1
|
Li Y, Ren H, Zhou S, Pei C, Gao M, Liang Y, Ye D, Sun X, Li F, Zhao J, Hang J, Fan S, Fu P. Tower-based profiles of wintertime secondary organic aerosols in the urban boundary layer over Guangzhou. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175326. [PMID: 39117218 DOI: 10.1016/j.scitotenv.2024.175326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/20/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Secondary organic aerosol (SOA) accounts for a large fraction of fine particulate matter (PM2.5), but the lack of vertical observations of SOA in the urban boundary layer (UBL) limits a comprehensive understanding of its sources and formation mechanisms. In this study, PM2.5 samples were simultaneously collected at 3 m, 118 m, and 488 m on the Canton Tower in Guangzhou during winter. Typical SOA tracers, including oxidation products of isoprene (SOAI), monoterpene (SOAM), sesquiterpene (SOAS), and toluene (ASOA), were investigated alongside meteorological parameters and gaseous/particulate pollutants. Total concentrations of SOA tracers showed an increasing trend with height, with daytime levels exceeding nighttime levels. C5-alkene triols and 2-methylglyceric acid displayed a significant increase with height, potentially affected by nighttime chemistry in the residual layer, determining the overall vertical trend of SOAI tracers. Concentrations of later-generation SOAM (SOAM_S) tracers also increased with height, while those of first-generation SOAM (SOAM_F) tracers decreased, indicating relatively aged SOAM in the upper layers. SOAS and ASOA tracers exhibited higher enhancement under polluted conditions, likely impacted by biomass burning and anthropogenic emissions. The yields of SOAI tracers varied with temperature in the vertical profile. The formation of SOAM_F tracers was negatively correlated with relative humidity, liquid water content, and pH, affecting their vertical distributions. The effect of O3 on SOA formation enhanced significantly with height, influenced by air mass transport, and likely contributed to the higher yields of SOA in the upper layer. However, at ground level, SOA formation was primarily driven by high local emissions of both NOx and volatile organic compounds. We also observed the roles of SO2 in SOA generation, particularly at 118 m. This study demonstrates the vertical diurnal characteristics of SOA tracers in the UBL, highlighting the varying effects of meteorological conditions and anthropogenic pollutants on SOA formation at different heights.
Collapse
Affiliation(s)
- Yao Li
- School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Hong Ren
- Air Environmental Modeling and Pollution Controlling Key Laboratory of Sichuan Higher Education Institute, Chengdu University of Information Technology, Chengdu 610225, China
| | - Shengzhen Zhou
- School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Field Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Zhuhai 519082, China; Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai 519082, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China.
| | - Chenglei Pei
- Guangzhou Sub-branch of Guangdong Ecological and Environmental Monitoring Center, Guangzhou 510308, China
| | - Min Gao
- School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Yuxuan Liang
- School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Dian Ye
- School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Xijing Sun
- School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Fenghua Li
- School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Jun Zhao
- School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Field Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Zhuhai 519082, China; Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai 519082, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Jian Hang
- School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Field Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Zhuhai 519082, China; Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai 519082, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Shaojia Fan
- School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Field Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Zhuhai 519082, China; Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai 519082, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Pingqing Fu
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
2
|
Feng W, Dong G, Qi W, YizhenWang, Zhang X, Li K, Liao H, Wang Y, Shao Z, Xie M. Spatiotemporal variations of PM 2.5 organic molecular markers in five central cities of the Yangtze River Delta, East China in autumn and winter: Implications for regional and local sources of organic aerosols. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024:125227. [PMID: 39486673 DOI: 10.1016/j.envpol.2024.125227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/27/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
Information on the spatiotemporal variations in the composition and sources of organic aerosols (OA) is needed to identify regional influences and to establish effective control measures. Here, 23-h PM2.5 samples were collected in five central cities of the Yangtze River Delta in eastern China, including Nanjing, Suzhou, Wuxi, Changzhou, and Zhenjiang, every three days from 2020/09/01 to 2021/02/28. Each sample was analyzed for water-soluble inorganic ions, organic carbon (OC), elemental carbon (EC), and organic molecular markers (OMMs). Generally, the major components of PM2.5, including NH4+, SO42-, NO3-, OC, and EC, exhibited similar temporal patterns across the five cities. In all OMM groups, the concentrations of PAHs, oxygenated PAHs, and secondary products of isoprene showed strong correlations (r = 0.79±0.050 - 0.93±0.028) and low coefficient of divergence (COD = 0.22±0.024 - 0.30±0.033) between sampling sites, indicating a homogeneous spatial distribution of industrial emissions and biogenic secondary OA in autumn and winter. Other OMMs showed wider r (e.g., steranes and hopanes, 0.20 - 0.80) and COD (0.26 - 0.69) ranges for all site pairs, probably due to the influence of local emissions. Based on the source apportionment results using Positive matrix factorization, the biomass burning factor dominated the contribution to OC and EC in winter and showed strong correlations (r = 0.84±0.063) between the sampling sites, indicating regional transport of emissions from biomass burning and fossil fuel combustion in the heating season. Traffic-related factors had the greatest spatial heterogeneity (r = 0.27±0.19 - 0.51±0.16) and contributed significantly to OC at their maximum levels.
Collapse
Affiliation(s)
- Wei Feng
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Guihong Dong
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Wanqing Qi
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China
| | - YizhenWang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Xiangyu Zhang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Ke Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Hong Liao
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Yuhang Wang
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta GA 30332, United States
| | - Zhijuan Shao
- School of Environment Science and Engineering, Suzhou University of Science and Technology Shihu Campus, 99 Xuefu Road, Suzhou 215009, China
| | - Mingjie Xie
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China.
| |
Collapse
|
3
|
Zhang W, Xu L, Zhang H. Recent advances in mass spectrometry techniques for atmospheric chemistry research on molecular-level. MASS SPECTROMETRY REVIEWS 2024; 43:1091-1134. [PMID: 37439762 DOI: 10.1002/mas.21857] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/06/2023] [Accepted: 06/21/2023] [Indexed: 07/14/2023]
Abstract
The Earth's atmosphere is composed of an enormous variety of chemical species associated with trace gases and aerosol particles whose composition and chemistry have critical impacts on the Earth's climate, air quality, and human health. Mass spectrometry analysis as a powerful and popular analytical technique has been widely developed and applied in atmospheric chemistry for decades. Mass spectrometry allows for effective detection, identification, and quantification of a broad range of organic and inorganic chemical species with high sensitivity and resolution. In this review, we summarize recently developed mass spectrometry techniques, methods, and applications in atmospheric chemistry research in the past several years on molecular-level. Specifically, new developments of ion-molecule reactors, various soft ionization methods, and unique coupling with separation techniques are highlighted. The new mass spectrometry applications in laboratory studies and field measurements focused on improving the detection limits for traditional and emerging volatile organic compounds, characterizing multiphase highly oxygenated molecules, and monitoring particle bulk and surface compositions.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Chemistry, University of California, Riverside, California, USA
| | - Lu Xu
- NOAA Chemical Sciences Laboratory, Boulder, Colorado, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Missouri, USA
| | - Haofei Zhang
- Department of Chemistry, University of California, Riverside, California, USA
| |
Collapse
|
4
|
Cooke ME, Armstrong NC, Fankhauser AM, Chen Y, Lei Z, Zhang Y, Ledsky IR, Turpin BJ, Zhang Z, Gold A, McNeill VF, Surratt JD, Ault AP. Decreases in Epoxide-Driven Secondary Organic Aerosol Production under Highly Acidic Conditions: The Importance of Acid-Base Equilibria. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10675-10684. [PMID: 38843196 DOI: 10.1021/acs.est.3c10851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
Isoprene has the highest atmospheric emissions of any nonmethane hydrocarbon, and isoprene epoxydiols (IEPOX) are well-established oxidation products and the primary contributors forming isoprene-derived secondary organic aerosol (SOA). Highly acidic particles (pH 0-3) widespread across the lower troposphere enable acid-driven multiphase chemistry of IEPOX, such as epoxide ring-opening reactions forming methyltetrol sulfates through nucleophilic attack of sulfate (SO42-). Herein, we systematically demonstrate an unexpected decrease in SOA formation from IEPOX on highly acidic particles (pH < 1). While IEPOX-SOA formation is commonly assumed to increase at low pH when more [H+] is available to protonate epoxides, we observe maximum SOA formation at pH 1 and less SOA formation at pH 0.0 and 0.4. This is attributed to limited availability of SO42- at pH values below the acid dissociation constant (pKa) of SO42- and bisulfate (HSO4-). The nucleophilicity of HSO4- is 100× lower than SO42-, decreasing SOA formation and shifting particulate products from low-volatility organosulfates to higher-volatility polyols. Current model parameterizations predicting SOA yields for IEPOX-SOA do not properly account for the SO42-/HSO4- equilibrium, leading to overpredictions of SOA formation at low pH. Accounting for this underexplored acidity-dependent behavior is critical for accurately predicting SOA concentrations and resolving SOA impacts on air quality.
Collapse
Affiliation(s)
- Madeline E Cooke
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - N Cazimir Armstrong
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
| | - Alison M Fankhauser
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yuzhi Chen
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
| | - Ziying Lei
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yue Zhang
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
| | - Isabel R Ledsky
- Department of Chemistry, Carleton College, Northfield, Minnesota 55057, United States
| | - Barbara J Turpin
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
| | - Zhenfa Zhang
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
| | - Avram Gold
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
| | - V Faye McNeill
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Jason D Surratt
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
- Department of Chemistry, College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Andrew P Ault
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
5
|
Chen Y, Ng AE, Green J, Zhang Y, Riva M, Riedel TP, Pye HOT, Lei Z, Olson NE, Cooke ME, Zhang Z, Vizuete W, Gold A, Turpin BJ, Ault AP, Surratt JD. Applying a Phase-Separation Parameterization in Modeling Secondary Organic Aerosol Formation from Acid-Driven Reactive Uptake of Isoprene Epoxydiols under Humid Conditions. ACS ES&T AIR 2024; 1:511-524. [PMID: 38884193 PMCID: PMC11110502 DOI: 10.1021/acsestair.4c00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Secondary organic aerosol (SOA) from acid-driven reactive uptake of isoprene epoxydiols (IEPOX) contributes up to 40% of organic aerosol (OA) mass in fine particulate matter. Previous work showed that IEPOX substantially converts particulate inorganic sulfates to surface-active organosulfates (OSs). This decreases aerosol acidity and creates a viscous organic-rich shell that poses as a diffusion barrier, inhibiting additional reactive uptake of IEPOX. To account for this "self-limiting" effect, we developed a phase-separation box model to evaluate parameterizations of IEPOX reactive uptake against time-resolved chamber measurements of IEPOX-SOA tracers, including 2-methyltetrols (2-MT) and methyltetrol sulfates (MTS), at ~ 50% relative humidity. The phase-separation model was most sensitive to the mass accommodation coefficient, IEPOX diffusivity in the organic shell, and ratio of the third-order reaction rate constants forming 2-MT and MTS (k M T / k M T S ). In particular,k M T / k M T S had to be lower than 0.1 to bring model predictions of 2-MT and MTS in closer agreement with chamber measurements; prior studies reported values larger than 0.71. The model-derived rate constants favor more particulate MTS formation due to 2-MT likely off-gassing at ambient-relevant OA loadings. Incorporating this parametrization into chemical transport models is expected to predict lower IEPOX-SOA mass and volatility due to the predominance of OSs.
Collapse
Affiliation(s)
- Yuzhi Chen
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alexandra E Ng
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jaime Green
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yue Zhang
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Atmospheric Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Matthieu Riva
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne, 69626, France
| | - Theran P Riedel
- Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Havala O T Pye
- Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Ziying Lei
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Nicole E Olson
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Madeline E Cooke
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Zhenfa Zhang
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - William Vizuete
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Avram Gold
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Barbara J Turpin
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Andrew P Ault
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jason D Surratt
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
6
|
Gao Z, Zhou X. A review of the CAMx, CMAQ, WRF-Chem and NAQPMS models: Application, evaluation and uncertainty factors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123183. [PMID: 38110047 DOI: 10.1016/j.envpol.2023.123183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/28/2023] [Accepted: 12/15/2023] [Indexed: 12/20/2023]
Abstract
With the gradual deepening of the research and governance of air pollution, chemical transport models (CTMs), especially the third-generation CTMs based on the "1 atm" theory, have been recognized as important tools for atmospheric environment research and air quality management. In this review article, we screened 2396 peer-reviewed manuscripts on the application of four pre-selected regional CTMs in the past five years. CAMx, CMAQ, WRF-Chem and NAQPMS models are well used in the simulation of atmospheric pollutants. In the simulation study of secondary pollutants such as O3, secondary organic aerosol (SOA), sulfates, nitrates, and ammonium (SNA), the CMAQ model has been widely applied. Secondly, model evaluation indicators are diverse, and the establishment of evaluation criteria has gone through the long-term efforts of predecessors. However, the model performance evaluation system still needs further specification. Furthermore, temporal-spatial resolution, emission inventory, meteorological field and atmospheric chemical mechanism are the main sources of uncertainty, and have certain interference with the simulation results. Among them, the inventory and mechanism are particularly important, and are also the top priorities in future simulation research.
Collapse
Affiliation(s)
- Zhaoqi Gao
- Environment Research Institute, Shandong University, Qingdao, 266237, Shandong Province, China
| | - Xuehua Zhou
- Environment Research Institute, Shandong University, Qingdao, 266237, Shandong Province, China.
| |
Collapse
|
7
|
Khan F, Chen Y, Hartwell HJ, Yan J, Lin YH, Freedman A, Zhang Z, Zhang Y, Lambe AT, Turpin BJ, Gold A, Ault AP, Szmigielski R, Fry RC, Surratt JD. Heterogeneous Oxidation Products of Fine Particulate Isoprene Epoxydiol-Derived Methyltetrol Sulfates Increase Oxidative Stress and Inflammatory Gene Responses in Human Lung Cells. Chem Res Toxicol 2023; 36:1814-1825. [PMID: 37906555 DOI: 10.1021/acs.chemrestox.3c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Hydroxyl radical (·OH)-initiated oxidation of isoprene, the most abundant nonmethane hydrocarbon in the atmosphere, is responsible for substantial amounts of secondary organic aerosol (SOA) within ambient fine particles. Fine particulate 2-methyltetrol sulfate diastereoisomers (2-MTSs) are abundant SOA products formed via acid-catalyzed multiphase chemistry of isoprene-derived epoxydiols with inorganic sulfate aerosols under low-nitric oxide conditions. We recently demonstrated that heterogeneous ·OH oxidation of particulate 2-MTSs leads to the particle-phase formation of multifunctional organosulfates (OSs). However, it remains uncertain if atmospheric chemical aging of particulate 2-MTSs induces toxic effects within human lung cells. We show that inhibitory concentration-50 (IC50) values decreased from exposure to fine particulate 2-MTSs that were heterogeneously aged for 0 to 22 days by ·OH, indicating increased particulate toxicity in BEAS-2B lung cells. Lung cells further exhibited concentration-dependent modulation of oxidative stress- and inflammatory-related gene expression. Principal component analysis was carried out on the chemical mixtures and revealed positive correlations between exposure to aged multifunctional OSs and altered expression of targeted genes. Exposure to particulate 2-MTSs alone was associated with an altered expression of antireactive oxygen species (ROS)-related genes (NQO-1, SOD-2, and CAT) indicative of a response to ROS in the cells. Increased aging of particulate 2-MTSs by ·OH exposure was associated with an increased expression of glutathione pathway-related genes (GCLM and GCLC) and an anti-inflammatory gene (IL-10).
Collapse
Affiliation(s)
- Faria Khan
- Institute of Physical Chemistry,Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yuzhi Chen
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Hadley J Hartwell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jin Yan
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ying-Hsuan Lin
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Anastasia Freedman
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Zhenfa Zhang
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yue Zhang
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Atmospheric Sciences, Texas A&M University, College Station Texas 77843, United States
| | - Andrew T Lambe
- Aerodyne Research Inc, Billerica, Massachusetts 01821, United States
| | - Barbara J Turpin
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Avram Gold
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Andrew P Ault
- Department of Chemistry, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rafal Szmigielski
- Institute of Physical Chemistry,Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jason D Surratt
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
8
|
Chen Y, Zaveri RA, Vandergrift GW, Cheng Z, China S, Zelenyuk A, Shilling JE. Nonequilibrium Behavior in Isoprene Secondary Organic Aerosol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14182-14193. [PMID: 37708377 DOI: 10.1021/acs.est.3c03532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Recent studies have shown that instantaneous gas-particle equilibrium partitioning assumptions fail to predict SOA formation, even at high relative humidity (∼85%), and photochemical aging seems to be one driving factor. In this study, we probe the minimum aging time scale required to observe nonequilibrium partitioning of semivolatile organic compounds (SVOCs) between the gas and aerosol phase at ∼50% RH. Seed isoprene SOA is generated by photo-oxidation in the presence of effloresced ammonium sulfate seeds at <1 ppbv NOx, aged photochemically or in the dark for 0.3-6 h, and subsequently exposed to fresh isoprene SVOCs. Our results show that the equilibrium partitioning assumption is accurate for fresh isoprene SOA but breaks down after isoprene SOA has been aged for as short as 20 min even in the dark. Modeling results show that a semisolid SOA phase state is necessary to reproduce the observed particle size distribution evolution. The observed nonequilibrium partitioning behavior and inferred semisolid phase state are corroborated by offline mass spectrometric analysis on the bulk aerosol particles showing the formation of organosulfates and oligomers. The unexpected short time scale for the phase transition within isoprene SOA has important implications for the growth of atmospheric ultrafine particles to climate-relevant sizes.
Collapse
Affiliation(s)
- Yuzhi Chen
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Rahul A Zaveri
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Gregory W Vandergrift
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Zezhen Cheng
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Swarup China
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Alla Zelenyuk
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - John E Shilling
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
9
|
Chen B, Mirrielees JA, Chen Y, Onasch TB, Zhang Z, Gold A, Surratt JD, Zhang Y, Brooks SD. Glass Transition Temperatures of Organic Mixtures from Isoprene Epoxydiol-Derived Secondary Organic Aerosol. J Phys Chem A 2023; 127:4125-4136. [PMID: 37129903 PMCID: PMC10863072 DOI: 10.1021/acs.jpca.2c08936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/18/2023] [Indexed: 05/03/2023]
Abstract
The phase states and glass transition temperatures (Tg) of secondary organic aerosol (SOA) particles are important to resolve for understanding the formation, growth, and fate of SOA as well as their cloud formation properties. Currently, there is a limited understanding of how Tg changes with the composition of organic and inorganic components of atmospheric aerosol. Using broadband dielectric spectroscopy, we measured the Tg of organic mixtures containing isoprene epoxydiol (IEPOX)-derived SOA components, including 2-methyltetrols (2-MT), 2-methyltetrol-sulfate (2-MTS), and 3-methyltetrol-sulfate (3-MTS). The results demonstrate that the Tg of mixtures depends on their composition. The Kwei equation, a modified Gordon-Taylor equation with an added quadratic term and a fitting parameter representing strong intermolecular interactions, provides a good fit for the Tg-composition relationship of complex mixtures. By combining Raman spectroscopy with geometry optimization simulations obtained using density functional theory, we demonstrate that the non-linear deviation of Tg as a function of composition may be caused by changes in the extent of hydrogen bonding in the mixture.
Collapse
Affiliation(s)
- Bo Chen
- Department
of Atmospheric Sciences, Texas A&M University, Eller O&M Building, 1204, 3150
TAMU, 797 Lamar Street, College Station, Texas 77843, United States
| | - Jessica A. Mirrielees
- Department
of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48104, United States
| | - Yuzhi Chen
- Gillings
School of Global Public Health, Department of Environmental Sciences
and Engineering, University of North Carolina
at Chapel Hill, 170 Rosenau Hall, Campus Box #7400, 135 Dauer Drive, Chapel Hill, North Carolina 27599, United States
| | - Timothy B. Onasch
- Aerodyne
Research, Inc, 45 Manning
Road, Billerica, Massachusetts 01821, United States
| | - Zhenfa Zhang
- Gillings
School of Global Public Health, Department of Environmental Sciences
and Engineering, University of North Carolina
at Chapel Hill, 170 Rosenau Hall, Campus Box #7400, 135 Dauer Drive, Chapel Hill, North Carolina 27599, United States
| | - Avram Gold
- Gillings
School of Global Public Health, Department of Environmental Sciences
and Engineering, University of North Carolina
at Chapel Hill, 170 Rosenau Hall, Campus Box #7400, 135 Dauer Drive, Chapel Hill, North Carolina 27599, United States
| | - Jason D. Surratt
- Gillings
School of Global Public Health, Department of Environmental Sciences
and Engineering, University of North Carolina
at Chapel Hill, 170 Rosenau Hall, Campus Box #7400, 135 Dauer Drive, Chapel Hill, North Carolina 27599, United States
- College
of Arts and Sciences, Department of Chemistry, University of North Carolina at Chapel Hill, Campus Box #3290, 125 South Road, Chapel Hill, North Carolina 27599, United States
| | - Yue Zhang
- Department
of Atmospheric Sciences, Texas A&M University, Eller O&M Building, 1204, 3150
TAMU, 797 Lamar Street, College Station, Texas 77843, United States
| | - Sarah D. Brooks
- Department
of Atmospheric Sciences, Texas A&M University, Eller O&M Building, 1204, 3150
TAMU, 797 Lamar Street, College Station, Texas 77843, United States
| |
Collapse
|
10
|
West CP, Mesa Sanchez D, Morales AC, Hsu YJ, Ryan J, Darmody A, Slipchenko LV, Laskin J, Laskin A. Molecular and Structural Characterization of Isomeric Compounds in Atmospheric Organic Aerosol Using Ion Mobility-Mass Spectrometry. J Phys Chem A 2023; 127:1656-1674. [PMID: 36763810 DOI: 10.1021/acs.jpca.2c06459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Secondary organic aerosol (SOA) formed through multiphase atmospheric chemistry makes up a large fraction of airborne particles. The chemical composition and molecular structures of SOA constituents vary between different emission sources and aging processes in the atmosphere, which complicates their identification. In this work, we employ drift tube ion mobility spectrometry with quadrupole time-of-flight mass spectrometry (IM-MS) detection for rapid gas-phase separation and multidimensional characterization of isomers in two biogenic SOAs produced from ozonolysis of isomeric monoterpenes, d-limonene (LSOA) and α-pinene (PSOA). SOA samples were ionized using electrospray ionization (ESI) and characterized using IM-MS in both positive and negative ionization modes. The IM-derived collision cross sections in nitrogen gas (DTCCSN2 ) for individual SOA components were obtained using multifield and single-field measurements. A novel application of IM multiplexing/high-resolution demultiplexing methodology was employed to increase sensitivity, improve peak shapes, and augment mobility baseline resolution, which revealed several isomeric structures for the measured ions. For LSOA and PSOA samples, we report significant structural differences of the isomer structures. Molecular structural calculations using density functional theory combined with the theoretical modeling of CCS values provide insights into the structural differences between LSOA and PSOA constituents. The average DTCCSN2 values for monomeric SOA components observed as [M + Na]+ ions are 3-6% higher than those of their [M - H]- counterparts. Meanwhile, dimeric and trimeric isomer components in both samples showed an inverse trend with the relevant values of [M - H]- ions being 3-7% higher than their [M + Na]+ counterparts, respectively. The results indicate that the structures of Na+-coordinated oligomeric ions are more compact than those of the corresponding deprotonated species. The coordination with Na+ occurs on the oxygen atoms of the carbonyl groups leading to a compact configuration. Meanwhile, deprotonated molecules have higher DTCCSN2 values due to their elongated structures in the gas phase. Therefore, DTCCSN2 values of isomers in SOA mixtures depend strongly on the mode of ionization in ESI. Additionally, PSOA monomers and dimers exhibit larger DTCCSN2 values (1-4%) than their LSOA counterparts owing to more rigid structures. A cyclobutane ring is present with functional groups pointing in opposite directions in PSOA compounds, as compared to noncyclic flexible LSOA structures, forming more compact ions in the gas phase. Lastly, we investigated the effects of direct photolysis on the chemical transformations of selected individual PSOA components. We use IM-MS to reveal structural changes associated with aerosol aging by photolysis. This study illustrates the detailed molecular and structural descriptors for the detection and annotation of structural isomers in complex SOA mixtures.
Collapse
Affiliation(s)
- Christopher P West
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Daniela Mesa Sanchez
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ana C Morales
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yun-Jung Hsu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jackson Ryan
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Andrew Darmody
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.,Department of Aeronautics and Aerospace Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lyudmila V Slipchenko
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Julia Laskin
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Alexander Laskin
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.,Department of Earth, Atmospheric & Planetary Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
11
|
Armstrong NC, Chen Y, Cui T, Zhang Y, Christensen C, Zhang Z, Turpin BJ, Chan MN, Gold A, Ault AP, Surratt JD. Isoprene Epoxydiol-Derived Sulfated and Nonsulfated Oligomers Suppress Particulate Mass Loss during Oxidative Aging of Secondary Organic Aerosol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16611-16620. [PMID: 36378716 DOI: 10.1021/acs.est.2c03200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Acid-driven multiphase chemistry of isoprene epoxydiols (IEPOX) with inorganic sulfate aerosols contributes substantially to secondary organic aerosol (SOA) formation, which constitutes a large mass fraction of atmospheric fine particulate matter (PM2.5). However, the atmospheric chemical sinks of freshly generated IEPOX-SOA particles remain unclear. We examined the role of heterogeneous oxidation of freshly generated IEPOX-SOA particles by gas-phase hydroxyl radical (•OH) under dark conditions as one potential atmospheric sink. After 4 h of gas-phase •OH exposure (∼3 × 108 molecules cm-3), chemical changes in smog chamber-generated IEPOX-SOA particles were assessed by hydrophilic interaction liquid chromatography coupled with electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (HILIC/ESI-HR-QTOFMS). A comparison of the molecular-level compositional changes in IEPOX-SOA particles during aging with or without •OH revealed that decomposition of oligomers by heterogeneous •OH oxidation acts as a sink for •OH and maintains a reservoir of low-volatility compounds, including monomeric sulfate esters and oligomer fragments. We propose tentative structures and formation mechanisms for previously uncharacterized SOA constituents in PM2.5. Our results suggest that this •OH-driven renewal of low-volatility products may extend the atmospheric lifetimes of particle-phase IEPOX-SOA by slowing the production of low-molecular weight, high-volatility organic fragments and likely contributes to the large quantities of 2-methyltetrols and methyltetrol sulfates reported in PM2.5.
Collapse
Affiliation(s)
- N Cazimir Armstrong
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yuzhi Chen
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Tianqu Cui
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yue Zhang
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Cade Christensen
- Department of Chemistry, College of Arts and Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Zhenfa Zhang
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Barbara J Turpin
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Man Nin Chan
- Earth System Science Programme, Faculty of Science, The Chinese University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Avram Gold
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Andrew P Ault
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jason D Surratt
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Chemistry, College of Arts and Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
12
|
Fankhauser AM, Lei Z, Daley KR, Xiao Y, Zhang Z, Gold A, Ault BS, Surratt JD, Ault AP. Acidity-Dependent Atmospheric Organosulfate Structures and Spectra: Exploration of Protonation State Effects via Raman and Infrared Spectroscopies Combined with Density Functional Theory. J Phys Chem A 2022; 126:5974-5984. [PMID: 36017944 DOI: 10.1021/acs.jpca.2c04548] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Organosulfates formed from heterogeneous reactions of organic-derived oxidation products with sulfate ions can account for >15% of secondary organic aerosol (SOA) mass, primarily in submicron particles with long atmospheric lifetimes. However, fundamental understanding of organosulfate molecular structures is limited, particularly at atmospherically relevant acidities (pH = 0-6). Herein, for 2-methyltetrol sulfates (2-MTSs), an important group of isoprene-derived organosulfates, protonation state and vibrational modes were studied using Raman and infrared spectroscopy, as well as density functional theory (DFT) calculations of vibrational spectra for neutral (RO-SO3H) and anionic/deprotonated (RO-SO3-) structures. The calculated sulfate group vibrations differ for the two protonation states due to their different sulfur-oxygen bond orders (1 or 2 versus 12/3 for the neutral and deprotonated forms, respectively). Only vibrations at 1060 and 1041 cm-1, which are associated with symmetric S-O stretches of the 2-MTS anion, were observed experimentally with Raman, while sulfate group vibrations for the neutral form (∼900, 1200, and 1400 cm-1) were not observed. Additional calculations of organosulfates formed from other SOA-precursor gases (α-pinene, β-caryophyllene, and toluene) identified similar symmetric vibrations between 1000 and 1100 cm-1 for RO-SO3-, consistent with corresponding organosulfates formed during laboratory experiments. These results suggest that organosulfates are primarily deprotonated at atmospheric pH values, which have further implications for aerosol acidity, heterogeneous reactions, and continuing chemistry in atmospheric aerosols.
Collapse
Affiliation(s)
- Alison M Fankhauser
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ziying Lei
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kimberly R Daley
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yao Xiao
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Zhenfa Zhang
- Department of Environmental Science and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599 United States
| | - Avram Gold
- Department of Environmental Science and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599 United States
| | - Bruce S Ault
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Jason D Surratt
- Department of Environmental Science and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599 United States.,Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599 United States
| | - Andrew P Ault
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
13
|
Lei Z, Chen Y, Zhang Y, Cooke ME, Ledsky IR, Armstrong NC, Olson NE, Zhang Z, Gold A, Surratt JD, Ault AP. Initial pH Governs Secondary Organic Aerosol Phase State and Morphology after Uptake of Isoprene Epoxydiols (IEPOX). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10596-10607. [PMID: 35834796 DOI: 10.1021/acs.est.2c01579] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Aerosol acidity increases secondary organic aerosol (SOA) formed from the reactive uptake of isoprene-derived epoxydiols (IEPOX) by enhancing condensed-phase reactions within sulfate-containing submicron particles, leading to low-volatility organic products. However, the link between the initial aerosol acidity and the resulting physicochemical properties of IEPOX-derived SOA remains uncertain. Herein, we show distinct differences in the morphology, phase state, and chemical composition of individual organic-inorganic mixed particles after IEPOX uptake to ammonium sulfate particles with different initial atmospherically relevant acidities (pH = 1, 3, and 5). Physicochemical properties were characterized via atomic force microscopy coupled with photothermal infrared spectroscopy (AFM-PTIR) and Raman microspectroscopy. Compared to less acidic particles (pH 3 and 5), reactive uptake of IEPOX to the most acidic particles (pH 1) resulted in 50% more organosulfate formation, clearer phase separation (core-shell), and more irregularly shaped morphologies, suggesting that the organic phase transitioned to semisolid or solid. This study highlights that initial aerosol acidity may govern the subsequent aerosol physicochemical properties, such as viscosity and morphology, following the multiphase chemical reactions of IEPOX. These results can be used in future studies to improve model parameterizations of SOA formation from IEPOX and its properties, toward the goal of bridging predictions and atmospheric observations.
Collapse
Affiliation(s)
- Ziying Lei
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yuzhi Chen
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yue Zhang
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Madeline E Cooke
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Isabel R Ledsky
- Department of Chemistry, Carleton College, Northfield, Minnesota 55057, United States
| | - N Cazimir Armstrong
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Nicole E Olson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Zhenfa Zhang
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Avram Gold
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jason D Surratt
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Andrew P Ault
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
14
|
Guo C, Xu L, Zhang C. Study on heterogeneous OH oxidation of 3-methyltetraol sulfate in the atmosphere under high NO conditions. RSC Adv 2022; 12:21103-21109. [PMID: 35975045 PMCID: PMC9341440 DOI: 10.1039/d2ra02958h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/18/2022] [Indexed: 11/21/2022] Open
Abstract
Organosulfates (OSs), also known as organic sulfate esters, are ubiquitous in atmospheric particles and used as secondary organic aerosol (SOA) markers. However, the chemical transformation mechanism of these OSs remains unclear. Therefore, we investigated the heterogeneous OH oxidation of 3-methyltetraol sulfate (3-MTS), which is one of the most abundant particulate organosulfates, by using quantum chemical and kinetic calculations. 3-MTS can easily undergo abstraction reaction with OH radicals, and the reaction rate constant is about 7.87 × 10-12 cm3 per molecule per s. The generated HCOOH, CH3COOH, HCHO, CH3CHO and 2-methyl-2,3-dihydroxypropionic acid are low-volatility species with increased water solubility, which are the main components of SOA. In addition, the OH radicals obtained from the reaction can continue to promote the oxidation reaction. The results of this study provide insights into the heterogeneous OH reactivity of other organosulfates in atmospheric aerosols, and it also provides a new understanding of the conversion of sulfur (S) between its organic and inorganic forms during the heterogeneous OH oxidation of organic sulfates.
Collapse
Affiliation(s)
- Chuanen Guo
- Judicial Expertise Center, Shandong University of Political Science and Law Jinan 250014 P. R. China
| | - Luyao Xu
- Environment Research Institute, Shandong University Qingdao 266200 P. R. China
| | - Chenxi Zhang
- Jia Si-xie Agricultural College, Weifang University of Science and Technology Weifang 262700 P. R. China
| |
Collapse
|
15
|
Wang DS, Masoud CG, Modi M, Hildebrandt Ruiz L. Isoprene-Chlorine Oxidation in the Presence of NO x and Implications for Urban Atmospheric Chemistry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9251-9264. [PMID: 35700480 DOI: 10.1021/acs.est.1c07048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fine particulate matter (PM2.5) is a key indicator of urban air quality. Secondary organic aerosol (SOA) contributes substantially to the PM2.5 concentration. Discrepancies between modeling and field measurements of SOA indicate missing sources and formation mechanisms. Recent studies report elevated concentrations of reactive chlorine species in inland and urban regions, which increase the oxidative capacity of the atmosphere and serve as sources for SOA and particulate chlorides. Chlorine-initiated oxidation of isoprene, the most abundant nonmethane hydrocarbon, is known to produce SOA under pristine conditions, but the effects of anthropogenic influences in the form of nitrogen oxides (NOx) remain unexplored. Here, we investigate chlorine-isoprene reactions under low- and high-NOx conditions inside an environmental chamber. Organic chlorides including C5H11ClO3, C5H9ClO3, and C5H9ClO4 are observed as major gas- and particle-phase products. Modeling and experimental results show that the secondary OH-isoprene chemistry is significantly enhanced under high-NOx conditions, accounting for up to 40% of all isoprene oxidized and leading to the suppression of organic chloride formation. Chlorine-initiated oxidation of isoprene could serve as a source for multifunctional (chlorinated) organic oxidation products and SOA in both pristine and anthropogenically influenced environments.
Collapse
Affiliation(s)
- Dongyu S Wang
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Catherine G Masoud
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Mrinali Modi
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Lea Hildebrandt Ruiz
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
16
|
Zhang YQ, Ding X, He QF, Wen TX, Wang JQ, Yang K, Jiang H, Cheng Q, Liu P, Wang ZR, He YF, Hu WW, Wang QY, Xin JY, Wang YS, Wang XM. Observational Insights into Isoprene Secondary Organic Aerosol Formation through the Epoxide Pathway at Three Urban Sites from Northern to Southern China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4795-4805. [PMID: 35235293 DOI: 10.1021/acs.est.1c06974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Isoprene is the most abundant precursor of global secondary organic aerosol (SOA). The epoxide pathway plays a critical role in isoprene SOA (iSOA) formation, in which isoprene epoxydiols (IEPOX) and/or hydroxymethyl-methyl-α-lactone (HMML) can react with nucleophilic sulfate and water producing isoprene-derived organosulfates (iOSs) and oxygen-containing tracers (iOTs), respectively. This process is complicated and highly influenced by anthropogenic emissions, especially in the polluted urban atmospheres. In this study, we took a 1-year measurement of the paired iOSs and iOTs formed through the IEPOX and HMML pathways at the three urban sites from northern to southern China. The annual average concentrations of iSOA products at the three sites ranged from 14.6 to 36.5 ng m-3. We found that the nucleophilic-addition reaction of isoprene epoxides with water dominated over that with sulfate in the polluted urban air. A simple set of reaction rate constant could not fully describe iOS and iOT formation everywhere. We also found that the IEPOX pathway was dominant over the HMML pathway over urban regions. Using the kinetic data of IEPOX to estimate the reaction parameters of HMML will cause significant underestimation in the importance of HMML pathway. All these findings provide insights into iSOA formation over polluted areas.
Collapse
Affiliation(s)
- Yu-Qing Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Xiang Ding
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
| | - Quan-Fu He
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Tian-Xue Wen
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Jun-Qi Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kong Yang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Cheng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Liu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zi-Rui Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun-Feng He
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Wei Hu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
| | - Qiao-Yun Wang
- School of Chemical Engineering and Technology, Guangdong Industry Polytechnic, Guangzhou 510300, China
| | - Jin-Yuan Xin
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yue-Si Wang
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Xin-Ming Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
| |
Collapse
|
17
|
Wang Y, Ma Y, Kuang B, Lin P, Liang Y, Huang C, Yu JZ. Abundance of organosulfates derived from biogenic volatile organic compounds: Seasonal and spatial contrasts at four sites in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151275. [PMID: 34743888 DOI: 10.1016/j.scitotenv.2021.151275] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Atmospheric organosulfates (OSs) derived from biogenic volatile organic compounds (BVOCs) encode chemical interaction strength between anthroposphere and biosphere. We report BVOC-derived OSs in the summer of 2016 and the winter of 2017 at four locations in China (i.e., Hong Kong (HK), Guangzhou (GZ), Shanghai (SH), and Beijing (BJ)). The spatial coverage of three climatic zones from the south to the north in China is accompanied with a wide range of aerosol inorganic sulfate (4.9-13.8 μg/m3). We employed a combined targeted and untargeted approach using high-performance liquid chromatography-Orbitrap mass spectrometry to quantify/semi-quantify ~200 OSs and nitrooxy OSs derived from four types of precursors, namely C2-C3 oxygenated VOCs, isoprene, monoterpenes (MT), and sesquiterpenes (ST). The seasonal averages of the total quantified OSs across the four sites are in the range of 201-545 (summer) and 123-234 ng/m3 (winter), with the isoprene-derived OSs accounting for more than 80% (summer) and 57% (winter). The C2-3 OSs and isoprene-derived OSs share the same seasonality (summer >winter) and the same south-north spatial gradient as those of isoprene emissions. In contrast, the MT- and ST-derived OSs are of either comparable abundance or slightly higher abundance in winter at the four sites. The spatial contrasts for MT- and ST-derived OSs are not clearly discernable among GZ, SH, and BJ. HK is noted to have invariably lower abundances of all groups of OSs, in line with its aerosol inorganic sulfate being the lowest. These results indicate that BVOC emissions are the driving factor regulating the formation of C2-3 OSs and isoprene-derived OSs. Other factors, such as sulfate abundance, however, play a more important role in the formation of MT- and ST-derived OSs. This in turn suggests that the formation kinetics and/or pathways differ between these two sub-groups of BVOCs-derived OSs.
Collapse
Affiliation(s)
- Yuchen Wang
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong
| | - Yingge Ma
- State Environmental Protection Key Laboratory of the Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai, China
| | - Binyu Kuang
- Department of Chemistry, Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong
| | - Peng Lin
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Yongmei Liang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Changping, Beijing, China
| | - Cheng Huang
- State Environmental Protection Key Laboratory of the Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai, China
| | - Jian Zhen Yu
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong; Department of Chemistry, Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong.
| |
Collapse
|
18
|
Wang Y, Tong R, Yu JZ. Chemical Synthesis of Multifunctional Air Pollutants: Terpene-Derived Nitrooxy Organosulfates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8573-8582. [PMID: 34165958 DOI: 10.1021/acs.est.1c00348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nitrooxy organosulfates derived from terpenes (NOSTP) represent an important class of products formed between anthropogenic pollution (e.g., SO2 and NOx) and natural emissions. NOSTP compounds have been consistently detected in atmospheric environments under varying urban influences. Their chemical linkages to both anthroposphere and biosphere make them valuable markers for tracking anthroposphere-biosphere interactions. However, their quantification, formation, and transformation kinetics in atmospheric aerosols are hindered due to the lack of NOSTP standards. In this work, we developed two routes for the first concise chemical synthesis of eight NOSTP from terpenes including α-pinene, β-pinene, limonene, limonaketone, and β-caryophyllene. Subsequently, six of the synthesized NOSTP were for the first time positively identified in ambient aerosol samples, clarifying certain misidentifications in previous studies. More significantly, the availability of authentic standards allows irrefutable observation of three carbon skeleton-rearranged NOSTP, two derived from α-pinene, and one derived from β-caryophyllene, revealing the occurrence of previously unrecognized transformation pathways in the formation of NOSTP. Two synthesized NOSTP from β-pinene and limonene could not be detected, likely due to rapid hydrolysis of their immediate hydroxynitrate precursors outcompeting sulfation. Such mechanistic evidence is valuable in understanding the atmospheric chemistry of NOSTP and related compounds. This work demonstrates the usefulness of authentic standards in probing the NOSTP formation mechanisms in the atmosphere. Comparison of NOSTP ambient samples collected from four Chinese cities in two winter months indicates that anthropogenic chemical factors could outcompete terpene emissions in the formation of NOSTP.
Collapse
Affiliation(s)
- Yuchen Wang
- Division of Environment & Sustainability, Hong Kong University of Science & Technology, Clear Water bay, Kowloon, Hong Kong, China
| | - Rongbiao Tong
- Department of Chemistry, Hong Kong University of Science & Technology, Clear Water bay, Kowloon, Hong Kong, China
| | - Jian Zhen Yu
- Division of Environment & Sustainability, Hong Kong University of Science & Technology, Clear Water bay, Kowloon, Hong Kong, China
- Department of Chemistry, Hong Kong University of Science & Technology, Clear Water bay, Kowloon, Hong Kong, China
| |
Collapse
|
19
|
Jaoui M, Piletic IR, Szmigielski R, Rudzinski KJ, Lewandowski M, Riedel TP, Kleindienst TE. Rapid production of highly oxidized molecules in isoprene aerosol via peroxy and alkoxy radical isomerization pathways in low and high NO x environments: Combined laboratory, computational and field studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145592. [PMID: 34380608 PMCID: PMC8363757 DOI: 10.1016/j.scitotenv.2021.145592] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/11/2021] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Recently, we identified seven novel hydroxy-carboxylic acids resulting from gas-phase reactions of isoprene in the presence of nitrogen oxides (NOx), ozone (O3), and/or hydroxyl radicals (OH). In the present study, we provide evidence that hydroxy-carboxylic acids, namely methyltartaric acids (MTA) are: (1) reliable isoprene tracers, (2) likely produced via rapid peroxy radical hydrogen atom (H) shift reactions (autoxidation mechanism) and analogous alkoxy radical H shifts in low and high NOx environments respectively and (3) representative of aged ambient aerosol in the low NOx regime. Firstly, MTA are reliable tracers of isoprene aerosol because they have been identified in numerous chamber experiments involving isoprene conducted under a wide range of conditions and are absent in the oxidation of mono- and sesquiterpenes. They are also present in numerous samples of ambient aerosol collected during the past 20 years at several locations in the U.S. and Europe. Furthermore, MTA concentrations measured during a year-long field study in Research Triangle Park (RTP), NC in 2003 show a seasonal trend consistent with isoprene emissions and photochemical activity. Secondly, an analysis of chemical ionization mass spectrometer (CIMS) data of several chamber experiments in low and high NOx environments show that highly oxidized molecules (HOMs) derived from isoprene that lead to MTAs may be produced rapidly and considered as early generation isoprene oxidation products in the gas phase. Density functional theory calculations show that rapid intramolecular H shifts involving peroxy and alkoxy radicals possess low barriers for methyl-hydroxy-butenals (MHBs) that may represent precursors for MTA. From these results, a viable rapid H shift mechanism is proposed to occur that produces isoprene derived HOMs like MTA. Finally, an analysis of the mechanism shows that autoxidation-like pathways in low and high NOx may produce HOMs in a few OH oxidation steps like commonly detected methyl tetrol (MT) isoprene tracers. The ratio of MTA/MT in isoprene aerosol is also shown to be significantly greater in field versus chamber samples indicating the importance of such pathways in the atmosphere even for smaller hydrocarbons like isoprene.
Collapse
Affiliation(s)
- Mohammed Jaoui
- Center for Environmental Measurement & Modeling, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States of America.
| | - Ivan R Piletic
- Center for Environmental Measurement & Modeling, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States of America
| | - Rafal Szmigielski
- Environmental Chemistry Group, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Krzysztof J Rudzinski
- Environmental Chemistry Group, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Michael Lewandowski
- Center for Environmental Measurement & Modeling, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States of America
| | - Theran P Riedel
- Center for Environmental Measurement & Modeling, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States of America
| | - Tadeusz E Kleindienst
- Center for Environmental Measurement & Modeling, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States of America
| |
Collapse
|
20
|
Secondary Organic Aerosol Formation from Isoprene: Selected Research, Historic Account and State of the Art. ATMOSPHERE 2021. [DOI: 10.3390/atmos12060728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In this review, we cover selected research on secondary organic aerosol (SOA) formation from isoprene, from the beginning of research, about two decades ago, to today. The review begins with the first observations of isoprene SOA markers, i.e., 2-methyltetrols, in ambient fine aerosol and focuses on studies dealing with molecular characterization, speciation, formation mechanisms, and source apportionment. A historic account is given on how research on isoprene SOA has developed. The isoprene SOA system is rather complex, with different pathways being followed in pristine and polluted conditions. For SOA formation from isoprene, acid-catalyzed hydrolysis is necessary, and sulfuric acid enhances SOA by forming additional nonvolatile products such as organosulfates. Certain results reported in early papers have been re-interpreted in the light of recent results; for example, the formation of C5-alkene triols. Attention is given to mass spectrometric and separation techniques, which played a crucial role in molecular characterization. The unambiguous structural characterization of isoprene SOA markers has been achieved, owing to the preparation of reference compounds. Efforts have also been made to use air quality data to estimate the influence of biogenic and pollution aerosol sources. This review examines the use of an organic marker-based method and positive matrix factorization to apportion SOA from different sources, including isoprene SOA.
Collapse
|
21
|
Kwiezinski C, Weller C, van Pinxteren D, Brüggemann M, Mertes S, Stratmann F, Herrmann H. Determination of highly polar compounds in atmospheric aerosol particles at ultra-trace levels using ion chromatography Orbitrap mass spectrometry. J Sep Sci 2021; 44:2343-2357. [PMID: 33822470 DOI: 10.1002/jssc.202001048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/05/2021] [Accepted: 04/02/2021] [Indexed: 11/09/2022]
Abstract
A method using ion chromatography coupled to high-resolution Orbitrap mass spectrometry was developed to quantify highly-polar organic compounds in aqueous filter extracts of atmospheric particles. In total, 43 compounds, including short-chain carboxylic acids, terpene-derived acids, organosulfates, and inorganic anions were separated within 33 min by a KOH gradient. Ionization by electrospray was maximized by adding 100 µL min-1 isopropanol as post-column solvent and optimizing the ion source settings. Detection limits (S/N ≥ 3) were in the range of 0.075-25 μg L-1 and better than previously reported for 22 compounds. Recoveries of extraction typically range from 85 to 117%. The developed method was applied to three ambient samples, including two arctic flight samples, and one sample from Melpitz, a continental backround research site. A total of 32 different compounds were identified for all samples. From the arctic flight samples, organic tracers could be quantified for the first time with concentrations ranging from 0.1 to 17.8 ng m-3 . Due to the minimal sample preparation, the beneficial figures of merit, and the broad range of accessible compounds, including very polar ones, the new method offers advantages over existing ones and enables a detailed analysis of organic marker compounds in atmospheric aerosol particles.
Collapse
Affiliation(s)
- Carlo Kwiezinski
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany
| | | | - Dominik van Pinxteren
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany
| | - Martin Brüggemann
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany
| | - Stephan Mertes
- Experimental Aerosol and Cloud Microphysics Department, Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany
| | - Frank Stratmann
- Experimental Aerosol and Cloud Microphysics Department, Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany
| | - Hartmut Herrmann
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany
| |
Collapse
|
22
|
Khan F, Kwapiszewska K, Zhang Y, Chen Y, Lambe AT, Kołodziejczyk A, Jalal N, Rudzinski K, Martínez-Romero A, Fry RC, Surratt JD, Szmigielski R. Toxicological Responses of α-Pinene-Derived Secondary Organic Aerosol and Its Molecular Tracers in Human Lung Cell Lines. Chem Res Toxicol 2021; 34:817-832. [PMID: 33653028 PMCID: PMC7967287 DOI: 10.1021/acs.chemrestox.0c00409] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Indexed: 02/06/2023]
Abstract
Secondary organic aerosol (SOA) is a major component of airborne fine particulate matter (PM2.5) that contributes to adverse human health effects upon inhalation. Atmospheric ozonolysis of α-pinene, an abundantly emitted monoterpene from terrestrial vegetation, leads to significant global SOA formation; however, its impact on pulmonary pathophysiology remains uncertain. In this study, we quantified an increasing concentration response of three well-established α-pinene SOA tracers (pinic, pinonic, and 3-methyl-1,2,3-butanetricarboxylic acids) and a full mixture of α-pinene SOA in A549 (alveolar epithelial carcinoma) and BEAS-2B (bronchial epithelial normal) lung cell lines. The three aforementioned tracers contributed ∼57% of the α-pinene SOA mass under our experimental conditions. Cellular proliferation, cell viability, and oxidative stress were assessed as toxicological end points. The three α-pinene SOA molecular tracers had insignificant responses in both cell types when compared with the α-pinene SOA (up to 200 μg mL-1). BEAS-2B cells exposed to 200 μg mL-1 of α-pinene SOA decreased cellular proliferation to ∼70% and 44% at 24- and 48-h post exposure, respectively; no changes in A549 cells were observed. The inhibitory concentration-50 (IC50) in BEAS-2B cells was found to be 912 and 230 μg mL-1 at 24 and 48 h, respectively. An approximate 4-fold increase in cellular oxidative stress was observed in BEAS-2B cells when compared with untreated cells, suggesting that reactive oxygen species (ROS) buildup resulted in the downstream cytotoxicity following 24 h of exposure to α-pinene SOA. Organic hydroperoxides that were identified in the α-pinene SOA samples likely contributed to the ROS and cytotoxicity. This study identifies the potential components of α-pinene SOA that likely modulate the oxidative stress response within lung cells and highlights the need to carry out chronic exposure studies on α-pinene SOA to elucidate its long-term inhalation exposure effects.
Collapse
Affiliation(s)
- Faria Khan
- Institute
of Physical Chemistry, Polish Academy of
Sciences, 00Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Karina Kwapiszewska
- Institute
of Physical Chemistry, Polish Academy of
Sciences, 00Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Yue Zhang
- Department
of Environmental Sciences and Engineering, Gillings School of Global
Public Health, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
- Aerodyne
Research Inc, Billerica, Masachusetts 01821, United States
| | - Yuzhi Chen
- Department
of Environmental Sciences and Engineering, Gillings School of Global
Public Health, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Andrew T. Lambe
- Aerodyne
Research Inc, Billerica, Masachusetts 01821, United States
| | - Agata Kołodziejczyk
- Institute
of Physical Chemistry, Polish Academy of
Sciences, 00Kasprzaka 44/52, 01-224 Warsaw, Poland
- TROPOS,
Leibniz-Institut für Troposphärenforschung, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Nasir Jalal
- Department
of Interdisciplinary Science, Nanjing University
of Information Science & Technology, Nanjing, Jiangsu 210044, P. R. China
| | - Krzysztof Rudzinski
- Institute
of Physical Chemistry, Polish Academy of
Sciences, 00Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Alicia Martínez-Romero
- Cytomics
Core Facility, Príncipe Felipe Research
Center, Avenida Eduardo
Primo Yúfera, 3, Valenica 46012, Spain
| | - Rebecca C. Fry
- Department
of Environmental Sciences and Engineering, Gillings School of Global
Public Health, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Jason D. Surratt
- Department
of Environmental Sciences and Engineering, Gillings School of Global
Public Health, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
- Department
of Chemistry, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Rafal Szmigielski
- Institute
of Physical Chemistry, Polish Academy of
Sciences, 00Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
23
|
Ren H, Sedlak JA, Elrod MJ. General Mechanism for Sulfate Radical Addition to Olefinic Volatile Organic Compounds in Secondary Organic Aerosol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1456-1465. [PMID: 33475357 DOI: 10.1021/acs.est.0c05256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Previous laboratory studies have suggested that sulfate radical addition to olefinic biogenic volatile organic compounds (BVOCs) is a potential formation mechanism for some organosulfates detected in ambient secondary organic aerosol (SOA). However, these studies propose conflicting reaction products, possibly because laboratory dissolved oxygen levels did not accurately reflect atmospheric conditions. Additionally, these studies used analytical methods that could not definitively identify and quantify the structurally specific products. Here, we describe a method that allows for the study of the reaction of sulfate radicals and several olefinic precursors, including allyl alcohol (AA), methyl vinyl ketone (MVK), 2-methyl-3-buten-2-ol (MBO), and methacrolein (MA), with careful control of dissolved oxygen levels and using the isomer-specific nuclear magnetic resonance (NMR) method to definitively identify and quantify the reaction products. Specific mechanisms for each olefinic precursor were developed, as well as a generalized mechanism that can be used to predict the sulfate radical reaction pathways for any olefin. The product yield results indicate that this mechanism is dominated by carbon backbone fragmentation pathways: 61, 83, 79, and 100% for AA, MVK, MBO, and MA, respectively. Several of the observed organosulfate products have also been detected in field observations of SOA, which indicates the potential relevance of this mechanism in the atmosphere.
Collapse
Affiliation(s)
- He Ren
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, Ohio 44074 United States
| | - Jane A Sedlak
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, Ohio 44074 United States
| | - Matthew J Elrod
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, Ohio 44074 United States
| |
Collapse
|
24
|
Wolf MJ, Zhang Y, Zawadowicz MA, Goodell M, Froyd K, Freney E, Sellegri K, Rösch M, Cui T, Winter M, Lacher L, Axisa D, DeMott PJ, Levin EJT, Gute E, Abbatt J, Koss A, Kroll JH, Surratt JD, Cziczo DJ. A biogenic secondary organic aerosol source of cirrus ice nucleating particles. Nat Commun 2020; 11:4834. [PMID: 33004794 PMCID: PMC7529764 DOI: 10.1038/s41467-020-18424-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/20/2020] [Indexed: 11/12/2022] Open
Abstract
Atmospheric ice nucleating particles (INPs) influence global climate by altering cloud formation, lifetime, and precipitation efficiency. The role of secondary organic aerosol (SOA) material as a source of INPs in the ambient atmosphere has not been well defined. Here, we demonstrate the potential for biogenic SOA to activate as depositional INPs in the upper troposphere by combining field measurements with laboratory experiments. Ambient INPs were measured in a remote mountaintop location at -46 °C and an ice supersaturation of 30% with concentrations ranging from 0.1 to 70 L-1. Concentrations of depositional INPs were positively correlated with the mass fractions and loadings of isoprene-derived secondary organic aerosols. Compositional analysis of ice residuals showed that ambient particles with isoprene-derived SOA material can act as depositional ice nuclei. Laboratory experiments further demonstrated the ability of isoprene-derived SOA to nucleate ice under a range of atmospheric conditions. We further show that ambient concentrations of isoprene-derived SOA can be competitive with other INP sources. This demonstrates that isoprene and potentially other biogenically-derived SOA materials could influence cirrus formation and properties.
Collapse
Affiliation(s)
- Martin J Wolf
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 54-918, Cambridge, MA, 02139, USA
| | - Yue Zhang
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, 135 Dauer Drive, 166 Rosenau Hall, Chapel Hill, NC, 27599, USA
- Aerodyne Research Incorporated, Center for Aerosol and Cloud Chemistry, 45 Manning Road,, Billerica, MA, 01821, USA
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA, 02467, USA
- Department of Atmospheric Sciences, Texas A&M University, 3150 TAMU, College Station, Texas, 77843, USA
| | - Maria A Zawadowicz
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 54-918, Cambridge, MA, 02139, USA
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Megan Goodell
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 54-918, Cambridge, MA, 02139, USA
| | - Karl Froyd
- NOAA Earth System Research Laboratory (ESRL), Chemical Sciences Division, Boulder, CO, 80305, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, 80309, USA
| | - Evelyn Freney
- Université Clermont Auvergne, CNRS, Laboratoire de Météorologie Physique (LaMP), F-63000, Clermont-Ferrand, France
| | - Karine Sellegri
- Université Clermont Auvergne, CNRS, Laboratoire de Météorologie Physique (LaMP), F-63000, Clermont-Ferrand, France
| | - Michael Rösch
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 54-918, Cambridge, MA, 02139, USA
- Institute for Atmospheric and Climate Science, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland
| | - Tianqu Cui
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, 135 Dauer Drive, 166 Rosenau Hall, Chapel Hill, NC, 27599, USA
- Paul Scherrer Institute, Laboratory of Atmospheric Chemistry, Villigen, Switzerland
| | - Margaux Winter
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, 135 Dauer Drive, 166 Rosenau Hall, Chapel Hill, NC, 27599, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Larissa Lacher
- Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research (IMK-AAF), Eggenstein-Leopoldshafen, Germany
| | - Duncan Axisa
- Droplet Measurement Technologies, Longmont, CO, 80503, USA
| | - Paul J DeMott
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO, 80523, USA
| | - Ezra J T Levin
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO, 80523, USA
- Handix Scientific, Boulder, CO, 20854, USA
| | - Ellen Gute
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Jonathan Abbatt
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Abigail Koss
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 1-290, Cambridge, MA, 02139, USA
- Tofwerk USA, 2760 29th St., Boulder, CO, 80301, USA
| | - Jesse H Kroll
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 1-290, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 66-350, Cambridge, MA, 02139, USA
| | - Jason D Surratt
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, 135 Dauer Drive, 166 Rosenau Hall, Chapel Hill, NC, 27599, USA
- Department of Chemistry, University of North Carolina at Chapel Hill, 125 South Road, Chapel Hill, North Carolina, 27599, USA
| | - Daniel J Cziczo
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, 135 Dauer Drive, 166 Rosenau Hall, Chapel Hill, NC, 27599, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 66-350, Cambridge, MA, 02139, USA.
- Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN, 47907, USA.
| |
Collapse
|
25
|
Klyta J, Czaplicka M. Determination of secondary organic aerosol in particulate matter – Short review. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Schmedding R, Rasool QZ, Zhang Y, Pye HOT, Zhang H, Chen Y, Surratt JD, Lopez-Hilfiker FD, Thornton JA, Goldstein AH, Vizuete W. Predicting secondary organic aerosol phase state and viscosity and its effect on multiphase chemistry in a regional-scale air quality model. ATMOSPHERIC CHEMISTRY AND PHYSICS 2020; 20:8201-8225. [PMID: 32983235 PMCID: PMC7510956 DOI: 10.5194/acp-20-8201-2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Atmospheric aerosols are a significant public health hazard and have substantial impacts on the climate. Secondary organic aerosols (SOAs) have been shown to phase separate into a highly viscous organic outer layer surrounding an aqueous core. This phase separation can decrease the partitioning of semi-volatile and low-volatile species to the organic phase and alter the extent of acid-catalyzed reactions in the aqueous core. A new algorithm that can determine SOA phase separation based on their glass transition temperature (T g), oxygen to carbon (O : C) ratio and organic mass to sulfate ratio, and meteorological conditions was implemented into the Community Multiscale Air Quality Modeling (CMAQ) system version 5.2.1 and was used to simulate the conditions in the continental United States for the summer of 2013. SOA formed at the ground/surface level was predicted to be phase separated with core-shell morphology, i.e., aqueous inorganic core surrounded by organic coating 65.4 % of the time during the 2013 Southern Oxidant and Aerosol Study (SOAS) on average in the isoprene-rich southeastern United States. Our estimate is in proximity to the previously reported ~ 70 % in literature. The phase states of organic coatings switched between semi-solid and liquid states, depending on the environmental conditions. The semi-solid shell occurring with lower aerosol liquid water content (western United States and at higher altitudes) has a viscosity that was predicted to be 102-1012 Pa s, which resulted in organic mass being decreased due to diffusion limitation. Organic aerosol was primarily liquid where aerosol liquid water was dominant (eastern United States and at the surface), with a viscosity < 102 Pa s. Phase separation while in a liquid phase state, i.e., liquid-liquid phase separation (LLPS), also reduces reactive uptake rates relative to homogeneous internally mixed liquid morphology but was lower than aerosols with a thick viscous organic shell. The sensitivity cases performed with different phase-separation parameterization and dissolution rate of isoprene epoxydiol (IEPOX) into the particle phase in CMAQ can have varying impact on fine particulate matter (PM2.5) organic mass, in terms of bias and error compared to field data collected during the 2013 SOAS. This highlights the need to better constrain the parameters that govern phase state and morphology of SOA, as well as expand mechanistic representation of multiphase chemistry for non-IEPOX SOA formation in models aided by novel experimental insights.
Collapse
Affiliation(s)
- Ryan Schmedding
- Department of Environmental Science and Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| | - Quazi Z. Rasool
- Department of Environmental Science and Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| | - Yue Zhang
- Department of Environmental Science and Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
- Aerodyne Research, Inc., Billerica, MA 01821, USA
| | - Havala O. T. Pye
- Department of Environmental Science and Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
- Office of Research and Development, Environmental Protection Agency, Research Triangle Park, Durham, NC 27709, USA
| | - Haofei Zhang
- Department of Chemistry, University of California at Riverside, Riverside, CA 92521, USA
| | - Yuzhi Chen
- Department of Environmental Science and Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| | - Jason D. Surratt
- Department of Environmental Science and Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| | | | - Joel A. Thornton
- Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195, USA
| | - Allen H. Goldstein
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, USA
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720, USA
| | - William Vizuete
- Department of Environmental Science and Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| |
Collapse
|
27
|
Yee LD, Isaacman-VanWertz G, Wernis RA, Kreisberg NM, Glasius M, Riva M, Surratt JD, de Sá SS, Martin ST, Alexander ML, Palm BB, Hu W, Campuzano-Jost P, Day DA, Jimenez JL, Liu Y, Misztal PK, Artaxo P, Viegas J, Manzi A, de Souza RAF, Edgerton ES, Baumann K, Goldstein AH. Natural and Anthropogenically Influenced Isoprene Oxidation in Southeastern United States and Central Amazon. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5980-5991. [PMID: 32271021 DOI: 10.1021/acs.est.0c00805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Anthropogenic emissions alter secondary organic aerosol (SOA) formation chemistry from naturally emitted isoprene. We use correlations of tracers and tracer ratios to provide new perspectives on sulfate, NOx, and particle acidity influencing isoprene-derived SOA in two isoprene-rich forested environments representing clean to polluted conditions-wet and dry seasons in central Amazonia and Southeastern U.S. summer. We used a semivolatile thermal desorption aerosol gas chromatograph (SV-TAG) and filter samplers to measure SOA tracers indicative of isoprene/HO2 (2-methyltetrols, C5-alkene triols, 2-methyltetrol organosulfates) and isoprene/NOx (2-methylglyceric acid, 2-methylglyceric acid organosulfate) pathways. Summed concentrations of these tracers correlated with particulate sulfate spanning three orders of magnitude, suggesting that 1 μg m-3 reduction in sulfate corresponds with at least ∼0.5 μg m-3 reduction in isoprene-derived SOA. We also find that isoprene/NOx pathway SOA mass primarily comprises organosulfates, ∼97% in the Amazon and ∼55% in Southeastern United States. We infer under natural conditions in high isoprene emission regions that preindustrial aerosol sulfate was almost exclusively isoprene-derived organosulfates, which are traditionally thought of as representative of an anthropogenic influence. We further report the first field observations showing that particle acidity correlates positively with 2-methylglyceric acid partitioning to the gas phase and negatively with the ratio of 2-methyltetrols to C5-alkene triols.
Collapse
Affiliation(s)
- Lindsay D Yee
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720, United States
| | - Gabriel Isaacman-VanWertz
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720, United States
| | - Rebecca A Wernis
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | | | - Marianne Glasius
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| | - Matthieu Riva
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Jason D Surratt
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Suzane S de Sá
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 01451, United States
| | - Scot T Martin
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 01451, United States
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts 01451, United States
| | - M Lizabeth Alexander
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Brett B Palm
- Department of Chemistry & Biochemistry and Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado 80309, United States
| | - Weiwei Hu
- Department of Chemistry & Biochemistry and Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado 80309, United States
| | - Pedro Campuzano-Jost
- Department of Chemistry & Biochemistry and Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado 80309, United States
| | - Douglas A Day
- Department of Chemistry & Biochemistry and Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado 80309, United States
| | - Jose L Jimenez
- Department of Chemistry & Biochemistry and Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado 80309, United States
| | - Yingjun Liu
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 01451, United States
| | - Pawel K Misztal
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720, United States
| | - Paulo Artaxo
- Universidade de São Paulo, São Paulo, Brazil 05508-020
| | - Juarez Viegas
- Instituto Nacional de Pesquisas da Amazonia, Manaus, Amazonas, Brazil 69060-001
| | - Antonio Manzi
- Instituto Nacional de Pesquisas da Amazonia, Manaus, Amazonas, Brazil 69060-001
| | | | - Eric S Edgerton
- Atmospheric Research & Analysis, Inc., Cary, North Carolina 27513, United States
| | - Karsten Baumann
- Atmospheric Research & Analysis, Inc., Cary, North Carolina 27513, United States
| | - Allen H Goldstein
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720, United States
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
28
|
Brüggemann M, Xu R, Tilgner A, Kwong KC, Mutzel A, Poon HY, Otto T, Schaefer T, Poulain L, Chan MN, Herrmann H. Organosulfates in Ambient Aerosol: State of Knowledge and Future Research Directions on Formation, Abundance, Fate, and Importance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3767-3782. [PMID: 32157872 DOI: 10.1021/acs.est.9b06751] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Organosulfates (OSs), also referred to as organic sulfate esters, are well-known and ubiquitous constituents of atmospheric aerosol particles. Commonly, they are assumed to form upon mixing of air masses of biogenic and anthropogenic origin, that is, through multiphase reactions between organic compounds and acidic sulfate particles. However, in contrast to this simplified picture, recent studies suggest that OSs may also originate from purely anthropogenic precursors or even directly from biomass and fossil fuel burning. Moreover, besides classical OS formation pathways, several alternative routes have been discovered, suggesting that OS formation possibly occurs through a wider variety of formation mechanisms in the atmosphere than initially expected. During the past decade, OSs have reached a constantly growing attention within the atmospheric science community with evermore studies reporting on large numbers of OS species in ambient aerosol. Nonetheless, estimates on OS concentrations and implications on atmospheric physicochemical processes are still connected to large uncertainties, calling for combined field, laboratory, and modeling studies. In this Critical Review, we summarize the current state of knowledge in atmospheric OS research, discuss unresolved questions, and outline future research needs, also in view of reductions of anthropogenic sulfur dioxide (SO2) emissions. Particularly, we focus on (1) field measurements of OSs and measurement techniques, (2) formation pathways of OSs and their atmospheric relevance, (3) transformation, reactivity, and fate of OSs in atmospheric particles, and (4) modeling efforts of OS formation and their global abundance.
Collapse
Affiliation(s)
- Martin Brüggemann
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Rongshuang Xu
- Earth System Science Programme, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Andreas Tilgner
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Kai Chung Kwong
- Earth System Science Programme, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Anke Mutzel
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Hon Yin Poon
- Earth System Science Programme, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Tobias Otto
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Thomas Schaefer
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Laurent Poulain
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Man Nin Chan
- Earth System Science Programme, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China
- The Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China
| | - Hartmut Herrmann
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Permoserstrasse 15, 04318 Leipzig, Germany
| |
Collapse
|
29
|
Eaves LA, Smeester L, Hartwell HJ, Lin YH, Arashiro M, Zhang Z, Gold A, Surratt JD, Fry RC. Isoprene-Derived Secondary Organic Aerosol Induces the Expression of MicroRNAs Associated with Inflammatory/Oxidative Stress Response in Lung Cells. Chem Res Toxicol 2020; 33:381-387. [PMID: 31765140 PMCID: PMC7243464 DOI: 10.1021/acs.chemrestox.9b00322] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Exposure to fine particulate matter (PM2.5), of which secondary organic aerosol (SOA) is a major constituent, is linked to adverse health outcomes, including cardiovascular disease, lung cancer, and preterm birth. Atmospheric oxidation of isoprene, the most abundant nonmethane hydrocarbon emitted into Earth's atmosphere primarily from vegetation, contributes to SOA formation. Isoprene-derived SOA has previously been found to alter inflammatory/oxidative stress genes. MicroRNAs (miRNAs) are epigenetic regulators that serve as post-transcriptional modifiers and key mediators of gene expression. To assess whether isoprene-derived SOA alters miRNA expression, BEAS-2B lung cells were exposed to laboratory-generated isoprene-derived SOA constituents derived from the acid-driven multiphase chemistry of authentic methacrylic acid epoxide (MAE) or isomeric isoprene epoxydiols (IEPOX) with acidic sulfate aerosol particles. These IEPOX- and MAE-derived SOA constituents have been shown to be measured in large quantities within PM2.5 collected from isoprene-rich areas affected by acidic sulfate aerosol particles derived from human activities. A total of 29 miRNAs were identified as differentially expressed when exposed to IEPOX-derived SOA and 2 when exposed to MAE-derived SOA, a number of which are inflammatory/oxidative stress associated. These results suggest that miRNAs may modulate the inflammatory/oxidative stress response to SOA exposure, thereby advancing the understanding of airway cell epigenetic response to SOA.
Collapse
Affiliation(s)
- Lauren A. Eaves
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Lisa Smeester
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Hadley J. Hartwell
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ying-Hsuan Lin
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Maiko Arashiro
- Department of Environmental Studies, Dickinson College, Carlisle, Pennsylvania 17013, United States
| | - Zhenfa Zhang
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Avram Gold
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jason D. Surratt
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Rebecca C. Fry
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
30
|
Jaoui M, Szmigielski R, Nestorowicz K, Kolodziejczyk A, Sarang K, Rudzinski KJ, Konopka A, Bulska E, Lewandowski M, Kleindienst TE. Organic Hydroxy Acids as Highly Oxygenated Molecular (HOM) Tracers for Aged Isoprene Aerosol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:14516-14527. [PMID: 31757124 PMCID: PMC6996142 DOI: 10.1021/acs.est.9b05075] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Highly oxygenated molecules (HOMs) are a class of compounds associated with secondary organic aerosols exhibiting high oxygen to carbon (O:C) ratios and often originating from the oxidation of biogenic compounds. Here, the photooxidation and ozonolysis of isoprene were examined under a range of conditions to identify HOM tracers for aged isoprene aerosol. The HOM tracers were identified as silylated derivatives by gas chromatography-mass spectrometry and by detecting their parent compounds by liquid chromatography-high resolution mass spectrometry. In addition to the previously observed methyltetrols and 2-methylglyceric acid, seven tracer compounds were identified, including 2-methyltartronic acid (MTtA), 2-methylerythronic acid (2MeTrA), 3-methylerythronic acid (3MeTrA), 2-methylthreonic acid (2MTrA), 3-methylthreonic acid (3MTrA), erythro-methyltartaric acid (e-MTA), and threo-methyltartaric acid (t-MTA). The molecular structures were confirmed with authentic standards synthesized in the laboratory. The presence of some of these HOMs in the gas and particle phases simultaneously provides evidence of their gas/particle partitioning. To determine the contributions of aged isoprene products to ambient aerosols, we analyzed ambient PM2.5 samples collected in the southeastern United States in summer 2003 and at two European monitoring stations located in Zielonka and Godów (Poland). Our findings show that methyltartaric acids (MTA) and 2- and 3-methylthreonic acids (and their stereoisomers) are representative of aged isoprene aerosol because they occur both in the laboratory chamber aerosol obtained and in ambient PM2.5. On the basis of gas chromatography-mass spectrometry (GC-MS) analysis, their concentrations were found to range from 0.04 ng for 3-methylthreonic acid to 6.3 ng m-3 for methyltartaric acid at the southeast site in Duke Forest, NC, USA.
Collapse
Affiliation(s)
- Mohammed Jaoui
- National Exposure Research Laboratory , U.S. Environmental Protection Agency , Research Triangle Park , North Carolina 27711 , United States
| | - Rafal Szmigielski
- Environmental Chemistry Group , Institute of Physical Chemistry, Polish Academy of Sciences , 01-224 Warsaw , Poland
| | - Klara Nestorowicz
- Environmental Chemistry Group , Institute of Physical Chemistry, Polish Academy of Sciences , 01-224 Warsaw , Poland
| | - Agata Kolodziejczyk
- Environmental Chemistry Group , Institute of Physical Chemistry, Polish Academy of Sciences , 01-224 Warsaw , Poland
| | - Kumar Sarang
- Environmental Chemistry Group , Institute of Physical Chemistry, Polish Academy of Sciences , 01-224 Warsaw , Poland
| | - Krzysztof J Rudzinski
- Environmental Chemistry Group , Institute of Physical Chemistry, Polish Academy of Sciences , 01-224 Warsaw , Poland
| | - Anna Konopka
- University of Warsaw , Faculty of Chemistry, Biological and Chemical Research Centre , Żwirki i Wigury 101 , 02-089 Warsaw , Poland
| | - Ewa Bulska
- University of Warsaw , Faculty of Chemistry, Biological and Chemical Research Centre , Żwirki i Wigury 101 , 02-089 Warsaw , Poland
| | - Michael Lewandowski
- National Exposure Research Laboratory , U.S. Environmental Protection Agency , Research Triangle Park , North Carolina 27711 , United States
| | - Tadeusz E Kleindienst
- National Exposure Research Laboratory , U.S. Environmental Protection Agency , Research Triangle Park , North Carolina 27711 , United States
| |
Collapse
|
31
|
Zhang Y, Nichman L, Spencer P, Jung JI, Lee A, Heffernan BK, Gold A, Zhang Z, Chen Y, Canagaratna MR, Jayne JT, Worsnop DR, Onasch TB, Surratt JD, Chandler D, Davidovits P, Kolb CE. The Cooling Rate- and Volatility-Dependent Glass-Forming Properties of Organic Aerosols Measured by Broadband Dielectric Spectroscopy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:12366-12378. [PMID: 31490675 DOI: 10.1021/acs.est.9b03317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Glass transitions of secondary organic aerosols (SOA) from liquid/semisolid to solid phase states have important implications for aerosol reactivity, growth, and cloud formation properties. In the present study, glass transition temperatures (Tg) of isoprene SOA components, including isoprene hydroxy hydroperoxide (ISOPOOH), isoprene-derived epoxydiols (IEPOX), 2-methyltetrols, and 2-methyltetrol sulfates, were measured at atmospherically relevant cooling rates (2-10 K/min) by thin film broadband dielectric spectroscopy. The results indicate that 2-methyltetrol sulfates have the highest glass transition temperature, while ISOPOOH has the lowest glass transition temperature. By varying the cooling rate of the same compound from 2 to 10 K/min, the Tg of these compounds increased by 4-5 K. This temperature difference leads to a height difference of 400-800 m in the atmosphere for the corresponding updraft induced cooling rates, assuming a hygroscopicity value (κ) of 0.1 and relative humidity less than 95%. The Tg of the organic compounds was found to be strongly correlated with volatility, and a semiempirical formula between glass transition temperatures and volatility was derived. The Gordon-Taylor equation was applied to calculate the effect of relative humidity (RH) and water content at five mixing ratios on the Tg of organic aerosols. The model shows that Tg could drop by 15-40 K as the RH changes from <5 to 90%, whereas the mixing ratio of water in the particle increases from 0 to 0.5. These results underscore the importance of chemical composition, updraft rates, and water content (RH) in determining the phase states and hygroscopic properties of organic particles.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Chemistry , Boston College , Chestnut Hill , Massachusetts 02459 , United States
- Aerodyne Research Inc. , Billerica , Massachusetts 01821 , United States
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Leonid Nichman
- Department of Chemistry , Boston College , Chestnut Hill , Massachusetts 02459 , United States
| | - Peyton Spencer
- Department of Chemistry , Boston College , Chestnut Hill , Massachusetts 02459 , United States
| | - Jason I Jung
- Department of Chemistry , Boston College , Chestnut Hill , Massachusetts 02459 , United States
| | - Andrew Lee
- Department of Chemistry , Boston College , Chestnut Hill , Massachusetts 02459 , United States
| | - Brian K Heffernan
- Department of Chemistry , Boston College , Chestnut Hill , Massachusetts 02459 , United States
| | - Avram Gold
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Zhenfa Zhang
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Yuzhi Chen
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | | | - John T Jayne
- Aerodyne Research Inc. , Billerica , Massachusetts 01821 , United States
| | - Douglas R Worsnop
- Aerodyne Research Inc. , Billerica , Massachusetts 01821 , United States
| | - Timothy B Onasch
- Department of Chemistry , Boston College , Chestnut Hill , Massachusetts 02459 , United States
- Aerodyne Research Inc. , Billerica , Massachusetts 01821 , United States
| | - Jason D Surratt
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - David Chandler
- Department of Chemistry , University of California, Berkeley , Berkeley , California 94720 , United States
| | - Paul Davidovits
- Department of Chemistry , Boston College , Chestnut Hill , Massachusetts 02459 , United States
| | - Charles E Kolb
- Aerodyne Research Inc. , Billerica , Massachusetts 01821 , United States
| |
Collapse
|
32
|
Ren Y, Wang G, Tao J, Zhang Z, Wu C, Wang J, Li J, Wei J, Li H, Meng F. Seasonal characteristics of biogenic secondary organic aerosols at Mt. Wuyi in Southeastern China: Influence of anthropogenic pollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:493-500. [PMID: 31163382 DOI: 10.1016/j.envpol.2019.05.077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 04/12/2019] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
Thirteen secondary organic aerosol (SOA) tracers of isoprene, monoterpenes and sesquiterpenes were measured for PM2.5 aerosols collected at the summit of Mt. Wuyi (1139 m, a.s.l.), to investigate their seasonality and formation mechanism. Concentrations of the isoprene and monoterpene SOA tracers were much higher in summer than those in other seasons. In contrast, β-caryophyllinic acid was found to be the lowest in summer. Concentrations of those BSOA tracers showed a positive correlation with temperature (R2 = 0.52-0.70), and a negative correlation with relative humidity (R2 = 0.43-0.78). Moreover, thermodynamic model (i.e., ISORROPIA-II) calculation results showed that acidity conditions are favorable for BSOA formation. Robust linear correlations between the BSOA tracers and anthropogenic pollutants such as SO2 (R2 = 0.53-0.7) and NO2 (R2 = 0.37-0.54) were observed for all the samples, suggesting that SO2 and NOx can enhance BSOA production in the remote mountain area of southeast China, which is related to an acid-catalyzed heterogeneous chemistry. Moreover, we also found a significant correlation between the concentrations of the BSOA tracers and levoglucosan especially for β-caryophyllinic acid, indicating that biomass burning plumes from the distant lowland regions could influence the production of BSOA in the mountain free troposphere. Our results clearly demonstrated that anthropogenic emissions in China could enhance BSOA formation in the distant mountain regions.
Collapse
Affiliation(s)
- Yanqin Ren
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Gehui Wang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China; Key Lab of Geographic Information Science of Ministry of Education of China, School of Geographic Sciences, East China Normal University, Shanghai, 200142, China.
| | - Jun Tao
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Zhisheng Zhang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Can Wu
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China; Key Lab of Geographic Information Science of Ministry of Education of China, School of Geographic Sciences, East China Normal University, Shanghai, 200142, China
| | - Jiayuan Wang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Jianjun Li
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Jie Wei
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hong Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Fan Meng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
33
|
Walhout EQ, Dorn SE, Martens J, Berden G, Oomens J, Cheong PHY, Kroll JH, O'Brien RE. Infrared Ion Spectroscopy of Environmental Organic Mixtures: Probing the Composition of α-Pinene Secondary Organic Aerosol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7604-7612. [PMID: 31184875 DOI: 10.1021/acs.est.9b02077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Characterizing the chemical composition of organic aerosols can elucidate aging mechanisms as well as the chemical and physical properties of the aerosol. However, the high chemical complexity and often low atmospheric abundance present a difficult analytical challenge. Milligrams or more of material may be needed for speciated spectroscopic analysis. In contrast, mass spectrometry provides a very sensitive platform but limited structural information. Here, we combine the strengths of mass spectrometry and infrared (IR) action spectroscopy to generate characteristic IR spectra of individual, mass-isolated ion populations. Soft ionization combined with in situ infrared ion spectroscopy, using the tunable free-electron laser FELIX, provides detailed information on molecular structures and functional groups. We apply this technique, along with quantum mechanical modeling, to characterize organic molecules in secondary organic aerosol (SOA) formed from the ozonolysis of α-pinene. Spectral overlap with a standard is used to identify cis-pinonic acid. We also demonstrate the characterization of isomers for multiple SOA products using both quantum mechanical computations and analyses of fragment ion spectra. These results demonstrate the detailed structural information on isolated ions obtained by combining mass spectrometry with fingerprint IR spectroscopy.
Collapse
Affiliation(s)
- Emma Q Walhout
- Department of Chemistry , College of William and Mary , Williamsburg , Virginia 23185 , United States
| | - Shelby E Dorn
- Department of Chemistry , Oregon State University , 153 Gilbert Hall , Corvallis , Oregon 97331-4003 , United States
| | - Jonathan Martens
- Radboud University , Institute for Molecules and Materials, FELIX Laboratory , Toernooiveld 7c , 6525ED Nijmegen , The Netherlands
| | - Giel Berden
- Radboud University , Institute for Molecules and Materials, FELIX Laboratory , Toernooiveld 7c , 6525ED Nijmegen , The Netherlands
| | - Jos Oomens
- Radboud University , Institute for Molecules and Materials, FELIX Laboratory , Toernooiveld 7c , 6525ED Nijmegen , The Netherlands
- van't Hoff Institute for Molecular Sciences , University of Amsterdam , 1098XH Amsterdam , Science Park 908 , The Netherlands
| | - Paul H-Y Cheong
- Department of Chemistry , Oregon State University , 153 Gilbert Hall , Corvallis , Oregon 97331-4003 , United States
| | - Jesse H Kroll
- Department of Civil and Environmental Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Rachel E O'Brien
- Department of Chemistry , College of William and Mary , Williamsburg , Virginia 23185 , United States
- Department of Civil and Environmental Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
34
|
Chen Y, Xu L, Humphry T, Hettiyadura APS, Ovadnevaite J, Huang S, Poulain L, Schroder JC, Campuzano-Jost P, Jimenez JL, Herrmann H, O'Dowd C, Stone EA, Ng NL. Response of the Aerodyne Aerosol Mass Spectrometer to Inorganic Sulfates and Organosulfur Compounds: Applications in Field and Laboratory Measurements. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:5176-5186. [PMID: 30939000 DOI: 10.1021/acs.est.9b00884] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Organosulfur compounds are important components of secondary organic aerosols (SOA). While the Aerodyne high-resolution time-of-flight aerosol mass spectrometer (AMS) has been extensively used in aerosol studies, the response of the AMS to organosulfur compounds is not well-understood. Here, we investigated the fragmentation patterns of organosulfurs and inorganic sulfates in the AMS, developed a method to deconvolve total sulfate into components of inorganic and organic origins, and applied this method in both laboratory and field measurements. Apportionment results from laboratory isoprene photooxidation experiment showed that with inorganic sulfate seed, sulfate functionality of organic origins can contribute ∼7% of SOA mass at peak growth. Results from measurements in the Southeastern U.S. showed that 4% of measured sulfate is from organosulfur compounds. Methanesulfonic acid was estimated for measurements in the coastal and remote marine boundary layer. We explored the application of this method to unit mass-resolution data, where it performed less well due to interferences. Our apportionment results demonstrate that organosulfur compounds could be a non-negligible source of sulfate fragments in AMS laboratory and field data sets. A reevaluation of previous AMS measurements over the full range of atmospheric conditions using this method could provide a global estimate/constraint on the contribution of organosulfur compounds.
Collapse
Affiliation(s)
- Yunle Chen
- School of Earth and Atmospheric Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Lu Xu
- School of Chemical and Biomolecular Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
- Now at Division of Geological and Planetary Sciences , California Institute of Technology , Pasadena , California 91125 , United States
| | - Tim Humphry
- Department of Chemistry , Truman State University , Kirksville , Missouri 63501 , United States
| | | | - Jurgita Ovadnevaite
- School of Physics and Centre for Climate and Air Pollution Studies, Ryan Institute , National University of Ireland Galway , Galway H91 TK33 , Ireland
| | - Shan Huang
- Now at Institute for Environmental and Climate Research , Jinan University , Guangzhou , Guangdong 511443 , China
- Leibniz Institute for Tropospheric Research , Leipzig , Sachsen 04318 , Germany
| | - Laurent Poulain
- Leibniz Institute for Tropospheric Research , Leipzig , Sachsen 04318 , Germany
| | - Jason C Schroder
- Department of Chemistry , University of Colorado , Boulder , Colorado 80309 , United States
- Cooperative Institute for Research in the Environmental Sciences (CIRES) , University of Colorado , Boulder , Colorado 80309 , United States
| | - Pedro Campuzano-Jost
- Department of Chemistry , University of Colorado , Boulder , Colorado 80309 , United States
- Cooperative Institute for Research in the Environmental Sciences (CIRES) , University of Colorado , Boulder , Colorado 80309 , United States
| | - Jose L Jimenez
- Department of Chemistry , University of Colorado , Boulder , Colorado 80309 , United States
- Cooperative Institute for Research in the Environmental Sciences (CIRES) , University of Colorado , Boulder , Colorado 80309 , United States
| | - Hartmut Herrmann
- Leibniz Institute for Tropospheric Research , Leipzig , Sachsen 04318 , Germany
| | - Colin O'Dowd
- School of Physics and Centre for Climate and Air Pollution Studies, Ryan Institute , National University of Ireland Galway , Galway H91 TK33 , Ireland
| | - Elizabeth A Stone
- Department of Chemistry , University of Iowa , Iowa City , Iowa 52242 , United States
| | - Nga Lee Ng
- School of Earth and Atmospheric Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
- School of Chemical and Biomolecular Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| |
Collapse
|
35
|
Stropoli SJ, Miner CR, Hill DR, Elrod MJ. Assessing Potential Oligomerization Reaction Mechanisms of Isoprene Epoxydiols on Secondary Organic Aerosol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:176-184. [PMID: 30500166 DOI: 10.1021/acs.est.8b05247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Extensive studies of secondary organic aerosol (SOA) formation have identified isoprene epoxydiol (IEPOX) intermediates as key species in the formation of isoprene-derived SOA. Recent work has suggested that isoprene-derived dimers and oligomers may constitute a significant fraction of SOA, but a mechanism for the formation of such abundant SOA components has yet to be established. The potential for dimer formation from the nucleophilic addition of 2-methyltetrol to trans-β-IEPOX was assessed through a series of model epoxide-nucleophile experiments using nuclear magnetic resonance (NMR) spectroscopy. These experiments helped establish a rigorous understanding of structural, stereochemical, and NMR chemical shift trends, which were used along with nucleophilic strength calculations to interpret the results of the trans-β-IEPOX + 2-methyltetrol reaction and evaluate its relevance in the atmosphere. A preference for less sterically hindered nucleophiles was observed in all model systems. In all addition products, a significant increase in NMR chemical shift was observed directly adjacent to the epoxide-nucleophile linkage, with smaller decreases in chemical shift at all other sites. A partial NMR assignment of a single trans-β-IEPOX + 2-methyltetrol nucleophilic addition product was obtained, but nucleophilic strength calculations suggest that 2-methyltetrol is a poor nucleophile. Therefore, this reaction is unlikely to significantly contribute to dimer and oligomer formation on SOA. Nevertheless, the structural and stereochemical considerations, NMR assignments, and NMR chemical shift trends reported here will prove useful in future attempts to synthesize dimer and oligomer analytical standards.
Collapse
Affiliation(s)
- Santino J Stropoli
- Department of Chemistry and Biochemistry , Oberlin College , Oberlin , Ohio 44074 , United States
| | - Corina R Miner
- Department of Chemistry and Biochemistry , Oberlin College , Oberlin , Ohio 44074 , United States
| | - Daniel R Hill
- Department of Chemistry and Biochemistry , Oberlin College , Oberlin , Ohio 44074 , United States
| | - Matthew J Elrod
- Department of Chemistry and Biochemistry , Oberlin College , Oberlin , Ohio 44074 , United States
| |
Collapse
|
36
|
Nestorowicz K, Jaoui M, Rudzinski KJ, Lewandowski M, Kleindienst TE, Spólnik G, Danikiewicz W, Szmigielski R. Chemical composition of isoprene SOA under acidic and non-acidic conditions: effect of relative humidity. ATMOSPHERIC CHEMISTRY AND PHYSICS 2018; 18:18101-18121. [PMID: 32158471 PMCID: PMC7063744 DOI: 10.5194/acp-18-18101-2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The effect of acidity and relative humidity on bulk isoprene aerosol parameters has been investigated in several studies; however, few measurements have been conducted on individual aerosol compounds. The focus of this study has been the examination of the effect of acidity and relative humidity on secondary organic aerosol (SOA) chemical composition from isoprene photooxidation in the presence of nitrogen oxide (NO x ). A detailed characterization of SOA at the molecular level was also investigated. Experiments were conducted in a 14.5 m3 smog chamber operated in flow mode. Based on a detailed analysis of mass spectra obtained from gas chromatography-mass spectrometry of silylated derivatives in electron impact and chemical ionization modes, ultra-high performance liquid chromatography/electrospray ionization/time-of-flight high-resolution mass spectrometry, and collision-induced dissociation in the negative ionization modes, we characterized not only typical isoprene products but also new oxygenated compounds. A series of nitroxy-organosulfates (NOSs) were tentatively identified on the basis of high-resolution mass spectra. Under acidic conditions, the major identified compounds include 2-methyltetrols (2MT), 2-methylglyceric acid (2mGA), and 2MT-OS. Other products identified include epoxydiols, mono- and dicarboxylic acids, other organic sulfates, and nitroxy- and nitrosoxy-OS. The contribution of SOA products from isoprene oxidation to PM2.5 was investigated by analyzing ambient aerosol collected at rural sites in Poland. Methyltetrols, 2mGA, and several organosulfates and nitroxy-OS were detected in both the field and laboratory samples. The influence of relative humidity on SOA formation was modest in non-acidic-seed experiments and stronger under acidic seed aerosol. Total secondary organic carbon decreased with increasing relative humidity under both acidic and non-acidic conditions. While the yields of some of the specific organic compounds decreased with increasing relative humidity, others varied in an indeterminate manner from changes in the relative humidity.
Collapse
Affiliation(s)
- Klara Nestorowicz
- Environmental Chemistry Group, Institute of Physical Chemistry Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Mohammed Jaoui
- US Environmental Protection Agency, 109 T.W. Alexander Drive, RTP, NC 27711, USA
| | - Krzysztof Jan Rudzinski
- Environmental Chemistry Group, Institute of Physical Chemistry Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Michael Lewandowski
- US Environmental Protection Agency, 109 T.W. Alexander Drive, RTP, NC 27711, USA
| | | | - Grzegorz Spólnik
- Mass Spectrometry Group, Institute of Organic Chemistry, Polish Academy of Science, 01-224 Warsaw, Poland
| | - Witold Danikiewicz
- Mass Spectrometry Group, Institute of Organic Chemistry, Polish Academy of Science, 01-224 Warsaw, Poland
| | - Rafal Szmigielski
- Environmental Chemistry Group, Institute of Physical Chemistry Polish Academy of Sciences, 01-224 Warsaw, Poland
| |
Collapse
|