1
|
Tain YL, Hsu CN. Maternal Dietary Strategies for Improving Offspring Cardiovascular-Kidney-Metabolic Health: A Scoping Review. Int J Mol Sci 2024; 25:9788. [PMID: 39337276 PMCID: PMC11432268 DOI: 10.3390/ijms25189788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Dietary regulation has been recognized for its profound impact on human health. The convergence of cardiovascular, kidney, and metabolic disorders at the pathophysiological level has given rise to cardiovascular-kidney-metabolic (CKM) syndrome, which constitutes a significant global health burden. Maternal dietary nutrients play a crucial role in fetal development, influencing various programmed processes. This review emphasizes the effects of different types of dietary interventions on each component of CKM syndrome in both preclinical and clinical settings. We also provide an overview of potential maternal dietary strategies, including amino acid supplementation, lipid-associated diets, micronutrients, gut microbiota-targeted diets, and plant polyphenols, aimed at preventing CKM syndrome in offspring. Additionally, we discuss the mechanisms mediated by nutrient-sensing signals that contribute to CKM programming. Altogether, we underscore the interaction between maternal dietary interventions and the risk of CKM syndrome in offspring, emphasizing the need for continued research to facilitate their clinical translation.
Collapse
Affiliation(s)
- You-Lin Tain
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
2
|
Wang S, Cui Z, Yang H. Interactions between host and gut microbiota in gestational diabetes mellitus and their impacts on offspring. BMC Microbiol 2024; 24:161. [PMID: 38730357 PMCID: PMC11083820 DOI: 10.1186/s12866-024-03255-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/08/2024] [Indexed: 05/12/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is characterized by insulin resistance and low-grade inflammation, and most studies have demonstrated gut dysbiosis in GDM pregnancies. Overall, they were manifested as a reduction in microbiome diversity and richness, depleted short chain fatty acid (SCFA)-producing genera and a dominant of Gram-negative pathogens releasing lipopolysaccharide (LPS). The SCFAs functioned as energy substance or signaling molecules to interact with host locally and beyond the gut. LPS contributed to pathophysiology of diseases through activating Toll-like receptor 4 (TLR4) and involved in inflammatory responses. The gut microbiome dysbiosis was not only closely related with GDM, it was also vital to fetal health through vertical transmission. In this review, we summarized gut microbiota signature in GDM pregnancies of each trimester, and presented a brief introduction of microbiome derived SCFAs. We then discussed mechanisms of microbiome-host interactions in the physiopathology of GDM and associated metabolic disorders. Finally, we compared offspring microbiota composition from GDM with that from normal pregnancies, and described the possible mechanism.
Collapse
Affiliation(s)
- Shuxian Wang
- Department of Obstetrics and Gynaecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Zifeng Cui
- Department of Obstetrics and Gynaecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Huixia Yang
- Department of Obstetrics and Gynaecology, Peking University First Hospital, Beijing, China.
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China.
| |
Collapse
|
3
|
Mei X, Li Y, Zhang X, Zhai X, Yang Y, Li Z, Li L. Maternal Phlorizin Intake Protects Offspring from Maternal Obesity-Induced Metabolic Disorders in Mice via Targeting Gut Microbiota to Activate the SCFA-GPR43 Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4703-4725. [PMID: 38349207 DOI: 10.1021/acs.jafc.3c06370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Maternal obesity increases the risk of obesity and metabolic disorders (MDs) in offspring, which can be mediated by the gut microbiota. Phlorizin (PHZ) can improve gut dysbiosis and positively affect host health; however, its transgenerational metabolic benefits remain largely unclear. This study aimed to investigate the potential of maternal PHZ intake in attenuating the adverse impacts of a maternal high-fat diet on obesity-related MDs in dams and offspring. The results showed that maternal PHZ reduced HFD-induced body weight gain and fat accumulation and improved glucose intolerance and abnormal lipid profiles in both dams and offspring. PHZ improved gut dysbiosis by promoting expansion of SCFA-producing bacteria, Akkermansia and Blautia, while inhibiting LPS-producing and pro-inflammatory bacteria, resulting in significantly increased fecal SCFAs, especially butyric acid, and reduced serum lipopolysaccharide levels and intestinal inflammation. PHZ also promoted intestinal GLP-1/2 secretion and intestinal development and enhanced gut barrier function by activating G protein-coupled receptor 43 (GPR43) in the offspring. Antibiotic-treated mice receiving FMT from PHZ-regulated offspring could attenuate MDs induced by receiving FMT from HFD offspring through the gut microbiota to activate the GPR43 pathway. It can be regarded as a promising functional food ingredient for preventing intergenerational transmission of MDs and breaking the obesity cycle.
Collapse
Affiliation(s)
- Xueran Mei
- Department of Obstetrics, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
- Post-Doctoral Scientific Research Station of Clinical Medicine, Jinan University, Guangzhou 510632, China
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Yi Li
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney 2052, Australia
- ARC Centre of Excellence for Nanoscale Biophotonics, University of New South Wales, Sydney 2052, Australia
| | - Xiaoyu Zhang
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China
| | - Xiwen Zhai
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney 2052, Australia
- ARC Centre of Excellence for Nanoscale Biophotonics, University of New South Wales, Sydney 2052, Australia
| | - Yi Yang
- Department of Obstetrics, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
- Post-Doctoral Scientific Research Station of Clinical Medicine, Jinan University, Guangzhou 510632, China
| | - Zhengjuan Li
- Department of Obstetrics, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
- Post-Doctoral Scientific Research Station of Clinical Medicine, Jinan University, Guangzhou 510632, China
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Liping Li
- Department of Obstetrics, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
- Post-Doctoral Scientific Research Station of Clinical Medicine, Jinan University, Guangzhou 510632, China
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| |
Collapse
|
4
|
Tain YL, Hsu CN. Nutritional Approaches Targeting Gut Microbiota in Oxidative-Stress-Associated Metabolic Syndrome: Focus on Early Life Programming. Nutrients 2024; 16:683. [PMID: 38474810 DOI: 10.3390/nu16050683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Metabolic syndrome (MetS) denotes a constellation of risk factors associated with the development of cardiovascular disease, with its roots potentially traced back to early life. Given the pivotal role of oxidative stress and dysbiotic gut microbiota in MetS pathogenesis, comprehending their influence on MetS programming is crucial. Targeting these mechanisms during the early stages of life presents a promising avenue for preventing MetS later in life. This article begins by examining detrimental insults during early life that impact fetal programming, ultimately contributing to MetS in adulthood. Following that, we explore the role of oxidative stress and the dysregulation of gut microbiota in the initiation of MetS programming. The review also consolidates existing evidence on how gut-microbiota-targeted interventions can thwart oxidative-stress-associated MetS programming, encompassing approaches such as probiotics, prebiotics, postbiotics, and the modulation of bacterial metabolites. While animal studies demonstrate the favorable effects of gut-microbiota-targeted therapy in mitigating MetS programming, further clinical investigations are imperative to enhance our understanding of manipulating gut microbiota and oxidative stress for the prevention of MetS.
Collapse
Affiliation(s)
- You-Lin Tain
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
5
|
Zhang Q, Xiao X, Zheng J, Li M, Yu M, Ping F, Wang T. Maternal inulin alleviates high-fat diet-induced lipid disorder in offspring by epigenetically modulating hypothalamus feeding circuit-related genes. Food Funct 2024; 15:110-124. [PMID: 38044717 DOI: 10.1039/d3fo02223d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Increasing evidence supports the existence of fetal-originated adult diseases. Recent research indicates that the intrauterine environment affects the fetal hypothalamic energy intake center. Inulin is a probiotic that can moderate metabolic disorders, but whether maternal inulin intervention confers long-term metabolic benefits to lipid metabolism in offspring in their adult lives and the mechanism involved are unknown. Here, we used a maternal overnutrition model that was induced by excess energy intake before and during pregnancy and lactation and maternal inulin intervention was performed during pregnancy and lactation. The hypothalamic genome methylation in offspring was analyzed using a methylation array. The results showed that maternal inulin treatment modified the maternal high-fat diet (HFD)-induced increases in body weight, adipose tissue weight, and serum insulin and leptin levels and decreases in serum adiponectin levels. Maternal inulin intervention regulated the impairments in hypothalamic leptin resistance, induced the methylation of Socs3, Npy, and Il6, and inhibited the methylation of Lepr in the hypothalamus of offspring. In conclusion, maternal inulin intervention modifies offspring lipid metabolism, and the underlying mechanism involves the methylation of genes in the hypothalamus feeding circuit.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Xinhua Xiao
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Jia Zheng
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Ming Li
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Miao Yu
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Fan Ping
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Tong Wang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
6
|
Wayland JL, Doll JR, Lawson MJ, Stankiewicz TE, Oates JR, Sawada K, Damen MSMA, Alarcon PC, Haslam DB, Trout AT, DeFranco EA, Klepper CM, Woo JG, Moreno-Fernandez ME, Mouzaki M, Divanovic S. Thermoneutral Housing Enables Studies of Vertical Transmission of Obesogenic Diet-Driven Metabolic Diseases. Nutrients 2023; 15:4958. [PMID: 38068816 PMCID: PMC10708424 DOI: 10.3390/nu15234958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Vertical transmission of obesity is a critical contributor to the unabated obesity pandemic and the associated surge in metabolic diseases. Existing experimental models insufficiently recapitulate "human-like" obesity phenotypes, limiting the discovery of how severe obesity in pregnancy instructs vertical transmission of obesity. Here, via utility of thermoneutral housing and obesogenic diet feeding coupled to syngeneic mating of WT obese female and lean male mice on a C57BL/6 background, we present a tractable, more "human-like" approach to specifically investigate how maternal obesity contributes to offspring health. Using this model, we found that maternal obesity decreased neonatal survival, increased offspring adiposity, and accelerated offspring predisposition to obesity and metabolic disease. We also show that severe maternal obesity was sufficient to skew offspring microbiome and create a proinflammatory gestational environment that correlated with inflammatory changes in the offspring in utero and adulthood. Analysis of a human birth cohort study of mothers with and without obesity and their infants was consistent with mouse study findings of maternal inflammation and offspring weight gain propensity. Together, our results show that dietary induction of obesity in female mice coupled to thermoneutral housing can be used for future mechanistic interrogations of obesity and metabolic disease in pregnancy and vertical transmission of pathogenic traits.
Collapse
Affiliation(s)
- Jennifer L. Wayland
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jessica R. Doll
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Matthew J. Lawson
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Traci E. Stankiewicz
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jarren R. Oates
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Keisuke Sawada
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Michelle S. M. A. Damen
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Pablo C. Alarcon
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - David B. Haslam
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| | - Andrew T. Trout
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
- Department of Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| | - Emily A. DeFranco
- Department of Obstetrics and Gynecology, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| | - Corie M. Klepper
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jessica G. Woo
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Maria E. Moreno-Fernandez
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Marialena Mouzaki
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Senad Divanovic
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
7
|
Zhou GQ, Huang MJ, Yu X, Zhang NN, Tao S, Zhang M. Early life adverse exposures in irritable bowel syndrome: new insights and opportunities. Front Pediatr 2023; 11:1241801. [PMID: 37732013 PMCID: PMC10507713 DOI: 10.3389/fped.2023.1241801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a prevalent functional gastrointestinal disorder worldwide. Extensive research has identified multiple factors contributing to its development, including genetic predisposition, chronic infection, gut dysbiosis, aberrant serotonin metabolism, and brain dysfunction. Recent studies have emphasized the critical role of the early life stage as a susceptibility window for IBS. Current evidence suggests that diet can heighten the risk of IBS in offspring by influencing the microbiota composition, intestinal epithelium structure, gene expression, and brain-gut axis. The use of antibiotics during pregnancy and the neonatal period disrupts the normal gut microbiota structure, aligning it with the characteristics observed in IBS patients. Additionally, early life stress impacts susceptibility to IBS by modulating TLR4, NK1, and the hypothalamic-pituitary-adrenal (HPA) axis while compromising the offspring's immune system. Formula feeding facilitates the colonization of pathogenic bacteria in the intestines, concurrently reducing the presence of probiotics. This disruption of the Th1 and Th2 cell balance in the immune system weakens the intestinal epithelial barrier. Furthermore, studies suggest that delivery mode influences the occurrence of IBS by altering the composition of gut microbes. This review aims to provide a comprehensive summary of the existing evidence regarding the impact of adverse early life exposures on IBS during pregnancy, intrapartum, and neonatal period. By consolidating this knowledge, the review enhances our understanding of the direct and indirect mechanisms underlying early life-related IBS and offers new insights and research directions from childhood to adulthood.
Collapse
Affiliation(s)
| | | | | | | | | | - Ming Zhang
- Department of General Practice, Honghui Hospital, Xi'an Jiaotong University, Xi’an, China
| |
Collapse
|
8
|
Zheng S, Yin J, Yue H, Li L. Maternal high-fat diet increases the susceptibility of offspring to colorectal cancer via the activation of intestinal inflammation. Front Nutr 2023; 10:1191206. [PMID: 37252240 PMCID: PMC10213637 DOI: 10.3389/fnut.2023.1191206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023] Open
Abstract
A high-fat diet plays a key role in the pathogenesis of colorectal cancer, and this effect on the gut can also occur in the offspring of mothers with a high-fat diet. In this review, we discuss the role of a high-fat diet in the pathogenesis of colorectal cancer and summarize the effects of a maternal high-fat diet on the activation of inflammation and development of colorectal cancer in offspring. Studies have found that a maternal high-fat diet primarily induces an inflammatory response in the colorectal tissue of both the mother herself and the offspring during pregnancy. This leads to the accumulation of inflammatory cells in the colorectal tissue and the release of inflammatory cytokines, which further activate the NF-κb and related inflammatory signaling pathways. Research suggests that high levels of lipids and inflammatory factors from mothers with a high-fat diet are passed to the offspring through the transplacental route, which induces colorectal inflammation, impairs the intestinal microecological structure and the intestinal barrier, and interferes with intestinal development in the offspring. This in turn activates the NF-κb and related signaling pathways, which further aggravates intestinal inflammation. This process of continuous inflammatory stimulation and repair may promote the uncontrolled proliferation of colorectal mucosal cells in the offspring, thus increasing their susceptibility to colorectal cancer.
Collapse
Affiliation(s)
- Shimin Zheng
- Department of Gastroenterology and Hepatology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jianbin Yin
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Hui Yue
- Department of Gastroenterology and Hepatology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Lifu Li
- Department of Gastroenterology and Hepatology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Menegati LM, de Oliveira EE, Oliveira BDC, Macedo GC, de Castro E Silva FM. Asthma, obesity, and microbiota: A complex immunological interaction. Immunol Lett 2023; 255:10-20. [PMID: 36646290 DOI: 10.1016/j.imlet.2023.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Obesity and allergic asthma are inflammatory chronic diseases mediated by distinct immunological features, obesity presents a Th1/Th17 profile, asthma is commonly associated with Th2 response. However, when combined, they result in more severe asthma symptoms, greater frequency of exacerbation episodes, and lower therapy responsiveness. These features lead to decreased life quality, associated with higher morbidity/mortality rates. In addition, obesity prompts specific asthma phenotypes, which can be dependent on atopic status, age, and gender. In adults, obesity is associated with neutrophilic/Th17 profile, while in children, the outcome is diverse, in some cases children with obesity present aggravation of atopy, and Th2 inflammation, and in others an association with a Th1 profile, with reduced IgE levels and eosinophilia. These alterations occur due to a complex group of factors among which the microbiome has been recently explored. Particularly, evidence shows its important role in susceptibility or resistance to asthma development, via gut-lung-axis, and demonstrates its relevance to the immune pathogenesis of the syndrome. Few studies address the relevance of the lung microbiome in shaping the immune response, locally. However, specific bacteria, like Moraxella catarrhalis, Haemophilus influenza, and Streptococcus pneumoniae, correlate with important features of the obese-asthmatic phenotype. Although maternal obesity is known to increase asthma risk in offspring, the impact on lung colonization is unknown. This review details the main key immune mechanisms involved in obesity-aggravated asthma, featuring the effect of maternal obesity in the establishment of gut and lung microbiota of the offspring, acting as potential childhood asthma inducer.
Collapse
Affiliation(s)
- Laura Machado Menegati
- Faculdade de Medicina, Programa de Pós-Graduação em Saúde, Universidade Federal de Juiz de Fora, MG, Brazil
| | - Erick Esteves de Oliveira
- Instituto de Ciências Biológicas, Programa de Pós-Graduação em Biologia Departamento de Parasitologia, Microbiologia e Imunologia, Universidade Federal de Juiz de Fora MG, Brazil
| | | | - Gilson Costa Macedo
- Instituto de Ciências Biológicas, Programa de Pós-Graduação em Biologia Departamento de Parasitologia, Microbiologia e Imunologia, Universidade Federal de Juiz de Fora MG, Brazil
| | - Flávia Márcia de Castro E Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas - RJ, Universidade do Estado do Rio de Janeiro, Brazil.
| |
Collapse
|
10
|
Sun L, Tan X, Liang X, Chen H, Ou Q, Wu Q, Yu X, Zhao H, Huang Q, Yi Z, Wei J, Wu F, Zhu H, Wang L. Maternal Betaine Supplementation Mitigates Maternal High Fat Diet-Induced NAFLD in Offspring Mice through Gut Microbiota. Nutrients 2023; 15:nu15020284. [PMID: 36678155 PMCID: PMC9861146 DOI: 10.3390/nu15020284] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/27/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Maternal betaine supplementation has been proven to alleviate non-alcoholic fatty liver disease (NAFLD) in offspring caused by maternal high-fat diet (MHFD). The gut-liver axis plays an important role in NAFLD pathogenesis. However, whether maternal betaine supplementation can alleviate NAFLD in offspring by the gut-liver axis is unknown. C57BL/6J mice were fed with high-fat diet for 4 weeks before mating, and supplemented with 1% betaine during pregnancy and lactation. After weaning, offspring mice were fed with standard diet to 10 weeks. Maternal betaine supplementation reduced hepatic triglyceride content and alleviated hepatic steatosis in offspring mice exposed to MHFD. Furthermore, the mRNA expression of PPARα, CPT1α and FATP2 was increased and TNFα was reduced by maternal betaine supplementation. Maternal betaine intake decreased the relative abundances of Proteobateria, Desulfovibrio and Ruminococcus, but increased the relative abundances of Bacteroides and Parabacteroides. Moreover, maternal betaine intake increased the concentrations of short-chain fatty acids (SCFAs), including acetic acid, butyric acid and valeric acid, in the feces. Gut microbiota and SCFAs were significantly correlated with hepatic triglyceride content and expression of the above genes. Maternal betaine intake had no effect on other gut microbiota-related metabolites (bile acid and trimethylamine-n-oxide). Altogether, maternal betaine supplementation ameliorated MHFD-induced NAFLD possibly through regulating gut microbiota and SCFAs in offspring mice.
Collapse
Affiliation(s)
- Liuqiao Sun
- Department of Maternal, Child and Adolescent Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Xuying Tan
- Department of Child Health Care, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China
| | - Xiaoping Liang
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Hangjun Chen
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Qian Ou
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Qiongmei Wu
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Xinxue Yu
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Hanqing Zhao
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Qiaoli Huang
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Zehua Yi
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Jun Wei
- Department of Science and Technology, Guangzhou Customs, Guangzhou 510623, China
| | - Feng Wu
- Department of Science and Technology, Guangzhou Customs, Guangzhou 510623, China
| | - Huilian Zhu
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Lijun Wang
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, China
- Correspondence: ; Tel.: +86-20-85228095
| |
Collapse
|
11
|
Kendig MD, Hasebe K, Tajaddini A, Kaakoush NO, Westbrook RF, Morris MJ. The Benefits of Switching to a Healthy Diet on Metabolic, Cognitive, and Gut Microbiome Parameters Are Preserved in Adult Rat Offspring of Mothers Fed a High-Fat, High-Sugar Diet. Mol Nutr Food Res 2023; 67:e2200318. [PMID: 36271770 PMCID: PMC10909468 DOI: 10.1002/mnfr.202200318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/05/2022] [Indexed: 01/19/2023]
Abstract
SCOPE Maternal obesity increases the risk of health complications in children, highlighting the need for effective interventions. A rat model of maternal obesity to examine whether a diet switch intervention could reverse the adverse effects of an unhealthy postweaning diet is used. METHODS AND RESULTS Male and female offspring born to dams fed standard chow or a high-fat, high-sugar "cafeteria" (Caf) diet are weaned onto chow or Caf diets until 22 weeks of age, when Caf-fed groups are switched to chow for 5 weeks. Adiposity, gut microbiota composition, and place recognition memory are assessed before and after the switch. Body weight and adiposity fall in switched groups but remain significantly higher than chow-fed controls. Nonetheless, the diet switch improves a deficit in place recognition memory observed in Caf-fed groups, increases gut microbiota species richness, and alters β diversity. Modeling indicate that adiposity most strongly predicts gut microbiota composition before and after the switch. CONCLUSION Maternal obesity does not alter the effects of switching diet on metabolic, microbial, or cognitive measures. Thus, a healthy diet intervention lead to major shifts in body weight, adiposity, place recognition memory, and gut microbiota composition, with beneficial effects preserved in offspring born to obese dams.
Collapse
Affiliation(s)
- Michael D. Kendig
- Department of PharmacologySchool of Medical SciencesUNSW SydneyNSW2052Australia
- School of Life SciencesUniversity of Technology SydneyNSW2007Australia
| | - Kyoko Hasebe
- Department of PharmacologySchool of Medical SciencesUNSW SydneyNSW2052Australia
| | - Aynaz Tajaddini
- Department of PharmacologySchool of Medical SciencesUNSW SydneyNSW2052Australia
| | | | | | - Margaret J. Morris
- Department of PharmacologySchool of Medical SciencesUNSW SydneyNSW2052Australia
| |
Collapse
|
12
|
Vargas LN, Nochi ARF, de Castro PS, Cunha ATM, Silva TCF, Togawa RC, Silveira MM, Caetano AR, Franco MM. Differentially methylated regions identified in bovine embryos are not observed in adulthood. Anim Reprod 2023; 20:e20220076. [PMID: 36938311 PMCID: PMC10023072 DOI: 10.1590/1984-3143-ar2022-0076] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/14/2023] [Indexed: 03/18/2023] Open
Abstract
The establishment of epigenetic marks during the reprogramming window is susceptible to environmental influences, and stimuli during this critical stage can cause altered DNA methylation in offspring. In a previous study, we found that low levels of sulphur and cobalt (low S/Co) in the diet offered to oocyte donors altered the DNA methylome of bovine embryos. However, due to the extensive epigenetic reprogramming that occurs during embryogenesis, we hypothesized that the different methylation regions (DMRs) identified in the blastocysts may not maintain in adulthood. Here, we aimed to characterize DMRs previously identified in embryos, in the blood and sperm of adult progenies of two groups of heifers (low S/Co and control). We used six bulls and characterized the DNA methylation levels of KDM2A, KDM5A, KMT2D, and DOT1L genes. Our results showed that all DMRs analysed in both groups and tissues were hypermethylated unlike that noticed in the embryonic methylome profiles. These results suggest that embryo DMRs were reprogrammed during the final stages of de novo methylation during embryogenesis or later in development. Therefore, due to the highly dynamic epigenetic state during early embryonic development, we suggest that is essential to validate the DMRs found in embryos in adult individuals.
Collapse
Affiliation(s)
- Luna Nascimento Vargas
- Laboratório de Reprodução Animal, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brasil
- Instituto de Biotecnologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil
| | | | - Paloma Soares de Castro
- Laboratório de Reprodução Animal, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brasil
- Instituto de Biotecnologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil
| | | | - Thainara Christie Ferreira Silva
- Laboratório de Reprodução Animal, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brasil
- Instituto de Biotecnologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil
| | | | | | | | - Maurício Machaim Franco
- Laboratório de Reprodução Animal, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brasil
- Instituto de Biotecnologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brasil
- Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil
- Corresponding author:
| |
Collapse
|
13
|
de Oliveira Andrade F, Verma V, Hilakivi-Clarke L. Maternal obesity and resistance to breast cancer treatments among offspring: Link to gut dysbiosis. Cancer Rep (Hoboken) 2022; 5:e1752. [PMID: 36411524 PMCID: PMC9780430 DOI: 10.1002/cnr2.1752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/22/2022] [Accepted: 10/19/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND About 50 000 new cases of cancer in the United States are attributed to obesity. The adverse effects of obesity on breast cancer may be most profound when affecting the early development; that is, in the womb of a pregnant obese mother. Maternal obesity has several long-lasting adverse health effects on the offspring, including increasing offspring's breast cancer risk and mortality. Gut microbiota is a player in obesity as well as may impact breast carcinogenesis. Gut microbiota is established early in life and the microbial composition of an infant's gut becomes permanently dysregulated because of maternal obesity. Metabolites from the microbiota, especially short chain fatty acids (SCFAs), play a critical role in mediating the effect of gut bacteria on multiple biological functions, such as immune system, including tumor immune responses. RECENT FINDINGS Maternal obesity can pre-program daughter's breast cancer to be more aggressive, less responsive to treatments and consequently more likely to cause breast cancer related death. Maternal obesity may also induce poor response to immune checkpoint inhibitor (ICB) therapy through increased abundance of inflammation associated microbiome and decreased abundance of bacteria that are linked to production of SCFAs. Dietary interventions that increase the abundance of bacteria producing SCFAs potentially reverses offspring's resistance to breast cancer therapy. CONCLUSION Since immunotherapies have emerged as highly effective treatments for many cancers, albeit there is an urgent need to enlarge the patient population who will be responsive to these treatments. One of the factors which may cause ICB refractoriness could be maternal obesity, based on its effects on the microbiota markers of ICB therapy response among the offspring. Since about 40% of children are born to obese mothers in the Western societies, it is important to determine if maternal obesity impairs offspring's response to cancer immunotherapies.
Collapse
Affiliation(s)
| | - Vivek Verma
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | | |
Collapse
|
14
|
Sheth VG, Sharma N, Kabeer SW, Tikoo K. Lactobacillus rhamnosus supplementation ameliorates high fat diet-induced epigenetic alterations and prevents its intergenerational inheritance. Life Sci 2022; 311:121151. [DOI: 10.1016/j.lfs.2022.121151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/20/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
15
|
Huang YH, Tain YL, Hsu CN. Maternal Supplementation of Probiotics, Prebiotics or Postbiotics to Prevent Offspring Metabolic Syndrome: The Gap between Preclinical Results and Clinical Translation. Int J Mol Sci 2022; 23:10173. [PMID: 36077575 PMCID: PMC9456151 DOI: 10.3390/ijms231710173] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/21/2022] Open
Abstract
Metabolic syndrome (MetS) is an extremely prevalent complex trait and it can originate in early life. This concept is now being termed the developmental origins of health and disease (DOHaD). Increasing evidence supports that disturbance of gut microbiota influences various risk factors of MetS. The DOHaD theory provides an innovative strategy to prevent MetS through early intervention (i.e., reprogramming). In this review, we summarize the existing literature that supports how environmental cues induced MetS of developmental origins and the interplay between gut microbiota and other fundamental underlying mechanisms. We also present an overview of experimental animal models addressing implementation of gut microbiota-targeted reprogramming interventions to avert the programming of MetS. Even with growing evidence from animal studies supporting the uses of gut microbiota-targeted therapies start before birth to protect against MetS of developmental origins, their effects on pregnant women are still unknown and these results require further clinical translation.
Collapse
Affiliation(s)
- Ying-Hua Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
16
|
Zheng J, Zhang L, Gao Y, Wu H, Zhang J. The dynamic effects of maternal high-calorie diet on glycolipid metabolism and gut microbiota from weaning to adulthood in offspring mice. Front Nutr 2022; 9:941969. [PMID: 35928844 PMCID: PMC9343994 DOI: 10.3389/fnut.2022.941969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/11/2022] [Indexed: 12/04/2022] Open
Abstract
Dysbiosis of gut microbiota can contribute to the progression of diabetes and obesity. Previous studies have shown that maternal high-fat (HF) diet during the perinatal period can alter the microbiota and induce metabolic disorders at weaning. However, whether dysbiosis of gut microbiota and metabolism could be recovered by a normal diet after weaning and the dynamic changes of gut microbiota have not been fully studied. In this study, C57BL/6J female mice were fed with a normal chow (NC) or HF diet for 4 weeks preconception, during gestation, and until pup weaning. After weaning, male offspring were fed with an NC diet until 9 weeks of age. The microbiota of offspring at weaning and 9 weeks of age was collected for 16S rRNA gene amplicon sequencing. We found that dams fed with an HF diet showed glucose intolerance after lactation. Compared with the offspring from NC dams, the offspring from HF dams exhibited a higher body weight, hyperglycemia, glucose intolerance, hyperinsulinemia, hypercholesterolemia, and leptin resistance and lower adiponectin at weaning. Fecal analysis indicated altered microbiota composition between the offspring of the two groups. The decrease in favorable bacteria (such as norank f Bacteroidales S24-7 group) and increase in unfavorable bacteria (such as Lachnoclostridium and Desulfovibrio) were strongly associated with a disturbance of glucose and lipid metabolism. After 6 weeks of normal diet, no difference in body weight, glucose, and lipid profiles was observed between the offspring of the two groups. However, the microbiota composition of offspring in the HF group was still different from that in the NC group, and microbiota diversity was lower in offspring of the HF group. The abundance of Lactobacillus was lower in the offspring of the HF group. In conclusion, a maternal HF diet can induce metabolic homeostasis and gut microbiota disturbance in offspring at weaning. Gut microbiota dysbiosis can persist into adulthood in the offspring, which might have a role in the promotion of susceptibility to obesity and diabetes in the later life of the offspring.
Collapse
Affiliation(s)
- Jia Zheng
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Ling Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Ying Gao
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Honghua Wu
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Junqing Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| |
Collapse
|
17
|
Urbonaite G, Knyzeliene A, Bunn FS, Smalskys A, Neniskyte U. The impact of maternal high-fat diet on offspring neurodevelopment. Front Neurosci 2022; 16:909762. [PMID: 35937892 PMCID: PMC9354026 DOI: 10.3389/fnins.2022.909762] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/27/2022] [Indexed: 12/11/2022] Open
Abstract
A maternal high-fat diet affects offspring neurodevelopment with long-term consequences on their brain health and behavior. During the past three decades, obesity has rapidly increased in the whole human population worldwide, including women of reproductive age. It is known that maternal obesity caused by a high-fat diet may lead to neurodevelopmental disorders in their offspring, such as autism spectrum disorder, attention deficit hyperactivity disorder, anxiety, depression, and schizophrenia. A maternal high-fat diet can affect offspring neurodevelopment due to inflammatory activation of the maternal gut, adipose tissue, and placenta, mirrored by increased levels of pro-inflammatory cytokines in both maternal and fetal circulation. Furthermore, a maternal high fat diet causes gut microbial dysbiosis further contributing to increased inflammatory milieu during pregnancy and lactation, thus disturbing both prenatal and postnatal neurodevelopment of the offspring. In addition, global molecular and cellular changes in the offspring's brain may occur due to epigenetic modifications including the downregulation of brain-derived neurotrophic factor (BDNF) expression and the activation of the endocannabinoid system. These neurodevelopmental aberrations are reflected in behavioral deficits observed in animals, corresponding to behavioral phenotypes of certain neurodevelopmental disorders in humans. Here we reviewed recent findings from rodent models and from human studies to reveal potential mechanisms by which a maternal high-fat diet interferes with the neurodevelopment of the offspring.
Collapse
Affiliation(s)
- Gintare Urbonaite
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Agne Knyzeliene
- Centre for Cardiovascular Science, The Queen’s Medical Research Centre, The University of Edinburgh, Edinburgh, United Kingdom
| | - Fanny Sophia Bunn
- Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
| | - Adomas Smalskys
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Urte Neniskyte
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- VU LSC-EMBL Partnership for Genome Editing Technologies, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
18
|
Wong E, Lui K, Day AS, Leach ST. Manipulating the neonatal gut microbiome: current understanding and future perspectives. Arch Dis Child Fetal Neonatal Ed 2022; 107:346-350. [PMID: 34433586 PMCID: PMC9209688 DOI: 10.1136/archdischild-2021-321922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/10/2021] [Indexed: 11/16/2022]
Abstract
The development of a healthy intestinal microbiome following birth contributes to the overall health of the infant during childhood and into adulthood. However, modern birth practices such as caesarean delivery, feeding, antibiotic exposure as well as maternal factors have the potential to greatly impact infant microbiome development. Aberrant microbiome development may be a key factor in the increasing incidence of inflammatory and gut diseases. This review will summarise the current understanding of how modern birth practices may contribute to deficiencies in neonatal gut microbiome development and will also present potential methods of microbiome engineering that aim to ensure the development of a healthy and robust microbiome to protect the host from disease throughout their life.
Collapse
Affiliation(s)
- Emma Wong
- School of Women's and Children's Health, UNSW Medicine, Sydney, NSW, Australia
| | - Kei Lui
- School of Women's and Children's Health, UNSW Medicine, Sydney, NSW, Australia
| | - Andrew S Day
- School of Women's and Children's Health, UNSW Medicine, Sydney, NSW, Australia,Department of Paediatrics, University of Otago Christchurch, Christchurch, New Zealand
| | - Steven T Leach
- School of Women's and Children's Health, UNSW Medicine, Sydney, NSW, Australia
| |
Collapse
|
19
|
Beneficial metabolic effects of probiotic supplementation in dams and offspring following hypercaloric diet during pregnancy. NUTR CLIN METAB 2022. [DOI: 10.1016/j.nupar.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Wiedmer EB, Herter-Aeberli I. The Potential of Prebiotic and Probiotic Supplementation During Obese Pregnancy to Improve Maternal and Offspring’s Metabolic Health and Reduce Obesity Risk—A Narrative Review. Front Nutr 2022; 9:819882. [PMID: 35464026 PMCID: PMC9021550 DOI: 10.3389/fnut.2022.819882] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/14/2022] [Indexed: 01/14/2023] Open
Abstract
Worldwide, obesity prevalence is rising, severely impairing the health of those affected by increasing their risk for developing non-communicable diseases. The pathophysiology of obesity is complex and caused by a variety of genetic and environmental factors. Recent findings suggest that obesity is partly caused by dysbiosis, an imbalanced gut microbiome. In the context of pregnancy, maternal dysbiosis increases the child’s obesity risk, causing an intergenerational cycle of obesity. Accordingly, interventions modulating the gut microbiome have the potential to interrupt this cycle. This review discusses the potential of pre- and probiotic interventions in modulating maternal obesity associated dysbiosis to limit the child’s obesity risk. The literature search resulted in four animal studies using prebiotics as well as one animal study and six human studies using probiotics. Altogether, prebiotic supplementation in animals successfully decreased the offspring’s obesity risk, while probiotic supplementation in humans failed to show positive impacts in the offspring. However, comparability between studies is limited and considering the complexity of the topic, more studies in this field are required.
Collapse
|
21
|
Jantsch J, Tassinari ID, Giovenardi M, Bambini-Junior V, Guedes RP, de Fraga LS. Mood Disorders Induced by Maternal Overnutrition: The Role of the Gut-Brain Axis on the Development of Depression and Anxiety. Front Cell Dev Biol 2022; 10:795384. [PMID: 35155424 PMCID: PMC8826230 DOI: 10.3389/fcell.2022.795384] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Since the first evidence suggesting that maternal nutrition can impact the development of diseases in the offspring, much has been elucidated about its effects on the offspring’s nervous system. Animal studies demonstrated that maternal obesity can predispose the offspring to greater chances of metabolic and neurodevelopmental diseases. However, the mechanisms underlying these responses are not well established. In recent years, the role of the gut-brain axis in the development of anxiety and depression in people with obesity has emerged. Studies investigating changes in the maternal microbiota during pregnancy and also in the offspring demonstrate that conditions such as maternal obesity can modulate the microbiota, leading to long-term outcomes in the offspring. Considering that maternal obesity has also been linked to the development of psychiatric conditions (anxiety and depression), the gut-brain axis is a promising target to be further explored in these neuropsychiatric contexts. In the present study, we review the relationship between maternal obesity and anxious and depressive features, exploring the gut-brain axis as a potential mechanism underlying this relationship.
Collapse
Affiliation(s)
- Jeferson Jantsch
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Isadora D’Ávila Tassinari
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Márcia Giovenardi
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Victorio Bambini-Junior
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire (UCLan), Preston, United Kingdom
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Renata Padilha Guedes
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Luciano Stürmer de Fraga
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- *Correspondence: Luciano Stürmer de Fraga,
| |
Collapse
|
22
|
Barbosa CM, Lima TC, Barbosa MA, Rezende A, Carneiro CM, Silva SDQ, Itabaiana YA, Carvalho Alzamora A. Progenitor with cardiometabolic disorders increases food intake, systemic inflammation and gut microbiota alterations in the second generation offspring. Food Funct 2022; 13:8685-8702. [DOI: 10.1039/d1fo02838c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work presents the effects of the high-fat diet (H) consumed by the progenitor (G0) on cardiometabolic disorders and on intestinal microbiota in the second generation ofspring (F2). Rats submitted...
Collapse
|
23
|
Cuinat C, Stinson SE, Ward WE, Comelli EM. Maternal Intake of Probiotics to Program Offspring Health. Curr Nutr Rep 2022; 11:537-562. [PMID: 35986890 PMCID: PMC9750916 DOI: 10.1007/s13668-022-00429-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW Probiotics intake may be considered beneficial by prospective and pregnant mothers, but their effects on offspring development are incompletely understood. The purpose of this review was to examine recent pre-clinical and clinical studies to understand how maternal probiotics exposure affects offspring health outcomes. RECENT FINDINGS Effects were investigated in the context of supporting offspring growth, intestinal health, and gut microbiota, preventing allergic diseases, supporting neurodevelopment, and preventing metabolic disorders in pre-clinical and clinical studies. Most human studies focused on infancy outcomes, whereas pre-clinical studies also examined outcomes at adolescence and young adulthood. While still understudied, both pre-clinical and clinical studies propose epigenetic modifications as an underlying mechanism. Optimal timing of intervention remains unclear. Administration of selected probiotics to mothers has programming potential for sustaining life-long health of offspring. Administration protocols, specific windows of susceptibility, and individual-specific responses need to be further studied.
Collapse
Affiliation(s)
- Céline Cuinat
- grid.17063.330000 0001 2157 2938Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON Canada
| | - Sara E. Stinson
- grid.17063.330000 0001 2157 2938Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON Canada
| | - Wendy E. Ward
- grid.17063.330000 0001 2157 2938Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON Canada ,grid.411793.90000 0004 1936 9318Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON Canada
| | - Elena M. Comelli
- grid.17063.330000 0001 2157 2938Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON Canada ,grid.411793.90000 0004 1936 9318Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON Canada ,grid.17063.330000 0001 2157 2938Joannah and Brian Lawson Centre for Child Nutrition, Faculty of Medicine, University of Toronto, Toronto, ON Canada
| |
Collapse
|
24
|
Obesity Animal Models for Acupuncture and Related Therapy Research Studies. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6663397. [PMID: 34630614 PMCID: PMC8497105 DOI: 10.1155/2021/6663397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 09/02/2021] [Indexed: 11/17/2022]
Abstract
Obesity and related diseases are considered as pandemic representing a worldwide threat for health. Animal models are critical to validate the effects and understand the mechanisms related to classical or innovative preventive and therapeutic strategies. It is, therefore, important to identify the best animal models for translational research, using different evaluation criteria such as the face, construct, and predictive validity. Because the pharmacological treatments and surgical interventions currently used for treating obesity often present many undesirable side effects, relatively high relapse probabilities, acupuncture, electroacupuncture (EA), and related therapies have gained more popularity and attention. Many kinds of experimental animal models have been used for obesity research studies, but in the context of acupuncture, most of the studies were performed in rodent obesity models. Though, are these obesity rodent models really the best for acupuncture or related therapies research studies? In this study, we review different obesity animal models that have been used over the past 10 years for acupuncture and EA research studies. We present their respective advantages, disadvantages, and specific constraints. With the development of research on acupuncture and EA and the increasing interest regarding these approaches, proper animal models are critical for preclinical studies aiming at developing future clinical trials in the human. The aim of the present study is to provide researchers with information and guidance related to the preclinical models that are currently available to investigate the outcomes of acupuncture and related therapies.
Collapse
|
25
|
Early-life nutrition and metabolic disorders in later life: a new perspective on energy metabolism. Chin Med J (Engl) 2021; 133:1961-1970. [PMID: 32826460 PMCID: PMC7462214 DOI: 10.1097/cm9.0000000000000976] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Type 2 diabetes mellitus and metabolic disorders have become an epidemic globally. However, the pathogenesis remains largely unclear and the prevention and treatment are still limited. In addition to environmental factors during adulthood, early life is the critical developmental window with high tissue plasticity, which might be modified by external environmental cues. Substantial evidence has demonstrated the vital role of early-life nutrition in programming the metabolic disorders in later life. In this review, we aim to overview the concepts of fetal programming and investigate the effects of early-life nutrition on energy metabolism in later life and the potential epigenetic mechanism. The related studies published on PubMed database up to March 2020 were included. The results showed that both maternal overnutrition and undernutrition increased the riskes of metabolic disorders in offspring and epigenetic modifications, including DNA methylation, miRNAs, and histone modification, might be the vital mediators. The beneficial effects of early-life lifestyle modifications as well as dietary and nutritional interventions on these deleterious metabolic remolding were initially observed. Overall, characterizing the early-life malnutrition that reshapes metabolic disease trajectories may yield novel targets for early prevention and intervention and provide a new point of view to the energy metabolism.
Collapse
|
26
|
Valeri F, Endres K. How biological sex of the host shapes its gut microbiota. Front Neuroendocrinol 2021; 61:100912. [PMID: 33713673 DOI: 10.1016/j.yfrne.2021.100912] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/10/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023]
Abstract
The gut microbiota is a complex system, consisting of a dynamic population of microorganisms, involved in the regulation of the host's homeostasis. A vast number of factors are driving the gut microbiota composition including diet, antibiotics, environment, and lifestyle. However, in the past decade, a growing number of studies also focused on the role of sex in relationship to changes in the gut microbiota composition in animal experiments as well as in human beings. Despite the progress in investigation techniques, still little is known about the mechanism behind the observed sex-related differences. In this review, we summarized current knowledge on the sex-dependent differences of the intestinal commensals and discuss the probable direct impact of sex hormones and more indirect effects such as dietary habits or antibiotics. While we have to conclude limited data on specific developmental stages, a clear role for sexual hormones and most probably for testosterone emerges.
Collapse
Affiliation(s)
- Francesco Valeri
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg-University Mainz, Mainz 55131, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg-University Mainz, Mainz 55131, Germany.
| |
Collapse
|
27
|
Angoa-Pérez M, Kuhn DM. Evidence for Modulation of Substance Use Disorders by the Gut Microbiome: Hidden in Plain Sight. Pharmacol Rev 2021; 73:571-596. [PMID: 33597276 PMCID: PMC7896134 DOI: 10.1124/pharmrev.120.000144] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The gut microbiome modulates neurochemical function and behavior and has been implicated in numerous central nervous system (CNS) diseases, including developmental, neurodegenerative, and psychiatric disorders. Substance use disorders (SUDs) remain a serious threat to the public well-being, yet gut microbiome involvement in drug abuse has received very little attention. Studies of the mechanisms underlying SUDs have naturally focused on CNS reward circuits. However, a significant body of research has accumulated over the past decade that has unwittingly provided strong support for gut microbiome participation in drug reward. β-Lactam antibiotics have been employed to increase glutamate transporter expression to reverse relapse-induced release of glutamate. Sodium butyrate has been used as a histone deacetylase inhibitor to prevent drug-induced epigenetic alterations. High-fat diets have been used to alter drug reward because of the extensive overlap of the circuitry mediating them. This review article casts these approaches in a different light and makes a compelling case for gut microbiome modulation of SUDs. Few factors alter the structure and composition of the gut microbiome more than antibiotics and a high-fat diet, and butyrate is an endogenous product of bacterial fermentation. Drugs such as cocaine, alcohol, opiates, and psychostimulants also modify the gut microbiome. Therefore, their effects must be viewed on a complex background of cotreatment-induced dysbiosis. Consideration of the gut microbiome in SUDs should have the beneficial effects of expanding the understanding of SUDs and aiding in the design of new therapies based on opposing the effects of abused drugs on the host's commensal bacterial community. SIGNIFICANCE STATEMENT: Proposed mechanisms underlying substance use disorders fail to acknowledge the impact of drugs of abuse on the gut microbiome. β-Lactam antibiotics, sodium butyrate, and high-fat diets are used to modify drug seeking and reward, overlooking the notable capacity of these treatments to alter the gut microbiome. This review aims to stimulate research on substance abuse-gut microbiome interactions by illustrating how drugs of abuse share with antibiotics, sodium butyrate, and fat-laden diets the ability to modify the host microbial community.
Collapse
Affiliation(s)
- Mariana Angoa-Pérez
- Research and Development Service, John D. Dingell VA Medical Center, and Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| | - Donald M Kuhn
- Research and Development Service, John D. Dingell VA Medical Center, and Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
28
|
Ye L, Zhang Q, Xin F, Cao B, Qian L, Dong Y. Neonatal Milk Fat Globule Membrane Supplementation During Breastfeeding Ameliorates the Deleterious Effects of Maternal High-Fat Diet on Metabolism and Modulates Gut Microbiota in Adult Mice Offspring in a Sex-Specific Way. Front Cell Infect Microbiol 2021; 11:621957. [PMID: 33816333 PMCID: PMC8017235 DOI: 10.3389/fcimb.2021.621957] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/01/2021] [Indexed: 12/16/2022] Open
Abstract
Exposure to adverse events in early life increases the risk of chronic metabolic disease in adulthood. The objective of this study was to determine the significance of milk fat globule membrane (MFGM)-mediated alterations in the gut microbiome to the metabolic health of offspring in the long-term. Female C57BL/6 mice were fed either a high-fat diet (HFD) or a control diet for 3 weeks before pregnancy and throughout pregnancy and lactation. During lactation, pups from the HFD group were breast-fed with or without 1,000 mg/kg BW/day MFGM supplementation (HFD and HFD-MS group, respectively). After weaning, the offspring in each group were divided into male and female subgroups. The weaned mice were then shifted to a control diet for 8 weeks. At the eleventh week, stool samples were collected for 16S rRNA gene sequencing. Serum biochemical parameters were analyzed, and intraperitoneal glucose and insulin tolerance tests were performed. Neonatal supplementation with MFGM ameliorated metabolic disorder and improved glucose tolerance in offspring exposed to maternal HFD in a sex-specific manner. Furthermore, maternal HFD induced gut microbiota perturbation in offspring in adulthood. Neonatal MFGM supplementation significantly enriched g-Parabacteroides, g-Bifidobacterium, g-Faecalibaculum, and g-Lactobacillus in male offspring exposed to maternal HFD, while significantly enriched g-Parabacteroides and g-Alistipes in female offspring exposed to maternal HFD. These bacteria may be associated with the favorable changes in metabolism that occur in adulthood. Sex differences in the changes of metagenomic pathways related to oxidative phosphorylation, citrate cycle, electron transfer carries, and ubiquinone biosynthesis were also observed in the offspring. Maternal HFD has an adverse effect on the metabolism of offspring in later life. Neonatal MFGM supplementation could modulate the structure of gut microbiota communities and may have long-term protective effects on lipid and glucose metabolism, but these effects are sex dimorphic.
Collapse
Affiliation(s)
- Lin Ye
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Qianren Zhang
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Fengzhi Xin
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Baige Cao
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Linxi Qian
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yan Dong
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| |
Collapse
|
29
|
Andrade FDO, Liu F, Zhang X, Rosim MP, Dani C, Cruz I, Wang TTY, Helferich W, Li RW, Hilakivi-Clarke L. Genistein Reduces the Risk of Local Mammary Cancer Recurrence and Ameliorates Alterations in the Gut Microbiota in the Offspring of Obese Dams. Nutrients 2021; 13:nu13010201. [PMID: 33440675 PMCID: PMC7827465 DOI: 10.3390/nu13010201] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023] Open
Abstract
The risk of recurrence of estrogen receptor-positive breast cancer remains constant, even 20 years after diagnosis. Recurrence may be more likely in patients pre-programmed for it already in the womb, such as in the daughters born to obese mothers. Maternal obesity persistently alters offspring’s gut microbiota and impairs tumor immune responses. To investigate if the gut dysbiosis is linked to increased risk of mammary cancer recurrence in the offspring of obese rat dams, we fed adult offspring genistein which is known to have beneficial effects on the gut bacteria. However, the effects of genistein on breast cancer remain controversial. We found that genistein intake after tamoxifen response prevented the increased risk of local recurrence in the offspring of obese dams but had no effect on the control offspring. A significant increase in the abundance of inflammatory Prevotellaceae and Enterobacteriaceae, and a reduction in short-chain fatty acid producing Clostridiaceae was observed in the offspring of obese dams. Genistein supplementation reversed these changes as well as reversed increased gut metabolite N-acetylvaline levels which are linked to increased all-cause mortality. Genistein supplementation also reduced genotoxic tyramine levels, increased metabolites improving pro-resolving phase of inflammation, and reversed the elevated tumor mRNA expression of multiple immunosuppressive genes in the offspring of obese dams. If translatable to breast cancer patients, attempts to prevent breast cancer recurrences might need to focus on dietary modifications which beneficially modify the gut microbiota.
Collapse
Affiliation(s)
- Fabia de Oliveira Andrade
- Department of Oncology, Georgetown University, Washington, DC 20057, USA; (F.d.O.A.); (X.Z.); (M.P.R.); (C.D.); (I.C.)
| | - Fang Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266555, China;
| | - Xiyuan Zhang
- Department of Oncology, Georgetown University, Washington, DC 20057, USA; (F.d.O.A.); (X.Z.); (M.P.R.); (C.D.); (I.C.)
| | - Mariana Papaleo Rosim
- Department of Oncology, Georgetown University, Washington, DC 20057, USA; (F.d.O.A.); (X.Z.); (M.P.R.); (C.D.); (I.C.)
| | - Caroline Dani
- Department of Oncology, Georgetown University, Washington, DC 20057, USA; (F.d.O.A.); (X.Z.); (M.P.R.); (C.D.); (I.C.)
| | - Idalia Cruz
- Department of Oncology, Georgetown University, Washington, DC 20057, USA; (F.d.O.A.); (X.Z.); (M.P.R.); (C.D.); (I.C.)
| | - Thomas T. Y. Wang
- United States Department of Agriculture, Beltsville Human Nutrition Center, Diet, Genomics and Immunology Laboratory, Beltsville, MD 20705, USA;
| | - William Helferich
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL 1801, USA;
| | - Robert W. Li
- United States Department of Agriculture, Agricultural Research Service, Animal Genomics and Improvement Laboratory, Beltsville, MD 20705, USA;
| | - Leena Hilakivi-Clarke
- Department of Oncology, Georgetown University, Washington, DC 20057, USA; (F.d.O.A.); (X.Z.); (M.P.R.); (C.D.); (I.C.)
- Correspondence:
| |
Collapse
|
30
|
Zhang Q, Xiao X, Zheng J, Li M, Yu M, Ping F, Wang T, Wang X. Maternal High-Fat Diet Disturbs the DNA Methylation Profile in the Brown Adipose Tissue of Offspring Mice. Front Endocrinol (Lausanne) 2021; 12:705827. [PMID: 34690924 PMCID: PMC8531551 DOI: 10.3389/fendo.2021.705827] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/30/2021] [Indexed: 12/18/2022] Open
Abstract
The prevalence of obesity has become a threatening global public health issue. The consequence of obesity is abnormal energy metabolism. Unlike white adipose tissue (WAT), brown adipose tissue (BAT) has a unique role in nonshivering thermogenesis. Lipids and glucose are consumed to maintain energy and metabolic homeostasis in BAT. Recently, accumulating evidence has indicated that exposure to excess maternal energy intake affects energy metabolism in offspring throughout their life. However, whether excess intrauterine energy intake influences BAT metabolism in adulthood is not clear. In this study, mouse dams were exposed to excess energy intake by feeding a high-fat diet (HFD) before and during pregnancy and lactation. The histology of BAT was assessed by hematoxylin and eosin staining. The genome-wide methylation profile of BAT was determined by a DNA methylation array, and specific site DNA methylation was quantitatively analyzed by methylated DNA immunoprecipitation (MeDIP) qPCR. We found that intrauterine exposure to a high-energy diet resulted in blood lipid panel disorders and impaired the BAT structure. Higher methylation levels of genes involved in thermogenesis and fatty acid oxidation (FAO) in BAT, such as Acaa2, Acsl1, and Cox7a1, were found in 16-week-old offspring from mothers fed with HFD. Furthermore, the expression of Acaa2, Acsl1, and Cox7a1 was down-regulated by intrauterine exposure to excess energy intake. In summary, our results reveal that excess maternal energy leads to a long-term disorder of BAT in offspring that involves the activation of DNA methylation of BAT-specific genes involved in fatty acid oxidation and thermogenesis.
Collapse
|
31
|
Yao Y, Cai X, Fei W, Ren F, Wang F, Luan X, Chen F, Zheng C. Regulating Gut Microbiome: Therapeutic Strategy for Rheumatoid Arthritis During Pregnancy and Lactation. Front Pharmacol 2020; 11:594042. [PMID: 33343364 PMCID: PMC7748111 DOI: 10.3389/fphar.2020.594042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial inflammation and bone destruction. Microbial infection is considered to be the most important inducement of RA. The pregnancy planning of women in childbearing age is seriously affected by the disease activity of RA. Gut microbiome, related to immunity and inflammatory response of the host. At present, emerging evidence suggested there are significant differences in the diversity and abundance of gut microbiome during pregnancy and lactation, which may be associated with the fluctuation of RA disease activity. Based on these research foundations, we pioneer the idea of regulating gut microbiome for the treatment of RA during pregnancy and lactation. In this review, we mainly introduce the potential treatment strategies for controlling the disease activity of RA based on gut microbiome during pregnancy and lactation. Besides, we also briefly generalize the effects of conventional anti-rheumatic drugs on gut microbiome, the effects of metabolic changes during pregnancy on gut microbiome, alteration of gut microbiome during pregnancy and lactation, and the effects of anti-rheumatic drugs commonly used during pregnancy and lactation on gut microbiome. These will provide a clear knowledge framework for researchers in immune-related diseases during pregnancy. Regulating gut microbiome may be a potential and effective treatment to control the disease activity of RA during pregnancy and lactation.
Collapse
Affiliation(s)
- Yao Yao
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyu Cai
- Department of Pharmacy, Hangzhou First People's Hospital, Hangzhou, China
| | - Weidong Fei
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fujia Ren
- Department of Pharmacy, Hangzhou Women's Hospital, Hangzhou, China
| | - Fengmei Wang
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaofei Luan
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fengying Chen
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
32
|
Maternal Linoleic Acid Overconsumption Alters Offspring Gut and Adipose Tissue Homeostasis in Young but Not Older Adult Rats. Nutrients 2020; 12:nu12113451. [PMID: 33187208 PMCID: PMC7697261 DOI: 10.3390/nu12113451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/26/2020] [Accepted: 11/09/2020] [Indexed: 12/20/2022] Open
Abstract
Maternal n-6 polyunsaturated fatty acids (PUFA) consumption during gestation and lactation can predispose offspring to the development of metabolic diseases such as obesity later in life. However, the mechanisms underlying the potential programming effect of n-6 PUFA upon offspring physiology are not yet all established. Herein, we investigated the effects of maternal and weaning linoleic acid (LA)-rich diet interactions on gut intestinal and adipose tissue physiology in young (3-month-old) and older (6-month-old) adult offspring. Pregnant rats were fed a control diet (2% LA) or an LA-rich diet (12% LA) during gestation and lactation. At weaning, offspring were either maintained on the maternal diet or fed the other diet for 3 or 6 months. At 3 months of age, the maternal LA-diet favored low-grade inflammation and greater adiposity, while at 6 months of age, offspring intestinal barrier function, adipose tissue physiology and hepatic conjugated linoleic acids were strongly influenced by the weaning diet. The maternal LA-diet impacted offspring cecal microbiota diversity and composition at 3 months of age, but had only few remnant effects upon cecal microbiota composition at 6 months of age. Our study suggests that perinatal exposure to high LA levels induces a differential metabolic response to weaning diet exposure in adult life. This programming effect of a maternal LA-diet may be related to the alteration of offspring gut microbiota.
Collapse
|
33
|
Offspring susceptibility to metabolic alterations due to maternal high-fat diet and the impact of inhaled ozone used as a stressor. Sci Rep 2020; 10:16353. [PMID: 33004997 PMCID: PMC7530537 DOI: 10.1038/s41598-020-73361-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/08/2020] [Indexed: 12/30/2022] Open
Abstract
The influence of maternal high-fat diet (HFD) on metabolic response to ozone was examined in Long-Evans rat offspring. F0 females were fed control diet (CD; 10%kcal from fat) or HFD (60%kcal from fat) starting at post-natal day (PND) 30. Rats were bred on PND 72. Dietary regimen was maintained until PND 30 when all offspring were switched to CD. On PND 40, F1 offspring (n = 10/group/sex) were exposed to air or 0.8 ppm ozone for 5 h. Serum samples were collected for global metabolomic analysis (n = 8/group/sex). Offspring from HFD dams had increased body fat and weight relative to CD. Metabolomic analysis revealed significant sex-, diet-, and exposure-related changes. Maternal HFD increased free fatty acids and decreased phospholipids (male > female) in air-exposed rats. Microbiome-associated histidine and tyrosine metabolites were increased in both sexes, while 1,5-anhydroglucitol levels decreased in males indicating susceptibility to insulin resistance. Ozone decreased monohydroxy fatty acids and acyl carnitines and increased pyruvate along with TCA cycle intermediates in females (HFD > CD). Ozone increased various amino acids, polyamines, and metabolites of gut microbiota in HFD female offspring indicating gut microbiome alterations. Collectively, these data suggest that maternal HFD increases offspring susceptibility to metabolic alterations in a sex-specific manner when challenged with environmental stressors.
Collapse
|
34
|
Shrestha N, Ezechukwu HC, Holland OJ, Hryciw DH. Developmental programming of peripheral diseases in offspring exposed to maternal obesity during pregnancy. Am J Physiol Regul Integr Comp Physiol 2020; 319:R507-R516. [PMID: 32877239 DOI: 10.1152/ajpregu.00214.2020] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obesity is an increasing global health epidemic that affects all ages, including women of reproductive age. During pregnancy, maternal obesity is associated with adverse pregnancy outcomes that lead to complications for the mother. In addition, maternal obesity can increase the risk of poor perinatal outcomes for the infant due to altered development. Recent research has investigated the effects of maternal obesity on peripheral organ development and health in later life in offspring. In this review, we have summarized studies that investigated the programming effects of maternal obesity before and during pregnancy on metabolic, cardiovascular, immune, and microbiome perturbations in offspring. Epidemiological studies investigating the effects of maternal obesity on offspring development can be complex due to other copathologies and genetic diversity. Animal studies have provided some insights into the specific mechanisms and pathways involved in programming peripheral disease risk. The effects of maternal obesity during pregnancy on offspring development are often sex specific, with sex-specific changes in placental transport and function suggestive that this organ is likely to play a central role. We believe that this review will assist in facilitating future investigations regarding the underlying mechanisms that link maternal obesity and offspring disease risk in peripheral organs.
Collapse
Affiliation(s)
- Nirajan Shrestha
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Henry C Ezechukwu
- Department of Medical Biochemistry, EKO University of Medicine and Health Science, Ijanikin, Nigeria
| | - Olivia J Holland
- School of Medical Science, Griffith University, Southport, Queensland, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Deanne H Hryciw
- Environmental Futures Research Institute, Griffith University, Nathan, Queensland, Australia.,School of Environment and Science, Griffith University, Nathan, Queensland, Australia.,Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| |
Collapse
|
35
|
Chung E, Elmassry MM, Kottapalli P, Kottapalli KR, Kaur G, Dufour JM, Wright K, Ramalingam L, Moustaid-Moussa N, Wang R, Hamood AN, Shen CL. Metabolic benefits of annatto-extracted tocotrienol on glucose homeostasis, inflammation, and gut microbiome. Nutr Res 2020; 77:97-107. [PMID: 32438021 DOI: 10.1016/j.nutres.2020.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 03/27/2020] [Accepted: 04/11/2020] [Indexed: 12/12/2022]
Abstract
Emerging evidence suggests that the gut microbiome plays an important role in the pathophysiology of both obesity and type 2 diabetes mellitus. We previously reported that dietary annatto-extracted tocotrienol exerts beneficial effects by modulating inflammatory responses in mice fed a high-fat diet (HFD). The purpose of this study was to test the hypothesis that tocotrienol supplementation when combined with an HFD would result in an altered gut microbiota composition. For 14 weeks, forty-eight male C57BL/6J mice were assigned to 4 groups-low-fat diet, HFD, HFD supplemented with annatto-extracted tocotrienol at 800 mg/kg diet (AT), and HFD supplemented with metformin at 200 mg/kg diet. Glucose homeostasis was assessed by glucose and insulin tolerance tests, serum and pancreas insulin levels, and histological assessments of insulin and glucagon in pancreatic tissue. The concentrations of adipokines were measured in white adipose tissues. For the gut microbiome analysis, cecal content was collected, DNA was extracted, and 16S rRNA gene sequencing was performed. AT supplementation improved glucose homeostasis and lowered resistin, leptin, and interleukin-6 levels in white adipose tissue. Relative to the HFD group, AT-supplemented mice showed a decrease in the Firmicutes to Bacteroidetes ratio and had a lower abundance of Ruminococcus lactaris, Dorea longicatena, and Lachnospiraceae family. The relative abundance of Akkermansia muciniphila was increased in the AT group compared to the low-fat diet group. The association between the metabolic improvements and the identified bacterial taxa suggests a potential metabolic modulation caused by AT supplementation through the gut microbiota composition in mice fed an HFD.
Collapse
Affiliation(s)
- Eunhee Chung
- Department of Kinesiology, Health, and Nutrition, University of Texas at San Antonio, San Antonio, TX.
| | - Moamen M Elmassry
- Department of Biological Sciences, Texas Tech University, Lubbock, TX.
| | | | | | - Gurvinder Kaur
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX; Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX; Obesity Research Institute, Texas Tech University, Lubbock, TX.
| | - Jannette M Dufour
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX; Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX; Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX; Obesity Research Institute, Texas Tech University, Lubbock, TX; Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX.
| | - Kandis Wright
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX.
| | - Latha Ramalingam
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX; Obesity Research Institute, Texas Tech University, Lubbock, TX; Department of Nutritional Sciences, Texas Tech University, Lubbock, TX.
| | - Naima Moustaid-Moussa
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX; Obesity Research Institute, Texas Tech University, Lubbock, TX; Department of Nutritional Sciences, Texas Tech University, Lubbock, TX.
| | - Rui Wang
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX.
| | - Abdul N Hamood
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX; Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX.
| | - Chwan-Li Shen
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX; Obesity Research Institute, Texas Tech University, Lubbock, TX; Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX.
| |
Collapse
|
36
|
Guo C, Han L, Li M, Yu L. Seabuckthorn ( Hippophaë rhamnoides) Freeze-Dried Powder Protects against High-Fat Diet-Induced Obesity, Lipid Metabolism Disorders by Modulating the Gut Microbiota of Mice. Nutrients 2020; 12:nu12010265. [PMID: 31968607 PMCID: PMC7020008 DOI: 10.3390/nu12010265] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 12/11/2022] Open
Abstract
This study aimed to investigate the beneficial effects of seabuckthorn freeze-dried powder on high-fat diet-induced obesity and related lipid metabolism disorders, and further explored if this improvement is associated with gut microbiota. Results showed that seabuckthorn freeze-dried powder administration decreased body weight, Lee’s index, adipose tissue weight, liver weight, and serum lipid levels. Moreover, treatment with seabuckthorn freeze-dried powder effectively reduced fat accumulation by modulating the relative expression of genes involved in lipid metabolism through down-regulation of encoding lipogenic and store genes, including SREBP-1c, PPAR-γ, ACC, and SCD1, and up-regulation of regulating genes of fatty acid oxidation, including HSL, CPT-1, and ACOX. Especially, seabuckthorn freeze-dried powder regulated the composition of gut microbiota, such as increasing the ratio of Firmicutes/Bacteroidetes, decreasing relative abundance of harmful bacteria (Desulfovibrio), and increasing relative abundance of beneficial bacteria (Akkermansia and Bacteroides). The changes of beneficial bacteria had a positive correlation with genes encoding lipolysis and a negative correlation with genes encoding lipid lipogenesis and store. The harmful bacteria were just the opposite. Besides, changes in gut microbiota had an obvious effect in the secretion of main metabolites—short-chain fatty acids (SCFAs), especially propionic acid. Thus, our results indicated that the seabuckthorn freeze-dried powder could ameliorate high-fat diet-induced obesity and obesity-associated lipid metabolism disorders by changing the composition and structure of gut microbiota.
Collapse
Affiliation(s)
- Caixia Guo
- Correspondence: ; Tel.: +86-13994280378; Fax: +86-0351-7018397
| | | | | | | |
Collapse
|
37
|
Sun M, Wu T, Zhang G, Liu R, Sui W, Zhang M, Geng J, Yin J, Zhang M. Lactobacillus rhamnosusLRa05 improves lipid accumulation in mice fed with a high fat dietviaregulating the intestinal microbiota, reducing glucose content and promoting liver carbohydrate metabolism. Food Funct 2020; 11:9514-9525. [DOI: 10.1039/d0fo01720e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
LRa05 resists obesityviaamelioratingStreptococcuslevel and glucose metabolism, moreover, the positive correlation betweenIntestinimonasand palmitoyl ethanolamide and the negative correlation betweenEnterorhabdusand vitamin B2 are first found.
Collapse
Affiliation(s)
- Mengzhen Sun
- State Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science & Technology
- Tianjin 300457
- China
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science & Technology
- Tianjin 300457
- China
- Engineering Research Center of Food Biotechnology
| | - Guohua Zhang
- School of Life Science
- Shanxi University
- Taiyuan 030006
- China
| | - Rui Liu
- State Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science & Technology
- Tianjin 300457
- China
| | - Wenjie Sui
- State Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science & Technology
- Tianjin 300457
- China
| | - Maomao Zhang
- Tianjin Taigu Biotechnology Co. LTD
- Tianjin 300350
- China
| | - Jieting Geng
- Department of Food Science and Technology
- Tokyo University of Marine Science and Technology
- Tokyo 108-8477
- Japan
| | - Jinjin Yin
- State Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science & Technology
- Tianjin 300457
- China
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science & Technology
- Tianjin 300457
- China
- Engineering Research Center of Food Biotechnology
| |
Collapse
|
38
|
Poon K. Behavioral Feeding Circuit: Dietary Fat-Induced Effects of Inflammatory Mediators in the Hypothalamus. Front Endocrinol (Lausanne) 2020; 11:591559. [PMID: 33324346 PMCID: PMC7726204 DOI: 10.3389/fendo.2020.591559] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/23/2020] [Indexed: 12/19/2022] Open
Abstract
Excessive dietary fat intake has extensive impacts on several physiological systems and can lead to metabolic and nonmetabolic disease. In animal models of ingestion, exposure to a high fat diet during pregnancy predisposes offspring to increase intake of dietary fat and causes increase in weight gain that can lead to obesity, and without intervention, these physiological and behavioral consequences can persist for several generations. The hypothalamus is a region of the brain that responds to physiological hunger and fullness and contains orexigenic neuropeptide systems that have long been associated with dietary fat intake. The past fifteen years of research show that prenatal exposure to a high fat diet increases neurogenesis of these neuropeptide systems in offspring brain and are correlated to behavioral changes that induce a pro-consummatory and obesogenic phenotype. Current research has uncovered several potential molecular mechanisms by which excessive dietary fat alters the hypothalamus and involve dietary fatty acids, the immune system, gut microbiota, and transcriptional and epigenetic changes. This review will examine the current knowledge of dietary fat-associated changes in the hypothalamus and the potential pathways involved in modifying the development of orexigenic peptide neurons that lead to changes in ingestive behavior, with a special emphasis on inflammation by chemokines.
Collapse
|
39
|
Maternal exercise before and during pregnancy alleviates metabolic dysfunction associated with high-fat diet in pregnant mice, without significant changes in gut microbiota. Nutr Res 2019; 69:42-57. [PMID: 31670066 DOI: 10.1016/j.nutres.2019.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/26/2019] [Accepted: 08/02/2019] [Indexed: 02/06/2023]
Abstract
Although maternal exercise before and during pregnancy is beneficial, the effects of exercise on microbiota changes during pregnancy are unknown. Here we tested the hypothesis that maternal exercise before and during pregnancy would positively affect glucose homeostasis, pancreatic cell function, and gut microbiota dysbiosis in high-fat diet (HFD) fed dams. Female C57BL/6 mice were fed either a HFD or a low-fat diet (LFD) for 12 weeks. The HFD mice were split into two groups for 4 weeks prior to pregnancy initiation and throughout the pregnancy: sedentary (HFD) or exercised (HFD + Ex). Food intake, body weight, body composition, and glucose and insulin tolerance were measured. At gestation day 19, blood, pancreas, gonadal visceral and subcutaneous fat, plantaris muscle, and cecum were collected for analysis. Both HFD and HFD + Ex mice had impaired glucose clearance compared to LFD mice at 15 days of gestation. No changes were found in pancreatic α- or β-cell health. HFD + Ex mice had significantly reduced visceral fat mass, serum insulin, and leptin levels and increased high-density lipoprotein levels, compared to HFD-fed mice. In contrast to our hypothesis, microbiota diversity and composition were not different among groups. The relative abundance of five bacterial phyla, such as Firmicutes, Bacteroidetes, Verrucomicrobia, Deferribacteres, and Actinobacteria, were not significantly altered with diet or exercise during pregnancy. Our findings suggest that maternal exercise prevents excess visceral fat accumulation, hyperinsulinemia, and hyperleptinemia associated with a HFD, but not through the alterations of gut microbiota composition or diversity during pregnancy.
Collapse
|
40
|
de Brito Alves JL, de Oliveira Y, Carvalho NNC, Cavalcante RGS, Pereira Lira MM, Nascimento LCPD, Magnani M, Vidal H, Braga VDA, de Souza EL. Gut microbiota and probiotic intervention as a promising therapeutic for pregnant women with cardiometabolic disorders: Present and future directions. Pharmacol Res 2019; 145:104252. [PMID: 31054952 DOI: 10.1016/j.phrs.2019.104252] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 04/10/2019] [Accepted: 04/30/2019] [Indexed: 12/12/2022]
Abstract
Maternal cardiometabolic disorders, such as gestational diabetes mellitus, pre-eclampsia, obesity, and dyslipidemia, are the most common conditions that predispose offspring to risk for future cardiometabolic diseases, needing appropriate therapeutic approach. The implications of microbiota in the pathophysiology of maternal cardiometabolic disorders are progressively emerging and probiotics may be a simple and safe therapeutic strategy for maternal cardiometabolic management. In this review, we argue the importance of cardiometabolic dysfunction during pregnancy and/or lactation on the offspring risk for cardiometabolic disease in later life. In addition, we comprehensively discuss the microbial diversity observed in maternal cardiometabolic disorders and we present the main findings on probiotic intervention as a potential strategy for management of maternal cardiometabolic disorders. Current data reveal that gut microbiota may be transmitted from mother to offspring. Whether targeting microbiota with probiotic intervention during the periconceptional period prevents or delays the onset of cardiometabolic disorders in adult offspring should be tested in future clinical trials.
Collapse
Affiliation(s)
- José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, Brazil.
| | - Yohanna de Oliveira
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, Brazil
| | | | | | | | | | - Marciane Magnani
- Department of Food Engineering, Technology Center, Federal University of Paraiba, Joao Pessoa, Brazil
| | - Hubert Vidal
- Univ-Lyon, CarMeN(Cardio, Metabolism,Diabetes and Nutrition) Laboratory, INSERM U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA Lyon, Oullins, France
| | - Valdir de Andrade Braga
- Department of Biotechnology, Biotechnology Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, Brazil
| |
Collapse
|
41
|
Gohir W, Kennedy KM, Wallace JG, Saoi M, Bellissimo CJ, Britz-McKibbin P, Petrik JJ, Surette MG, Sloboda DM. High-fat diet intake modulates maternal intestinal adaptations to pregnancy and results in placental hypoxia, as well as altered fetal gut barrier proteins and immune markers. J Physiol 2019; 597:3029-3051. [PMID: 31081119 DOI: 10.1113/jp277353] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 04/07/2019] [Indexed: 12/26/2022] Open
Abstract
KEY POINTS Maternal obesity has been associated with shifts in intestinal microbiota, which may contribute to impaired barrier function Impaired barrier function may expose the placenta and fetus to pro-inflammatory mediators We investigated the impacts of diet-induced obesity in mice on maternal and fetal intestinal structure and placental vascularization Diet-induced obesity decreased maternal intestinal short chain fatty acids and their receptors, impaired gut barrier integrity and was associated with fetal intestinal inflammation. Placenta from obese mothers showed blood vessel immaturity, hypoxia, increased transcript levels of inflammation, autophagy and altered levels of endoplasmic reticulum stress markers. These data suggest that maternal intestinal changes probably contribute to adverse placental adaptations and also impart an increased risk of obesity in the offspring via alterations in fetal gut development. ABSTRACT Shifts in maternal intestinal microbiota have been implicated in metabolic adaptations to pregnancy. In the present study, we generated cohorts of female C57BL/6J mice fed a control (17% kcal fat, n = 10-14) or a high-fat diet (HFD 60% kcal from fat, n = 10-14; ad libitum) aiming to investigate the impact on the maternal gut microbiota, intestinal inflammation and gut barrier integrity, placental inflammation and fetal intestinal development at embryonic day 18.5. HFD was associated with decreased relative abundances of short-chain fatty acid (SCFA) producing genera during pregnancy. These diet-induced shifts paralleled decreased maternal intestinal mRNA levels of SCFA receptor Gpr41, modestly decreased cecal butyrate, and altered mRNA levels of inflammatory cytokines and immune cell markers in the maternal intestine. Maternal HFD resulted in impaired gut barrier integrity, with corresponding increases in circulating maternal levels of lipopolysaccharide (LPS) and tumour necrosis factor. Placentas from HFD dams demonstrated blood vessel immaturity and hypoxia; decreased free carnitine, acylcarnitine derivatives and trimethylamine-N-oxide; and altered mRNA levels of inflammation, autophagy, and ER stress markers. HFD exposed fetuses had increased activation of nuclear factor-kappa B and inhibition of the unfolded protein response in the developing intestine. Taken together, these data suggest that HFD intake prior to and during pregnancy shifts the composition of the maternal gut microbiota and impairs gut barrier integrity, resulting in increased maternal circulating LPS, which may ultimate contribute to changes in placental vascularization and fetal gut development.
Collapse
Affiliation(s)
- Wajiha Gohir
- Department of Biochemistry and Biomedical Sciences.,Farncombe Family Digestive Health Research Institute
| | - Katherine M Kennedy
- Department of Biochemistry and Biomedical Sciences.,Farncombe Family Digestive Health Research Institute
| | - Jessica G Wallace
- Department of Biochemistry and Biomedical Sciences.,Farncombe Family Digestive Health Research Institute
| | | | - Christian J Bellissimo
- Department of Biochemistry and Biomedical Sciences.,Farncombe Family Digestive Health Research Institute
| | | | - Jim J Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Michael G Surette
- Department of Biochemistry and Biomedical Sciences.,Farncombe Family Digestive Health Research Institute.,Department of Medicine
| | - Deborah M Sloboda
- Department of Biochemistry and Biomedical Sciences.,Farncombe Family Digestive Health Research Institute.,Department of Obstetrics and Gynecology.,Department of Pediatrics, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
42
|
Talbot CPJ, Dolinsky VW. Sex differences in the developmental origins of cardiometabolic disease following exposure to maternal obesity and gestational diabetes 1. Appl Physiol Nutr Metab 2018; 44:687-695. [PMID: 30500266 DOI: 10.1139/apnm-2018-0667] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Over the past 30 years, the worldwide prevalence of obesity has nearly doubled. In addition, more and more women in their child-bearing years are overweight or obese, which increases the risk of gestational diabetes mellitus (GDM). It is increasingly accepted by the scientific community that early life exposure to environmental stress influences the long-term health of an individual, which has been termed the Developmental Origins of Health and Disease theory. Evidence from human cohorts and epidemiological and animal studies has shown that maternal obesity and GDM condition the offspring for cardiometabolic disease development. These effects are most likely regulated by epigenetic mechanisms; however, biological sex is an important factor in defining the risk of the development of several metabolic health disorders. The aim of this review is to describe the current evidence from human cohort and animal model studies that implicates sex differences in the developmental origins of cardiometabolic disease following exposure to maternal obesity and GDM. In addition, this review addresses the potential mechanisms involved in these sex differences. In many studies, sex is ignored as an important variable in disease development; however, the results presented in this review highlight important differences between sexes in the developmental programming of biological responses to exposures during the fetal stage. This knowledge will ultimately help in the development of effective therapeutic strategies for the treatment of cardiometabolic diseases that exhibit sexual dimorphism.
Collapse
Affiliation(s)
- Charlotte Pauline Joëlle Talbot
- a Department of Pharmacology and Therapeutics, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.,b Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.,c Manitoba Developmental Origins of Chronic Diseases in Children Network (DEVOTION), University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Vernon Wayne Dolinsky
- a Department of Pharmacology and Therapeutics, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.,b Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.,c Manitoba Developmental Origins of Chronic Diseases in Children Network (DEVOTION), University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|