, this strategy leads to significant improvements in epidermal differentiation/stratification. The findings demonstrate that the gelatin-assisted approach is advantageous for recreating reliable full-thickness skin models with significant consistency for mass production.
Collapse
Affiliation(s)
- Minjun Ahn
- Medical Research Institute, Pusan National University, Yangsan, 626841, Republic of Korea
| | - Won-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Hanju Lee
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan, 626841, Republic of Korea
| | - Wonbin Park
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Seok-Hyeon Lee
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan, 626841, Republic of Korea
| | - Jae Woo Back
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan, 626841, Republic of Korea
| | - Qiqi Gao
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Ge Gao
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Byoung Soo Kim
- Medical Research Institute, Pusan National University, Yangsan, 626841, Republic of Korea
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan, 626841, Republic of Korea
| |
Collapse
|
5
|
Nishiguchi A, Ito S, Nagasaka K, Taguchi T. Tissue-Adhesive Decellularized Extracellular Matrix Patches Reinforced by a Supramolecular Gelator to Repair Abdominal Wall Defects. Biomacromolecules 2023; 24:1545-1554. [PMID: 36880637 DOI: 10.1021/acs.biomac.2c01210] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Implantation of surgical meshes composed of synthetic and biological materials has been applied for abdominal wall defect repair. Despite many efforts, there are no reliable meshes that fully satisfy clinical requirements because of their lack of biodegradability, mechanical strength, and tissue-adhesive properties. Here, we report biodegradable, decellularized extracellular matrix (dECM)-based biological patches to treat abdominal wall defects. By incorporating a water-insoluble supramolecular gelator that forms physical cross-linking networks through intermolecular hydrogen bonding, dECM patches were reinforced to improve mechanical strength. Reinforced dECM patches possessed higher tissue adhesion strength and underwater stability compared with the original dECM because of enhanced interfacial adhesion strength. In vivo experiments using an abdominal wall defect rat model showed that reinforced dECM patches induced collagen deposition and the formation of blood vessels during material degradation, and the accumulation of CD68-positive macrophages was suppressed compared to nonbiodegradable synthetic meshes. Tissue-adhesive and biodegradable dECM patches with improved mechanical strength by a supramolecular gelator have enormous potential for use in the repair of abdominal wall defects.
Collapse
Affiliation(s)
- Akihiro Nishiguchi
- Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Shima Ito
- Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Kazuhiro Nagasaka
- Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Tetsushi Taguchi
- Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
6
|
Kim NE, Park S, Kim S, Choi JH, Kim SE, Choe SH, Kang TW, Song JE, Khang G. Development of Gelatin-Based Shape-Memory Polymer Scaffolds with Fast Responsive Performance and Enhanced Mechanical Properties for Tissue Engineering Applications. ACS OMEGA 2023; 8:6455-6462. [PMID: 36844585 PMCID: PMC9947991 DOI: 10.1021/acsomega.2c06730] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Shape-memory polymers (SMPs) can be defined as a reversibly changing form through deformation and recovery by external stimuli. However, there remain application limitations of SMPs, such as complicated preparation processes and slow shape recovery. Here, we designed gelatin-based shape-memory scaffolds by a facile dipping method in tannic acid solution. The shape-memory effect of scaffolds was attributed to the hydrogen bond between gelatin and tannic acid, which acts as the net point. Moreover, gelatin (Gel)/oxidized gellan gum (OGG)/calcium chloride (Ca) was intended to induce faster and more stable shape-memory behavior through the introduction of a Schiff base reaction. The chemical, morphological, physicochemical, and mechanical properties of the fabricated scaffolds were evaluated, and those results showed that the Gel/OGG/Ca had improved mechanical properties and structural stability compared with other scaffold groups. Additionally, Gel/OGG/Ca exhibited excellent shape-recovery behavior of 95.8% at 37 °C. As a consequence, the proposed scaffolds can be fixed to the temporary shape at 25 °C in just 1 s and recovered to the original shape at 37 °C within 30 s, implying a great potential for minimally invasive implantation.
Collapse
Affiliation(s)
- Na Eun Kim
- Department
of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567, Baekje-daero, Deakjin-gu, Jeonju-si, Jeonbuk 54896, Korea
| | - Sunjae Park
- Department
of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567, Baekje-daero, Deakjin-gu, Jeonju-si, Jeonbuk 54896, Korea
| | - Sooin Kim
- Department
of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567, Baekje-daero, Deakjin-gu, Jeonju-si, Jeonbuk 54896, Korea
| | - Joo Hee Choi
- Department
of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567, Baekje-daero, Deakjin-gu, Jeonju-si, Jeonbuk 54896, Korea
| | - Se Eun Kim
- Department
of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567, Baekje-daero, Deakjin-gu, Jeonju-si, Jeonbuk 54896, Korea
| | - Seung Ho Choe
- Department
of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567, Baekje-daero, Deakjin-gu, Jeonju-si, Jeonbuk 54896, Korea
| | - Tae woong Kang
- Department
of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567, Baekje-daero, Deakjin-gu, Jeonju-si, Jeonbuk 54896, Korea
| | - Jeong Eun Song
- Department
of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567, Baekje-daero, Deakjin-gu, Jeonju-si, Jeonbuk 54896, Korea
| | - Gilson Khang
- Department
of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567, Baekje-daero, Deakjin-gu, Jeonju-si, Jeonbuk 54896, Korea
- Department
of PolymerNano Science & Technology and Polymer Materials Fusion
Research Center, Jeonbuk National University, 567, Baekje-daero, Deakjin-gu, Jeonju-si, Jeonbuk 54896, Korea
- Department
of Orthopaedic & Traumatology, Airlangga
University, Jl. Airlangga No. 4-6, Airlangga,
Kec. Gubeng, Kota SBY, Jawa Timur 60115, Indonesia
| |
Collapse
|
7
|
Yang J, Chen Y, Zhao L, Zhang J, Luo H. Constructions and Properties of Physically Cross-Linked Hydrogels Based on Natural Polymers. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2137525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Jueying Yang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Yu Chen
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
- Sports & Medicine Integration Research Center (SMIRC), Capital University of Physical Education and Sports, Beijing, China
| | - Lin Zhao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Jinghua Zhang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Hang Luo
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
8
|
Dexamethasone loaded injectable, self-healing hydrogel microspheresbased on UPy-functionalized Gelatin/ZnHAp physical network promotes bone regeneration. Int J Pharm 2022; 626:122196. [PMID: 36115467 DOI: 10.1016/j.ijpharm.2022.122196] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/23/2022]
Abstract
Biopolymer-based injectable hydrogels provide great potential as bone tissue engineering (BTE) scaffolds on account of biocompatibility, and pore interconnectivity that enables delivery of cells and/or signaling molecules for bone repair. Recently, Gelatin hydrogels based on H-bonds were considered in response to concerns around the chemical crosslinking agents. In this study, a self-healing gelatin hydrogel with remarkable compressive and self-healing properties was prepared via formation of quadruple hydrogen bonds between ureidopyrimidinon functional groups, which were substituted on NH2 groups of gelatin(GelUPy). Degree of substitution controls properties of the resulting hydrogel from a shape- memory hydrogel (100% substitution), to a hydrogel (about 80%), to this self-healing hydrogel (about 40%). We report a strategy that adopts an emulsion synthesis approach to delivery of dexamethasone and Ca/Zn ions from injectable self-healing GelUPy hydrogel (GelUPy-ZnHApUPy-DEX), to induce osteogenic differentiation of adipose-derived stem cells, in vitro, and enhance bone regeneration in a cranial bone defect in a rat model. We show that key properties of the composite hydrogels, including mechanical properties, and release behavior of DEX are a match to the requirements of BTE. Overall, our results demonstrate that this self-healing gelatin approach is a promising strategy to enhance bone regeneration through a minimally invasive procedure.
Collapse
|
9
|
A Macroporous Cryogel with Enhanced Mechanical Properties for Osteochondral Regeneration In vivo. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2835-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Bochani S, Kalantari-Hesari A, Haghi F, Alinezhad V, Bagheri H, Makvandi P, Shahbazi MA, Salimi A, Hirata I, Mattoli V, Maleki A, Guo B. Injectable Antibacterial Gelatin-Based Hydrogel Incorporated with Two-Dimensional Nanosheets for Multimodal Healing of Bacteria-Infected Wounds. ACS APPLIED BIO MATERIALS 2022; 5:4435-4453. [PMID: 36066957 DOI: 10.1021/acsabm.2c00567] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The design and development of multifunctional injectable hydrogels with high photothermal antibacterial activity and shape adaptability to accelerate bacteria-infected wound healing is of critical importance in clinical applications. In this study, a hybrid hydrogel composed of gelatin, iron, and MnO2 nanosheets was prepared by multiple interactions, including coordinative and hydrogen bonding as well as electrostatic attraction. The introduced MnO2 and Fe components made the hydrogels photothermally and chemodynamically active, thereby endowing them with potent antibacterial capabilities against both Gram-negative and Gram-positive bacteria. Because of the Fenton activity of the hydrogels, they could produce abandoned oxygen, which is highly crucial in the healing process of wounds. They also showed good cytocompatibility and hemocompatibility as well as high hemostatic properties. Moreover, the injectable hydrogels could fill irregular wounds and significantly accelerate bacteria-infected wound healing through decreasing the inflammatory response and increasing blood vessels. These features indicated the promising potential of the multifunctional hydrogel for healing infected full-thickness wounds.
Collapse
Affiliation(s)
- Shayesteh Bochani
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan 45139-56184, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 45139-56184, Iran
| | - Ali Kalantari-Hesari
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamadan 6516738695, Iran
| | - Fakhri Haghi
- Department of Microbiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan 45139-56184, Iran
| | - Vajihe Alinezhad
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan 45139-56184, Iran
| | - Hadi Bagheri
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan 45139-56184, Iran
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interface, viale Rinaldo Piaggio 34, Pontedera, Pisa 56025, Italy
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Abdollah Salimi
- Department of Chemistry, University of Kurdistan, Sanandaj 66177-15175, Iran
| | - Ikue Hirata
- Istituto Italiano di Tecnologia, Centre for Materials Interface, viale Rinaldo Piaggio 34, Pontedera, Pisa 56025, Italy
| | - Virgilio Mattoli
- Istituto Italiano di Tecnologia, Centre for Materials Interface, viale Rinaldo Piaggio 34, Pontedera, Pisa 56025, Italy
| | - Aziz Maleki
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan 45139-56184, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 45139-56184, Iran
| | - Baolin Guo
- Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Shaanxi 710049, China
| |
Collapse
|
11
|
Preparation, properties, and applications of gelatin-based hydrogels (GHs) in the environmental, technological, and biomedical sectors. Int J Biol Macromol 2022; 218:601-633. [PMID: 35902015 DOI: 10.1016/j.ijbiomac.2022.07.168] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 12/23/2022]
Abstract
Gelatin's versatile functionalization offers prospects of facile and effective crosslinking as well as combining with other materials (e.g., metal nanoparticles, carbonaceous, minerals, and polymeric materials exhibiting desired functional properties) to form hybrid materials of improved thermo-mechanical, physio-chemical and biological characteristics. Gelatin-based hydrogels (GHs) and (nano)composite hydrogels possess unique functional features that make them appropriate for a wide range of environmental, technical, and biomedical applications. The properties of GHs could be balanced by optimizing the hydrogel design. The current review explores the various crosslinking techniques of GHs, their properties, composite types, and ultimately their end-use applications. GH's ability to absorb a large volume of water within the gel network via hydrogen bonding is frequently used for water retention (e.g., agricultural additives), and absorbency towards targeted chemicals from the environment (e.g., as wound dressings for absorbing exudates and in water treatment for absorbing pollutants). GH's controllable porosity makes its way to be used to restrict access to chemicals entrapped within the gel phase (e.g., cell encapsulation), regulate the release of encapsulated cargoes within the GH (e.g., drug delivery, agrochemicals release). GH's soft mechanics closely resembling biological tissues, make its use in tissue engineering to deliver suitable mechanical signals to neighboring cells. This review discussed the GHs as potential materials for the creation of biosensors, drug delivery systems, antimicrobials, modified electrodes, water adsorbents, fertilizers and packaging systems, among many others. The future research outlooks are also highlighted.
Collapse
|
12
|
Maryam S, Barkat K, Khalid I, Mehmood Y, Syed MA, Malik NS, Aslam M. Polymeric blends of okra gum/gelatin prepared by aqueous polymerization technique: their characterization and toxicological evaluation. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03561-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Nishiguchi A, Ichimaru H, Ito S, Nagasaka K, Taguchi T. Hotmelt tissue adhesive with supramolecularly-controlled sol-gel transition for preventing postoperative abdominal adhesion. Acta Biomater 2022; 146:80-93. [PMID: 35500814 DOI: 10.1016/j.actbio.2022.04.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/05/2022] [Accepted: 04/21/2022] [Indexed: 11/01/2022]
Abstract
Postoperative adhesion is a serious and frequent complication, but there is currently no reliable anti-adhesive barrier available due to low tissue adhesiveness, undesirable chemical reactions, and poor operability. To overcome these problems, we report a single-syringe hotmelt tissue adhesive that dissolves upon warming over 40 °C and coheres at 37 °C as a postoperative barrier. Tendon-derived gelatin was conjugated with the ureidopyrimidinone unit to supramolecularly control the sol-gel transition behavior. This functionalization improved bulk mechanical strength, tissue-adhesive properties, and stability under physiological conditions through the augmentation of intermolecular hydrogen bonding by ureidopyrimidinone unit. This biocompatible adhesive prevented postoperative adhesion between cecum and abdominal wall in adhesion models of rats. This hotmelt tissue adhesive has enormous potential to prevent postoperative complications and may contribute to minimally invasive surgery. STATEMENT OF SIGNIFICANCE: There is a strong need to develop medical tissue adhesives with high biocompatibility, tissue adhesiveness, and operatability to prevent postoperative complications. In this report, single syringe, hotmelt-type tissue adhesive was developed by controlling sol-gel transition behavior of gelatin through supramolecular approach. The functionalization of gelatin with quadruple hydrogen bonding improved key features necessary for anti-adhesive barrier including bulk mechanical strength, tissue adhesive property, stability under physiological conditions, and anti-adhesive property. The hotmelt tissue adhesive can be used for a sealant, hemostatic reagent, and wound dressing to prevent postoperative complications including delayed bleeding, perforation, and inflammation and contribute to minimally invasive surgery.
Collapse
|
14
|
Wang X, Qiao C, Jiang S, Liu L, Yao J. Hofmeister effect in gelatin-based hydrogels with shape memory properties. Colloids Surf B Biointerfaces 2022; 217:112674. [PMID: 35785718 DOI: 10.1016/j.colsurfb.2022.112674] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/08/2022] [Accepted: 06/27/2022] [Indexed: 11/26/2022]
Abstract
The soaking strategy with the Hofmeister effect has been proposed to fabricate gelatin- based hydrogels with excellent properties. However, the modulation mechanism of hydrogels lacks in-depth study. In this work, we studied in detail the effects of Hofmeister ions on the structural, thermal, viscoelastic and mechanical properties of gelatin hydrogels. The results showed that kosmotropic anions (Cit3-, SO42-, H2PO4- and S2O32-) enhanced hydrogen bonds and hydrophobic interactions between gelatin molecules, resulting in increases in the length and content of triple helices and thus improving the properties of gelatin hydrogels. In contrast, chaotropic anions (I- and SCN-) weakened the interactions between gelatin molecules, and thus attenuated the properties. Based on the Hofmeister effect, we successfully fabricated gelatin poly N-methylolacrylamide (PNMA) double network hydrogels with shape memory properties. The Hofmeister effect provides an excellent route for the rational design and fabrication of functional gelatin-based hydrogels.
Collapse
Affiliation(s)
- Xujie Wang
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Congde Qiao
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| | - Song Jiang
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Libin Liu
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Jinshui Yao
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| |
Collapse
|
15
|
Simeth NA, de Mendoza P, Dubach VRA, Stuart MCA, Smith JW, Kudernac T, Browne WR, Feringa BL. Photoswitchable architecture transformation of a DNA-hybrid assembly at the microscopic and macroscopic scale. Chem Sci 2022; 13:3263-3272. [PMID: 35414864 PMCID: PMC8926171 DOI: 10.1039/d1sc06490h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 02/16/2022] [Indexed: 01/01/2023] Open
Abstract
Molecular recognition-driven self-assembly employing single-stranded DNA (ssDNA) as a template is a promising approach to access complex architectures from simple building blocks. Oligonucleotide-based nanotechnology and soft-materials benefit from the high information storage density, self-correction, and memory function of DNA. Here we control these beneficial properties with light in a photoresponsive biohybrid hydrogel, adding an extra level of function to the system. An ssDNA template was combined with a complementary photo-responsive unit to reversibly switch between various functional states of the supramolecular assembly using a combination of light and heat. We studied the structural response of the hydrogel at both the microscopic and macroscopic scale using a combination of UV-vis absorption and CD spectroscopy, as well as fluorescence, transmission electron, and atomic force microscopy. The hydrogels grown from these supramolecular self-assembly systems show remarkable shape-memory properties and imprinting shape-behavior while the macroscopic shape of the materials obtained can be further manipulated by irradiation.
Collapse
Affiliation(s)
- Nadja A Simeth
- Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Paula de Mendoza
- Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Victor R A Dubach
- Groningen Biomolecular Sciences and Biotechnology, Faculty for Science and Engineering, University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Marc C A Stuart
- Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
- Groningen Biomolecular Sciences and Biotechnology, Faculty for Science and Engineering, University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Julien W Smith
- Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Tibor Kudernac
- Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Wesley R Browne
- Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
16
|
Panwar A, Sk MM, Lee BH, Tan LP. Synthesis and fabrication of gelatin-based elastomeric hydrogels through cosolvent-induced polymer restructuring. RSC Adv 2022; 12:7922-7934. [PMID: 35424739 PMCID: PMC8982264 DOI: 10.1039/d1ra09084d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/22/2022] [Indexed: 12/30/2022] Open
Abstract
Hydrogels have a wide range of applications in tissue engineering, drug delivery, device fabrication for biological studies and stretchable electronics. For biomedical applications, natural polymeric hydrogels have general advantages such as biodegradability and non-toxic by products as well as biocompatibility. However, applications of nature derived hydrogels have been severely limited by their poor mechanical properties. For example, most of the protein derived hydrogels do not exhibit high stretchability like methacrylated gelatin hydrogel has ∼11% failure strain when stretched. Moreover, protein derived elastomeric hydrogels that are fabricated from low molecular weight synthetic peptides require a laborious process of synthesis and purification. Biopolymers like gelatin, produced in bulk for pharma and the food industry can provide an alternative for the development of elastomeric hydrogels. Here, we report the synthesis of ureidopyrimidinone (Upy) functionalized gelatin and its fabrication into soft elastomeric hydrogels through supramolecular interactions that could exhibit high failure strain (318.73 ± 44.35%). The hydrogels were fabricated through a novel method involving co-solvent optimization and structural transformation with 70% water content. It is anticipated that the hydrogel fabrication method involves the formation of hydrophobic cores of ureidopyrimidinone groups inside the hydrogel which introduced elastomeric properties to the resulting hydrogel.
Collapse
Affiliation(s)
- Amit Panwar
- School of Materials Science & Engineering, Nanyang Technological University Singapore
- Singapore Centre for 3D Printing (SC3DP) Singapore
| | - Md Moniruzzaman Sk
- School of Materials Science & Engineering, Nanyang Technological University Singapore
| | - Bae Hoon Lee
- Wenzhou Institute, University of Chinese Academy of Sciences China
| | - Lay Poh Tan
- School of Materials Science & Engineering, Nanyang Technological University Singapore
- Singapore Centre for 3D Printing (SC3DP) Singapore
| |
Collapse
|
17
|
Li Z, Chen Z, Gao Y, Xing Y, Zhou Y, Luo Y, Xu W, Chen Z, Gao X, Gupta K, Anbalakan K, Chen L, Liu C, Kong J, Leo HL, Hu C, Yu H, Guo Q. Shape memory micro-anchors with magnetic guidance for precision micro-vascular deployment. Biomaterials 2022; 283:121426. [DOI: 10.1016/j.biomaterials.2022.121426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 01/21/2022] [Accepted: 02/17/2022] [Indexed: 12/28/2022]
|
18
|
Li L, Peng H, Du Y, Zheng H, Yang A, Lv G, Li H. An antibacterial biomimetic adhesive with strong adhesion in both dry and underwater situations. J Mater Chem B 2022; 10:1063-1076. [PMID: 35076052 DOI: 10.1039/d1tb02215f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adhesives have attracted extensive attention in biomedical applications in recent years. However, the development of adhesives with strong adhesion in both dry and underwater conditions and antibacterial properties is still a challenge. Herein, a biomimetic adhesive (DP@TA/Gel) was developed based on the adhesion mechanism of mussel in water, from adhesion and solidification to avoiding excessive oxidization processes. DP@TA/Gel exhibited rapid strong nonspecific adhesiveness to diverse materials including wood (485 kPa) metal (507 kPa), plastic (74 kPa), and even fresh biological tissue (39 kPa) in dry conditions. Specially, owing to its biomimetic design, DP@TA/Gel could imitate the mussel adhesion mechanism underwater, endowing it with robust (38 kPa), highly repeatable (at least 15 times) and long-term (at least 120 h) stable adhesion even in underwater conditions. Remarkably, DP@TA/Gel also exhibited high adhesiveness in various water environments, including seawater, and a wide range of pH (3-11) and NaCl concentration (0.9-10%) solutions without any stimulus. In addition, DP@TA/Gel showed excellent biocompatibility and antibacterial properties. Thus, the DP@TA/Gel adhesive has appealing potential biomedical applications such as sutureless wound closure and as a tissue adhesive.
Collapse
Affiliation(s)
- Lin Li
- College of Physics, Sichuan University, Chengdu 610065, China.
| | - Haitao Peng
- College of Physics, Sichuan University, Chengdu 610065, China.
| | - Yan Du
- College of Physics, Sichuan University, Chengdu 610065, China.
| | - Heng Zheng
- College of Physics, Sichuan University, Chengdu 610065, China.
| | - Aiping Yang
- College of Physics, Sichuan University, Chengdu 610065, China.
| | - Guoyu Lv
- College of Physics, Sichuan University, Chengdu 610065, China.
| | - Hong Li
- College of Physics, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
19
|
|
20
|
Mohseni M, Shokrollahi P, Barzin J. Impact of Supramolecular Interactions on Delivery of Dexamethasone from a Physical Network of Gelatin/ZnHAp Composite Scaffold. Int J Pharm 2022; 615:121520. [DOI: 10.1016/j.ijpharm.2022.121520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/06/2022] [Accepted: 01/23/2022] [Indexed: 10/19/2022]
|
21
|
Abstract
Biopolymers are natural polymers sourced from plants and animals, which include a variety of polysaccharides and polypeptides. The inclusion of biopolymers into biomedical hydrogels is of great interest because of their inherent biochemical and biophysical properties, such as cellular adhesion, degradation, and viscoelasticity. The objective of this Review is to provide a detailed overview of the design and development of biopolymer hydrogels for biomedical applications, with an emphasis on biopolymer chemical modifications and cross-linking methods. First, the fundamentals of biopolymers and chemical conjugation methods to introduce cross-linking groups are described. Cross-linking methods to form biopolymer networks are then discussed in detail, including (i) covalent cross-linking (e.g., free radical chain polymerization, click cross-linking, cross-linking due to oxidation of phenolic groups), (ii) dynamic covalent cross-linking (e.g., Schiff base formation, disulfide formation, reversible Diels-Alder reactions), and (iii) physical cross-linking (e.g., guest-host interactions, hydrogen bonding, metal-ligand coordination, grafted biopolymers). Finally, recent advances in the use of chemically modified biopolymer hydrogels for the biofabrication of tissue scaffolds, therapeutic delivery, tissue adhesives and sealants, as well as the formation of interpenetrating network biopolymer hydrogels, are highlighted.
Collapse
Affiliation(s)
- Victoria G. Muir
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jason A. Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
22
|
Amukarimi S, Ramakrishna S, Mozafari M. Smart biomaterials—A proposed definition and overview of the field. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021. [DOI: 10.1016/j.cobme.2021.100311] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Lee J, Kang SK. Principles for Controlling the Shape Recovery and Degradation Behavior of Biodegradable Shape-Memory Polymers in Biomedical Applications. MICROMACHINES 2021; 12:757. [PMID: 34199036 PMCID: PMC8305960 DOI: 10.3390/mi12070757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/17/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022]
Abstract
Polymers with the shape memory effect possess tremendous potential for application in diverse fields, including aerospace, textiles, robotics, and biomedicine, because of their mechanical properties (softness and flexibility) and chemical tunability. Biodegradable shape memory polymers (BSMPs) have unique benefits of long-term biocompatibility and formation of zero-waste byproducts as the final degradable products are resorbed or absorbed via metabolism or enzyme digestion processes. In addition to their application toward the prevention of biofilm formation or internal tissue damage caused by permanent implant materials and the subsequent need for secondary surgery, which causes secondary infections and complications, BSMPs have been highlighted for minimally invasive medical applications. The properties of BSMPs, including high tunability, thermomechanical properties, shape memory performance, and degradation rate, can be achieved by controlling the combination and content of the comonomer and crystallinity. In addition, the biodegradable chemistry and kinetics of BSMPs, which can be controlled by combining several biodegradable polymers with different hydrolysis chemistry products, such as anhydrides, esters, and carbonates, strongly affect the hydrolytic activity and erosion property. A wide range of applications including self-expending stents, wound closure, drug release systems, and tissue repair, suggests that the BSMPs can be applied as actuators on the basis of their shape recovery and degradation ability.
Collapse
Affiliation(s)
- Junsang Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Korea;
| | - Seung-Kyun Kang
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Korea;
- Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Korea
- Institute of Engineering Research, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
24
|
Melocchi A, Uboldi M, Cerea M, Foppoli A, Maroni A, Moutaharrik S, Palugan L, Zema L, Gazzaniga A. Shape memory materials and 4D printing in pharmaceutics. Adv Drug Deliv Rev 2021; 173:216-237. [PMID: 33774118 DOI: 10.1016/j.addr.2021.03.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/09/2021] [Accepted: 03/18/2021] [Indexed: 12/18/2022]
Abstract
Shape memory materials (SMMs), including alloys and polymers, can be programmed into a temporary configuration and then recover the original shape in which they were processed in response to a triggering external stimulus (e.g. change in temperature or pH, contact with water). For this behavior, SMMs are currently raising a lot of attention in the pharmaceutical field where they could bring about important innovations in the current treatments. 4D printing involves processing of SMMs by 3D printing, thus adding shape evolution over time to the already numerous customization possibilities of this new manufacturing technology. SMM-based drug delivery systems (DDSs) proposed in the scientific literature were here reviewed and classified according to the target pursued through the shape recovery process. Administration route, therapeutic goal, temporary and original shape, triggering stimulus, main innovation features and possible room for improvement of the DDSs were especially highlighted.
Collapse
|
25
|
Zhang Y, Hu Q, Yang S, Wang T, Sun W, Tong Z. Unique Self-Reinforcing and Rapid Self-Healing Polyampholyte Hydrogels with a pH-Induced Shape Memory Effect. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02657] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yuancheng Zhang
- Research Institute of Materials Science, South China University of Technology, Guangzhou 510640, China
- Liming Research & Design Institute of Chemical Industry Co., Ltd., Luoyang 471000, China
| | - Qiqian Hu
- Research Institute of Materials Science, South China University of Technology, Guangzhou 510640, China
| | - Shurui Yang
- Research Institute of Materials Science, South China University of Technology, Guangzhou 510640, China
| | - Tao Wang
- Research Institute of Materials Science, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Enterprise Laboratory of Novel Polyamide 6 Functional Fiber Materials Research and Application, Jiangmen 529100, China
| | - Weixiang Sun
- Research Institute of Materials Science, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Enterprise Laboratory of Novel Polyamide 6 Functional Fiber Materials Research and Application, Jiangmen 529100, China
| | - Zhen Tong
- Research Institute of Materials Science, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
26
|
Cera L, Gonzalez GM, Liu Q, Choi S, Chantre CO, Lee J, Gabardi R, Choi MC, Shin K, Parker KK. A bioinspired and hierarchically structured shape-memory material. NATURE MATERIALS 2021; 20:242-249. [PMID: 32868876 DOI: 10.1038/s41563-020-0789-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Shape-memory polymeric materials lack long-range molecular order that enables more controlled and efficient actuation mechanisms. Here, we develop a hierarchical structured keratin-based system that has long-range molecular order and shape-memory properties in response to hydration. We explore the metastable reconfiguration of the keratin secondary structure, the transition from α-helix to β-sheet, as an actuation mechanism to design a high-strength shape-memory material that is biocompatible and processable through fibre spinning and three-dimensional (3D) printing. We extract keratin protofibrils from animal hair and subject them to shear stress to induce their self-organization into a nematic phase, which recapitulates the native hierarchical organization of the protein. This self-assembly process can be tuned to create materials with desired anisotropic structuring and responsiveness. Our combination of bottom-up assembly and top-down manufacturing allows for the scalable fabrication of strong and hierarchically structured shape-memory fibres and 3D-printed scaffolds with potential applications in bioengineering and smart textiles.
Collapse
Affiliation(s)
- Luca Cera
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Grant M Gonzalez
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Qihan Liu
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Suji Choi
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Christophe O Chantre
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Juncheol Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Rudy Gabardi
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Myung Chul Choi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Kwanwoo Shin
- Department of Chemistry and Institute of Biological Interfaces, Sogang University, Seoul, Korea
| | - Kevin Kit Parker
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
27
|
Sarvari R, Keyhanvar P, Agbolaghi S, Gholami Farashah MS, Sadrhaghighi A, Nouri M, Roshangar L. Shape-memory materials and their clinical applications. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1833010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Raana Sarvari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell And Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Peyman Keyhanvar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Nanotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Convergence of Knowledge, Technology and Society Network (CKTSN), Universal Scientific Education and Research Network (USERN), Tabriz, Iran
- ARTAN110 Startup Accelerator, Tabriz, Iran
| | - Samira Agbolaghi
- Chemical Engineering Department, Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
| | | | - Amirhouman Sadrhaghighi
- Department of Orthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, University of Medical Sciences, Tabriz, Iran
| | - Laila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
28
|
Xiong X, Sun J, Hu D, Xiao C, Wang J, Zhuo Q, Qin C, Dai L. Fabrication of polyvinyl alcohol hydrogels with excellent shape memory and ultraviolet-shielding behavior via the introduction of tea polyphenols. RSC Adv 2020; 10:35226-35234. [PMID: 35515656 PMCID: PMC9056856 DOI: 10.1039/d0ra06053d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/01/2020] [Indexed: 11/21/2022] Open
Abstract
Shape-memory hydrogels are expected to be used not only in an ordinary environment, but also in some special environments, such as under ultraviolet (UV) irradiation. Developing novel shape-memory polyvinyl alcohol (PVA)/tea polyphenol (TP) hydrogels with UV shielding performance is realistically important in application fields. Herein, we designed functional PVA/TP hydrogels with excellent UV-shielding ability and improved the shape memory on hot water stimuli. This study shows that the abundant hydrogen bonds between PVA and TP are the source of shape memory. The PVA hydrogels with 8 wt% TP loading could approximately recover their original shape after deformation when immersed in water at 50 °C for 30 s. Meanwhile, the hydrogels also had excellent UV shielding capacity. After ageing under UV for 16 days, the observed shape of the hydrogel with 8 wt% TP loading retained 74.7% of the original, and the hydrogel could effectively protect the skin of mice from damage under 10 mW cm-2 UV irradiation. With the understanding of the UV-shielding behavior of hydrogels, this study has been able to generate biomedical materials for human skin protection, specifically skin covering the joint areas, where shape memory of the applied materials is essential.
Collapse
Affiliation(s)
- Xike Xiong
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 People's Republic of China
| | - Jun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 People's Republic of China
| | - Di Hu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 People's Republic of China
| | - Chao Xiao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 People's Republic of China
| | - Jianjun Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 People's Republic of China
| | - Qiqi Zhuo
- College of Material Science & Engineering, Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 People's Republic of China
| | - Chuanxiang Qin
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 People's Republic of China
| | - Lixing Dai
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 People's Republic of China
| |
Collapse
|
29
|
Löwenberg C, Tripodo G, Julich‐Gruner KK, Neffe AT, Lendlein A. Supramolecular Gelatin Networks Based on Inclusion Complexes. Macromol Biosci 2020; 20:e2000221. [DOI: 10.1002/mabi.202000221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/24/2020] [Indexed: 01/30/2023]
Affiliation(s)
- Candy Löwenberg
- Institute of Biomaterial Science and Berlin‐Brandenburg Centre for Regenerative Therapies Helmholtz‐Zentrum Geesthacht Teltow 14513 Germany
| | - Giuseppe Tripodo
- Institute of Biomaterial Science and Berlin‐Brandenburg Centre for Regenerative Therapies Helmholtz‐Zentrum Geesthacht Teltow 14513 Germany
| | - Konstanze K. Julich‐Gruner
- Institute of Biomaterial Science and Berlin‐Brandenburg Centre for Regenerative Therapies Helmholtz‐Zentrum Geesthacht Teltow 14513 Germany
| | - Axel T. Neffe
- Institute of Biomaterial Science and Berlin‐Brandenburg Centre for Regenerative Therapies Helmholtz‐Zentrum Geesthacht Teltow 14513 Germany
| | - Andreas Lendlein
- Institute of Biomaterial Science and Berlin‐Brandenburg Centre for Regenerative Therapies Helmholtz‐Zentrum Geesthacht Teltow 14513 Germany
- Institute of Chemistry University of Potsdam Potsdam 14476 Germany
| |
Collapse
|
30
|
Li D, Guo B, Liang Q, Liu Y, Zhang L, Hu N, Zhang X, Yang F, Ruan C. Tissue-engineered parathyroid gland and its regulatory secretion of parathyroid hormone. J Tissue Eng Regen Med 2020; 14:1363-1377. [PMID: 32511868 DOI: 10.1002/term.3080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 11/11/2022]
Abstract
Parathyroid glands (PTGs) are important endocrine organs being mainly responsible for the secretion of parathyroid hormone (PTH) to regulate the balance of calcium (Ca) /phosphorus (P) ions in the body. Once PTGs get injured or removed, their resulting defect or loss of PTH secretion should disturb the level of Ca/P in blood, thus damaging other related organs (bone, kidney, etc.) and even causing death. Recently, tissue-engineered PTGs (TE-PTGs) have attracted lots of attention as a potential treatment for the related diseases of PTGs caused by hypoparathyroidism and hyperparathyroidism, including tetany, muscle cramp, nephrolithiasis, nephrocalcinosis, and osteoporosis. Although great progress has been made in the establishment of TE-PTGs with an effective strategy to integrate the key factors of cells and biomaterials, its regulatory secretion of PTH to mimic its natural rhythms in the body remains a huge challenge. This review comprehensively describes an overview of PTGs from physiology and pathology to cytobiology and tissue engineering. The state of the arts in TE-PTGs and the feasible strategies to regulate PTH secretion behaviors are highlighted to provide an important foundation for further investigation.
Collapse
Affiliation(s)
- Duo Li
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Baochun Guo
- Department of Nephrology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, PR China.,Key Laboratory of Shenzhen Renal Diseases, Shenzhen, PR China
| | - Qingfei Liang
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Yunhui Liu
- University of Chinese Academy of Sciences, Beijing, PR China.,The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Lu Zhang
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Nan Hu
- Department of Nephrology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, PR China.,Key Laboratory of Shenzhen Renal Diseases, Shenzhen, PR China
| | - Xinzhou Zhang
- Department of Nephrology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, PR China.,Key Laboratory of Shenzhen Renal Diseases, Shenzhen, PR China
| | - Fan Yang
- University of Chinese Academy of Sciences, Beijing, PR China.,The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Changshun Ruan
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
31
|
Won HJ, Ryplida B, Kim SG, Lee G, Ryu JH, Park SY. Diselenide-Bridged Carbon-Dot-Mediated Self-Healing, Conductive, and Adhesive Wireless Hydrogel Sensors for Label-Free Breast Cancer Detection. ACS NANO 2020; 14:8409-8420. [PMID: 32520523 DOI: 10.1021/acsnano.0c02517] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recently, a great deal of research has focused on the study of self-healing hydrogels possessing electronic conductivity due to their wide applicability for use in biosensors, bioelectronics, and energy storage. The low solubility, poor biocompatibility, and lack of effective stimuli-responsive properties of their sp2 carbon-rich hybrid organic polymers, however, have proven challenging for their use in electroconductive self-healing hydrogel fabrication. In this study, we developed stimuli-responsive electrochemical wireless hydrogel biosensors using ureidopyriminone-conjugated gelatin (Gel-UPy) hydrogels that incorporate diselenide-containing carbon dots (dsCD) for cancer detection. The cleavage of diselenide groups of the dsCD within the hydrogels by glutathione (GSH) or reactive oxygen species (ROS) initiates the formation of hydrogen bonds that affect the self-healing ability, conductivity, and adhesiveness of the Gel-UPy/dsCD hydrogels. The Gel-UPy/dsCD hydrogels demonstrate more rapid healing under tumor conditions (MDA-MB-231) compared to that observed under physiological conditions (MDCK). Additionally, the cleavage of diselenide bonds affects the electrochemical signals due to the degradation of dsCD. The hydrogels also exhibit excellent adhesiveness and in vivo cancer detection ability after exposure to a high concentration of GSH or ROS, and this is comparable to results observed in a low concentration environment. Based on the combined self-healing, conductivity, and adhesiveness properties of the Gel-UPy/dsCD, this hydrogel exhibits promise for use in biomedical applications, particularly those that involve cancer detection, due to its selectivity and sensitivity under tumor conditions.
Collapse
Affiliation(s)
- Hyun Jeong Won
- Department of Chemical & Biological Engineering, Korea National University of Transportation, Chungju 380-702, Republic of Korea
| | - Benny Ryplida
- Department of Green Bio Engineering, Korea National University of Transportation, Chungju 380-702, Republic of Korea
| | - Seul Gi Kim
- Department of Chemical & Biological Engineering, Korea National University of Transportation, Chungju 380-702, Republic of Korea
| | - Gibaek Lee
- Department of Chemical & Biological Engineering, Korea National University of Transportation, Chungju 380-702, Republic of Korea
| | - Ji Hyun Ryu
- Department of Carbon Convergence Engineering, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Sung Young Park
- Department of Chemical & Biological Engineering, Korea National University of Transportation, Chungju 380-702, Republic of Korea
- Department of Green Bio Engineering, Korea National University of Transportation, Chungju 380-702, Republic of Korea
- Department of IT Convergence Engineering, Korea National University of Transportation, Chungju 380-702, Republic of Korea
| |
Collapse
|
32
|
He H, Li D, Lin Z, Peng L, Yang J, Wu M, Cheng D, Pan H, Ruan C. Temperature-programmable and enzymatically solidifiable gelatin-based bioinks enable facile extrusion bioprinting. Biofabrication 2020; 12:045003. [PMID: 32492671 DOI: 10.1088/1758-5090/ab9906] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The development of exceptional bioinks with excellent printability, high fidelity, and excellent cell viability maintenance for extrusion bioprinting remains a major challenge. Gelatin is an ideal candidate bioink due to its biocompatibility, biodegradability, and non-immunogenicity. However, its inherently low viscosity and unstable physical gelation under physiological conditions make it unsuitable for direct extrusion bioprinting of tissue-like gelatin constructs with high fidelity. Herein, sequential chemical modification using reversible quadruple-hydrogen-bonded ureido-pyrimidinone (UPy) and enzyme-responsive tyramine moieties (Tyr) were devloped to endow the gelatin with a temperature-programmable viscosity and enzyme-controlled solidification, thus realizing enhanced printability and superior fidelity. As demonstrated in a proof-of-concept study, various cell-laden constructs were built based on our modified gelatin, including two-dimensional human bone marrow mesenchymal stem cell (hBMSC)-laden patterns, three-dimensional interconnected hBMSC-laden scaffolds, a reversible twisting-tension human-scale hBMSC-laden ear, a bicellular tibia-like construct containing hBMSCs and endothelial cells and a hexagonal prism-shaped hepatocyte-laden scaffold. The loaded cells in the construct have high viability of over 90% at 24 h, and show proliferation and protein secretion over one week, suggesting that Gel-UPy-Tyr-based constructs under physiological temperature not only can keep high fidelity, but also can support the growth and functions of the loaded cells.
Collapse
Affiliation(s)
- Huimin He
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China. These authors contributed equally
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Xia D, Wang P, Ji X, Khashab NM, Sessler JL, Huang F. Functional Supramolecular Polymeric Networks: The Marriage of Covalent Polymers and Macrocycle-Based Host–Guest Interactions. Chem Rev 2020; 120:6070-6123. [DOI: 10.1021/acs.chemrev.9b00839] [Citation(s) in RCA: 263] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Danyu Xia
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, P. R. China
| | - Pi Wang
- Ministry of Education Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Xiaofan Ji
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Niveen M. Khashab
- Smart Hybrid Materials (SHMS) Laboratory, Chemical Science Program, King Abdullah University of Science and Technology (KAUST), 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jonathan L. Sessler
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
- Center for Supramolecular Chemistry and Catalysis, Shanghai University, Shanghai 200444, P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
34
|
Löwenberg C, Julich-Gruner KK, Neffe AT, Behl M, Lendlein A. Salt-Induced Shape-Memory Effect in Gelatin-Based Hydrogels. Biomacromolecules 2020; 21:2024-2031. [PMID: 32364721 DOI: 10.1021/acs.biomac.9b01753] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Hydrophilic biopolymers display a strong tendency for self-organization into stable secondary, tertiary, and quaternary structures in aqueous environments. These structures are sensitive to changes in external conditions, such as temperature, pH or ions/salts, which may lead to molecular and/or macroscopic transitions. Here, we report on biopolymer-based stimuli-sensitive switchable matrices showing a shape-memory function as an output being alternatively switched by two different input signals, such as environmental changes in salt concentration or temperature. This was realized by implementing a shape-memory function in hydrogels based on the coil-to-helix transition of protein chains in gelatin-based networks. The hydrogels exhibited mechanical properties similar to that of soft tissue (storage modulus G' = 1-100 kPa) and high swelling capabilities (Q = 1000-3000 vol %). In these gelatin-based networks, the covalent netpoints defined the permanent shape while after deformation helicalization of the gelatin acted as reversible stimuli-sensitive switches providing additional crosslinks capable of fixing the deformed temporary shape. By using either chaotropic salts to suppress gelatin helicalization or kosmotropic salts to support conformational changes of gelatin toward a helical orientation, these additional crosslinks could be cleaved or formed. In bending experiments, the strain fixity (Rf) and strain recovery ratios (Rr) were determined. While Rf ranged from 65 to 95% and was depending on the network composition, Rr were independent of the hydrogel composition with values about 100%. In addition, Rf and Rr were independent of the type of chaotropic salt that was used in this study, showing equal Rf and Rr values for MgCl2, NaSCN, and Mg(SCN)2.
Collapse
Affiliation(s)
- Candy Löwenberg
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513 Teltow, Germany
| | - Konstanze K Julich-Gruner
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513 Teltow, Germany
| | - Axel T Neffe
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513 Teltow, Germany
| | - Marc Behl
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513 Teltow, Germany
| | - Andreas Lendlein
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513 Teltow, Germany.,Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| |
Collapse
|
35
|
Li L, Du Y, Yin Z, Li L, Peng H, Zheng H, Yang A, Li H, Lv G. Preparation and the hemostatic property study of porous gelatin microspheres both in vitro and in vivo. Colloids Surf B Biointerfaces 2020; 187:110641. [DOI: 10.1016/j.colsurfb.2019.110641] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/23/2019] [Accepted: 11/11/2019] [Indexed: 01/19/2023]
|
36
|
Xu Y, Yang H, Zhu H, Jiang L, Yang H. Self-healing gelatin-based shape memory hydrogels via quadruple hydrogen bonding and coordination crosslinking for controlled delivery of 5-fluorouracil. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:712-728. [PMID: 31955653 DOI: 10.1080/09205063.2020.1713711] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Gelatin-UPy based on gelatin with ureidopyrimidinone (UPy) side chains was prepared with varying content of UPy units. On increasing the UPy content, the glass transition temperature, crystallinity and swelling decreased. Gelatin-UPy demonstrated self-healing properties as the UPy units could reversibly form dimers. At the same time, the gelatin-UPy and gelatin-UPy hydrogels demonstrated thermal responsive shape memory behaviors. The introduction of coordination crosslinking by introducing Fe3+ in gelatin-UPy hydrogels not only enhanced the crosslinking degree of gelatin-UPy and decreased the swelling degree, but also significantly improved the self-healing properties. As a drug carrier, gelatin-UPy hydrogels could achieve controlled release of 5-fluorouracil (5-FU) drug on increasing the content of UPy and concentration of Fe3+. The gelatin-UPy based materials are expected to find significant use as suppository and tissue engineering materials to treat tumors.
Collapse
Affiliation(s)
- Yuande Xu
- Medical School, Guangxi University, Nanning, China
| | - Hong Yang
- Medical School, Guangxi University, Nanning, China
| | - Heyan Zhu
- Medical School, Guangxi University, Nanning, China
| | - Linbin Jiang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| | - Hua Yang
- Medical School, Guangxi University, Nanning, China
| |
Collapse
|
37
|
Sadat-Shojai M, Ghadiri-Ghalenazeri S. A modular strategy for fabrication of responsive nanocomposites using functionalized oligocaprolactones and hydroxyapatite nanoparticles. NEW J CHEM 2020. [DOI: 10.1039/d0nj03453c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A systematic approach was used to fabricate a modulated supramolecular nanocomposite with a bioactivity characteristic and an exciting self-healing ability.
Collapse
Affiliation(s)
- Mehdi Sadat-Shojai
- Department of Chemistry, College of Sciences, Shiraz University
- Shiraz
- Iran
| | | |
Collapse
|
38
|
Liu Y, Liu M, Zhang Y, Cao Y, Pei R. Fabrication of injectable hydrogels via bio-orthogonal chemistry for tissue engineering. NEW J CHEM 2020. [DOI: 10.1039/d0nj02629h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Injectable hydrogels via bio-orthogonal chemistry.
Collapse
Affiliation(s)
- Yuanshan Liu
- CAS Key Laboratory for Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Min Liu
- Institute for Interdisciplinary Research
- Jianghan University
- Wuhan
- China
| | - Yajie Zhang
- CAS Key Laboratory for Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Yi Cao
- CAS Key Laboratory for Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Renjun Pei
- CAS Key Laboratory for Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| |
Collapse
|
39
|
Van Hoorick J, Tytgat L, Dobos A, Ottevaere H, Van Erps J, Thienpont H, Ovsianikov A, Dubruel P, Van Vlierberghe S. (Photo-)crosslinkable gelatin derivatives for biofabrication applications. Acta Biomater 2019; 97:46-73. [PMID: 31344513 DOI: 10.1016/j.actbio.2019.07.035] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/20/2019] [Accepted: 07/19/2019] [Indexed: 12/28/2022]
Abstract
Over the recent decades gelatin has proven to be very suitable as an extracellular matrix mimic for biofabrication and tissue engineering applications. However, gelatin is prone to dissolution at typical cell culture conditions and is therefore often chemically modified to introduce (photo-)crosslinkable functionalities. These modifications allow to tune the material properties of gelatin, making it suitable for a wide range of biofabrication techniques both as a bioink and as a biomaterial ink (component). The present review provides a non-exhaustive overview of the different reported gelatin modification strategies to yield crosslinkable materials that can be used to form hydrogels suitable for biofabrication applications. The different crosslinking chemistries are discussed and classified according to their mechanism including chain-growth and step-growth polymerization. The step-growth polymerization mechanisms are further classified based on the specific chemistry including different (photo-)click chemistries and reversible systems. The benefits and drawbacks of each chemistry are also briefly discussed. Furthermore, focus is placed on different biofabrication strategies using either inkjet, deposition or light-based additive manufacturing techniques, and the applications of the obtained 3D constructs. STATEMENT OF SIGNIFICANCE: Gelatin and more specifically gelatin-methacryloyl has emerged to become one of the gold standard materials as an extracellular matrix mimic in the field of biofabrication. However, also other modification strategies have been elaborated to take advantage of a plethora of crosslinking chemistries. Therefore, a review paper focusing on the different modification strategies and processing of gelatin is presented. Particular attention is paid to the underlying chemistry along with the benefits and drawbacks of each type of crosslinking chemistry. The different strategies were classified based on their basic crosslinking mechanism including chain- or step-growth polymerization. Within the step-growth classification, a further distinction is made between click chemistries as well as other strategies. The influence of these modifications on the physical gelation and processing conditions including mechanical properties is presented. Additionally, substantial attention is put to the applied photoinitiators and the different biofabrication technologies including inkjet, deposition or light-based technologies.
Collapse
Affiliation(s)
- Jasper Van Hoorick
- Polymer Chemistry & Biomaterials Group - Centre of Macromolecular Chemistry (CMaC) - Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium; Brussels Photonics (B-PHOT) - Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, 1050 Brussels, Belgium
| | - Liesbeth Tytgat
- Polymer Chemistry & Biomaterials Group - Centre of Macromolecular Chemistry (CMaC) - Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium; Brussels Photonics (B-PHOT) - Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, 1050 Brussels, Belgium
| | - Agnes Dobos
- Research Group 3D Printing and Biofabrication, Institute of Materials Science and Technology, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Heidi Ottevaere
- Brussels Photonics (B-PHOT) - Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, 1050 Brussels, Belgium
| | - Jürgen Van Erps
- Brussels Photonics (B-PHOT) - Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, 1050 Brussels, Belgium
| | - Hugo Thienpont
- Brussels Photonics (B-PHOT) - Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, 1050 Brussels, Belgium
| | - Aleksandr Ovsianikov
- Research Group 3D Printing and Biofabrication, Institute of Materials Science and Technology, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Peter Dubruel
- Polymer Chemistry & Biomaterials Group - Centre of Macromolecular Chemistry (CMaC) - Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry & Biomaterials Group - Centre of Macromolecular Chemistry (CMaC) - Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium; Brussels Photonics (B-PHOT) - Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, 1050 Brussels, Belgium.
| |
Collapse
|
40
|
Affiliation(s)
- Yi-Chen Ethan Li
- Department of Chemical Engineering, Feng Chia University, 40724 Taichung, Taiwan
| |
Collapse
|
41
|
Tian T, Wang J, Wu S, Shao Z, Xiang T, Zhou S. A body temperature and water-induced shape memory hydrogel with excellent mechanical properties. Polym Chem 2019. [DOI: 10.1039/c9py00502a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A body temperature and water-induced shape memory hydrogel with excellent mechanical properties was prepared by crosslinking dopamine-terminated tetra-poly(ethylene glycol) with an oxidation reaction.
Collapse
Affiliation(s)
- Tian Tian
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Jiao Wang
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Shanshan Wu
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Zijian Shao
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Tao Xiang
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| |
Collapse
|
42
|
Wang W, Lai H, Cheng Z, Kang H, Wang Y, Zhang H, Wang J, Liu Y. Water-induced poly(vinyl alcohol)/carbon quantum dot nanocomposites with tunable shape recovery performance and fluorescence. J Mater Chem B 2018; 6:7444-7450. [PMID: 32254746 DOI: 10.1039/c8tb02064g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Water-induced shape memory polymers (SMPs) show promising applications in biomedicine, biosensing, anti-counterfeiting and intelligent actuating systems. However, the dual function of shape morphing and color switching has not been achieved in the water-induced SMP system. Herein, a novel water-induced SMP with both color-switching fluorescence behavior and shape memory performance is reported. The material is fabricated by crosslinking poly(vinyl alcohol) (PVA) and pH-responsive fluorescent carbon quantum dots (CQDs). The incorporation of CQDs with PVA not only improves the shape recovery performance but also endows the material with color-switching features. To our best knowledge, such smart ability is first realized in this PVA/CQD SMP system, and this report provides a novel strategy for fabricating smart water-induced SMPs with adjustable shape recovery performance and fluorescence.
Collapse
Affiliation(s)
- Wu Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Li Y, Yang J, Yu X, Sun X, Chen F, Tang Z, Zhu L, Qin G, Chen Q. Controlled shape deformation of bilayer films with tough adhesion between nanocomposite hydrogels and polymer substrates. J Mater Chem B 2018; 6:6629-6636. [PMID: 32254871 DOI: 10.1039/c8tb01971a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Shape-shifting materials have received increasing attention owing to their promising applications in soft robotics, biomedical devices, actuators, morphing aircraft and so on. However, their practical applications are limited due to their weak mechanical strength, low interfacial adhesion and complex preparation method. In this paper, bilayer films were synthesized by in situ one-step forming soft and water-swellable nanocomposite hydrogels on the surface of the rigid and nonresponsive poly(ethylene terephthalate) (PET) film without any surface modification. The strong interfacial toughness between the hydrogel layer and the PET layer, the high swelling ability of the soft hydrogel layer, and the high strength of the rigid PET film endowed the bilayer film with excellent self-bending behaviour. The shape deformation of the bilayer films can be controlled by adjusting the geometry parameters of the bilayer film, such as the hydrogel thickness, the aspect ratio and the width of the bilayer film. Moreover, the bilayer film exhibited excellent reversible bidirectional self-bending behaviour. In addition, the mechanisms for driving the shape transformation were discussed. We believe this work will provide a promising and simple strategy to develop novel responsive materials with controlled shape deformation.
Collapse
Affiliation(s)
- Yu Li
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, China454003.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Singh YP, Moses JC, Bhardwaj N, Mandal BB. Injectable hydrogels: a new paradigm for osteochondral tissue engineering. J Mater Chem B 2018; 6:5499-5529. [PMID: 32254962 DOI: 10.1039/c8tb01430b] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Osteochondral tissue engineering has become a promising strategy for repairing focal chondral lesions and early osteoarthritis (OA), which account for progressive joint pain and disability in millions of people worldwide. Towards improving osteochondral tissue repair, injectable hydrogels have emerged as promising matrices due to their wider range of properties such as their high water content and porous framework, similarity to the natural extracellular matrix (ECM), ability to encapsulate cells within the matrix and ability to provide biological cues for cellular differentiation. Further, their properties such as those that facilitate minimally invasive deployment or delivery, and their ability to repair geometrically complex irregular defects have been critical for their success. In this review, we provide an overview of innovative approaches to engineer injectable hydrogels towards improved osteochondral tissue repair. Herein, we focus on understanding the biology of osteochondral tissue and osteoarthritis along with the need for injectable hydrogels in osteochondral tissue engineering. Furthermore, we discuss in detail different biomaterials (natural and synthetic) and various advanced fabrication methods being employed for the development of injectable hydrogels in osteochondral repair. In addition, in vitro and in vivo applications of developed injectable hydrogels for osteochondral tissue engineering are also reviewed. Finally, conclusions and future perspectives of using injectable hydrogels in osteochondral tissue engineering are provided.
Collapse
Affiliation(s)
- Yogendra Pratap Singh
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | | | | | | |
Collapse
|
45
|
Tamayo L, Acuña D, Riveros AL, Kogan MJ, Azócar MI, Páez M, Leal M, Urzúa M, Cerda E. Porous Nanogold/Polyurethane Scaffolds with Improved Antibiofilm, Mechanical, and Thermal Properties and with Reduced Effects on Cell Viability: A Suitable Material for Soft Tissue Applications. ACS APPLIED MATERIALS & INTERFACES 2018; 10:13361-13372. [PMID: 29627980 DOI: 10.1021/acsami.8b02347] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The use of implants carries on a series of problems, among them infections, poor biocompatibility, high levels of cytotoxicity, and significant mechanical differences between implants and host organs that promote stress shielding effects. These problems indicate that the materials used to make implants must meet essential requirements and high standards for implantations to be successful. In this work, we present the synthesis, characterization and evaluation of the antibiofilm, mechanical, and thermal properties, and cytotoxic effect of a nanocomposite-based scaffold on polyurethane (PU) and gold nanoparticles (AuNPs) for soft tissue applications. The effect of the quantity of AuNPs on the antibacterial activity of nanocomposite scaffolds was evaluated against Staphylococcus epidermidis and Klebsiella spp., with a resulting 99.99% inhibition of both bacteria using a small quantity of nanoparticles. Cytotoxicity was evaluated with the T10 1/2 test against fibroblast cells. The results demonstrated that porous nanogold/PU scaffolds have no toxic effects on fibroblast cells to the 5 day exposition. With respect to mechanical properties, stress-strain curves showed that the compressive modulus and yield strength of PU scaffolds were significantly enhanced by AuNPs (by at least 10 times). This is due to changes in the arrangement of hard segments of PU, which increase the stiffness of the polymer. Thermogravimetric analysis showed that the degradation onset temperature rises with an increase in the quantity of AuNPs. These properties and characteristics demonstrate that porous nanogold/PU scaffolds are suitable material for use in soft tissue implants.
Collapse
Affiliation(s)
- L Tamayo
- Facultad de Ingeniería, Instituto de Ciencias Químicas Aplicadas, Polymers and Macromolecules Center , Universidad Autónoma de Chile , El Llano Subercaseaux 2801 , San Miguel, Santiago 8910060 , Chile
- Departamento de Química, Facultad de Ciencias , Universidad de Chile , Las Palmeras 3425, Casilla 653 , Santiago 8320000 , Chile
| | - D Acuña
- Departamento de Física , Universidad de Santiago , Av. Ecuador 3493 , Santiago 8320000 , Chile
| | - A L Riveros
- Facultad de Ciencias Químicas y Farmacéuticas, Advanced Center for Chronic Diseases (ACCDiS) , Universidad de Chile , Santos Dumont 964, Casilla 233 , Santiago 8320000 , Chile
| | - M J Kogan
- Facultad de Ciencias Químicas y Farmacéuticas, Advanced Center for Chronic Diseases (ACCDiS) , Universidad de Chile , Santos Dumont 964, Casilla 233 , Santiago 8320000 , Chile
| | - M I Azócar
- Departamento de Química de los Materiales, Facultad de Química y Biología , Universidad de Santiago de Chile , Av. L. B. O'Higgins 3363, Casilla 40, Correo 33 , Santiago 8320000 , Chile
| | - M Páez
- Departamento de Química de los Materiales, Facultad de Química y Biología , Universidad de Santiago de Chile , Av. L. B. O'Higgins 3363, Casilla 40, Correo 33 , Santiago 8320000 , Chile
| | - M Leal
- Departamento de Química, Facultad de Ciencias , Universidad de Chile , Las Palmeras 3425, Casilla 653 , Santiago 8320000 , Chile
| | - M Urzúa
- Departamento de Química, Facultad de Ciencias , Universidad de Chile , Las Palmeras 3425, Casilla 653 , Santiago 8320000 , Chile
| | - E Cerda
- Departamento de Física , Universidad de Santiago , Av. Ecuador 3493 , Santiago 8320000 , Chile
| |
Collapse
|
46
|
Maleki SE, Shokrollahi P, Barzin J. Impact of supramolecular interactions on swelling and release behavior of UPy functionalized HEMA-based hydrogels. POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Sara E. Maleki
- Department of Biomaterials, Faculty of Science; Iran Polymer and Petrochemical Institute; Tehran 14977-13115 Iran
| | - Parvin Shokrollahi
- Department of Biomaterials, Faculty of Science; Iran Polymer and Petrochemical Institute; Tehran 14977-13115 Iran
| | - Jalal Barzin
- Department of Biomaterials, Faculty of Science; Iran Polymer and Petrochemical Institute; Tehran 14977-13115 Iran
| |
Collapse
|
47
|
Three-dimensional printing of shape memory hydrogels with internal structure for drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018. [DOI: 10.1016/j.msec.2017.11.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
48
|
Zhou Y, Zhao S, Zhang C, Liang K, Li J, Yang H, Gu S, Bai Z, Ye D, Xu W. Photopolymerized maleilated chitosan/thiol-terminated poly (vinyl alcohol) hydrogels as potential tissue engineering scaffolds. Carbohydr Polym 2018; 184:383-389. [PMID: 29352933 DOI: 10.1016/j.carbpol.2018.01.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/13/2017] [Accepted: 01/02/2018] [Indexed: 01/06/2023]
Abstract
Photocrosslinkable hydrogels composed of natural materials exhibit great application potential in tissue engineering scaffolds. However, weak formation and poor mechanical property can usually be a limitation. Herein, the photo-clickable thiol-ene hydrogels based chitosan were synthesized using photopolymerization of maleic chitosan (MCS) and thiol-terminated poly (vinyl alcohol) (TPVA) in the presence of a biocompatible photoinitiator. Rheological property and absorbing behavior of the MCS/TPVA hydrogels could be tailored by varying the amount of TPVA in the feed. There was strong intermolecular hydrogen bonding between the molecules of MCS and TPVA. Notably, the MCS/TPVA hydrogel (MT-3) exhibited rapid gelation behavior (<120 s), improved stiff (G' = ∼5500 Pa) and compressive strength (0.285 ± 0.014 MPa), which were important for hydrogel scaffolds, especially for injectable hydrogel scaffolds. Photocrosslinked MCS/TPVA hydrogels was cytocompatible and could promote the L929 cells attachment and proliferation, showing their potential as tissue engineering scaffolds.
Collapse
Affiliation(s)
- Yingshan Zhou
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430073, People's Republic of China; Key Laboratory of Green Processing and Functional Textiles of New Textile Materials, Ministry of Education, Wuhan Textile University, Wuhan, 430073, People's Republic of China.
| | - Shuyan Zhao
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430073, People's Republic of China
| | - Can Zhang
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430073, People's Republic of China
| | - Kaili Liang
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430073, People's Republic of China
| | - Jun Li
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430073, People's Republic of China
| | - Hongjun Yang
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430073, People's Republic of China; Key Laboratory of Green Processing and Functional Textiles of New Textile Materials, Ministry of Education, Wuhan Textile University, Wuhan, 430073, People's Republic of China
| | - Shaojin Gu
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430073, People's Republic of China; Key Laboratory of Green Processing and Functional Textiles of New Textile Materials, Ministry of Education, Wuhan Textile University, Wuhan, 430073, People's Republic of China
| | - Zikui Bai
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430073, People's Republic of China; Key Laboratory of Green Processing and Functional Textiles of New Textile Materials, Ministry of Education, Wuhan Textile University, Wuhan, 430073, People's Republic of China
| | - Dezhan Ye
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430073, People's Republic of China; Key Laboratory of Green Processing and Functional Textiles of New Textile Materials, Ministry of Education, Wuhan Textile University, Wuhan, 430073, People's Republic of China
| | - Weilin Xu
- Key Laboratory of Green Processing and Functional Textiles of New Textile Materials, Ministry of Education, Wuhan Textile University, Wuhan, 430073, People's Republic of China
| |
Collapse
|
49
|
Peterson GI, Dobrynin AV, Becker ML. Biodegradable Shape Memory Polymers in Medicine. Adv Healthc Mater 2017; 6. [PMID: 28941154 DOI: 10.1002/adhm.201700694] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/04/2017] [Indexed: 01/13/2023]
Abstract
Shape memory materials have emerged as an important class of materials in medicine due to their ability to change shape in response to a specific stimulus, enabling the simplification of medical procedures, use of minimally invasive techniques, and access to new treatment modalities. Shape memory polymers, in particular, are well suited for such applications given their excellent shape memory performance, tunable materials properties, minimal toxicity, and potential for biodegradation and resorption. This review provides an overview of biodegradable shape memory polymers that have been used in medical applications. The majority of biodegradable shape memory polymers are based on thermally responsive polyesters or polymers that contain hydrolyzable ester linkages. These materials have been targeted for use in applications pertaining to embolization, drug delivery, stents, tissue engineering, and wound closure. The development of biodegradable shape memory polymers with unique properties or responsiveness to novel stimuli has the potential to facilitate the optimization and development of new medical applications.
Collapse
Affiliation(s)
- Gregory I. Peterson
- The University of Akron Department of Polymer Science Akron OH 44325‐3909 USA
| | - Andrey V. Dobrynin
- The University of Akron Department of Polymer Science Akron OH 44325‐3909 USA
| | - Matthew L. Becker
- The University of Akron Department of Polymer Science Akron OH 44325‐3909 USA
| |
Collapse
|