1
|
Jiang Y, Zhu C, Ma X, Fan D. Smart hydrogel-based trends in future tendon injury repair: A review. Int J Biol Macromol 2024; 282:137092. [PMID: 39489238 DOI: 10.1016/j.ijbiomac.2024.137092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Despite advances in tissue engineering for tendon repair, rapid functional repair is still challenging due to its specificity and is prone to complications such as postoperative infections and tendon adhesions. Smart responsive hydrogels provide new ideas for tendon therapy with their flexibly designed three-dimensional cross-linked polymer networks that respond to specific stimuli. In recent years, a variety of smart-responsive hydrogels have been developed for the treatment of tendon disorders, showing great research promise and ability to address complex challenges. This article provides a comprehensive review of recent advances in the field of smart-responsive hydrogels for the treatment of tendon disorders, with a special focus on their response properties to different physical, chemical and biological stimuli. The multiple functional properties of these innovative materials are discussed in depth, including excellent biocompatibility and biodegradability, excellent mechanical properties, biomimetic structural design, convenient injectability, and unique self-healing capabilities. These properties enable the smart-responsive hydrogels to demonstrate significant advantages in solving difficult problems in the treatment of tendon disorders, such as precise drug delivery, tendon adhesion prevention and postoperative infection control. In addition, the article looks at the future prospects of smart-responsive hydrogels and analyses the challenges they may face in achieving widespread application.
Collapse
Affiliation(s)
- Yingxue Jiang
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710127, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710127, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710127, China
| | - Chenhui Zhu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710127, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710127, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710127, China
| | - Xiaoxuan Ma
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710127, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710127, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710127, China.
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710127, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710127, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
2
|
Zhu H, Sun H, Dai J, Hao J, Zhou B. Chitosan-based hydrogels in cancer therapy: Drug and gene delivery, stimuli-responsive carriers, phototherapy and immunotherapy. Int J Biol Macromol 2024; 282:137047. [PMID: 39489261 DOI: 10.1016/j.ijbiomac.2024.137047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
Nanotechnology has transformed the oncology sector by particularly targeting cancer cells and enhancing the efficacy of conventional therapies, not only improving efficacy of conventional therapeutics, but also reducing systemic toxicity. Environmentally friendly materials are the top choice for treating cancer. Chitosan, sourced from chitin, is widely used with its derivatives for the extensive synthesis or modification of nanostructures. Chitosan has been deployed to develop hydrogels, as 3D polymeric networks capable of water absorption with wide biomedical application. The chitosan hydrogels are biocompatible and biodegradable structures that can deliver drugs, genes or a combination of them in cancer therapy. Increased tumor ablation, reducing off-targeting feature and protection of genes against degradation are benefits of using chitosan hydrogels in cancer therapy. The efficacy of cancer immunotherapy can be improved by chitosan hydrogels to prevent emergence of immune evasion. In addition, chitosan hydrogels facilitate photothermal and photodynamic therapy for tumor suppression. Chitosan hydrogels can synergistically integrate chemotherapy, immunotherapy, and phototherapy in cancer treatment. Additionally, chitosan hydrogels that respond to stimuli, specifically thermo-sensitive hydrogels, have been developed for inhibiting tumors.
Collapse
Affiliation(s)
- Hailin Zhu
- Department of Pathology, Ganzhou Cancer Hospital, Ganzhou City, Jiangxi Province, China
| | - Hao Sun
- Faculty of Science, Autonomous University of Madrid, Spainish National Research Council-Consejo Superior de Investigaciones Científicas, (UAM-CSIC), 28049 Madrid, Spain
| | - Jingyuan Dai
- School of Computer Science and Information Systems, Northwest Missouri State University, MO, USA
| | - Junfeng Hao
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China; Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang 110022, Liaoning, China.
| | - Boxuan Zhou
- Department of General Surgery, Breast Disease Center, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
3
|
Fatima R, Almeida B. Methods to achieve tissue-mimetic physicochemical properties in hydrogels for regenerative medicine and tissue engineering. J Mater Chem B 2024; 12:8505-8522. [PMID: 39149830 DOI: 10.1039/d4tb00716f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Hydrogels are water-swollen polymeric matrices with properties that are remarkably similar in function to the extracellular matrix. For example, the polymer matrix provides structural support and adhesion sites for cells in much of the same way as the fibers of the extracellular matrix. In addition, depending on the polymer used, bioactive sites on the polymer may provide signals to initiate certain cell behavior. However, despite their potential as biomaterials for tissue engineering and regenerative medicine applications, fabricating hydrogels that truly mimic the physicochemical properties of the extracellular matrix to physiologically-relevant values is a challenge. Recent efforts in the field have sought to improve the physicochemical properties of hydrogels using advanced materials science and engineering methods. In this review, we highlight some of the most promising methods, including crosslinking strategies and manufacturing approaches such as 3D bioprinting and granular hydrogels. We also provide a brief perspective on the future outlook of this field and how these methods may lead to the clinical translation of hydrogel biomaterials for tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Rabia Fatima
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, NY 13699, USA.
| | - Bethany Almeida
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, NY 13699, USA.
| |
Collapse
|
4
|
Solanki R, Bhatia D. Stimulus-Responsive Hydrogels for Targeted Cancer Therapy. Gels 2024; 10:440. [PMID: 39057463 PMCID: PMC11275390 DOI: 10.3390/gels10070440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Cancer is a highly heterogeneous disease and remains a global health challenge affecting millions of human lives worldwide. Despite advancements in conventional treatments like surgery, chemotherapy, and immunotherapy, the rise of multidrug resistance, tumor recurrence, and their severe side effects and the complex nature of the tumor microenvironment (TME) necessitates innovative therapeutic approaches. Recently, stimulus-responsive nanomedicines designed to target TME characteristics (e.g., pH alterations, redox conditions, enzyme secretion) have gained attention for their potential to enhance anticancer efficacy while minimizing the adverse effects of chemotherapeutics/bioactive compounds. Among the various nanocarriers, hydrogels are intriguing due to their high-water content, adjustable mechanical characteristics, and responsiveness to external and internal stimuli, making them promising candidates for cancer therapy. These properties make hydrogels an ideal nanocarrier for controlled drug release within the TME. This review comprehensively surveys the latest advancements in the area of stimulus-responsive hydrogels for cancer therapy, exploring various stimuli-responsive mechanisms, including biological (e.g., pH, redox), chemical (e.g., enzymes, glucose), and physical (e.g., temperature, light), as well as dual- or multi-stimuli responsiveness. Furthermore, this review addresses the current developments and challenges in hydrogels in cancer treatment. Our aim is to provide readers with a comprehensive understanding of stimulus-responsive hydrogels for cancer treatment, offering novel perspectives on their development for cancer therapy and other medical applications.
Collapse
Affiliation(s)
- Raghu Solanki
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj 382355, Gujarat, India
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj 382355, Gujarat, India
| |
Collapse
|
5
|
Lodi MB, Corda EMA, Desogus F, Fanti A, Mazzarella G. Modeling of Magnetic Scaffolds as Drug Delivery Platforms for Tissue Engineering and Cancer Therapy. Bioengineering (Basel) 2024; 11:573. [PMID: 38927809 PMCID: PMC11200873 DOI: 10.3390/bioengineering11060573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Magnetic scaffolds (MagSs) are magneto-responsive devices obtained by the combination of traditional biomaterials (e.g., polymers, bioceramics, and bioglasses) and magnetic nanoparticles. This work analyzes the literature about MagSs used as drug delivery systems for tissue repair and cancer treatment. These devices can be used as innovative drugs and/or biomolecules delivery systems. Through the application of a static or dynamic stimulus, MagSs can trigger drug release in a controlled and remote way. However, most of MagSs used as drug delivery systems are not optimized and properly modeled, causing a local inhomogeneous distribution of the drug's concentration and burst release. Few physical-mathematical models have been presented to study and analyze different MagSs, with the lack of a systematic vision. In this work, we propose a modeling framework. We modeled the experimental data of drug release from different MagSs, under various magnetic field types, taken from the literature. The data were fitted to a modified Gompertz equation and to the Korsmeyer-Peppas model (KPM). The correlation coefficient (R2) and the root mean square error (RMSE) were the figures of merit used to evaluate the fitting quality. It has been found that the Gompertz model can fit most of the drug delivery cases, with an average RMSE below 0.01 and R2>0.9. This quantitative interpretation of existing experimental data can foster the design and use of MagSs for drug delivery applications.
Collapse
Affiliation(s)
- Matteo B. Lodi
- Department of Electrical and Electronic Engineering, University of Cagliari, via Marengo 2, 09123 Cagliari, Italy; (M.B.L.); (E.M.A.C.); (G.M.)
- Consorzio Nazionale Interuniversitario per le Telecomunicazioni (CNIT), Cagliari Research Unit, Department of Eletrical and Electronic Engineering, University of Cagliari, via Marengo 2, 09123 Cagliari, Italy
| | - Eleonora M. A. Corda
- Department of Electrical and Electronic Engineering, University of Cagliari, via Marengo 2, 09123 Cagliari, Italy; (M.B.L.); (E.M.A.C.); (G.M.)
| | - Francesco Desogus
- Department of Mechanical, Chemical and Material Engineering, University of Cagliari, via Marengo 2, 09123 Cagliari, Italy;
| | - Alessandro Fanti
- Department of Electrical and Electronic Engineering, University of Cagliari, via Marengo 2, 09123 Cagliari, Italy; (M.B.L.); (E.M.A.C.); (G.M.)
- Consorzio Nazionale Interuniversitario per le Telecomunicazioni (CNIT), Cagliari Research Unit, Department of Eletrical and Electronic Engineering, University of Cagliari, via Marengo 2, 09123 Cagliari, Italy
| | - Giuseppe Mazzarella
- Department of Electrical and Electronic Engineering, University of Cagliari, via Marengo 2, 09123 Cagliari, Italy; (M.B.L.); (E.M.A.C.); (G.M.)
- Consorzio Nazionale Interuniversitario per le Telecomunicazioni (CNIT), Cagliari Research Unit, Department of Eletrical and Electronic Engineering, University of Cagliari, via Marengo 2, 09123 Cagliari, Italy
| |
Collapse
|
6
|
Liu L, Li Z, Yang B, Jia X, Wang S. Recent Research Progress on Polyamidoamine-Engineered Hydrogels for Biomedical Applications. Biomolecules 2024; 14:620. [PMID: 38927024 PMCID: PMC11201556 DOI: 10.3390/biom14060620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024] Open
Abstract
Hydrogels are three-dimensional crosslinked functional materials with water-absorbing and swelling properties. Many hydrogels can store a variety of small functional molecules to structurally and functionally mimic the natural extracellular matrix; hence, they have been extensively studied for biomedical applications. Polyamidoamine (PAMAM) dendrimers have an ethylenediamine core and a large number of peripheral amino groups, which can be used to engineer various polymer hydrogels. In this review, an update on the progress of using PAMAM dendrimers for multifunctional hydrogel design was given. The synthesis of these hydrogels, which includes click chemistry reactions, aza-Michael addition, Schiff base reactions, amidation reactions, enzymatic reactions, and radical polymerization, together with research progress in terms of their application in the fields of drug delivery, tissue engineering, drug-free tumor therapy, and other related fields, was discussed in detail. Furthermore, the biomedical applications of PAMAM-engineered nano-hydrogels, which combine the advantages of dendrimers, hydrogels, and nanoparticles, were also summarized. This review will help researchers to design and develop more functional hydrogel materials based on PAMAM dendrimers.
Collapse
Affiliation(s)
- Li Liu
- Outpatient Department of Anhui Medical University First Affiliated Hospital, The First Affiliated Hospital of Anhui Medical University, No. 120 Wanshui Road, Hefei High-Tech Zone, Hefei 230000, China
| | - Zhiling Li
- Outpatient Department of Anhui Medical University First Affiliated Hospital, The First Affiliated Hospital of Anhui Medical University, No. 120 Wanshui Road, Hefei High-Tech Zone, Hefei 230000, China
| | - Baiyan Yang
- Outpatient Department of Anhui Medical University First Affiliated Hospital, The First Affiliated Hospital of Anhui Medical University, No. 120 Wanshui Road, Hefei High-Tech Zone, Hefei 230000, China
| | - Xiaoqing Jia
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| |
Collapse
|
7
|
Ahmed B, Reiche CF, Magda JJ, Solzbacher F, Körner J. Smart Hydrogel Swelling State Detection Based on a Power-Transfer Transduction Principle. ACS APPLIED POLYMER MATERIALS 2024; 6:5544-5554. [PMID: 38752016 PMCID: PMC11091848 DOI: 10.1021/acsapm.4c00808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024]
Abstract
Stimulus-responsive (smart) hydrogels are a promising sensing material for biomedical contexts due to their reversible swelling change in response to target analytes. The design of application-specific sensors that utilize this behavior requires the development of suitable transduction concepts. The presented study investigates a power-transfer-based readout approach that is sensitive to small volumetric changes of the smart hydrogel. The concept employs two thin film polyimide substrates with embedded conductive strip lines, which are shielded from each other except at the tip region, where the smart hydrogel is sandwiched in between. The hydrogel's volume change in response to a target analyte alters the distance and orientation of the thin films, affecting the amount of transferred power between the two transducer parts and, consequently, the measured sensor output voltage. With proper calibration, the output signal can be used to determine the swelling change of the hydrogel and, consequently, to quantify the stimulus. In proof-of-principle experiments with glucose- and pH-sensitive smart hydrogels, high sensitivity to small analyte concentration changes was found along with very good reproducibility and stability. The concept was tested with two exemplary hydrogels, but the transduction principle in general is independent of the specific hydrogel material, as long as it exhibits a stimulus-dependent volume change. The application vision of the presented research is to integrate in situ blood analyte monitoring capabilities into standard (micro)catheters. The developed sensor is designed to fit into a catheter without obstructing its normal use and, therefore, offers great potential for providing a universally applicable transducer platform for smart catheter-based sensing.
Collapse
Affiliation(s)
- Benozir Ahmed
- Department
of Electrical & Computer Engineering, University of Utah, Salt Lake
City, Utah 84112, United States
| | - Christopher F. Reiche
- Department
of Electrical & Computer Engineering, University of Utah, Salt Lake
City, Utah 84112, United States
| | - Jules J. Magda
- Department
of Chemical Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Florian Solzbacher
- Department
of Electrical & Computer Engineering, University of Utah, Salt Lake
City, Utah 84112, United States
| | - Julia Körner
- Faculty
of
Electrical Engineering & Computer Science, Leibniz Universität Hannover, 30167 Hannover, Germany
| |
Collapse
|
8
|
Yang J, Tan Q, Li K, Liao J, Hao Y, Chen Y. Advances and Trends of Photoresponsive Hydrogels for Bone Tissue Engineering. ACS Biomater Sci Eng 2024; 10:1921-1945. [PMID: 38457377 DOI: 10.1021/acsbiomaterials.3c01485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
The development of static hydrogels as an optimal choice for bone tissue engineering (BTE) remains a difficult challenge primarily due to the intricate nature of bone healing processes, continuous physiological functions, and pathological changes. Hence, there is an urgent need to exploit smart hydrogels with programmable properties that can effectively enhance bone regeneration. Increasing evidence suggests that photoresponsive hydrogels are promising bioscaffolds for BTE due to their advantages such as controlled drug release, cell fate modulation, and the photothermal effect. Here, we review the current advances in photoresponsive hydrogels. The mechanism of photoresponsiveness and its advanced applications in bone repair are also elucidated. Future research would focus on the development of more efficient, safer, and smarter photoresponsive hydrogels for BTE. This review is aimed at offering comprehensive guidance on the trends of photoresponsive hydrogels and shedding light on their potential clinical application in BTE.
Collapse
Affiliation(s)
- Juan Yang
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu 610041, PR China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Qingqing Tan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Ka Li
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Ying Hao
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Yuwen Chen
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu 610041, PR China
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu 610041, PR China
| |
Collapse
|
9
|
Cecen B, Hassan S, Li X, Zhang YS. Smart Biomaterials in Biomedical Applications: Current Advances and Possible Future Directions. Macromol Biosci 2024; 24:e2200550. [PMID: 37728061 DOI: 10.1002/mabi.202200550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 09/02/2023] [Indexed: 09/21/2023]
Abstract
Smart biomaterials with the capacity to alter their properties in response to an outside stimulus or from within the environment around them have picked up significant attention in the biomedical community. This is primarily due to the interest in their biomedical applications that may be anticipated from them in a considerable number of dynamic structures and devices. Shape-memory materials are some of these materials that have been exclusively used for these applications. They exhibit unique structural reconfiguration features they adapt as per the provided environmental conditions and can be designed for their enhanced biocompatibility. Numerous research initiatives have focused on these smart biocompatible materials over the last few decades to enhance their biomedical applications. Shape-memory materials play a significant role in this regard to meet new surgical and medical devices' requirements for special features and utility cases. Because of the favorable design variety, different biomedical shape-memory materials can be developed by modifying their chemical and physical behaviors to accommodate the desired requirements. In this review, recent advances and characteristics of smart biomaterials for biomedical applications are described. The authors also discuss about their clinical translations in tissue engineering, drug delivery, and medical devices.
Collapse
Affiliation(s)
- Berivan Cecen
- Department of Mechanical Engineering, Rowan University, Glassboro, New Jersey, 08028, USA
- Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey, 08028, USA
| | - Shabir Hassan
- Department of Biology, Khalifa University, Main Campus, Abu Dhabi, 127788, UAE
- Advanced Materials Chemistry Center (AMCC), Khalifa University, SAN Campus, Abu Dhabi, 127788, UAE
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Xin Li
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| |
Collapse
|
10
|
Leon-Cecilla A, Gila-Vilchez C, Vazquez-Perez FJ, Capitan-Vallvey LF, Martos V, Fernandez-Ramos MD, Álvarez de Cienfuegos L, Medina-Castillo AL, Lopez-Lopez MT. Highly deformable and strongly magnetic semi-interpenetrating hydrogels based on alginate or cellulose. Int J Biol Macromol 2024; 260:129368. [PMID: 38219926 DOI: 10.1016/j.ijbiomac.2024.129368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/12/2023] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
The effective implementation of many of the applications of magnetic hydrogels requires the development of innovative systems capable of withstanding a substantial load of magnetic particles to ensure exceptional responsiveness, without compromising their reliability and stability. To address this challenge, double-network hydrogels have emerged as a promising foundation, thanks to their extraordinary mechanical deformability and toughness. Here, we report a semi-interpenetrating polymer networks (SIPNs) approach to create diverse magnetic SIPNs hydrogels based on alginate or cellulose, exhibiting remarkable deformability under certain stresses. Achieving strong responsiveness to magnetic fields is a key objective, and this characteristic is realized by the incorporation of highly magnetic iron microparticles at moderately large concentrations into the polymer network. Remarkably, the SIPNs hydrogels developed in this research accommodate high loadings of magnetic particles without significantly compromising their physical properties. This feature is essential for their use in applications that demand robust responsiveness to applied magnetic fields and overall stability, such as a hydrogel luminescent oxygen sensor controlled by magnetic fields that we designed and tested as proof-of-concept. These findings underscore the potential and versatility of magnetic SIPNs hydrogels based on carbohydrate biopolymers as fundamental components in driving the progress of advanced hydrogels for diverse practical implementations.
Collapse
Affiliation(s)
- Alberto Leon-Cecilla
- Universidad de Granada, Departamento de Física Aplicada, Campus de Fuentenueva, E-18071 Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, E-18014 Granada, Spain
| | - Cristina Gila-Vilchez
- Universidad de Granada, Departamento de Física Aplicada, Campus de Fuentenueva, E-18071 Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, E-18014 Granada, Spain
| | - Francisco J Vazquez-Perez
- Universidad de Granada, Departamento de Física Aplicada, Campus de Fuentenueva, E-18071 Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, E-18014 Granada, Spain
| | - Luis F Capitan-Vallvey
- Universidad de Granada, Departamento de Química Analítica, Campus de Fuentenueva, E-18071 Granada, Spain
| | - Vanesa Martos
- Universidad de Granada, Departamento de Fisiología Vegetal, Campus de Fuentenueva, E-18071 Granada, Spain; Instituto de Biotecnología, Universidad de Granada, Campus de Fuentenueva, E-18071 Granada, Spain
| | - María D Fernandez-Ramos
- Universidad de Granada, Departamento de Química Analítica, Campus de Fuentenueva, E-18071 Granada, Spain
| | - Luis Álvarez de Cienfuegos
- Instituto de Investigación Biosanitaria Ibs.GRANADA, E-18014 Granada, Spain; Universidad de Granada, Departamento de Química Orgánica, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente, Campus de Fuentenueva, E-18071 Granada, Spain
| | - Antonio L Medina-Castillo
- Universidad de Granada, Departamento de Química Analítica, Campus de Fuentenueva, E-18071 Granada, Spain.
| | - Modesto T Lopez-Lopez
- Universidad de Granada, Departamento de Física Aplicada, Campus de Fuentenueva, E-18071 Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, E-18014 Granada, Spain.
| |
Collapse
|
11
|
Yasmin T, Mahmood A, Farooq M, Rehman U, Sarfraz RM, Ijaz H, Akram MR, Boublia A, Salem Bekhit MM, Ernst B, Benguerba Y. Quince seed mucilage/β-cyclodextrin/Mmt-Na +-co-poly (methacrylate) based pH-sensitive polymeric carriers for controlled delivery of Capecitabine. Int J Biol Macromol 2023; 253:127032. [PMID: 37742901 DOI: 10.1016/j.ijbiomac.2023.127032] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
In current work, quince seed mucilage and β-Cyclodextrin based pH regulated hydrogels were developed using aqueous free radical polymerization to sustain Capecitabine release patterns and to overcome its drawbacks, such as high dose frequency, short half-life, and low bioavailability. Developed networks were subjected to thermal analysis, Fourier transforms infrared spectroscopy, powder x-ray diffraction, elemental analysis, scanning electron microscopy, equilibrium swelling, and in-vitro release investigations to assess the network system's stability, complexation, morphology, and pH responsiveness. Thermally stable pH-responsive cross-linked networks were formed. Nanocomposite hydrogels were prepared by incorporating Capecitabine-containing clay into the swollen hydrogels. All the formulations exhibited equilibrium swelling ranging from 67.98 % to 92.98 % at pH 7.4. Optimum Capecitabine loading (88.17 %) was noted in the case of hydrogels, while it was 74.27 % in nanocomposite hydrogels. Excellent gel content (65.88 %-93.56 %) was noticed among developed formulations. Elemental analysis ensured the successful incorporation of Capecitabine. Nanocomposite hydrogels released 80.02 % longer than hydrogels after 30 h. NC hydrogels had higher t1/2 (10.57 h), AUC (121.52 μg.h/ml), and MRT (18.95 h) than hydrogels in oral pharmacokinetics. These findings imply that the pH-responsive carrier system may improve Capecitabine efficacy and reduce dosing frequency in cancer therapy. Toxicity profiling proved the system's safety, non-toxicity, and biocompatibility.
Collapse
Affiliation(s)
- Tahira Yasmin
- Faculty of Pharmacy, The University of Lahore, Punjab, Lahore, Pakistan
| | - Asif Mahmood
- Faculty of Pharmacy, The University of Lahore, Punjab, Lahore, Pakistan; Department of Pharmacy, University of Chakwal, Pakistan.
| | - Muhammad Farooq
- Faculty of Pharmacy, The University of Lahore, Punjab, Lahore, Pakistan
| | - Umaira Rehman
- College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | | | - Hira Ijaz
- Department of Pharmaceutical Sciences, Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology, Mang, Khanpur Road, Haripur 22620, Khyber Pakhtunkhwa, Pakistan
| | | | - Abir Boublia
- Laboratoire de Physico-Chimie des Hauts Polymères (LPCHP), Département de Génie des Procédés, Faculté de Technologie, Université Ferhat ABBAS Sétif-1, Sétif 19000, Algeria
| | - Mounir M Salem Bekhit
- Department of Pharmaceutics, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
| | - Barbara Ernst
- Université de Strasbourg, CNRS, IPHC UMR 7178, Laboratoire de Reconnaissance et Procédés de Séparation Moléculaire (RePSeM), ECPM 25 rue Becquerel, F-67000 Strasbourg, France
| | - Yacine Benguerba
- Laboratoire de Biopharmacie Et Pharmacotechnie (LPBT), Ferhat Abbas Setif 1 University, Setif, Algeria.
| |
Collapse
|
12
|
Li X, Wu X. The microspheres/hydrogels scaffolds based on the proteins, nucleic acids, or polysaccharides composite as carriers for tissue repair: A review. Int J Biol Macromol 2023; 253:126611. [PMID: 37652329 DOI: 10.1016/j.ijbiomac.2023.126611] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/31/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
There are many studies on specific macromolecules and their contributions to tissue repair. Macromolecules have supporting and protective effects in organisms and can help regrow, reshape, and promote self-repair and regeneration of damaged tissues. Macromolecules, such as proteins, nucleic acids, and polysaccharides, can be constructed into hydrogels for the preparation of slow-release drug agents, carriers for cell culture, and platforms for gene delivery. Hydrogels and microspheres are fabricated by chemical crosslinking or mixed co-deposition often used as scaffolds, drug carriers, or cell culture matrix, provide proper mechanical support and nutrient delivery, a well-conditioned environment that to promote the regeneration and repair of damaged tissues. This review provides a comprehensive overview of recent developments in the construction of macromolecules into hydrogels and microspheres based on the proteins, nucleic acids, polysaccharides and other polymer and their application in tissue repair. We then discuss the latest research trends regarding the advantages and disadvantages of these composites in repair tissue. Further, we examine the applications of microspheres/hydrogels in different tissue repairs, such as skin tissue, cartilage, tumor tissue, synovial, nerve tissue, and cardiac repair. The review closes by highlighting the challenges and prospects of microspheres/hydrogels composites.
Collapse
Affiliation(s)
- Xian Li
- Key Laboratory of Medical Cell Biology in Inner Mongolia, Clinical Medical Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, China
| | - Xinlin Wu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China.
| |
Collapse
|
13
|
Yang S, Liu Z, Pan Y, Guan J, Yang P, Asel M. A Review of Research Progress on the Performance of Intelligent Polymer Gel. Molecules 2023; 28:molecules28104246. [PMID: 37241984 DOI: 10.3390/molecules28104246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/13/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Intelligent polymer gel, as a popular polymer material, has been attracting much attention for its application. An intelligent polymer gel will make corresponding changes to adapt to the environment after receiving stimuli; therefore, an intelligent polymer gel can play its role in many fields. With the research on intelligent polymer gels, there is great potential for applications in the fields of drug engineering, molecular devices, and biomedicine in particular. The strength and responsiveness of the gels can be improved under different configurations in different technologies to meet the needs in these fields. There is no discussion on the application of intelligent polymer gels in these fields; therefore, this paper reviews the research progress of intelligent polymer gel, describes the important research of some intelligent polymer gel, summarizes the research progress and current situation of intelligent polymer gel in the environment of external stimulation, and discusses the performance and future development direction of intelligent polymer gel.
Collapse
Affiliation(s)
- Shuangchun Yang
- Department of Petroleum and Natural Gas Engineering College, Liaoning Petrochemical University, No. 1, West Section of Dandong Road, Wanghua District, Fushun 113001, China
| | - Zhenye Liu
- Department of Petroleum and Natural Gas Engineering College, Liaoning Petrochemical University, No. 1, West Section of Dandong Road, Wanghua District, Fushun 113001, China
| | - Yi Pan
- Department of Petroleum and Natural Gas Engineering College, Liaoning Petrochemical University, No. 1, West Section of Dandong Road, Wanghua District, Fushun 113001, China
| | - Jian Guan
- Engineering Department of Greatwall Well Drilling Company, China National Petroleum Corporation, Panjin 124000, China
| | - Peng Yang
- Engineering Department of Greatwall Well Drilling Company, China National Petroleum Corporation, Panjin 124000, China
| | - Muratbekova Asel
- Institute of International Education, Liaoning Petrochemical University, Fushun 113001, China
| |
Collapse
|
14
|
Babić Radić MM, Filipović VV, Vuković JS, Vukomanović M, Ilic-Tomic T, Nikodinovic-Runic J, Tomić SL. 2-Hydroxyethyl Methacrylate/Gelatin/Alginate Scaffolds Reinforced with Nano TiO2 as a Promising Curcumin Release Platform. Polymers (Basel) 2023; 15:polym15071643. [PMID: 37050256 PMCID: PMC10097359 DOI: 10.3390/polym15071643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/16/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
The idea of this study was to create a new scaffolding system based on 2-hydroxyethyl methacrylate, gelatin, and alginate that contains titanium(IV) oxide nanoparticles as a platform for the controlled release of the bioactive agent curcumin. The innovative strategy to develop hybrid scaffolds was the modified porogenation method. The effect of the scaffold composition on the chemical, morphology, porosity, mechanical, hydrophilicity, swelling, degradation, biocompatibility, loading, and release features of hybrid scaffolds was evaluated. A porous structure with interconnected pores in the range of 52.33–65.76%, favorable swelling capacity, fully hydrophilic surfaces, degradability to 45% for 6 months, curcumin loading efficiency above 96%, and favorable controlled release profiles were obtained. By applying four kinetic models of release, valuable parameters were obtained for the curcumin/PHEMA/gelatin/alginate/TiO2 release platform. Cytotoxicity test results depend on the composition of the scaffolds and showed satisfactory cell growth with visible cell accumulation on the hybrid surfaces. The constructed hybrid scaffolds have suitable high-performance properties, suggesting potential for further in vivo and clinical studies.
Collapse
|
15
|
Morello G, De Iaco G, Gigli G, Polini A, Gervaso F. Chitosan and Pectin Hydrogels for Tissue Engineering and In Vitro Modeling. Gels 2023; 9:132. [PMID: 36826302 PMCID: PMC9957157 DOI: 10.3390/gels9020132] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Hydrogels are fascinating biomaterials that can act as a support for cells, i.e., a scaffold, in which they can organize themselves spatially in a similar way to what occurs in vivo. Hydrogel use is therefore essential for the development of 3D systems and allows to recreate the cellular microenvironment in physiological and pathological conditions. This makes them ideal candidates for biological tissue analogues for application in the field of both tissue engineering and 3D in vitro models, as they have the ability to closely mimic the extracellular matrix (ECM) of a specific organ or tissue. Polysaccharide-based hydrogels, because of their remarkable biocompatibility related to their polymeric constituents, have the ability to interact beneficially with the cellular components. Although the growing interest in the use of polysaccharide-based hydrogels in the biomedical field is evidenced by a conspicuous number of reviews on the topic, none of them have focused on the combined use of two important polysaccharides, chitosan and pectin. Therefore, the present review will discuss the biomedical applications of polysaccharide-based hydrogels containing the two aforementioned natural polymers, chitosan and pectin, in the fields of tissue engineering and 3D in vitro modeling.
Collapse
Affiliation(s)
- Giulia Morello
- Dipartimento di Matematica e Fisica E. De Giorgi, University of Salento, c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
| | - Gianvito De Iaco
- CNR NANOTEC—Institute of Nanotechnology, c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
| | - Giuseppe Gigli
- Dipartimento di Matematica e Fisica E. De Giorgi, University of Salento, c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
- CNR NANOTEC—Institute of Nanotechnology, c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
| | - Alessandro Polini
- CNR NANOTEC—Institute of Nanotechnology, c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
| | - Francesca Gervaso
- CNR NANOTEC—Institute of Nanotechnology, c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
16
|
The recent advancement in the PLGA-based thermo-sensitive hydrogel for smart drug delivery. Int J Pharm 2023; 631:122484. [PMID: 36509221 DOI: 10.1016/j.ijpharm.2022.122484] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
To date, hydrogels have opened new prospects for potential applications for drug delivery. The thermo-sensitive hydrogels have the great potential to provide more effective and controllable release of therapeutic/bioactive agents in response to changes in temperature. PLGA is a safe FDA-approved copolymer with good biocompatibility and biodegradability. Recently, PLGA-based formulation have attracted a lot of interest for thermo-sensitive hydrogels. Thermo-sensitive PLGA-based hydrogels provide the delivery system with good spatial and temporal control, and have been widely applied in drug delivery. This review is focused on the recent progression of the thermo-sensitive and biodegradable PLGA-based hydrogels that have been reported for smart drug delivery to the different organs. Eventually, future perspectives and challenges of thermo-sensitive PLGA-based hydrogels are discussed briefly.
Collapse
|
17
|
Tomić SL, Vuković JS, Babić Radić MM, Filipović VV, Živanović DP, Nikolić MM, Nikodinovic-Runic J. Manuka Honey/2-Hydroxyethyl Methacrylate/Gelatin Hybrid Hydrogel Scaffolds for Potential Tissue Regeneration. Polymers (Basel) 2023; 15:polym15030589. [PMID: 36771889 PMCID: PMC9920545 DOI: 10.3390/polym15030589] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
Scaffolding biomaterials are gaining great importance due to their beneficial properties for medical purposes. Targeted biomaterial engineering strategies through the synergy of different material types can be applied to design hybrid scaffolding biomaterials with advantageous properties for biomedical applications. In our research, a novel combination of the bioactive agent Manuka honey (MHo) with 2-hydroxyethyl methacrylate/gelatin (HG) hydrogel scaffolds was created as an efficient bioactive platform for biomedical applications. The effects of Manuka honey content on structural characteristics, porosity, swelling performance, in vitro degradation, and in vitro biocompatibility (fibroblast and keratinocyte cell lines) of hybrid hydrogel scaffolds were studied using Fourier transform infrared spectroscopy, the gravimetric method, and in vitro MTT biocompatibility assays. The engineered hybrid hydrogel scaffolds show advantageous properties, including porosity in the range of 71.25% to 90.09%, specific pH- and temperature-dependent swelling performance, and convenient absorption capacity. In vitro degradation studies showed scaffold degradability ranging from 6.27% to 27.18% for four weeks. In vitro biocompatibility assays on healthy human fibroblast (MRC5 cells) and keratinocyte (HaCaT cells) cell lines by MTT tests showed that cell viability depends on the Manuka honey content loaded in the HG hydrogel scaffolds. A sample containing the highest Manuka honey content (30%) exhibited the best biocompatible properties. The obtained results reveal that the synergy of the bioactive agent, Manuka honey, with 2-hydroxyethyl methacrylate/gelatin as hybrid hydrogel scaffolds has potential for biomedical purposes. By tuning the Manuka honey content in HG hydrogel scaffolds advantageous properties of hybrid scaffolds can be achieved for biomedical applications.
Collapse
Affiliation(s)
- Simonida Lj. Tomić
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia
- Correspondence: ; Tel.: +381-11-3303-630
| | - Jovana S. Vuković
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Marija M. Babić Radić
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Vuk. V. Filipović
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Dubravka P. Živanović
- University of Belgrade, Faculty of Medicine, Department of Dermatology and Venereology, Pasterova 2, 11000 Belgrade, Serbia
- University of Belgrade, University Clinical Center of Serbia, Clinic of Dermatology and Venereology, Pasterova 2, 11000 Belgrade, Serbia
| | - Miloš M. Nikolić
- University of Belgrade, Faculty of Medicine, Department of Dermatology and Venereology, Pasterova 2, 11000 Belgrade, Serbia
- University of Belgrade, University Clinical Center of Serbia, Clinic of Dermatology and Venereology, Pasterova 2, 11000 Belgrade, Serbia
| | - Jasmina Nikodinovic-Runic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| |
Collapse
|
18
|
Ahmed ASA, Negm ANRM, Mohammed M, Abd El-Majeed M, Ali AK, Abdelmotalleib M. Biodegradable Polymers for Industrial Applications. HANDBOOK OF BIODEGRADABLE MATERIALS 2023:451-476. [DOI: 10.1007/978-3-031-09710-2_37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
19
|
Xing Y, Zeng B, Yang W. Light responsive hydrogels for controlled drug delivery. Front Bioeng Biotechnol 2022; 10:1075670. [PMID: 36588951 PMCID: PMC9800804 DOI: 10.3389/fbioe.2022.1075670] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Light is an easy acquired, effective and non-invasive external stimulus with great flexibility and focusability. Thus, light responsive hydrogels are of particular interests to researchers in developing accurate and controlled drug delivery systems. Light responsive hydrogels are obtained by incorporating photosensitive moieties into their polymeric structures. Drug release can be realized through three major mechanisms: photoisomerization, photochemical reaction and photothermal reaction. Recent advances in material science have resulted in great development of photosensitizers, such as rare metal nanostructures and black phosphorus nanoparticles, in order to respond to a variety of light sources. Hydrogels incorporated with photosensitizers are crucial for clinical applications, and the use of ultraviolet and near-infrared light as well as up-conversion nanoparticles has greatly increased the therapeutic effects. Existing light responsive drug delivery systems have been utilized in delivering drugs, proteins and genes for chemotherapy, immunotherapy, photodynamic therapy, gene therapy, wound healing and other applications. Principles associated with site-specific targeting, metabolism, and toxicity are used to optimize efficacy and safety, and to improve patient compliance and convenience. In view of the importance of this field, we review current development, challenges and future perspectives of light responsive hydrogels for controlled drug delivery.
Collapse
|
20
|
Zheng XC, Wu CL, Xiong J, Lei H. UV Photoinitiated Temperature-Sensitive Modification of Polypropylene Grafted with Poly(N-isopropylacrylamide). POLYMER SCIENCE SERIES B 2022. [DOI: 10.1134/s1560090422700415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Bao L, Cui X, Bai R, Chen C. Advancing intestinal organoid technology to decipher nano-intestine interactions and treat intestinal disease. NANO RESEARCH 2022; 16:3976-3990. [PMID: 36465523 PMCID: PMC9685037 DOI: 10.1007/s12274-022-5150-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/17/2022] [Accepted: 10/06/2022] [Indexed: 06/17/2023]
Abstract
With research burgeoning in nanoscience and nanotechnology, there is an urgent need to develop new biological models that can simulate native structure, function, and genetic properties of tissues to evaluate the adverse or beneficial effects of nanomaterials on a host. Among the current biological models, three-dimensional (3D) organoids have developed as powerful tools in the study of nanomaterial-biology (nano-bio) interactions, since these models can overcome many of the limitations of cell and animal models. A deep understanding of organoid techniques will facilitate the development of more efficient nanomedicines and further the fields of tissue engineering and personalized medicine. Herein, we summarize the recent progress in intestinal organoids culture systems with a focus on our understanding of the nature and influencing factors of intestinal organoid growth. We also discuss biomimetic extracellular matrices (ECMs) coupled with nanotechnology. In particular, we analyze the application prospects for intestinal organoids in investigating nano-intestine interactions. By integrating nanotechnology and organoid technology, this recently developed model will fill the gaps left due to the deficiencies of traditional cell and animal models, thus accelerating both our understanding of intestine-related nanotoxicity and the development of nanomedicines.
Collapse
Affiliation(s)
- Lin Bao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xuejing Cui
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100190 China
- The GBA National Institute for Nanotechnology Innovation, Guangzhou, 510700 China
| | - Ru Bai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100190 China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100190 China
- The GBA National Institute for Nanotechnology Innovation, Guangzhou, 510700 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
22
|
Recent Advances in Biodegradable Polymers and Their Biological Applications: A Brief Review. Polymers (Basel) 2022; 14:polym14224924. [PMID: 36433050 PMCID: PMC9693219 DOI: 10.3390/polym14224924] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
The rising significance of the field of biopolymers has driven the rapid progress of this distinctive class of polymeric materials in the past decades. Biodegradable polymers have acquired much attention because they play an essential role in humans' lives due to their specific tunable electrical conductivity and biodegradability characteristics, making them fascinating in many applications. Herein, we debated the recent progress in developing biodegradable polymers and their applications. Initially, we introduce the basics of conducting and biodegradable polymers, trailed by debates about the effective strategies currently used to develop biopolymers. Special importance will focus on the uses of biodegradable polymers in drug delivery and tissue engineering, as well as wound healing, demonstrating the recent findings, and uses of several biodegradable polymers in modern biological uses. In this review, we have provided comprehensive viewpoints on the latest progress of the challenges and future prospects involving biodegradable polymers' advancement and commercial applications.
Collapse
|
23
|
Prodrug and Glucose Oxidase Coloaded Photodynamic Hydrogels for Combinational Therapy of Melanoma. ACS Biomater Sci Eng 2022; 8:4886-4895. [PMID: 36278808 DOI: 10.1021/acsbiomaterials.2c00992] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
With the advantages of high safety and selectivity, photodynamic therapy (PDT) has been widely used for cancer treatments, while the anticancer efficacy is often limited because of its relying on oxygen concentrations. Therefore, sole PDT fails to achieve the desired therapeutic effect for hypoxic tumors. To address this issue, we herein report the construction of prodrug and glucose oxidase (GOx) coloaded alginate (ALG) hydrogels for PDT-combined chemotherapy of melanoma. The hydrogels are in situ formed in tumor sites after injection of ALG solution containing semiconducting polymer nanoparticles, hypoxia-responsive prodrug tirapazamine (TPZ), and GOx, which is based on chelation of ALG by endogenous Ca2+. Due to the presence of semiconducting polymer nanoparticles acting as photosensitizers, the hydrogels mediate PDT to produce singlet oxygen (1O2) for directly killing tumor cells, in which oxygen is consumed to create a more hypoxic tumor microenvironment. Moreover, the loaded GOx within hydrogels can deplete oxygen to further aggravate tumor hypoxia. As such, TPZ is effectively activated by hypoxia to cause cancer cell death via chemotherapy. Thus, the hydrogels with laser irradiation achieve a combinational action of PDT with chemotherapy to almost completely eradicate tumors, leading to a much higher therapeutic efficacy relative to sole PDT. This study will provide a promising injectable hydrogel platform for effective treatments of cancer.
Collapse
|
24
|
Revete A, Aparicio A, Cisterna BA, Revete J, Luis L, Ibarra E, Segura González EA, Molino J, Reginensi D. Advancements in the Use of Hydrogels for Regenerative Medicine: Properties and Biomedical Applications. Int J Biomater 2022; 2022:3606765. [PMID: 36387956 PMCID: PMC9663251 DOI: 10.1155/2022/3606765] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/29/2022] [Accepted: 10/05/2022] [Indexed: 07/29/2023] Open
Abstract
Due to their particular water absorption capacity, hydrogels are the most widely used scaffolds in biomedical studies to regenerate damaged tissue. Hydrogels can be used in tissue engineering to design scaffolds for three-dimensional cell culture, providing a novel alternative to the traditional two-dimensional cell culture as hydrogels have a three-dimensional biomimetic structure. This material property is crucial in regenerative medicine, especially for the nervous system, since it is a highly complex and delicate structure. Hydrogels can move quickly within the human body without physically disturbing the environment and possess essential biocompatible properties, as well as the ability to form a mimetic scaffold in situ. Therefore, hydrogels are perfect candidates for biomedical applications. Hydrogels represent a potential alternative to regenerating tissue lost after removing a brain tumor and/or brain injuries. This reason presents them as an exciting alternative to highly complex human physiological problems, such as injuries to the central nervous system and neurodegenerative disease.
Collapse
Affiliation(s)
- Andrea Revete
- Biological Engineering, Faculty of Biosciences and Public Health, Universidad Especializada de las Americas (UDELAS), Panama City, Panama
- Biomedical Engineering, Faculty of Health Sciences and Engineering, Universidad Latina de Panama (ULATINA), Panama City, Panama
| | - Andrea Aparicio
- Biological Engineering, Faculty of Biosciences and Public Health, Universidad Especializada de las Americas (UDELAS), Panama City, Panama
| | - Bruno A. Cisterna
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Javier Revete
- Experimentia S.A, Development of Innovative Strategies in Biomedicine and Sustainable Development, Panama, Panama
| | - Luis Luis
- Experimentia S.A, Development of Innovative Strategies in Biomedicine and Sustainable Development, Panama, Panama
| | - Ernesto Ibarra
- Biomedical Engineering, Faculty of Health Sciences and Engineering, Universidad Latina de Panama (ULATINA), Panama City, Panama
| | | | - Jay Molino
- Biological Engineering, Faculty of Biosciences and Public Health, Universidad Especializada de las Americas (UDELAS), Panama City, Panama
| | - Diego Reginensi
- Biological Engineering, Faculty of Biosciences and Public Health, Universidad Especializada de las Americas (UDELAS), Panama City, Panama
- Biomedical Engineering, Faculty of Health Sciences and Engineering, Universidad Latina de Panama (ULATINA), Panama City, Panama
- Integrative Neurobiology, School of Medicine, Universidad de Panama (UP), Panama, Panama
- Center for Biodiversity and Drug Discovery, INDICASAT-AIP, City of Knowledge, Panama, Panama
| |
Collapse
|
25
|
Vuković JS, Filipović VV, Babić Radić MM, Vukomanović M, Milivojevic D, Ilic-Tomic T, Nikodinovic-Runic J, Tomić SL. In Vitro and In Vivo Biocompatible and Controlled Resveratrol Release Performances of HEMA/Alginate and HEMA/Gelatin IPN Hydrogel Scaffolds. Polymers (Basel) 2022; 14:polym14204459. [PMID: 36298041 PMCID: PMC9610835 DOI: 10.3390/polym14204459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/02/2022] [Accepted: 10/17/2022] [Indexed: 01/19/2023] Open
Abstract
Scaffold hydrogel biomaterials designed to have advantageous biofunctional properties, which can be applied for controlled bioactive agent release, represent an important concept in biomedical tissue engineering. Our goal was to create scaffolding materials that mimic living tissue for biomedical utilization. In this study, two novel series of interpenetrating hydrogel networks (IPNs) based on 2-hydroxyethyl methacrylate/gelatin and 2-hydroxyethyl methacrylate/alginate were crosslinked using N-ethyl-N'-(3-dimethyl aminopropyl)carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS). Characterization included examining the effects of crosslinker type and concentration on structure, morphological and mechanical properties, in vitro swelling, hydrophilicity as well as on the in vitro cell viability (fibroblast cells) and in vivo (Caenorhabditis elegans) interactions of novel biomaterials. The engineered IPN hydrogel scaffolds show an interconnected pore morphology and porosity range of 62.36 to 85.20%, favorable in vitro swelling capacity, full hydrophilicity, and Young's modulus values in the range of 1.40 to 7.50 MPa. In vitro assay on healthy human fibroblast (MRC5 cells) by MTT test and in vivo (Caenorhabditis elegans) survival assays show the advantageous biocompatible properties of novel IPN hydrogel scaffolds. Furthermore, in vitro controlled release study of the therapeutic agent resveratrol showed that these novel scaffolding systems are suitable controlled release platforms. The results revealed that the use of EDC and the combination of EDC/NHS crosslinkers can be applied to prepare and tune the properties of the IPN 2-hydroxyethyl methacrylate/alginate and 2-hydroxyethyl methacrylate/gelatin hydrogel scaffolds series, which have shown great potential for biomedical engineering applications.
Collapse
Affiliation(s)
- Jovana S. Vuković
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Vuk V. Filipović
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Marija M. Babić Radić
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Marija Vukomanović
- Advanced Materials Department, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - Dusan Milivojevic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Tatjana Ilic-Tomic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Jasmina Nikodinovic-Runic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Simonida Lj. Tomić
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia
- Correspondence: ; Tel.: +381-11-3303-630
| |
Collapse
|
26
|
Ghadami A, Taheri S, Alinejad Z, Dinari M. Preparation of acrylate‐based double and triple interpenetrating polymer networks hydrogels: Rheological, thermal, and swelling behavior. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Azam Ghadami
- Department of Chemical and Polymer Engineering, Central Tehran Branch Islamic Azad University Tehran Iran
| | | | - Zeinab Alinejad
- Polymer Science Department Iran Polymer, and Petrochemical Institute Tehran Iran
| | - Mohammad Dinari
- Department of Chemistry Isfahan University of Technology Isfahan Iran
| |
Collapse
|
27
|
Liu X, Sun S, Wang N, Kang R, Xie L, Liu X. Therapeutic application of hydrogels for bone-related diseases. Front Bioeng Biotechnol 2022; 10:998988. [PMID: 36172014 PMCID: PMC9510597 DOI: 10.3389/fbioe.2022.998988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/29/2022] [Indexed: 01/15/2023] Open
Abstract
Bone-related diseases caused by trauma, infection, and aging affect people’s health and quality of life. The prevalence of bone-related diseases has been increasing yearly in recent years. Mild bone diseases can still be treated with conservative drugs and can be cured confidently. However, serious bone injuries caused by large-scale trauma, fractures, bone tumors, and other diseases are challenging to heal on their own. Open surgery must be used for intervention. The treatment method also faces the problems of a long cycle, high cost, and serious side effects. Studies have found that hydrogels have attracted much attention due to their good biocompatibility and biodegradability and show great potential in treating bone-related diseases. This paper mainly introduces the properties and preparation methods of hydrogels, reviews the application of hydrogels in bone-related diseases (including bone defects, bone fracture, cartilage injuries, and osteosarcoma) in recent years. We also put forward suggestions according to the current development status, pointing out a new direction for developing high-performance hydrogels more suitable for bone-related diseases.
Collapse
Affiliation(s)
- Xiyu Liu
- Third School of Clinical Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Shuoshuo Sun
- Third School of Clinical Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Nan Wang
- Third School of Clinical Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Ran Kang
- Third School of Clinical Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
- Department of Orthopedics, Nanjing Lishui Hospital of Traditional Chinese Medicine, Nanjing, China
- *Correspondence: Ran Kang, ; Lin Xie, ; Xin Liu,
| | - Lin Xie
- Third School of Clinical Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
- *Correspondence: Ran Kang, ; Lin Xie, ; Xin Liu,
| | - Xin Liu
- Third School of Clinical Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
- Department of Orthopedics, Nanjing Lishui Hospital of Traditional Chinese Medicine, Nanjing, China
- *Correspondence: Ran Kang, ; Lin Xie, ; Xin Liu,
| |
Collapse
|
28
|
Luneva O, Olekhnovich R, Uspenskaya M. Bilayer Hydrogels for Wound Dressing and Tissue Engineering. Polymers (Basel) 2022; 14:polym14153135. [PMID: 35956650 PMCID: PMC9371176 DOI: 10.3390/polym14153135] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022] Open
Abstract
A large number of different skin diseases such as hits, acute, and chronic wounds dictate the search for alternative and effective treatment options. The wound healing process requires a complex approach, the key step of which is the choice of a dressing with controlled properties. Hydrogel-based scaffolds can serve as a unique class of wound dressings. Presented on the commercial market, hydrogel wound dressings are not found among proposals for specific cases and have a number of disadvantages—toxicity, allergenicity, and mechanical instability. Bilayer dressings are attracting great attention, which can be combined with multifunctional properties, high criteria for an ideal wound dressing (antimicrobial properties, adhesion and hemostasis, anti-inflammatory and antioxidant effects), drug delivery, self-healing, stimulus manifestation, and conductivity, depending on the preparation and purpose. In addition, advances in stem cell biology and biomaterials have enabled the design of hydrogel materials for skin tissue engineering. To improve the heterogeneity of the cell environment, it is possible to use two-layer functional gradient hydrogels. This review summarizes the methods and application advantages of bilayer dressings in wound treatment and skin tissue regeneration. Bilayered hydrogels based on natural as well as synthetic polymers are presented. The results of the in vitro and in vivo experiments and drug release are also discussed.
Collapse
|
29
|
Zhang Y, Dong L, Liu L, Wu Z, Pan D, Liu L. Recent Advances of Stimuli-Responsive Polysaccharide Hydrogels in Delivery Systems: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6300-6316. [PMID: 35578738 DOI: 10.1021/acs.jafc.2c01080] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hydrogels obtained from natural polymers have received widespread attention for their excellent biocompatible property, nontoxicity, easy gelation, and functionalization. Polysaccharides can regulate the gut microbiota and improve the intestinal microenvironment, thus exerting the healthy effect of intestinal immunity. In an active substance delivery system, the extent and speed of the substance reaching its target are highly dependent on the carrier. Thus, the smart active substance delivery systems are gradually increasing. The smart polysaccharide-hydrogels possess the ability in response to external stimuli through changing their volume phase and structure, which are applied in various fields. Natural polysaccharide-based hydrogels possess excellent characteristics of environmental friendliness, good biocompatibility, and abundant sources. According to the response type, natural polysaccharide-based hydrogels are usually divided into stimulus-responsive hydrogels, including internal response (pH, temperature, enzyme, redox) and external response (light, electricity, magnetism) hydrogels. The delivery system based on polysaccharides can exert their effects in the gastrointestinal tract. At the same time, polysaccharides may also take part in regulating the brain signals through the microbiota-gut-brain axis. Therefore, natural polysaccharide-hydrogels are considered as promising biomaterials, which can be designed as delivery systems for regulating the gut-brain axis. This article reviews the research advance of stimulus-responsive hydrogels, which focus on the types, response characteristics, and applications for polysaccharide-based smart hydrogels as delivery systems.
Collapse
Affiliation(s)
- Yunzhen Zhang
- Ningbo University, College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo 315832, Zhejiang Province, P. R. China
| | - Lezhen Dong
- Ningbo University, College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo 315832, Zhejiang Province, P. R. China
| | - Lingyi Liu
- University of Nebraska Lincoln, Department of Food Science & Technology, Lincoln, Nebraska 68588, United States
| | - Zufang Wu
- Ningbo University, College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo 315832, Zhejiang Province, P. R. China
| | - Daodong Pan
- Ningbo University, College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo 315832, Zhejiang Province, P. R. China
| | - Lianliang Liu
- Ningbo University, College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo 315832, Zhejiang Province, P. R. China
| |
Collapse
|
30
|
Dendrobium officinale Enzyme Changing the Structure and Behaviors of Chitosan/γ-poly(glutamic acid) Hydrogel for Potential Skin Care. Polymers (Basel) 2022; 14:polym14102070. [PMID: 35631951 PMCID: PMC9146334 DOI: 10.3390/polym14102070] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023] Open
Abstract
Hydrogels have been widespreadly used in various fields. But weak toughness has limited their further applications. In this study, Dendrobium officinale enzyme (DOE) was explored to improve chitosan/γ-poly(glutamic acid) (CS/γ-PGA) hydrogel in the structure and properties. The results indicated that DOE with various sizes of ingredients can make multiple noncovalent crosslinks with the skeleton network of CS/γ-PGA, significantly changing the self-assembly of CS/γ-PGA/DOE hydrogel to form regular protuberance nanostructures, which exhibits stronger toughness and better behaviors for skin care. Particularly, 4% DOE enhanced the toughness of CS/γ-PGA/DOE hydrogel, increasing it by 116%. Meanwhile, water absorption, antioxygenation, antibacterial behavior and air permeability were increased by 39%, 97%, 27% and 52%.
Collapse
|
31
|
The convergence of in silico approach and nanomedicine for efficient cancer treatment; in vitro investigations on curcumin loaded multifunctional graphene oxide nanocomposite structure. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Hacker L, Wabnitz H, Pifferi A, Pfefer TJ, Pogue BW, Bohndiek SE. Criteria for the design of tissue-mimicking phantoms for the standardization of biophotonic instrumentation. Nat Biomed Eng 2022; 6:541-558. [PMID: 35624150 DOI: 10.1038/s41551-022-00890-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/07/2022] [Indexed: 01/08/2023]
Abstract
A lack of accepted standards and standardized phantoms suitable for the technical validation of biophotonic instrumentation hinders the reliability and reproducibility of its experimental outputs. In this Perspective, we discuss general criteria for the design of tissue-mimicking biophotonic phantoms, and use these criteria and state-of-the-art developments to critically review the literature on phantom materials and on the fabrication of phantoms. By focusing on representative examples of standardization in diffuse optical imaging and spectroscopy, fluorescence-guided surgery and photoacoustic imaging, we identify unmet needs in the development of phantoms and a set of criteria (leveraging characterization, collaboration, communication and commitment) for the standardization of biophotonic instrumentation.
Collapse
Affiliation(s)
- Lina Hacker
- Department of Physics, University of Cambridge, Cambridge, UK.,Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Heidrun Wabnitz
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | | | | | - Brian W Pogue
- Thayer School of Engineering, Dartmouth, Hanover, NH, USA
| | - Sarah E Bohndiek
- Department of Physics, University of Cambridge, Cambridge, UK. .,Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
33
|
Kim Y, Hu Y, Jeong JP, Jung S. Injectable, self-healable and adhesive hydrogels using oxidized Succinoglycan/chitosan for pH-responsive drug delivery. Carbohydr Polym 2022; 284:119195. [DOI: 10.1016/j.carbpol.2022.119195] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/12/2022]
|
34
|
Ghasemi S, Owrang M, Javaheri F, Farjadian F. Spermine Modified PNIPAAm Nano-Hydrogel Serving as Thermo-Responsive System for Delivery of Cisplatin. Macromol Res 2022. [DOI: 10.1007/s13233-022-0035-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
35
|
Khadem E, Kharaziha M, Bakhsheshi-Rad HR, Das O, Berto F. Cutting-Edge Progress in Stimuli-Responsive Bioadhesives: From Synthesis to Clinical Applications. Polymers (Basel) 2022; 14:1709. [PMID: 35566878 PMCID: PMC9104595 DOI: 10.3390/polym14091709] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023] Open
Abstract
With the advent of "intelligent" materials, the design of smart bioadhesives responding to chemical, physical, or biological stimuli has been widely developed in biomedical applications to minimize the risk of wounds reopening, chronic pain, and inflammation. Intelligent bioadhesives are free-flowing liquid solutions passing through a phase shift in the physiological environment due to stimuli such as light, temperature, pH, and electric field. They possess great merits, such as ease to access and the ability to sustained release as well as the spatial transfer of a biomolecule with reduced side effects. Tissue engineering, wound healing, drug delivery, regenerative biomedicine, cancer therapy, and other fields have benefited from smart bioadhesives. Recently, many disciplinary attempts have been performed to promote the functionality of smart bioadhesives and discover innovative compositions. However, according to our knowledge, the development of multifunctional bioadhesives for various biomedical applications has not been adequately explored. This review aims to summarize the most recent cutting-edge strategies (years 2015-2021) developed for stimuli-sensitive bioadhesives responding to external stimuli. We first focus on five primary categories of stimuli-responsive bioadhesive systems (pH, thermal, light, electric field, and biomolecules), their properties, and limitations. Following the introduction of principal criteria for smart bioadhesives, their performances are discussed, and certain smart polymeric materials employed in their creation in 2015 are studied. Finally, advantages, disadvantages, and future directions regarding smart bioadhesives for biomedical applications are surveyed.
Collapse
Affiliation(s)
- Elham Khadem
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran;
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran;
| | - Hamid Reza Bakhsheshi-Rad
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran;
| | - Oisik Das
- Structural and Fire Engineering Division, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden;
| | - Filippo Berto
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
36
|
Divyashri G, Badhe RV, Sadanandan B, Vijayalakshmi V, Kumari M, Ashrit P, Bijukumar D, Mathew MT, Shetty K, Raghu AV. Applications of
hydrogel‐based
delivery systems in wound care and treatment: An
up‐to‐date
review. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5661] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Gangaraju Divyashri
- Department of Biotechnology M. S. Ramaiah Institute of Technology Bengaluru Karnataka India
| | - Ravindra V. Badhe
- Department of Biomedical Science University of Illinois College of Medicine at Rockford Rockford Illinois USA
| | - Bindu Sadanandan
- Department of Biotechnology M. S. Ramaiah Institute of Technology Bengaluru Karnataka India
| | | | - Mamta Kumari
- Department of Biotechnology M. S. Ramaiah Institute of Technology Bengaluru Karnataka India
| | - Priya Ashrit
- Department of Biotechnology M. S. Ramaiah Institute of Technology Bengaluru Karnataka India
| | - Divya Bijukumar
- Department of Biomedical Science University of Illinois College of Medicine at Rockford Rockford Illinois USA
| | - Mathew T. Mathew
- Department of Biomedical Science University of Illinois College of Medicine at Rockford Rockford Illinois USA
| | - Kalidas Shetty
- Department of Plant Science North Dakota State University Fargo North Dakota USA
| | - Anjanapura V. Raghu
- Department of Chemistry, Faculty of Engineering and Technology Jain Deemed‐to‐be University Bengaluru India
| |
Collapse
|
37
|
Bialik-Wąs K, Miastkowska M, Sapuła P, Pluta K, Malina D, Chwastowski J, Barczewski M. Bio-Hybrid Hydrogels Incorporated into a System of Salicylic Acid-pH/Thermosensitive Nanocarriers Intended for Cutaneous Wound-Healing Processes. Pharmaceutics 2022; 14:773. [PMID: 35456607 PMCID: PMC9031596 DOI: 10.3390/pharmaceutics14040773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 02/01/2023] Open
Abstract
In this paper, the preparation method of bio-hybrid hydrogels incorporated into a system of salicylic acid-pH/thermosensitive nanocarriers to speed up the wound-healing process was developed. This combination creates a dual drug delivery system, which releases the model hydrophobic active substance-salicylic acid-in a gradual and controlled manner for an extended time. Our research team has determined the various properties of bio-hybrid hydrogels based on their physicochemical (swelling degree, and degradation), structural (FT-IR), morphological (SEM), and mechanical (elongation tests) traits. Moreover, empty pH/thermosensitive nanocarriers and their salicylic acid-containing systems were characterized using the following methods: DLS, TG/DTG, and DSC. Additionally, salicylic acid release profiles directly from thermosensitive nanocarriers were compared to the bio-hybrid matrix. These studies were conducted in PBS (pH = 7.4) for 7 days using the USP4 method. To evaluate the antibacterial properties of the obtained materials, the inhibition of growth of Staphylococcus aureus, Escherichia coli, Candida albicans, and Aspergillus niger-as the main microorganisms responsible for human infections-were tested. The obtained results indicated that the pH/thermosensitive nanocarrier-salicylic acid system and bio-hybrid hydrogels are characterized by antibacterial activity against both S. aureus and E. coli.
Collapse
Affiliation(s)
- Katarzyna Bialik-Wąs
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31155 Cracow, Poland; (M.M.); (P.S.)
| | - Małgorzata Miastkowska
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31155 Cracow, Poland; (M.M.); (P.S.)
| | - Paulina Sapuła
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31155 Cracow, Poland; (M.M.); (P.S.)
| | - Klaudia Pluta
- Department of Chemical Technology and Environmental Analytics, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31155 Cracow, Poland; (K.P.); (D.M.); (J.C.)
| | - Dagmara Malina
- Department of Chemical Technology and Environmental Analytics, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31155 Cracow, Poland; (K.P.); (D.M.); (J.C.)
| | - Jarosław Chwastowski
- Department of Chemical Technology and Environmental Analytics, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31155 Cracow, Poland; (K.P.); (D.M.); (J.C.)
| | - Mateusz Barczewski
- Institute of Materials Technology, Faculty of Mechanical Engineering and Management, Poznan University of Technology, 24 Jana Pawła II St., 60965 Poznan, Poland;
| |
Collapse
|
38
|
Mohammadi M, Karimi M, Malaekeh-Nikouei B, Torkashvand M, Alibolandi M. Hybrid in situ- forming injectable hydrogels for local cancer therapy. Int J Pharm 2022; 616:121534. [PMID: 35124117 DOI: 10.1016/j.ijpharm.2022.121534] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/16/2022] [Accepted: 01/28/2022] [Indexed: 01/17/2023]
Abstract
Injectable in situ forming hydrogels are amongst the efficient local drug delivery systems for cancer therapy. Providing a 3D hydrogel network within the target tissue capable of sustained release of the chemotherapeutics made them attractive candidates for increasing the therapeutic index. Remarkable swelling properties, mechanical strength, biocompatibility, wide composition variety and tunable polymeric moieties have led to preparation of injectable hydrogels which also could be used as cavity adaptive chemotherapeutic-loaded implants to prevent post -surgical cancer recurrence. Implementation of various polymers, nanoparticles, peptide and proteins and different crosslinking chemistry facilitated the fabrication of hybrid hydrogels with favorable characteristics such as stimuli sensitive platforms or multifunctional systems. In the current review, we focused on design and fabrication strategies of injectable in situ forming hydrogels and summarized recent hybrid hydrogels used for local cancer therapy.
Collapse
Affiliation(s)
- Marzieh Mohammadi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Malihe Karimi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bizhan Malaekeh-Nikouei
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Torkashvand
- Fouman Faculty of Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
39
|
Chen W, Zhang C, Chen D, Li Y, Wu S, Xu C, Su L, Zhang Q. Tumor redox microenvironment modulating composite hydrogels for enhanced sonodynamic therapy of colorectal cancer. J Mater Chem B 2022; 10:1960-1968. [DOI: 10.1039/d2tb00170e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Effective treatment of colorectal cancer is important to improve the quality of life for patients, which however remains a great challenge in the clinic. Herein, we report the construction of...
Collapse
|
40
|
Zheng BD, Ye J, Yang YC, Huang YY, Xiao MT. Self-healing polysaccharide-based injectable hydrogels with antibacterial activity for wound healing. Carbohydr Polym 2022; 275:118770. [PMID: 34742452 DOI: 10.1016/j.carbpol.2021.118770] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 01/13/2023]
Abstract
Because the wound is difficult to heal, repeated bacterial infection will lead to complex clinical problems. Therefore, it is necessary to find an effective method to strengthen the healing process and resist bacterial infection. Hydrogels have many advantages, such as injectability and self-healing under physiological conditions, so they have been widely studied in recent years. Hydrogels can keep the wound moist and promote the wound healing. In addition, the growth of bacteria can be obviously inhibited by hydrogels themself or by doping some antibacterial active substances. Based on this, herein, this review highlighted the preparation and properties of different polysaccharide-based injectable hydrogels, and discuss their biological applications in antibacterial therapy for wound healing in recent years.
Collapse
Affiliation(s)
- Bing-De Zheng
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China.
| | - Jing Ye
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China
| | - Yu-Cheng Yang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China
| | - Ya-Yan Huang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China
| | - Mei-Tian Xiao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China.
| |
Collapse
|
41
|
Ahmed ASA, Negm ANRM, Mohammed M, Abd El-Majeed M, Ali AK, Abdelmotalleib M. Biodegradable Polymers for Industrial Applications. HANDBOOK OF BIODEGRADABLE MATERIALS 2022:1-26. [DOI: 10.1007/978-3-030-83783-9_37-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/13/2022] [Indexed: 09/02/2023]
|
42
|
|
43
|
Xu L, Huang Z, Deng Z, Du Z, Sun TL, Guo ZH, Yue K. A Transparent, Highly Stretchable, Solvent-Resistant, Recyclable Multifunctional Ionogel with Underwater Self-Healing and Adhesion for Reliable Strain Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2105306. [PMID: 34647370 DOI: 10.1002/adma.202105306] [Citation(s) in RCA: 175] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Ionogels have gained increasing attentions as a flexible conductive material. However, it remains a big challenge to integrate multiple functions into one gel that can be widely applied in various complex scenes. Herein, a kind of multifunctional ionogels with a combination of desirable properties, including transparency, high stretchability, solvent and temperature resistance, recyclability, high conductivity, underwater self-healing ability, and underwater adhesiveness is reported. The ionogels are prepared via one-step photoinitiated polymerization of 2,2,2-trifluoroethyl acrylate and acrylamide in a hydrophobic ionic liquid. The abundant noncovalent interactions including hydrogen bonding and ion-dipole interactions endow the ionogels with excellent mechanical strength, resilience, and rapid self-healing capability at room temperature, while the fluorine-rich polymeric matrix brings in high tolerance against water and various organic solvents, as well as tough underwater adhesion on different substrates. Wearable strain sensors based on the ionogels can sensitively detect and differentiate large body motions, such as bending of limbs, walking and jumping, as well as subtle muscle movements, such as pronunciation and pulse. It is believed that the designed ionogels will show great promises in wearable devices and ionotronics.
Collapse
Affiliation(s)
- Liguo Xu
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Zhenkai Huang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Zhishuang Deng
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Zhukang Du
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Tao Lin Sun
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Zi-Hao Guo
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Kan Yue
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
44
|
Thammawithan S, Srichaiyapol O, Siritongsuk P, Daduang S, Klaynongsruang S, Prapasarakul N, Patramanon R. Anisotropic Silver Nanoparticles Gel Exhibits Antibacterial Action and Reduced Scar Formation on Wounds Contaminated with Methicillin-Resistant Staphylococcus pseudintermedius (MRSP) in a Mice Model. Animals (Basel) 2021; 11:ani11123412. [PMID: 34944189 PMCID: PMC8697910 DOI: 10.3390/ani11123412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/23/2021] [Accepted: 11/27/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Wound infection in animals with antimicrobial resistant bacteria, especially Staphylococcus pseudintermedius, plays an important role in the delay of wound healing. In this work, the antimicrobial and wound healing activities of gels containing anisotropic AgNPs were evaluated on wounds contaminated with Methicillin-resistant Staphylococcus pseudintermedius in a mice model. The results show that anisotropic AgNPs gel is effective in eliminating bacteria and preventing pus formation. Furthermore, anisotropic AgNPs gel exhibits improved collagen alignment that supports scar disappearance. Abstract Staphylococcus pseudintermedius (S. pseudintermedius) infected wounds can cause seriously delayed wound healing processes in animals. Antimicrobial agents that have antimicrobial and wound healing efficacy have become an essential tool for overcoming this problem. In our previous study, anisotropic AgNPs have been reported to have antimicrobial efficiency against animal and human pathogens, and could be suitable as antimicrobial agents for infected wounds. Here, antimicrobial and wound healing activities of anisotropic AgNPs gels were assessed in vivo. BALB/cAJcl mice wounds were infected by Methicillin-resistant Staphylococcus pseudintermedius (MRSP). Then, antibacterial and wound healing activities were evaluated by bacterial cell count, wound contraction, digital capture, and histology. The results show that anisotropic AgNPs gels could eliminate all bacterial cell infected wounds within 7 days, the same as povidone iodine. Wound healing activity was evaluated by wound contraction (%). The results showed 100% wound contraction in groups treated with anisotropic AgNPs gels within 14 days that was not significantly different from povidone iodine and control gel without AgNPs. However, the digital capture of wounds on day 4 showed that anisotropic AgNPs gel prevented pus formation and reduced scar appearance within 21 days. The histology results exhibit improved collagen fiber alignment that supports scar disappearance. In conclusion, these results indicate that anisotropic AgNPs gels are suitable for treating infected wounds. The gel is effective in eliminating bacteria that supports the natural process of wound repair and also causes reduced scar formation.
Collapse
Affiliation(s)
- Saengrawee Thammawithan
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (S.T.); (O.S.); (P.S.); (S.K.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Oranee Srichaiyapol
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (S.T.); (O.S.); (P.S.); (S.K.)
| | - Pawinee Siritongsuk
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (S.T.); (O.S.); (P.S.); (S.K.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Sakda Daduang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes, Khon Kaen University, Khon Kaen 40002, Thailand;
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sompong Klaynongsruang
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (S.T.); (O.S.); (P.S.); (S.K.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Nuvee Prapasarakul
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Rina Patramanon
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (S.T.); (O.S.); (P.S.); (S.K.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes, Khon Kaen University, Khon Kaen 40002, Thailand;
- Correspondence: ; Tel.: +66-84599-9123
| |
Collapse
|
45
|
Jayash SN, Cooper PR, Shelton RM, Kuehne SA, Poologasundarampillai G. Novel Chitosan-Silica Hybrid Hydrogels for Cell Encapsulation and Drug Delivery. Int J Mol Sci 2021; 22:ijms222212267. [PMID: 34830145 PMCID: PMC8624171 DOI: 10.3390/ijms222212267] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022] Open
Abstract
Hydrogels constructed from naturally derived polymers provide an aqueous environment that encourages cell growth, however, mechanical properties are poor and degradation can be difficult to predict. Whilst, synthetic hydrogels exhibit some improved mechanical properties, these materials lack biochemical cues for cells growing and have limited biodegradation. To produce hydrogels that support 3D cell cultures to form tissue mimics, materials must exhibit appropriate biological and mechanical properties. In this study, novel organic-inorganic hybrid hydrogels based on chitosan and silica were prepared using the sol-gel technique. The chemical, physical and biological properties of the hydrogels were assessed. Statistical analysis was performed using One-Way ANOVAs and independent-sample t-tests. Fourier transform infrared spectroscopy showed characteristic absorption bands including amide II, Si-O and Si-O-Si confirming formation of hybrid networks. Oscillatory rheometry was used to characterise the sol to gel transition and viscoelastic behaviour of hydrogels. Furthermore, in vitro degradation revealed both chitosan and silica were released over 21 days. The hydrogels exhibited high loading efficiency as total protein loading was released in a week. There were significant differences between TC2G and C2G at all-time points (p < 0.05). The viability of osteoblasts seeded on, and encapsulated within, the hydrogels was >70% over 168 h culture and antimicrobial activity was demonstrated against Pseudomonas aeruginosa and Enterococcus faecalis. The hydrogels developed here offer alternatives for biopolymer hydrogels for biomedical use, including for application in drug/cell delivery and for bone tissue engineering.
Collapse
Affiliation(s)
- Soher N. Jayash
- School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham B5 7EG, UK; (R.M.S.); (S.A.K.)
- Correspondence: or (S.N.J.); (G.P.)
| | - Paul R. Cooper
- Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand;
| | - Richard M. Shelton
- School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham B5 7EG, UK; (R.M.S.); (S.A.K.)
| | - Sarah A. Kuehne
- School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham B5 7EG, UK; (R.M.S.); (S.A.K.)
| | - Gowsihan Poologasundarampillai
- School of Dentistry, University of Birmingham, 5 Mill Pool Way, Edgbaston, Birmingham B5 7EG, UK; (R.M.S.); (S.A.K.)
- Correspondence: or (S.N.J.); (G.P.)
| |
Collapse
|
46
|
Luminescent hydrogels with tunable emission colors and excellent adhesion performance fabricated by lanthanide complexes induced crosslinking and physical interaction. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
47
|
Guedes G, Wang S, Fontana F, Figueiredo P, Lindén J, Correia A, Pinto RJB, Hietala S, Sousa FL, Santos HA. Dual-Crosslinked Dynamic Hydrogel Incorporating {Mo 154 } with pH and NIR Responsiveness for Chemo-Photothermal Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007761. [PMID: 34382257 PMCID: PMC11468987 DOI: 10.1002/adma.202007761] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 05/04/2021] [Indexed: 06/13/2023]
Abstract
Polyoxometalates are an emerging class of molecular clusters, with well-defined structures and chemical compositions that are produced through simple, low-cost, and highly reproducible methods. In particular, the wheel-shaped cluster {Mo154 } is a promising photothermal agent due to its intervalence charge transfer transitions. However, its toxicity hinders its systemic administration, being the development of a localized delivery system still incipient. Herein, an injectable and self-healing hydrogel of easy preparation and administration is developed, incorporating both {Mo154 } and doxorubicin for synergistic photothermal and chemotherapy applications. The hydrogel is composed of benzylaldehyde functionalized polyethylene glycol, poly(N-isopropylacrylamide) functionalized chitosan and {Mo154 }. The gelation occurs within 60 s at room temperature, and the dual crosslinking by Schiff base and electrostatic interactions generates a dynamic network, which enables self-healing after injection. Moreover, the hydrogel delivers chemotherapeutic drugs, with a release triggered by dual near infra-red (NIR) radiation and pH changes. This stimuli-responsive release system along with the photothermal conversion ability of the hydrogel allows the simultaneous combination of photothermal and chemotherapy. This synergic system efficiently ablates the cancer tumor in vivo with no systemic toxicity. Overall, this work paves the way for the development of novel {Mo154 }-based systems, incorporated in self-healing and injectable hydrogels for dual chemo-photothermal therapy.
Collapse
Affiliation(s)
- Gabriela Guedes
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Chemistry DepartmentUniversity of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
- CICECO‐Aveiro Institute of MaterialsUniversity of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
| | - Shiqi Wang
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Flavia Fontana
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Patrícia Figueiredo
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Jere Lindén
- Faculty of Veterinary MedicineFinnish Centre for Laboratory Animal Pathology (FCLAP)/HiLIFEUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Alexandra Correia
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Ricardo J. B. Pinto
- Chemistry DepartmentUniversity of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
- CICECO‐Aveiro Institute of MaterialsUniversity of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
| | - Sami Hietala
- Department of ChemistryUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Filipa L. Sousa
- Chemistry DepartmentUniversity of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
- CICECO‐Aveiro Institute of MaterialsUniversity of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
| | - Hélder A. Santos
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Helsinki Institute of Life Science (HiLIFE)University of HelsinkiHelsinkiFI‐00014Finland
| |
Collapse
|
48
|
Shahid N, Erum A, Zaman M, Tulain UR, Shoaib QUA, Majeed A, Rasool MF, Imran I, Alshehri S, Noorani B, Alqahtani F. pH-Responsive Nanocomposite Based Hydrogels for the Controlled Delivery of Ticagrelor; In Vitro and In Vivo Approaches. Int J Nanomedicine 2021; 16:6345-6366. [PMID: 34556985 PMCID: PMC8455181 DOI: 10.2147/ijn.s330186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/03/2021] [Indexed: 11/23/2022] Open
Abstract
Background Ticagrelor (TG), an antiplatelet drug is employed to treat patients with acute coronary syndrome, but its inadequate oral bioavailability due to poor solubility and low permeability restricts its effectiveness. Purpose This contemporary work was aimed to design a novel pH-sensitive nanocomposite hydrogel (NCH) formulation incorporating thiolated chitosan (TCH) based nanoparticles (NPs) of Ticagrelor (TG), to enhance its oral bioavailability for effectively inhibiting platelet aggregation. Methods NCHs were prepared by free radical polymerization technique, using variable concentrations of chitosan (CH) as biodegradable polymer, acrylic acid (AA) as a monomer, N,N-methylene bisacrylamide (MBAA) as cross-linker, and potassium persulphate (KPS) as initiator. Results The optimum hydrogel formulation was selected for fabricating NCHs, considering porosity, sol-gel fraction, swelling studies, drug loading capacity, and TG’s in vitro release as determining factors. Outcomes of the studies have shown that the extent of hydrogel swelling and drug release was comparatively greater at higher pH (7.4). Moreover, an amplifying trend was observed for drug loading and hydrogel swelling by increasing AA content, while it declined by increasing MBAA. The NCHs were evaluated by various physicochemical techniques and the selected formulation was subjected to in vivo bioavailability studies, confirming enhancement of bioavailability as indicated by prolonged half-life and multifold increase in area under the curve (AUC) as compared to pure TG. Conclusion The results suggest that NCHs demonstrated a pH-responsive, controlled behavior along with enhanced bioavailability. Thus NCHs can be effectively utilized as efficient delivery systems for oral delivery of TG to reduce the risk of myocardial infarction.
Collapse
Affiliation(s)
- Nariman Shahid
- College of Pharmacy, University of Sargodha, Sargodha, 40100, Pakistan.,Akhtar Saeed College of Pharmaceutical Sciences, Lahore, 53720, Pakistan
| | - Alia Erum
- College of Pharmacy, University of Sargodha, Sargodha, 40100, Pakistan
| | - Muhammad Zaman
- Faculty of Pharmacy, University of Central Punjab, Lahore, 54782, Pakistan
| | - Ume Ruqia Tulain
- College of Pharmacy, University of Sargodha, Sargodha, 40100, Pakistan
| | | | - Abdul Majeed
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad F Rasool
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Behnam Noorani
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
49
|
Samiei M, Fathi M, Barar J, Fathi N, Amiryaghoubi N, Omidi Y. Bioactive hydrogel-based scaffolds for the regeneration of dental pulp tissue. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Skopinska-Wisniewska J, De la Flor S, Kozlowska J. From Supramolecular Hydrogels to Multifunctional Carriers for Biologically Active Substances. Int J Mol Sci 2021; 22:7402. [PMID: 34299020 PMCID: PMC8307912 DOI: 10.3390/ijms22147402] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 01/04/2023] Open
Abstract
Supramolecular hydrogels are 3D, elastic, water-swelled materials that are held together by reversible, non-covalent interactions, such as hydrogen bonds, hydrophobic, ionic, host-guest interactions, and metal-ligand coordination. These interactions determine the hydrogels' unique properties: mechanical strength; stretchability; injectability; ability to self-heal; shear-thinning; and sensitivity to stimuli, e.g., pH, temperature, the presence of ions, and other chemical substances. For this reason, supramolecular hydrogels have attracted considerable attention as carriers for active substance delivery systems. In this paper, we focused on the various types of non-covalent interactions. The hydrogen bonds, hydrophobic, ionic, coordination, and host-guest interactions between hydrogel components have been described. We also provided an overview of the recent studies on supramolecular hydrogel applications, such as cancer therapy, anti-inflammatory gels, antimicrobial activity, controlled gene drug delivery, and tissue engineering.
Collapse
Affiliation(s)
| | - Silvia De la Flor
- Department of Mechanical Engineering, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain;
| | - Justyna Kozlowska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7, 87-100 Torun, Poland;
| |
Collapse
|