1
|
Marrs K, Vuong TV, Master ER. 4-O-Methylglucaric Acid Production from Xylan with Uronic Acid Oxidase and Comparison to Glucaric Acid from Glucose. Chembiochem 2025:e202400985. [PMID: 39831666 DOI: 10.1002/cbic.202400985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/03/2025] [Indexed: 01/22/2025]
Abstract
This study describes an enzymatic pathway to produce high purity 4-O-methylglucaric acid from xylan, an underutilized fraction of lignocellulosic biomass. Beechwood xylan was enzymatically hydrolysed using a commercial xylanase and an α-glucuronidase from Amphibacillus xylanus to form 4-O-methylglucuronic acid, which was then purified by anion exchange chromatography and subsequently oxidized to 4-O-methylglucaric acid using a recombinantly produced uronic acid oxidase from Citrus sinensis. Enzymatic oxidation with uronic acid oxidase afforded 95 % yield in 72 hours which is considerably higher than yields previously achieved using a glucooligosaccharide oxidase from Sarocladium strictum. 4-O-methylglucaric acid was isolated by precipitation and purified by recrystallization. Characterization by liquid chromatography mass spectrometry and nuclear magnetic resonance spectroscopy confirmed product identity and high purity (97.8 % w/w). 4-O-methylglucaric acid's performance as a detergent builder was compared to commercial glucaric acid. At 10 : 1 molar ratios of detergent builder to calcium, 4-O-methylglucaric acid provided similar calcium sequestration performance to glucaric acid (less than 5 % difference) at pH 7 and pH 10 in the presence of surfactants, including sodium dodecylbenzene sulfonate. Given their similar calcium sequestration performance, 4-O-methylglucaric acid could effectively substitute for glucaric acid in detergent formulations.
Collapse
Affiliation(s)
- Kevin Marrs
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
| | - Thu V Vuong
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
| | - Emma R Master
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150, Espoo, Finland
| |
Collapse
|
2
|
Dube A, Malode SJ, Alshehri MA, Shetti NP. Electrochemical water treatment: Review of different approaches. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123911. [PMID: 39754803 DOI: 10.1016/j.jenvman.2024.123911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/07/2024] [Accepted: 12/24/2024] [Indexed: 01/06/2025]
Abstract
The continued development in agriculture, the rapid growth of industrialization, and last but not least, the increase in the global population adversely affects the environment. The availability of drinking water decreases every year with the rise in water pollution, which is the consequence of the failure of conventional approaches to the water treatment process. This review will provide a comprehensive and detailed analysis of the electrochemical water treatment processes, as these techniques have several benefits over conventional methods, such as being cost-effective, easily applicable, selective, and broad applicability. This review starts by discussing the traditional methods. It explains their limitations and finishes the introductory part by presenting all the benefits of the electrochemical method over the conventional method for water treatment. Then, the discussion will be carried out on the individual electrochemical method with their detailed analysis of the selected approach, selected material, and optimized parameters for analysis. The elaborative study was targeted, and the different coupled systems, their analysis parameters, and derived removal efficiencies were given in tabular form. In the last section of the article, the conclusive statements present the prospects of the electrochemical method for water treatment.
Collapse
Affiliation(s)
- Aashutosh Dube
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi, 580031, Karnataka, India
| | - Shweta J Malode
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi, 580031, Karnataka, India
| | | | - Nagaraj P Shetti
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi, 580031, Karnataka, India; University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali, 140413, Panjab, India.
| |
Collapse
|
3
|
Haflich HM, Singleton JW, Coronell O. Relative contributions of mobility and partitioning to volatile fatty acid flux during electrodialysis. J Memb Sci 2024; 711:123204. [PMID: 39345865 PMCID: PMC11426417 DOI: 10.1016/j.memsci.2024.123204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Economically valuable volatile fatty acids (VFAs) are sustainably produced via fermentation processes. To use VFAs downstream, they must be recovered using technologies like electrodialysis (ED). Solute transport properties (i.e., partition coefficient (K), diffusion coefficient (D), and permeability (P=KD)) govern flux in ED. Therefore, to advance understanding of VFA flux through anion exchange membranes (AEMs) in ED, we aimed to elucidate the relative contributions of VFA partitioning and mobility to their flux. Accordingly, for VFAs of different sizes (C1-C5) and inorganic anions (Cl-, Br-), we measured their fluxes during ED, permeabilities, and partition coefficients, and calculated the diffusion coefficients. We then evaluated the correlations between flux and transport properties and between transport properties and anion physicochemical properties. Results showed VFA flux had a strong correlation with permeability (R2=0.94, p<0.01), consistent with flux described by the Nernst-Planck equation. Further, while there was a negative correlation between VFA flux and partition coefficient (R2=0.46, p=0.21), there was a positive correlation between VFA flux and diffusion coefficient (R2=0.95, p<0.01) which showed VFA mobility governed VFA flux. We observed a negative correlation between VFA diffusion coefficient and carbon-chain length which was attributed to steric hindrance, and a positive correlation between partition coefficient and carbon chain-length which we attributed to hydrophobicity and polarizability. This work provides fundamental insight on interactions between VFAs and AEMs which affect anion flux during ED.
Collapse
Affiliation(s)
- Holly M Haflich
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431
| | - Joshua W Singleton
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431
| | - Orlando Coronell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431
| |
Collapse
|
4
|
Khurram, Ghaffar A, Zulfiqar S, Khan M, Latif M, Cochran EW. Synthesis of polyaniline-coated composite anion exchange membranes based on polyacrylonitrile for the separation of tartaric acid via electrodialysis. RSC Adv 2024; 14:29648-29657. [PMID: 39297034 PMCID: PMC11409453 DOI: 10.1039/d4ra05508j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/06/2024] [Indexed: 09/21/2024] Open
Abstract
The increasing need to tackle major societal challenges such as environmental sustainability and resource scarcity has heightened global interest in green and efficient separation technologies. The separation of organic acids, particularly tartaric acid, holds significant industrial importance in the food and pharmaceutical sectors. Purifying tartaric acid is crucial due to its roles as a chiral catalyst, antioxidant, and stabilizer, which are vital for ensuring product quality and efficiency. In this study, we synthesized heterogeneous anion exchange membranes by casting a solution of polyacrylonitrile (PAN) homogeneously dispersed with micronized anion exchange resin [polystyrene-divinylbenzene-trimethyl ammonium chloride (PS-DVB-TAC)]. These membranes were further coated with polyaniline (PANI) through in situ polymerization at different time intervals such as 2, 12, and 24 h. Cation exchange membranes were also prepared by solution casting of PAN dispersed with micronized cation exchange resin, sulfonated poly-styrene-co-divinylbenzene, and SPS-DVB. These synthesized anion exchange membranes with and without a PANI coating were examined for their separation performance of tartaric acid, along with the cation exchange membranes in a four-compartment electrodialyser at a constant voltage. The newly fabricated membranes were characterized by different techniques, including attenuated total reflectance-Fourier transform infrared spectroscopy for functional group analysis, scanning electron microscopy for their surface morphology, and the four-probe method for electrical conductivity. In addition, ion exchange capacity and water uptake have been measured. The electrodialysis experiments showed that 14.82 wt% of tartrate ions moved into the product compartment through the uncoated anion exchange membrane within 30 min at a voltage of 30 V. Under the same conditions, membranes coated with PANI at 2, 12, and 24 h raised the separation efficiency to 21.19%, 34.13%, and 37.21%, respectively. Findings indicate that membranes coated with PANI for extended periods demonstrate superior separation efficiency for tartaric acid. Consequently, this energy-efficient method shows significant potential for application in the food and pharmaceutical industries for separating tartaric acid and other organic and amino acids. This research can advance practical and sustainable separation technologies, addressing critical societal issues like resource efficiency and environmental sustainability.
Collapse
Affiliation(s)
- Khurram
- Department of Chemistry, Government Graduate College Ravi Road Shahdara Lahore-54950 Pakistan
| | - Abdul Ghaffar
- DIC Pakistan Limited Shahrah-e-Roomi, P. O Amer Sidhu Lahore-54760 Pakistan
| | - Sonia Zulfiqar
- Department of Physical Sciences, Lander University 320 Stanley Ave Greenwood South Carolina 29649 USA
- Department of Chemical and Biological Engineering, Iowa State University Sweeney Hall, 618 Bissell Road Ames Iowa 50011 USA
- Department of Chemistry, Faculty of Science, University of Ostrava 30. Dubna 22 Ostrava 701 03 Czech Republic
| | - Muzzamil Khan
- DIC Pakistan Limited Shahrah-e-Roomi, P. O Amer Sidhu Lahore-54760 Pakistan
| | - Muhammad Latif
- Department of Biochemistry and Molecular Medicine, College of Medicine, Taibah University Madinah Kingdom of Saudi Arabia
| | - Eric W Cochran
- Department of Chemical and Biological Engineering, Iowa State University Sweeney Hall, 618 Bissell Road Ames Iowa 50011 USA
| |
Collapse
|
5
|
Liang CM, Wang CC, Hung YT, Cheng HW, Yang CF. Optimization of operating parameters for 2,5-furandicarboxylic acid recovery using electrodialysis with bipolar membrane and traditional electrodialysis systems. Heliyon 2024; 10:e34706. [PMID: 39149025 PMCID: PMC11325056 DOI: 10.1016/j.heliyon.2024.e34706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/30/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
Electrodialysis (ED) is an eco-friendly and feasible method to separate or recover ionic compounds by electric field attraction and configuration of ion exchange membranes. Strain Burkholderia sp. H-2 could biotransform 5-hydroxymethylfurfural (5-HMF) into a green platform compound, 2,5-furandicarboxylic acid (FDCA), using a bioreactor system. In this study, electrodialysis with the bipolar membrane (EDBM) and traditional ED systems were applied to recover and concentrate FDCA. Artificial and real FDCA effluents of the 5-HMF biotransformation bioreactor were used as the feedstock to establish the optimal conditions for FDCA recovery. The optimal FDCA concentration and pH of the artificial FDCA effluent were 2100 mg/L and 5, respectively. The suitable current density of the EDBM was 8.93 mA/cm2. For FDCA recovery and concentration using the ED, the feedstock volume and FDCA concentration in the concentration chamber were 1.5 L and 1000 mg/L, respectively. The FDCA recovery efficiency of the real FDCA effluent was 55.6 %. Suppose the pretreatment procedure of the real bioreactor effluent is further optimized. It is believed to benefit the enhancement of FDCA recovery efficiency and reduce energy consumption.
Collapse
Affiliation(s)
- Chih-Ming Liang
- Department of Environmental Engineering and Science, Feng Chia University, Taichung, 40724, Taiwan
| | - Chun-Chin Wang
- Department of Safety Health and Environmental Engineering, Hungkuang University, Taichung, 43302, Taiwan
| | - Yi-Ting Hung
- Department of Safety Health and Environmental Engineering, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan
| | - Hao-Wei Cheng
- Department of Safety Health and Environmental Engineering, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan
| | - Chu-Fang Yang
- Department of Safety Health and Environmental Engineering, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan
| |
Collapse
|
6
|
Amenaghawon AN, Ayere JE, Amune UO, Otuya IC, Abuga EC, Anyalewechi CL, Okoro OV, Okolie JA, Oyefolu PK, Eshiemogie SO, Osahon BE, Omede M, Eshiemogie SA, Igemhokhai S, Okedi MO, Kusuma HS, Muojama OE, Shavandi A, Darmokoesoemo H. A comprehensive review of recent advances in the applications and biosynthesis of oxalic acid from bio-derived substrates. ENVIRONMENTAL RESEARCH 2024; 251:118703. [PMID: 38518912 DOI: 10.1016/j.envres.2024.118703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/12/2024] [Accepted: 03/11/2024] [Indexed: 03/24/2024]
Abstract
Organic acids are important compounds with numerous applications in different industries. This work presents a comprehensive review of the biological synthesis of oxalic acid, an important organic acid with many industrial applications. Due to its important applications in pharmaceuticals, textiles, metal recovery, and chemical and metallurgical industries, the global demand for oxalic acid has increased. As a result, there is an increasing need to develop more environmentally friendly and economically attractive alternatives to chemical synthesis methods, which has led to an increased focus on microbial fermentation processes. This review discusses the specific strategies for microbial production of oxalic acid, focusing on the benefits of using bio-derived substrates to improve the economics of the process and promote a circular economy in comparison with chemical synthesis. This review provides a comprehensive analysis of the various fermentation methods, fermenting microorganisms, and the biochemistry of oxalic acid production. It also highlights key sustainability challenges and considerations related to oxalic acid biosynthesis, providing important direction for further research. By providing and critically analyzing the most recent information in the literature, this review serves as a comprehensive resource for understanding the biosynthesis of oxalic acid, addressing critical research gaps, and future advances in the field.
Collapse
Affiliation(s)
- Andrew Nosakhare Amenaghawon
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria.
| | - Joshua Efosa Ayere
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria
| | - Ubani Oluwaseun Amune
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria; Department of Chemical Engineering, Faculty of Engineering, Edo State University, Uzairue, Edo State, Nigeria
| | - Ifechukwude Christopher Otuya
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria; Department of Chemical Engineering, Faculty of Engineering, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Emmanuel Christopher Abuga
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria
| | - Chinedu Lewis Anyalewechi
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria; Department of Chemical Engineering, Faculty of Engineering, Federal Polytechnic Oko, Anambra State, Nigeria
| | - Oseweuba Valentine Okoro
- BioMatter Unit - École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Jude A Okolie
- Engineering Pathways, Gallogly College of Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Peter Kayode Oyefolu
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria; Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Steve Oshiokhai Eshiemogie
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria; Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Blessing Esohe Osahon
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria
| | - Melissa Omede
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria
| | - Stanley Aimhanesi Eshiemogie
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria
| | - Shedrach Igemhokhai
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria; Department of Petroleum Engineering, University of Benin, Benin City, Edo State, Nigeria
| | - Maxwell Ogaga Okedi
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria; Department of Chemical and Biomedical Engineering, Florida A&M University-Florida State University, Tallahassee, FL 2310-6046, USA
| | - Heri Septya Kusuma
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional "Veteran" Yogyakarta, Indonesia.
| | - Obiora Ebuka Muojama
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria; Department of Chemical and Biological Engineering, University of Alabama, Tuscaloosa, AL, 35487-0203, USA
| | - Amin Shavandi
- BioMatter Unit - École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Handoko Darmokoesoemo
- Department of Chemistry, Faculty of Science and Technology, Airlangga University, Mulyorejo, Surabaya 60115, Indonesia.
| |
Collapse
|
7
|
Asim H, Zeidan H, Marti ME. Effective isolation of succinic acid from aqueous media with the use of anion exchange resins. RSC Adv 2024; 14:16765-16777. [PMID: 38799209 PMCID: PMC11124699 DOI: 10.1039/d4ra02110j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024] Open
Abstract
The primary objective of this study was to examine the isolation of succinic acid (SA) from aqueous-based solutions through the utilization of adsorption and ion exchange methods. Four kinds of anion exchange resins were employed, two of which were strong basic (Lewatit M-500 and Lewatit M-600), and the other two were weak basic (Lewatit MP-64 and Lewatit MP-62). The impacts of various variables on the efficiency of the process were examined. The aqueous pH strongly influenced the separation yield. Weak basic exchangers achieved the maximum yield at pH 2.1. However, the highest performance with Lewatit M-600 and Lewatit M-500 was obtained at pH 5 and 6, respectively. The SA separation with the tested resins reached equilibrium in about an hour. The recovery data revealed consistency with the Langmuir isotherm and pseudo-second-order kinetics. Efficiency improved with resin dosage and reduced with SA concentration. It was found that weak basic anion exchange resins were more efficient than strong basic exchangers for the recovery process. Among the resins tested, Lewatit MP-62 demonstrated the highest sorption capacity of 321 mg g-1 and 97.5% yield. The performance of the system decreased with temperature for all alternatives tested; however, its impact was not notable. The isolation process had an exergonic, exothermic, and favorable character based on the thermodynamic constants. Acid-loaded resins were successfully regenerated using trimethylamine and HCl for weak and strong anion exchange resins, respectively.
Collapse
Affiliation(s)
- Hamayoun Asim
- Department of Chemical Engineering, Konya Technical University Konya Turkey +90-332-241-0635 +90-332-223-1837
- Department of Chemical Engineering, Selçuk University Konya Turkey
| | - Hani Zeidan
- Department of Chemical Engineering, Konya Technical University Konya Turkey +90-332-241-0635 +90-332-223-1837
| | - Mustafa Esen Marti
- Department of Chemical Engineering, Konya Technical University Konya Turkey +90-332-241-0635 +90-332-223-1837
| |
Collapse
|
8
|
Asghar N, Nguyen DA, Jang A. Application of MnFe 2O 4 magnetic silica-covered ethylenediaminetetraacetic acid-functionalized nanomaterials to the draw solution in forward osmosis. CHEMOSPHERE 2023; 330:138735. [PMID: 37088213 DOI: 10.1016/j.chemosphere.2023.138735] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/24/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Forward osmosis (FO) is an emerging and promising water treatment technology. However, selection of an optimal draw solution (DS) is essential for efficient FO process operations. In this study, the potential of ethylenediaminetetraacetic acid (EDTA) functionalized SiO2-covered magnetic nanoparticles (MNPs) as DS in FO process were investigated. The MNPs were synthesized and characterized for their morphology, size distribution, magnetic behavior, and dispersibility. Investigations were carried out to determine the effects of DS concentration and MNPs type, utilizing bare, SiO2 covered, and EDTA coated MNPs at concentrations of 20, 40, and 60 g/L. Furthermore, water flux generation capability and rejection efficiency of octanoic acid (OC) was evaluated with EDTA-MNPs as DS in FO mode (active layer facing feed solution) and PRO mode (active layer facing draw solution). Our results showed that a maximum water flux of 9.59 ± 2 LMH in FO mode, and 11.104 ± 2 LMH in PRO mode was achieved using 60 g/L of EDTA-MNPs. Additionally, we investigated the reusability of the EDTA-coated MNPs and found that their recovery was higher than (>90%) with no aggregation. The stability of EDTA-MNPs was due to strong covalent linkages between their four carboxylate groups and the hydrophilic SiO2 surface layer, which resulted in steric hindrance and prevented their aggregation. Finally, we assessed the rejection efficiency of OC at different pH values and found that it was low (30-39%) at pH values below pKa and high (90-97%) at pH values above pKa. Owing to internal concentration polarization, the rejection of OC in FO mode was (10-20%) higher than in PRO mode. The findings demonstrate EDTA-coated MNPs have significant potentials as an effective DS in FO process .
Collapse
Affiliation(s)
- Nosheen Asghar
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| | - Duc Anh Nguyen
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| | - Am Jang
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
9
|
Bipolar membrane electrodialysis integration into the biotechnological production of itaconic acid: a proof-of-concept study. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Gausmann M, Kiefel R, Jupke A. Modeling of electrochemical pH swing extraction reveals economic potential for closed-loop bio-succinic acid production. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Duqueyroix A, Ait Aider-Kaci F, Aider M. Impact of the Anodic and Cathodic Electro-Activation Treatment on the Physico-Chemical and Antioxidant Capacity of Red Beetroot Juice. ACS OMEGA 2022; 7:42456-42466. [PMID: 36440144 PMCID: PMC9685766 DOI: 10.1021/acsomega.2c05671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
The aim of the present work was to study the feasibility of using electro-activation as a nonthermal treatment to produce stable beetroot juice. Specifically, red beetroot juice was electro-activated under two different reactor configurations by using three electric current intensities (100, 200, and 300 mA) during 120 min. Different parameters of the juice were measured such as the pH, redox potential, juice titratable acidity, Brix degree and total dry matter, color, betalain and polyphenolic contents, and antioxidant capacity of the electro-activated juice. By using the reactor Configuration A in which the targeted juice was electro-activated in the anodic compartment of the used reactor, acidic juice with pH 4 and 5 as well as a redox potential close to +300 mV was obtained. The Brix degree, color, dry matter, and phenolic content were not significantly influenced by this electro-activation. However, the treatment permitted increasing the antioxidant capacity of the juice as measured by the DPPH and ABTS assays. By using the reactor Configuration B in which the targeted beet juice was electro-activated in the cathodic compartment of the used compartment, a juice with an alkaline pH of approximately pH 9 and a reducing redox potential of -697 mV was obtained. With this reactor configuration, the Brix degree and total dry matter were not affected, but the color and total polyphenolic content changed. The betalains and polyphenolic compounds were degraded under the alkaline conditions of this electro-activation treatment, which had a negative consequence on the juice quality by decreasing its antioxidant capacity. In conclusion, this study demonstrated that anodic electro-activation of a beet juice can be technologically feasible since this treatment permitted producing stable juice as well as maintaining the main physico-chemical properties of the juice, enhancing its antioxidant capacity, and keeping the juice color at high level.
Collapse
Affiliation(s)
- Angeline Duqueyroix
- Department
of Food Sciences, Université Laval, Quebec CityG1V 0A6, Quebec, Canada
- Institute
of Nutrition and Functional Foods (INAF), Université Laval, Quebec
CityG1V 0A6, Quebec, Canada
| | - Farida Ait Aider-Kaci
- Faculty
of Biological Sciences and Agricultural Sciences, University Mouloud Mammeri of Tizi-Ouzou, Tizi Ouzou15000, Algeria
| | - Mohammed Aider
- Institute
of Nutrition and Functional Foods (INAF), Université Laval, Quebec
CityG1V 0A6, Quebec, Canada
- Department
of Soil Sciences and Agri-Food Engineering, Université Laval, Quebec
CityG1V 0A6, Quebec, Canada
| |
Collapse
|
12
|
Perret L, Lacerda de Oliveira Campos B, Herrera Delgado K, Zevaco TA, Neumann A, Sauer J. CO
x
Fixation to Elementary Building Blocks: Anaerobic Syngas Fermentation vs. Chemical Catalysis. CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202200153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lukas Perret
- Karlsruhe Institute of Technology Institute of Catalysis Research and Technology 76344 Eggenstein-Leopoldshafen Germany
| | | | - Karla Herrera Delgado
- Karlsruhe Institute of Technology Institute of Catalysis Research and Technology 76344 Eggenstein-Leopoldshafen Germany
| | - Thomas A. Zevaco
- Karlsruhe Institute of Technology Institute of Catalysis Research and Technology 76344 Eggenstein-Leopoldshafen Germany
| | - Anke Neumann
- Karlsruhe Institute of Technology Institute of Process Engineering in Life Sciences 2 – Technical Biology 76131 Karlsruhe Germany
| | - Jörg Sauer
- Karlsruhe Institute of Technology Institute of Catalysis Research and Technology 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
13
|
Alkhadra M, Su X, Suss ME, Tian H, Guyes EN, Shocron AN, Conforti KM, de Souza JP, Kim N, Tedesco M, Khoiruddin K, Wenten IG, Santiago JG, Hatton TA, Bazant MZ. Electrochemical Methods for Water Purification, Ion Separations, and Energy Conversion. Chem Rev 2022; 122:13547-13635. [PMID: 35904408 PMCID: PMC9413246 DOI: 10.1021/acs.chemrev.1c00396] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Indexed: 02/05/2023]
Abstract
Agricultural development, extensive industrialization, and rapid growth of the global population have inadvertently been accompanied by environmental pollution. Water pollution is exacerbated by the decreasing ability of traditional treatment methods to comply with tightening environmental standards. This review provides a comprehensive description of the principles and applications of electrochemical methods for water purification, ion separations, and energy conversion. Electrochemical methods have attractive features such as compact size, chemical selectivity, broad applicability, and reduced generation of secondary waste. Perhaps the greatest advantage of electrochemical methods, however, is that they remove contaminants directly from the water, while other technologies extract the water from the contaminants, which enables efficient removal of trace pollutants. The review begins with an overview of conventional electrochemical methods, which drive chemical or physical transformations via Faradaic reactions at electrodes, and proceeds to a detailed examination of the two primary mechanisms by which contaminants are separated in nondestructive electrochemical processes, namely electrokinetics and electrosorption. In these sections, special attention is given to emerging methods, such as shock electrodialysis and Faradaic electrosorption. Given the importance of generating clean, renewable energy, which may sometimes be combined with water purification, the review also discusses inverse methods of electrochemical energy conversion based on reverse electrosorption, electrowetting, and electrokinetic phenomena. The review concludes with a discussion of technology comparisons, remaining challenges, and potential innovations for the field such as process intensification and technoeconomic optimization.
Collapse
Affiliation(s)
- Mohammad
A. Alkhadra
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Xiao Su
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Matthew E. Suss
- Faculty
of Mechanical Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
- Wolfson
Department of Chemical Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
- Nancy
and Stephen Grand Technion Energy Program, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Huanhuan Tian
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Eric N. Guyes
- Faculty
of Mechanical Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
| | - Amit N. Shocron
- Faculty
of Mechanical Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
| | - Kameron M. Conforti
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - J. Pedro de Souza
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Nayeong Kim
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Michele Tedesco
- European
Centre of Excellence for Sustainable Water Technology, Wetsus, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Khoiruddin Khoiruddin
- Department
of Chemical Engineering, Institut Teknologi
Bandung, Jl. Ganesha no. 10, Bandung, 40132, Indonesia
- Research
Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132, Indonesia
| | - I Gede Wenten
- Department
of Chemical Engineering, Institut Teknologi
Bandung, Jl. Ganesha no. 10, Bandung, 40132, Indonesia
- Research
Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132, Indonesia
| | - Juan G. Santiago
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - T. Alan Hatton
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Martin Z. Bazant
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Mathematics, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
14
|
Luo Y, Liu Y, Shen J, Van der Bruggen B. Application of Bipolar Membrane Electrodialysis in Environmental Protection and Resource Recovery: A Review. MEMBRANES 2022; 12:829. [PMID: 36135848 PMCID: PMC9504215 DOI: 10.3390/membranes12090829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/14/2022] [Accepted: 08/20/2022] [Indexed: 06/16/2023]
Abstract
Bipolar membrane electrodialysis (BMED) is a new membrane separation technology composed of electrodialysis (ED) through a bipolar membrane (BPM). Under the action of an electric field, H2O can be dissociated to H+ and OH-, and the anions and cations in the solution can be recovered as acids and bases, respectively, without adding chemical reagents, which reduces the application cost and carbon footprint, and leads to simple operation and high efficiency. Its application is becoming more widespread and promising, and it has become a research hotspot. This review mainly introduces the application of BMED to recovering salts in the form of acids and bases, CO2 capture, ammonia nitrogen recovery, and ion removal and recovery from wastewater. Finally, BMED is summarized, and future prospects are discussed.
Collapse
Affiliation(s)
- Yu Luo
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China
| | - Yaoxing Liu
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China
- Department of Chemical Engineering, ProcESS-Process Engineering for Sustainable System, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Jiangnan Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Bart Van der Bruggen
- Department of Chemical Engineering, ProcESS-Process Engineering for Sustainable System, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
- Faculty of Engineering and the Built Environment, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
| |
Collapse
|
15
|
Electrochemical membrane-assisted pH-swing extraction and back-extraction of lactic acid. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Kavitha E, Poonguzhali E, Nanditha D, Kapoor A, Arthanareeswaran G, Prabhakar S. Current status and future prospects of membrane separation processes for value recovery from wastewater. CHEMOSPHERE 2022; 291:132690. [PMID: 34715105 DOI: 10.1016/j.chemosphere.2021.132690] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/05/2021] [Accepted: 10/23/2021] [Indexed: 05/05/2023]
Abstract
Resource constraints and deteriorating environment have made it necessary to look for intensification of the industrial processes, to recover value from spent streams for reuse. The development of reverse osmosis has already established that water can be recovered from aqueous streams in a cost-effective and beneficial manner to the industries. With the development of several membrane processes and membrane materials, the possibility of recovering value from the effluents looks like a workable proposition. In this context, the potentialities of the different membrane processes in value recovery are presented. Among the pressure-driven processes, reverse osmosis can be used for the recovery of water as value. Nanofiltration has been used for the recovery of several dyes including crystal violet, congo red, methyl blue, etc., while ultrafiltration has been used in the fractionation of different solute species using membranes of different pore-size characteristics. Diffusion dialysis is found useful in the separation of acids from its salt solutions. Bipolar membrane electrodialysis has the potential to regenerate acid and base from salt solutions. Thermally driven membrane distillation can provide desalinated water, besides reducing the temperature of hot discharge streams. Passive membrane processes such as supported liquid membranes and membrane-assisted solvent extraction have been found useful in separating minor components from the wastewater streams. The details are discussed to drive home that membrane processes can be useful to achieve the objectives of value recovery, in a cost-effective manner through process intensification, as they are more compact and individual streams can be treated and value used seamlessly.
Collapse
Affiliation(s)
- E Kavitha
- Department of Chemical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Potheri, Kattankulathur, 603 203, Chengalpattu District, Tamil Nadu, India
| | - E Poonguzhali
- Department of Chemical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Potheri, Kattankulathur, 603 203, Chengalpattu District, Tamil Nadu, India
| | - D Nanditha
- Department of Chemical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Potheri, Kattankulathur, 603 203, Chengalpattu District, Tamil Nadu, India
| | - Ashish Kapoor
- Department of Chemical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Potheri, Kattankulathur, 603 203, Chengalpattu District, Tamil Nadu, India.
| | - G Arthanareeswaran
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, 620 015, Tamil Nadu, India
| | - S Prabhakar
- Department of Chemical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Potheri, Kattankulathur, 603 203, Chengalpattu District, Tamil Nadu, India
| |
Collapse
|
17
|
Kim N, Jeon J, Chen R, Su X. Electrochemical separation of organic acids and proteins for food and biomanufacturing. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2021.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Chen C, Zhang X, Liu C, Wu Y, Zheng G, Chen Y. Advances in downstream processes and applications of biological carboxylic acids derived from organic wastes. BIORESOURCE TECHNOLOGY 2022; 346:126609. [PMID: 34954356 DOI: 10.1016/j.biortech.2021.126609] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Recovering carboxylic acids derived from organic wastes from fermentation broth is challenging. To provide a reference for future study and industrial application, this review summarized recent advances in recovery technologies of carboxylic acids including precipitation, extraction, adsorption, membrane-based processes, etc. Meanwhile, applications of recovered carboxylic acids are summarized as well to help choose suitable downstream processes according to purity requirement. Integrated processes are required to remove the impurities from the complicated fermentation broth, at the cost of loss and expense. Compared with chemical processes, biological synthesis is better options due to low requirements for the substrates. Generally, the use of toxic agents, consumption of acid/alkaline and membrane fouling hamper the sustainability and scale-up of the downstream processes. Future research on novel solvents and materials will facilitate the sustainable recovery and reduce the cost of the downstream processes.
Collapse
Affiliation(s)
- Chuang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xuemeng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Chao Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Guanghong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
19
|
A critical analysis on ion transport of organic acid mixture through an anion-exchange membrane during electrodialysis. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2021.11.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Medina-Collana JT, Rosales-Huamani JA, Franco-Gonzales EJ, Montaño-Pisfil JA. Factors Influencing the Formation of Salicylic Acid by Bipolar Membranes Electrodialysis. MEMBRANES 2022; 12:149. [PMID: 35207071 PMCID: PMC8877217 DOI: 10.3390/membranes12020149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 11/17/2022]
Abstract
Salicylic acid is an intermediate product in the synthesis of dyes, medications and aspirin. An electrodialysis module has been constructed with commercial cationic, anionic and bipolar membranes for the conversion of sodium salicylate into salicylic acid. The effect of operating conditions such as applied electric potential, salt concentration, initial acid concentration and volumetric flow on bipolar membrane electrodialysis (BMED) yields were investigated using Taguchi analysis. The results obtained in 210 min of work show an average concentration of salicylic acid of 0.0185 M, an average electric current efficiency of 85.3%, and a specific energy consumption of 2.24 kWh/kg of salicylic acid. It was concluded that the proposed bipolar membrane electrodialysis process is an efficient alternative to produce salicylic acid (SAH) from sodium salicylate (SANa) in an environmentally friendly manner. Furthermore, the production of sodium hydroxide was obtained as a by-product of the process carried out.
Collapse
Affiliation(s)
- Juan Taumaturgo Medina-Collana
- Faculty of Chemical Engineering, National University of Callao, Juan Pablo II 306 Avenue, Bellavista, Callao 07011, Peru; (J.T.M.-C.); (J.A.M.-P.)
| | - Jimmy Aurelio Rosales-Huamani
- Multidisciplinary Sensing, Universal Accessibility and Machine Learning Group, Faculty of Geological, Mining and Metallurgical Engineering of the National University of Engineering, Lima 15333, Peru;
| | - Elmar Javier Franco-Gonzales
- Multidisciplinary Sensing, Universal Accessibility and Machine Learning Group, Faculty of Geological, Mining and Metallurgical Engineering of the National University of Engineering, Lima 15333, Peru;
| | - Jorge Alberto Montaño-Pisfil
- Faculty of Chemical Engineering, National University of Callao, Juan Pablo II 306 Avenue, Bellavista, Callao 07011, Peru; (J.T.M.-C.); (J.A.M.-P.)
| |
Collapse
|
21
|
Staszak K, Wieszczycka K. Membrane applications in the food industry. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Abstract
Current trends in the food industry for the application of membrane techniques are presented. Industrial solutions as well as laboratory research, which can contribute to the improvement of membrane efficiency and performance in this field, are widely discussed. Special attention is given to the main food industries related to dairy, sugar and biotechnology. In addition, the potential of membrane techniques to assist in the treatment of waste sources arising from food production is highlighted.
Collapse
Affiliation(s)
- Katarzyna Staszak
- Institute of Technology and Chemical Engineering , Poznan University of Technology , Berdychowo 4 , Poznan , Poland
| | - Karolina Wieszczycka
- Institute of Technology and Chemical Engineering , Poznan University of Technology , Berdychowo 4 , Poznan , Poland
| |
Collapse
|
22
|
Gudiukaite R, Nadda AK, Gricajeva A, Shanmugam S, Nguyen DD, Lam SS. Bioprocesses for the recovery of bioenergy and value-added products from wastewater: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113831. [PMID: 34649321 DOI: 10.1016/j.jenvman.2021.113831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 09/04/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Wastewater and activated sludge present a major challenge worldwide. Wastewater generated from large and small-scale industries, laundries, human residential areas and other sources is emerging as a main problem in sanitation and maintenance of smart/green cities. During the last decade, different technologies and processes have been developed to recycle and purify the wastewater. Currently, identification and fundamental consideration of development of more advanced microbial-based technologies that enable wastewater treatment and simultaneous resource recovery to produce bioenergy, biofuels and other value-added compounds (organic acids, fatty acids, bioplastics, bio-pesticides, bio-surfactants and bio-flocculants etc.) became an emerging topic. In the last several decades, significant development of bioprocesses and techniques for the extraction and recovery of mentioned valuable molecules and compounds from wastewater, waste biomass or sludge has been made. This review presents different microbial-based process routes related to resource recovery and wastewater application for the production of value-added products and bioenergy. Current process limitations and insights for future research to promote more efficient and sustainable routes for this under-utilized and continually growing waste stream are also discussed.
Collapse
Affiliation(s)
- Renata Gudiukaite
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekis Avenue 7, LT-10257, Vilnius, Lithuania.
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173 234, India.
| | - Alisa Gricajeva
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekis Avenue 7, LT-10257, Vilnius, Lithuania
| | - Sabarathinam Shanmugam
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
| | - D Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, Gwanggyosan-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 442-760, South Korea
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
23
|
Merino-Garcia I, Velizarov S. New insights into the definition of membrane cleaning strategies to diminish the fouling impact in ion exchange membrane separation processes. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119445] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
24
|
A Review on Promising Membrane Technology Approaches for Heavy Metal Removal from Water and Wastewater to Solve Water Crisis. WATER 2021. [DOI: 10.3390/w13223241] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Due to the impacts of water scarcity, the world is looking at all possible solutions for decreasing the over-exploitation of finite freshwater resources. Wastewater is one of the most reliable and accessible water supplies. As the population expands, so do industrial, agricultural, and household operations in order to meet man’s enormous demands. These operations generate huge amounts of wastewater, which may be recovered and used for a variety of reasons. Conventional wastewater treatment techniques have had some success in treating effluents for discharge throughout the years. However, advances in wastewater treatment techniques are required to make treated wastewater suitable for industrial, agricultural, and household use. Diverse techniques for removing heavy metal ions from various water and wastewater sources have been described. These treatments can be categorized as adsorption, membrane, chemical, or electric. Membrane technology has been developed as a popular alternative for recovering and reusing water from various water and wastewater sources. This study integrates useful membrane technology techniques for water and wastewater treatment containing heavy metals, with the objective of establishing a low-cost, high-efficiency method as well as ideal production conditions: low-cost, high-efficiency selective membranes, and maximum flexibility and selectivity. Future studies should concentrate on eco-friendly, cost-effective, and long-term materials and procedures.
Collapse
|
25
|
He JC, Jia YX, Yan R, Wang M. An electrodialysis-based coupling technique for simultaneous reclamation of waste acid and cleaner production of organic acid. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Julian H, Khoiruddin K, Julies N, Edwina V, Wenten I. Pineapple juice acidity removal using electrodeionization (EDI). J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
27
|
Liu G, Wu D, Chen G, Halim R, Liu J, Deng H. Comparative study on tartaric acid production by two-chamber and three-chamber electro-electrodialysis. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Hernandez P, Zhou M, Vassilev I, Freguia S, Zhang Y, Keller J, Ledezma P, Virdis B. Selective Extraction of Medium-Chain Carboxylic Acids by Electrodialysis and Phase Separation. ACS OMEGA 2021; 6:7841-7850. [PMID: 33778296 PMCID: PMC7992139 DOI: 10.1021/acsomega.1c00397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
Carboxylic acids obtained via the microbial electrochemical conversion of waste gases containing carbon dioxide (i.e., microbial electrosynthesis) can be used in lieu of nonrenewable building-block chemicals in the manufacture of a variety of products. When targeting valuable medium-chain carboxylic acids such as caproic acid, electricity-driven fermentations can be limited by the accumulation of fermentation products in the culturing media, often resulting in low volumetric productivities and titers due to direct toxicity or inhibition of the biocatalyst. In this study, we tested the effectiveness of a simple electrodialysis system in upconcentrating carboxylic acids from a model solution mimicking the effluent of a microbial electrochemical system producing short- and medium-chain carboxylic acids. Under batch extraction conditions, the electrodialysis scheme enabled the recovery of 60% (mol mol-1) of the total carboxylic acids present in the model fermentation broth. The particular arrangement of conventional monopolar ion exchange membranes and hydraulic recirculation loops allowed the progressive acidification of the extraction solution, enabling phase separation of caproic acid as an immiscible oil with 76% purity.
Collapse
Affiliation(s)
- Paula
Andrea Hernandez
- Advanced
Water Management Centre, The University
of Queensland, Brisbane, Queensland 4072, Australia
| | - Miaomiao Zhou
- Shandong
University, 72 Binhai Road, Jimo District, Qingdao 266237, PR China
| | - Igor Vassilev
- Faculty
of Engineering and Natural Sciences, Tampere
University, P.O. Box 589, Tampere FI-33014, Finland
| | - Stefano Freguia
- Department
of Chemical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Yang Zhang
- College
of Environment and Safety Engineering, Qingdao
University of Science and Technology, Qingdao 266042, China
| | - Jürg Keller
- Advanced
Water Management Centre, The University
of Queensland, Brisbane, Queensland 4072, Australia
| | - Pablo Ledezma
- Advanced
Water Management Centre, The University
of Queensland, Brisbane, Queensland 4072, Australia
| | - Bernardino Virdis
- Advanced
Water Management Centre, The University
of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
29
|
Long side-chain type partially cross-linked poly(vinylidene fluoride-co-hexafluoropropylene) anion exchange membranes for desalination via electrodialysis. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.119034] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Talebi S, Garthe M, Roghmans F, Chen GQ, Kentish SE. Lactic Acid and Salt Separation Using Membrane Technology. MEMBRANES 2021; 11:107. [PMID: 33546208 PMCID: PMC7913289 DOI: 10.3390/membranes11020107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 11/29/2022]
Abstract
Acid whey is a by-product of cheese and yoghurt manufacture. The protein and lactose within acid whey can be recovered using nanofiltration and electrodialysis, but this leaves a waste stream that is a mixture of salts and lactic acid. To further add value to the acid whey treatment process, the possibility of recovering this lactic acid was investigated using either low energy reverse osmosis membranes or an electrodialysis process. Partial separation between lactic acid and potassium chloride was achieved at low applied pressures and feed pH in the reverse osmosis process, as a greater permeation of potassium chloride was observed under these conditions. Furthermore, lactic acid retention was enhanced by operating at lower temperature. Partial separation between lactic acid and potassium chloride was also achieved in the electrodialysis process. However, the observed losses in lactic acid increased with the addition of sodium chloride to the feed solution. This indicates that the separation becomes more challenging as the complexity of the feed solution increases. Neither process was able to achieve sufficient separation to avoid the use of further purification processes.
Collapse
Affiliation(s)
- Sahar Talebi
- The ARC Dairy Innovation Hub, Department of Chemical Engineering, University of Melbourne, Parkville, VIC 3010, Australia; (S.T.); (G.Q.C.)
| | - Michael Garthe
- Chemical Process Engineering, RWTH University, Forckenbeckstraße 51, 52074 Aachen, Germany; (M.G.); (F.R.)
| | - Florian Roghmans
- Chemical Process Engineering, RWTH University, Forckenbeckstraße 51, 52074 Aachen, Germany; (M.G.); (F.R.)
| | - George Q. Chen
- The ARC Dairy Innovation Hub, Department of Chemical Engineering, University of Melbourne, Parkville, VIC 3010, Australia; (S.T.); (G.Q.C.)
| | - Sandra E. Kentish
- The ARC Dairy Innovation Hub, Department of Chemical Engineering, University of Melbourne, Parkville, VIC 3010, Australia; (S.T.); (G.Q.C.)
| |
Collapse
|
31
|
Recent Advancements of UF-Based Separation for Selective Enrichment of Proteins and Bioactive Peptides—A Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11031078] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Proteins are one of the primary building blocks that have significant functional properties to be applied in food and pharmaceutical industries. Proteins could be beneficial in their concentrated products or isolates, of which membrane-based filtration methods such as ultrafiltration (UF) encompass application in broad spectra of protein sources. More importantly, selective enrichment by UF is of immense interest due to the presence of antinutrients that may dominate their perspicuous bioactivities. UF process is primarily obstructed by concentration polarization and fouling; in turn, a trade-off between productivity and selectivity emerges, especially when pure isolates are an ultimate goal. Several factors such as operating conditions and membrane equipment could leverage those pervasive contributions; therefore, UF protocols should be optimized for each unique protein mixture and mode of configuration. For instance, employing charged UF membranes or combining UF membranes with electrodialysis enables efficient separation of proteins with a similar molecular weight, which is hard to achieve by the conventional UF membrane. Meanwhile, some proposed strategies, such as utilizing ultrasonic waves, tuning operating conditions, and modifying membrane surfaces, can effectively mitigate fouling issues. A plethora of advancements in UF, from their membrane material modification to the arrangement of new configurations, contribute to the quest to actualize promising potentials of protein separation by UF, and they are reviewed in this paper.
Collapse
|
32
|
Martí-Calatayud MC, Sancho-Cirer Poczatek M, Pérez-Herranz V. Trade-Off between Operating Time and Energy Consumption in Pulsed Electric Field Electrodialysis: A Comprehensive Simulation Study. MEMBRANES 2021; 11:43. [PMID: 33430109 PMCID: PMC7827754 DOI: 10.3390/membranes11010043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 11/16/2022]
Abstract
Electrodialysis (ED) has been recently introduced in a variety of processes where the recovery of valuable resources is needed; thus, enabling sustainable production routes for a circular economy. However, new applications of ED require optimized operating modes ensuring low energy consumptions. The application of pulsed electric field (PEF) electrodialysis has been demonstrated to be an effective option to modulate concentration polarization and reduce energy consumption in ED systems, but the savings in energy are usually attained by extending the operating time. In the present work, we conduct a comprehensive simulation study about the effects of PEF signal parameters on the time and energy consumption associated with ED processes. Ion transport of NaCl solutions through homogeneous cation-exchange membranes is simulated using a 1-D model solved by a finite-difference method. Increasing the pulse frequency up to a threshold value is effective in reducing the specific energy consumption, with threshold frequencies increasing with the applied current density. Varying the duty cycle causes opposed effects in the time and energy usage needed for a given ED operation. More interestingly, a new mode of PEF functions with the application of low values of current during the relaxation phases has been investigated. This novel PEF strategy has been demonstrated to simultaneously improve the time and the specific energy consumption of ED processes.
Collapse
Affiliation(s)
- Manuel César Martí-Calatayud
- IEC Group, ISIRYM, Universitat Politècnica de València, Camí de Vera s/n, 46022 València, Spain; (M.S.-C.P.); (V.P.-H.)
| | | | | |
Collapse
|
33
|
Mores S, Vandenberghe LPDS, Magalhães Júnior AI, de Carvalho JC, de Mello AFM, Pandey A, Soccol CR. Citric acid bioproduction and downstream processing: Status, opportunities, and challenges. BIORESOURCE TECHNOLOGY 2021; 320:124426. [PMID: 33249260 DOI: 10.1016/j.biortech.2020.124426] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 06/12/2023]
Abstract
Citric acid (CA) has been widely used in different industrial sectors, being produced through fermentation of low-cost feedstock. The development of downstream processes, easier to operate, environmentally friendly, and more economic than precipitation, is certainly a challenge in CA bioproduction. Large volumes of by-products generated in precipitation require treatment before disposal. Adsorption, extraction, and membrane separation have been shown to have a lower environmental impact than precipitation, but the technological maturity of these methods is still limited. However, reactive extraction and adsorption have great potential for industrial applications. This review shows that there is still much to be explored, both about the factors that are intrinsic to the techniques, but also in their combination for new processes' development. This review reports the most recent advances on CA bioproduction, with significant information about recovery and purification methods involving this highly industrially demanded organic acid.
Collapse
Affiliation(s)
- Sabrina Mores
- Federal University of Paraná (UFPR). Department of Bioprocess Engineering and Biotechnology. P.O. Box 19011, ZIP Code 81531-990, Curitiba, Paraná, Brazil
| | - Luciana Porto de Souza Vandenberghe
- Federal University of Paraná (UFPR). Department of Bioprocess Engineering and Biotechnology. P.O. Box 19011, ZIP Code 81531-990, Curitiba, Paraná, Brazil.
| | - Antonio Irineudo Magalhães Júnior
- Federal University of Paraná (UFPR). Department of Bioprocess Engineering and Biotechnology. P.O. Box 19011, ZIP Code 81531-990, Curitiba, Paraná, Brazil
| | - Júlio César de Carvalho
- Federal University of Paraná (UFPR). Department of Bioprocess Engineering and Biotechnology. P.O. Box 19011, ZIP Code 81531-990, Curitiba, Paraná, Brazil
| | - Ariane Fátima Murawski de Mello
- Federal University of Paraná (UFPR). Department of Bioprocess Engineering and Biotechnology. P.O. Box 19011, ZIP Code 81531-990, Curitiba, Paraná, Brazil
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India
| | - Carlos Ricardo Soccol
- Federal University of Paraná (UFPR). Department of Bioprocess Engineering and Biotechnology. P.O. Box 19011, ZIP Code 81531-990, Curitiba, Paraná, Brazil
| |
Collapse
|
34
|
Pärnamäe R, Mareev S, Nikonenko V, Melnikov S, Sheldeshov N, Zabolotskii V, Hamelers H, Tedesco M. Bipolar membranes: A review on principles, latest developments, and applications. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118538] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
35
|
Zhang P, Wu Y, Liu W, Cui P, Huang Q, Ran J. Construction of two dimensional anion exchange membranes to boost acid recovery performances. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118692] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Wenten IG, Khoiruddin K, Mukti RR, Rahmah W, Wang Z, Kawi S. Zeolite membrane reactors: from preparation to application in heterogeneous catalytic reactions. REACT CHEM ENG 2021. [DOI: 10.1039/d0re00388c] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Coupling chemical reaction with membrane separation or known as membrane reactor (MR) has been demonstrated by numerous studies and showed that this strategy has successfully addressed the goal of process intensification.
Collapse
Affiliation(s)
- I. G. Wenten
- Department of Chemical Engineering
- Faculty of Industrial Technology
- Institut Teknologi Bandung
- Bandung
- Indonesia
| | - K. Khoiruddin
- Department of Chemical Engineering
- Faculty of Industrial Technology
- Institut Teknologi Bandung
- Bandung
- Indonesia
| | - R. R. Mukti
- Research Center for Nanosciences and Nanotechnology
- Institut Teknologi Bandung
- Bandung
- Indonesia
- Division of Inorganic and Physical Chemistry
| | - W. Rahmah
- Department of Chemical Engineering
- Faculty of Industrial Technology
- Institut Teknologi Bandung
- Bandung
- Indonesia
| | - Z. Wang
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- 117576 Singapore
| | - S. Kawi
- Department of Chemical and Biomolecular Engineering
- National University of Singapore
- 117576 Singapore
| |
Collapse
|
37
|
Gausmann M, Jupke A. Dynamic Modeling of Electrochemical pH‐Swing Extraction. CHEM-ING-TECH 2020. [DOI: 10.1002/cite.202000060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Marcel Gausmann
- RWTH Aachen University Fluid Process Engineering (AVT.FVT) Forckenbeckstraße 51 52074 Aachen Germany
| | - Andreas Jupke
- RWTH Aachen University Fluid Process Engineering (AVT.FVT) Forckenbeckstraße 51 52074 Aachen Germany
| |
Collapse
|
38
|
Borić M, Vicente FA, Jurković DL, Novak U, Likozar B. Chitin isolation from crustacean waste using a hybrid demineralization/DBD plasma process. Carbohydr Polym 2020; 246:116648. [DOI: 10.1016/j.carbpol.2020.116648] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/29/2020] [Accepted: 06/11/2020] [Indexed: 12/14/2022]
|
39
|
Makertihartha IGBN, Kencana KS, Dwiputra TR, Khoiruddin K, Lugito G, Mukti RR, Wenten IG. SAPO-34 zeotype membrane for gas sweetening. REV CHEM ENG 2020. [DOI: 10.1515/revce-2019-0086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abstract
Membranes are considered promising tools for gas sweetening due to their lower footprint (i.e., area and energy requirement, considering elimination of solvent/absorbent and its associated regeneration procedures), and ease of scale-up. Performing membrane gas separation is strongly dependent on membrane materials. With a 0.38-nm pore size, the SAPO-34 membrane surpasses the upper bond limit for CO2/CH4 separation. However, preparing defect-free and high-performance zeolite membranes is quite challenging. This paper reviews gas transport and separation mechanisms in SAPO-34 membranes, and it discusses prospective approaches for obtaining membranes with defect-free selective layers and hence high separation performance. Highlights, as well as the authors’ perspectives on the future development of SAPO-34 membranes in the field of gas separation, are pointed out.
Collapse
Affiliation(s)
- I Gusti B. N. Makertihartha
- Department of Chemical Engineering , Institut Teknologi Bandung , Jl. Ganesha No. 10 , Bandung , Indonesia
- Center for Catalysis and Reaction Engineering , Institut Teknologi Bandung , Jl. Ganesha No. 10 , Bandung , Indonesia
| | - Kevin S. Kencana
- Department of Chemical Engineering , Institut Teknologi Bandung , Jl. Ganesha No. 10 , Bandung , Indonesia
| | - Theodorus R. Dwiputra
- Department of Chemical Engineering , Institut Teknologi Bandung , Jl. Ganesha No. 10 , Bandung , Indonesia
| | - Khoiruddin Khoiruddin
- Department of Chemical Engineering , Institut Teknologi Bandung , Jl. Ganesha No. 10 , Bandung , Indonesia
- Research Center for Nanosciences and Nanotechnology , Institut Teknologi Bandung , Jl. Ganesha No. 10 , Bandung , Indonesia
| | - Graecia Lugito
- Department of Chemical Engineering , Institut Teknologi Bandung , Jl. Ganesha No. 10 , Bandung , Indonesia
| | - Rino R. Mukti
- Center for Catalysis and Reaction Engineering , Institut Teknologi Bandung , Jl. Ganesha No. 10 , Bandung , Indonesia
- Division of Inorganic and Physical Chemistry , Institut Teknologi Bandung , Jl. Ganesha No. 10 , Bandung , Indonesia
- Research Center for Nanosciences and Nanotechnology , Institut Teknologi Bandung , Jl. Ganesha No. 10 , Bandung , Indonesia
| | - I Gede Wenten
- Department of Chemical Engineering , Institut Teknologi Bandung , Jl. Ganesha No. 10 , Bandung , Indonesia
- Research Center for Nanosciences and Nanotechnology , Institut Teknologi Bandung , Jl. Ganesha No. 10 , Bandung , Indonesia
| |
Collapse
|
40
|
Bazinet L, Geoffroy TR. Electrodialytic Processes: Market Overview, Membrane Phenomena, Recent Developments and Sustainable Strategies. MEMBRANES 2020; 10:E221. [PMID: 32887428 PMCID: PMC7557436 DOI: 10.3390/membranes10090221] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 01/31/2023]
Abstract
In the context of preserving and improving human health, electrodialytic processes are very promising perspectives. Indeed, they allow the treatment of water, preservation of food products, production of bioactive compounds, extraction of organic acids, and recovery of energy from natural and wastewaters without major environmental impact. Hence, the aim of the present review is to give a global portrait of the most recent developments in electrodialytic membrane phenomena and their uses in sustainable strategies. It has appeared that new knowledge on pulsed electric fields, electroconvective vortices, overlimiting conditions and reversal modes as well as recent demonstrations of their applications are currently boosting the interest for electrodialytic processes. However, the hurdles are still high when dealing with scale-ups and real-life conditions. Furthermore, looking at the recent research trends, potable water and wastewater treatment as well as the production of value-added bioactive products in a circular economy will probably be the main applications to be developed and improved. All these processes, taking into account their principles and specificities, can be used for specific eco-efficient applications. However, to prove the sustainability of such process strategies, more life cycle assessments will be necessary to convince people of the merits of coupling these technologies.
Collapse
Affiliation(s)
- Laurent Bazinet
- Department of Food Sciences, Laboratoire de Transformation Alimentaire et Procédés ÉlectroMembranaires (LTAPEM, Laboratory of Food Processing and Electromembrane Processes), Institute of Nutrition and Functional Foods (INAF), Dairy Research Center (STELA), Université Laval, Quebec, QC G1V0A6, Canada;
| | | |
Collapse
|
41
|
Zhang C, Zhang W, Wang Y. Diffusion Dialysis for Acid Recovery from Acidic Waste Solutions: Anion Exchange Membranes and Technology Integration. MEMBRANES 2020; 10:E169. [PMID: 32751246 PMCID: PMC7463704 DOI: 10.3390/membranes10080169] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022]
Abstract
Inorganic acids are commonly used in mining, metallurgical, metal-processing, and nuclear-fuel-reprocessing industries in various processes, such as leaching, etching, electroplating, and metal-refining. Large amounts of spent acidic liquids containing toxic metal ion complexes are produced during these operations, which pose a serious hazard to the living and non-living environment. Developing economic and eco-friendly regeneration approaches to recover acid and valuable metals from these industrial effluents has focused the interest of the research community. Diffusion dialysis (DD) using anion exchange membranes (AEMs) driven by an activity gradient is considered an effective technology with a low energy consumption and little environmental contamination. In addition, the properties of AEMs have an important effect on the DD process. Hence, this paper gives a critical review of the properties of AEMs, including their acid permeability, membrane stability, and acid selectivity during the DD process for acid recovery. Furthermore, the DD processes using AEMs integrated with various technologies, such as pressure, an electric field, or continuous operation are discussed to enhance its potential for industrial applications. Finally, some directions are provided for the further development of AEMs in DD for acid recovery from acidic waste solutions.
Collapse
Affiliation(s)
| | - Wen Zhang
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science & Desalination Technology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (C.Z.); (Y.W.)
| | | |
Collapse
|
42
|
Mejía Marchena R, Maturana Córdoba A, Gomez Cerón D, Quintero Monroy C, Arismendy Montes L, Cardenas Perez C. Reuse of manganese sulfate as raw material by recovery from pesticide's wastewater using nanofiltration and electro-electrodialysis: process simulation and analysis from actual data. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:315-329. [PMID: 32941173 DOI: 10.2166/wst.2020.179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Reuse of wastewater, as well as recovery of valuable, toxic or harmful products in industrial discharges, still represents an important issue, not only because it reduces the effect on receiving water bodies, but also because of the economic resources it represents for industry itself. In this research, in situ regeneration of Mn2SO4 is evaluated, for its reuse as the main raw material in the original process of a fungicide plant. The regeneration is evaluated by selective recovery of Mn2+, Zn2+ and SO4 = present in the wastewater produced by the industrial plant, and utilizing nanofiltration, electro-electrodialysis and chemical precipitation as separation alternatives. Each alternative was designed and evaluated technically and economically through simulations in Aspen Plus®, with data and information of the real process supplied by the company. Because zinc concentration is relatively low, its selective recovery was not attractive. The resulting Mn2SO4 solution and treated water quality in conventional alternatives were significantly poor with high costs. In contrast, nanofiltration and electro-electrodialysis alternatives generate water and by-products of higher quality and reuse potential with significantly lower costs. However, their viability depends on the membrane performance. The results were satisfactory, but future experimental studies are required to optimize the alternatives and define the correct pretreatment process.
Collapse
Affiliation(s)
- Ricardo Mejía Marchena
- Instituto de Estudios Hidráulicos y Ambientales-IDEHA, Universidad del Norte, km 5 vía a Puerto Colombia, Barranquilla, Colombia E-mail:
| | - Aymer Maturana Córdoba
- Instituto de Estudios Hidráulicos y Ambientales-IDEHA, Universidad del Norte, km 5 vía a Puerto Colombia, Barranquilla, Colombia E-mail: ; Instituto de Desarrollo Sostenible-IDS, Departamento de ingeniería Civil y Ambiental, Universidad del Norte, km 5 vía a Puerto Colombia, Barranquilla, Colombia
| | - Diego Gomez Cerón
- Grupo de Investigación en Robótica y Sistemas Inteligentes, Departamento de ingeniería Eléctrica y electrónica, Universidad del Norte, km 5 vía a Puerto Colombia, Barranquilla, Colombia
| | - Christian Quintero Monroy
- Grupo de Investigación en Robótica y Sistemas Inteligentes, Departamento de ingeniería Eléctrica y electrónica, Universidad del Norte, km 5 vía a Puerto Colombia, Barranquilla, Colombia
| | - Luis Arismendy Montes
- Grupo de Investigación en Robótica y Sistemas Inteligentes, Departamento de ingeniería Eléctrica y electrónica, Universidad del Norte, km 5 vía a Puerto Colombia, Barranquilla, Colombia
| | - Carlos Cardenas Perez
- Grupo de Investigación en Robótica y Sistemas Inteligentes, Departamento de ingeniería Eléctrica y electrónica, Universidad del Norte, km 5 vía a Puerto Colombia, Barranquilla, Colombia
| |
Collapse
|
43
|
|
44
|
Cuellar MC, Straathof AJJ. Downstream of the bioreactor: advancements in recovering fuels and commodity chemicals. Curr Opin Biotechnol 2020; 62:189-195. [DOI: 10.1016/j.copbio.2019.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 10/13/2019] [Accepted: 11/13/2019] [Indexed: 12/15/2022]
|
45
|
Pismenskaya N, Rybalkina O, Kozmai A, Tsygurina K, Melnikova E, Nikonenko V. Generation of H+ and OH− ions in anion-exchange membrane/ampholyte-containing solution systems: A study using electrochemical impedance spectroscopy. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117920] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
46
|
Gede Wenten I, Friatnasary DL, Khoiruddin K, Setiadi T, Boopathy R. Extractive membrane bioreactor (EMBR): Recent advances and applications. BIORESOURCE TECHNOLOGY 2020; 297:122424. [PMID: 31784251 DOI: 10.1016/j.biortech.2019.122424] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
Combining bioreactor and membrane, known as a membrane bioreactor (MBR), has been considered as an attractive strategy to solve the limitations of conventional activated sludge process, such as biological instability, poor sludge quality, and low concentration of mixed liquor suspended solid. Unlike the other MBRs, extractive membrane bioreactor (EMBR) focuses on enhancing the efficiency of wastewater treatment through toxic compounds extraction by using a selective membrane. Even though EMBR has been successfully demonstrated in wastewater and waste gas treatment by several studies, it still faces some obstacles such as biofilm formation and low selectivity of the membrane towards a specific component. Appropriate biofilm formation control strategies and membrane with high selectivity are needed to solve those problems. This paper reviews EMBR including its potential applications in wastewater treatment, denitrification process, and waste gas treatment. In addition, challenges and outlook of EMBR are discussed.
Collapse
Affiliation(s)
- I Gede Wenten
- Department of Chemical Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia; Research Center for Biosciences and Biotechnology, Insitut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia
| | - Dwi L Friatnasary
- Department of Chemical Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia
| | - K Khoiruddin
- Department of Chemical Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia
| | - T Setiadi
- Department of Chemical Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia; Center for Environmental Studies (PSLH), Institut Teknologi Bandung, Jl. Sangkuriang 42A, Bandung 40135, Indonesia
| | - R Boopathy
- Department of Biological Sciences, Nicholls State University, Thibodaux, USA.
| |
Collapse
|
47
|
Martí-Calatayud M, Evdochenko E, Bär J, García-Gabaldón M, Wessling M, Pérez-Herranz V. Tracking homogeneous reactions during electrodialysis of organic acids via EIS. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117592] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Rybalkina O, Tsygurina K, Melnikova E, Mareev S, Moroz I, Nikonenko V, Pismenskaya N. Partial Fluxes of Phosphoric Acid Anions through Anion-Exchange Membranes in the Course of NaH 2PO 4 Solution Electrodialysis. Int J Mol Sci 2019; 20:E3593. [PMID: 31340475 PMCID: PMC6678999 DOI: 10.3390/ijms20143593] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 11/23/2022] Open
Abstract
Electrodialysis (ED) with ion-exchange membranes is a promising method for the extraction of phosphates from municipal and other wastewater in order to obtain cheap mineral fertilizers. Phosphorus is transported through an anion-exchange membrane (AEM) by anions of phosphoric acid. However, which phosphoric acid anions carry the phosphorus in the membrane and the boundary solution, that is, the mechanism of phosphorus transport, is not yet clear. Some authors report an unexpectedly low current efficiency of this process and high energy consumption. In this paper, we report the partial currents of H2PO4-, HPO42-, and PO43- through Neosepta AMX and Fujifilm AEM Type X membranes, as well as the partial currents of H2PO4- and H+ ions through a depleted diffusion layer of a 0.02 M NaH2PO4 feed solution measured as functions of the applied potential difference across the membrane under study. It was shown that the fraction of the current transported by anions through AEMs depend on the total current density/potential difference. This was due to the fact that the pH of the internal solution in the membrane increases with the growing current due to the increasing concentration polarization (a lower electrolyte concentration at the membrane surface leads to higher pH shift in the membrane). The HPO42- ions contributed to the charge transfer even when a low current passed through the membrane; with an increasing current, the contribution of the HPO42- ions grew, and when the current was about 2.5 ilimLev (ilimLev was the theoretical limiting current density), the PO43- ions started to carry the charge through the membrane. However, in the feed solution, the pH was 4.6 and only H2PO4- ions were present. When H2PO4- ions entered the membrane, a part of them transformed into doubly and triply charged anions; the H+ ions were released in this transformation and returned to the depleted diffusion layer. Thus, the phosphorus total flux, jP (equal to the sum of the fluxes of all phosphorus-bearing species) was limited by the H2PO4- transport from the bulk of feed solution to the membrane surface. The value of jP was close to ilimLev/F (F is the Faraday constant). A slight excess of jP over ilimLev/F was observed, which is due to the electroconvection and exaltation effects. The visualization showed that electroconvection in the studied systems was essentially weaker than in systems with strong electrolytes, such as NaCl.
Collapse
Affiliation(s)
- Olesya Rybalkina
- Kuban State University, 149 Stavropolskaya st., 350040 Krasnodar, Russia
| | - Kseniya Tsygurina
- Kuban State University, 149 Stavropolskaya st., 350040 Krasnodar, Russia
| | | | - Semyon Mareev
- Kuban State University, 149 Stavropolskaya st., 350040 Krasnodar, Russia
| | - Ilya Moroz
- Kuban State University, 149 Stavropolskaya st., 350040 Krasnodar, Russia
| | - Victor Nikonenko
- Kuban State University, 149 Stavropolskaya st., 350040 Krasnodar, Russia.
| | | |
Collapse
|