1
|
Pan Q, Xiong YA, Sha TT, Feng ZJ, Zhou RJ, Yao J, Hu HH, You YM. Strain-Induced Tunable Enhancement of Piezoelectricity in a Novel Molecular Multiferroic Material. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2410585. [PMID: 39498715 DOI: 10.1002/adma.202410585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/01/2024] [Indexed: 11/07/2024]
Abstract
Multiferroics are appealing because of application potentials in data storage devices, sensors, transducers, and energy harvesters. Molecular multiferroics emerge as a promising alternative to inorganic multiferroics due to flexibility, light weight, low toxicity, solution processing, structural diversity, and chemical tunability. While researches have predominantly focused on perovskite structures, studies on molecular ionic multiferroics remain relatively limited. It is urgent to creatively build a novel platform for studying and developing the coupling and interaction between the stress, electricity, and magnetism. Knowing this, the work focuses on a novel organic-inorganic hybrid multiferroic N-ethyl-N-(fluoromethyl)-N-methylethylammonium tetrabromoferrate (III) showing coexisting magnetic and electric orderings. It undergoes antiferromagnetic, ferroelectric, and ferroelastic transitions. Notably, under a strain of 2.0%, the piezoelectric response increases tenfold, and the coercive field of ferroelectric polarization is reduced by half. The strain-induced enhancement of piezoelectricity is rarely reported in molecular multiferroics. Density functional theory is employed to predict that the mechanism of the large piezoelectric response under strain engineering is related to the cation rotation and phase switching between the stable phase and an energetically competitive metastable phase. This study creates a new paradigm to develop molecular multiferroics and future microelectronic devices for energy conversion.
Collapse
Affiliation(s)
- Qiang Pan
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Yu-An Xiong
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Tai-Ting Sha
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Zi-Jie Feng
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Ru-Jie Zhou
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Jie Yao
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Hui-Hui Hu
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Yu-Meng You
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
2
|
Xu H, Sun F, Li E, Guo W, Hua L, Wang R, Li W, Chu J, Liu W, Luo J, Sun Z. Ferroelectric Perovskite/MoS 2 Channel Heterojunctions for Wide-Window Nonvolatile Memory and Neuromorphic Computing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414339. [PMID: 39580680 DOI: 10.1002/adma.202414339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/08/2024] [Indexed: 11/26/2024]
Abstract
Ferroelectric materials commonly serve as gate insulators in typical field-effect transistors, where their polarization reversal enables effective modulation of the conductivity state of the channel material, thereby realizing non-volatile memory. Currently, novel 2D ferroelectrics unlock new prospects in next-generation electronics and neuromorphic computation. However, the advancement of these materials is impeded by limited selectivity and narrow memory windows. Here, new concepts of 2D ferroelectric perovskite/MoS2 channel heterostructures field-effect transistors are presented, in which 2D ferroelectric perovskite features customizable band structure, few-layered ferroelectricity, and submillimeter-size monolayer wafers. Further studies reveal that these devices exhibit unique charge polarity modulation (from n- to p-type channel) and remarkable nonvolatile memory behavior, especially record-wide hysteresis windows up to 177 V, which enables efficient imitation of biological synapses and achieves high recognition accuracy for electrocardiogram patterns. This result provides a device paradigm for future nonvolatile memory and artificial synaptic applications.
Collapse
Affiliation(s)
- Haojie Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Fapeng Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Enlong Li
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Wuqian Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Lina Hua
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Ruixue Wang
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Wenwu Li
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Junhao Chu
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Wei Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| | - Zhihua Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| |
Collapse
|
3
|
Haldar R, Naskar S, Jana B, Mandal D, Shanmugam M. Harnessing thermal waste with a poling-free molecular pyroelectric zinc(II) complex. Chem Commun (Camb) 2024; 61:318-321. [PMID: 39630133 DOI: 10.1039/d4cc06054g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Transforming abundant thermal energy into electrical energy is an essential and sustainable solution to meet the rapidly growing global energy demand. In this communication, we report an electrical poling-free molecular complex [Zn(bpy)3](ClO4)2·H2O (1) with an appreciable pyroelectric coefficient value of 25 μC m-2 K-1. This allowed us to harvest waste heat energy using a pyroelectric nanogenerator (PyG) device of 1, a relatively unexplored area for molecular complexes.
Collapse
Affiliation(s)
- Rajashi Haldar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, Maharashtra, India.
| | - Sudip Naskar
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India.
| | - Bapan Jana
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, Maharashtra, India.
| | - Dipankar Mandal
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India.
| | - Maheswaran Shanmugam
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, Maharashtra, India.
| |
Collapse
|
4
|
Wang CF, Yang Y, Hu Y, Ma C, Ni HF, Liu PG, Lu HF, Zhang ZX, Wang J, Zhang Y, Fu DW, Zhao K, Zhang Y. Exploring Aqueous Solution-Processed Pseudohalide Rare-Earth Double Perovskite Ferroelectrics toward X-Ray Detection with High Sensitivity. Angew Chem Int Ed Engl 2024; 63:e202413726. [PMID: 39207278 DOI: 10.1002/anie.202413726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Three-dimensional (3D) pseudohalide rare-earth double perovskites (PREDPs) have garnered significant attention for their versatile physical properties, including ferroelectricity, ferroelasticity, large piezoelectric responses, and circularly polarized luminescence. However, their potential for X-ray detection remains unexplored, and the low Curie temperature (TC) limits the performance window for PREDP ferroelectrics. Here, by applying the chemical regulation strategies involving halogen substitution on the organic cation and Rb/Cs substitution to the PREDP [(R)-M3HQ]2RbEu(NO3)6 [(R)-M3HQ=(R)-N-methyl-3-hydroxylquinuclidinium] with a low TC of 285 K, a novel 3D PREDP ferroelectric [(R)-CM3HQ]2CsEu(NO3)6 [(R)-CM3HQ=(R)-N-chloromethyl-3-hydroxylquinuclidinium] are successfully synthesized, for which the TC reaches 344 K. More importantly, such a strategy endowed [(R)-CM3HQ]2CsEu(NO3)6 with notable X-ray detection capabilities. Centimeter-sized [(R)-CM3HQ]2CsEu(NO3)6 single crystals fabricated from aqueous solutions demonstrated a sensitivity of 1307 μC Gyair -1 cm-2 and a low detectable dose rate of 152 nGyair s-1, the highest sensitivity reported for hybrid double perovskite ferroelectric detectors. This work positions PREDPs as promising candidates for the next generation of eco-friendly optoelectronic materials and also offers substantial insights into the interaction between structure, composition, and functionality in ferroelectric materials.
Collapse
Affiliation(s)
- Chang-Feng Wang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, 321004, Jinhua, People's Republic of China
| | - Ye Yang
- Key Laboratory of Applied Surface and Colloid Chemistry National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials School of Materials Science and Engineering., Shaanxi Normal University, 710119, Xi'an, People's Republic of China
| | - Yu Hu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, 321004, Jinhua, People's Republic of China
| | - Chuang Ma
- Key Laboratory of Applied Surface and Colloid Chemistry National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials School of Materials Science and Engineering., Shaanxi Normal University, 710119, Xi'an, People's Republic of China
| | - Hao-Fei Ni
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, 321004, Jinhua, People's Republic of China
| | - Pei-Guo Liu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, 321004, Jinhua, People's Republic of China
| | - Hai-Feng Lu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, 321004, Jinhua, People's Republic of China
| | - Zhi-Xu Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, 321004, Jinhua, People's Republic of China
| | - Jianguo Wang
- College of Chemistry and Chemical Engineering Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 010021, Hohhot, People's Republic of China
| | - Yujian Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, 321004, Jinhua, People's Republic of China
| | - Da-Wei Fu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, 321004, Jinhua, People's Republic of China
| | - Kui Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials School of Materials Science and Engineering., Shaanxi Normal University, 710119, Xi'an, People's Republic of China
| | - Yi Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, 321004, Jinhua, People's Republic of China
| |
Collapse
|
5
|
Song XJ, Sun W, Zhou LX, Mao WX, Xu HM, Lan JF, Zhang Y, Zhang HY. Observation of Ferroelectricity in Carbapenem Intermediates Enables Reactive Oxygen Species Generation by Ultrasound. J Am Chem Soc 2024; 146:32519-32528. [PMID: 39547713 DOI: 10.1021/jacs.4c09955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Organic ferroelectrics show great applications in the fields of biomedicine, including disease treatment, biosensors, and tissue engineering. Organosilicon pharmaceutical intermediates generally include chiral centers and have satisfying biosafety, biocompatibility, or even biodegradability, which provide versatile platforms for the design of ferroelectricity. However, their academic values in ferroelectricity have long been long overlooked. Here, we demonstrated the ferroelectric properties of 4-acetoxy-azacyclic butanone (4-AA), a key synthetic organosilicon-based intermediate of carbapenem drugs. This compound undergoes a 222F2-type ferroelectric-ferroelastic phase transition at 326 K. As an organic piezoelectric material, 4-AA can produce reactive oxygen species when subjected to ultrasonic vibrations. Combined with its desirable biocompatibility, this material may contribute to antimicrobial and wound healing, tumor treatment, etc. This work will provide inspiration for the discovery of multifunctional biomedical ferroelectric materials as well as their related application prospects.
Collapse
Affiliation(s)
- Xian-Jiang Song
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Wenbo Sun
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Long-Xing Zhou
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Wei-Xin Mao
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Hua-Ming Xu
- Jiangsu Key Laboratory for Biomaterials and Devices, State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Jin-Fei Lan
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Yao Zhang
- Jiangsu Key Laboratory for Biomaterials and Devices, State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Han-Yue Zhang
- Jiangsu Key Laboratory for Biomaterials and Devices, State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| |
Collapse
|
6
|
Zhang ZX, Ni HF, Tang JS, Huang PZ, Luo JQ, Zhang FW, Lin JH, Jia QQ, Teri G, Wang CF, Fu DW, Zhang Y. Metal-Free Perovskite Ferroelectrics with the Most Equivalent Polarization Axes. J Am Chem Soc 2024; 146:27443-27450. [PMID: 39141483 DOI: 10.1021/jacs.4c07268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Ferroelectricity in metal-free perovskites (MFPs) has emerged as an academic hotspot for their lightweight, eco-friendly processability, flexibility, and degradability, with considerable progress including large spontaneous polarization, high Curie temperature, large piezoelectric response, and tailoring coercive field. However, their equivalent polarization axes as a key indicator are far from enough, although multiaxial ferroelectrics are highly preferred for performance output and application flexibility that profit from as many equivalent polarization directions as possible with easier reorientation. Here, by implementing the synergistic overlap of regulating anionic geometries (from spherical I- to octahedral [PF6]- and to tetrahedral [ClO4]- or [BF4]-) and cationic asymmetric modification, we successfully designed multiaxial MFP ferroelectrics CMDABCO-NH4-X3 (CMDABCO = N-chloromethyl-N'-diazabicyclo[2.2.2]octonium; X = [ClO4]- or [BF4]-) with the lowest P1 symmetry. More impressively, systemic characterizations indicate that they possess 24 equivalent polarization axes (Aizu notations of 432F1 and m3̅mF1, respectively)─the maximum number achievable for ferroelectrics. Benefiting from the multiaxial feature, CMDABCO-NH4-[ClO4]3 has been demonstrated to have excellent piezoelectric sensing performance in its polycrystalline sample and prepared composite device. Our study provides a feasible strategy for designing multiaxial MFP ferroelectrics and highlights their great promise for use in microelectromechanical, sensing, and body-compatible devices.
Collapse
Affiliation(s)
- Zhi-Xu Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Hao-Fei Ni
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Jing-Song Tang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Pei-Zhi Huang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Jia-Qi Luo
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Feng-Wen Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Jia-He Lin
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Qiang-Qiang Jia
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Gele Teri
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Chang-Feng Wang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Da-Wei Fu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Yi Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| |
Collapse
|
7
|
Zheng C, Li X, Li W, Chen T, Lv F, Huang Y, Li Q, Wu Y, Hong Z. A molecular ferroelectric thin film of imidazolium perchlorate on silicon. Nat Commun 2024; 15:7767. [PMID: 39237566 PMCID: PMC11377775 DOI: 10.1038/s41467-024-52207-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024] Open
Abstract
Molecular ferroelectrics have garnered significant attention due to their structural tunability, low synthesis temperature, and high flexibility. Herein, we successfully synthesized imidazole perchlorate (ImClO4) single crystals and high-quality, highly-oriented thin films on Si substrates. These films demonstrated a high inverse piezoelectric coefficient of 55.7 pm/V. Two types of domain bands were observed: type-I bands tilted ~60° relative to the horizontal axis, and type-II bands positioned perpendicular to the horizontal axis. Under a + 20 V bias, type-I bands showed a reduction and detachment of 180° domain walls to form a needle-like domain. It extended toward the band boundary after applying -20 V bias, which grew along the boundary upon contact. In contrast, type-II bands showed straight domain wall motion and displayed a higher piezoresponse than type-I bands. The growth of high quality molecular ferroelectric thin films on Si substrates paves the way for the development of on-chip devices.
Collapse
Affiliation(s)
- Congqin Zheng
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Xin Li
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Wei Li
- School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Tiantian Chen
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Fu Lv
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Yuhui Huang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, China.
| | - Qian Li
- School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Yongjun Wu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, China.
| | - Zijian Hong
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, China.
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, Zhejiang, China.
- Zhejiang Key Laboratory of Advanced Solid State Energy Storage Technology and Applications, Taizhou Institute of Zhejiang University, Taizhou, Zhejiang, China.
| |
Collapse
|
8
|
Du GW, Cao XX, Xiong YA, Yao J, Feng ZJ, Zhou RJ, Sha TT, Ji HR, Zhang X, Jing ZY, Pan Q. SHG Assisted Mixed-Phases Anatomizing in a Molecular Ferroelectric. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401392. [PMID: 38821489 DOI: 10.1002/adma.202401392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/21/2024] [Indexed: 06/02/2024]
Abstract
Anatomizing mixed-phases, referring to analyzing the mixing profiles and quantifying the phases' proportions in a material, which is of great significance in the genuine applications. Here, by using second-harmonic generation (SHG) polarimetry and piezoresponse force microscopy (PFM) techniques, this work elucidates the contributions and distributions of two different symmetric phases mixed in an archetype monoaxial molecular ferroelectric, diisopropylammonium chloride (DIPACl). The two competing phases are preferred in thermodynamics or kinetic process respectively, and this work evidences the switching behavior between the two competing phases facilitated by an external electrical field as opposed to a heating process. This research contributes novel insights into phase engineering in the field of molecular ferroelectrics and is poised to serve as a potent analytical tool for subsequent applications.
Collapse
Affiliation(s)
- Guo-Wei Du
- School of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing, 211189, P. R. China
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Xiao-Xing Cao
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Yu-An Xiong
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Jie Yao
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Zi-Jie Feng
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Ru-Jie Zhou
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Tai-Ting Sha
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Hao-Ran Ji
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Xiangzhi Zhang
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Zheng-Yin Jing
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Qiang Pan
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| |
Collapse
|
9
|
Ai Y, Gu ZX, Wang P, Tang YY, Chen XG, Lv HP, Li PF, Jiang Q, Xiong RG, Zhang JJ, Zhang HY. Biodegradable Ferroelectric Molecular Plastic Crystal HOCH 2(CF 2) 7CH 2OH Structurally Inspired by Polyvinylidene Fluoride. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405981. [PMID: 38970528 DOI: 10.1002/adma.202405981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/22/2024] [Indexed: 07/08/2024]
Abstract
Ferroelectric materials, traditionally comprising inorganic ceramics and polymers, are commonly used in medical implantable devices. However, their nondegradable nature often necessitates secondary surgeries for removal. In contrast, ferroelectric molecular crystals have the advantages of easy solution processing, lightweight, and good biocompatibility, which are promising candidates for transient (short-term) implantable devices. Despite these benefits, the discovered biodegradable ferroelectric materials remain limited due to the absence of efficient design strategies. Here, inspired by the polar structure of polyvinylidene fluoride (PVDF), a ferroelectric molecular crystal 1H,1H,9H,9H-perfluoro-1,9-nonanediol (PFND), which undergoes a cubic-to-monoclinic ferroelectric plastic phase transition at 339 K, is discovered. This transition is facilitated by a 2D hydrogen bond network formed through O-H···O interactions among the oriented PFND molecules, which is crucial for the manifestation of ferroelectric properties. In this sense, by reducing the number of -CF2- groups from ≈5 000 in PVDF to seven in PFND, it is demonstrated that this ferroelectric compound only needs simple solution processing while maintaining excellent biosafety, biocompatibility, and biodegradability. This work illuminates the path toward the development of new biodegradable ferroelectric molecular crystals, offering promising avenues for biomedical applications.
Collapse
Affiliation(s)
- Yong Ai
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Zhu-Xiao Gu
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, P. R. China
| | - Peng Wang
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, P. R. China
- Jiangsu Key Laboratory for Biomaterials and Devices, State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Yuan-Yuan Tang
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Xiao-Gang Chen
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Hui-Peng Lv
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Peng-Fei Li
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Qing Jiang
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, P. R. China
| | - Ren-Gen Xiong
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Jun-Jie Zhang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, P. R. China
| | - Han-Yue Zhang
- Jiangsu Key Laboratory for Biomaterials and Devices, State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 211189, P. R. China
| |
Collapse
|
10
|
Jia QQ, Teri G, Luo JQ, Ni HF, Huang PZ, Lun MM, Zhang ZX, Zhang Y, Fu DW. Experimental Observation of the Fully Ferroelectric-Fully Ferroelastic Effect in Multiferroic Hybrid Perovskites. J Am Chem Soc 2024. [PMID: 39034829 DOI: 10.1021/jacs.4c06929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Since the concept of "multiferroic" was first proposed in 1968, the coupling effect between different ferroic orders has attracted great interest in energy, information, and biomedical fields. However, the fully ferroelectric-fully ferroelastic effect has never been experimentally observed in hybrid perovskites, even though this effect was predicted to exist half a century ago. Realizing such cross-linking effects of polarization vectors and strain tensors has always been a huge challenge because of the complex difference in these two ferroic origins. Here, we report a multiferroic with full ferroelectricity and full ferroelasticity in two-dimensional (2D) hybrid perovskites based on ferroelectrochemistry. The dynamic molecular reorientations endow (cyclohexanemethylaminium)2PbCl4 with a desired symmetry change of 4̅2mFmm2 at a Curie temperature of 411.8 K. More strikingly, the switchable evolution of ferroelastic domains was directly observed under the control of either electric or mechanical fields, which is the first experimental observation of a fully ferroelectric-fully ferroelastic effect in hybrid perovskites. This work would provide new insights into understanding the intrinsic cross-linking mechanism between ferroelectricity and ferroelasticity toward the development of multichannel interactive microelectronic devices.
Collapse
Affiliation(s)
- Qiang-Qiang Jia
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - Gele Teri
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - Jia-Qi Luo
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - Hao-Fei Ni
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - Pei-Zhi Huang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - Meng-Meng Lun
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China
| | - Zhi-Xu Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - Yi Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - Da-Wei Fu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, P. R. China
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China
| |
Collapse
|
11
|
Harada J, Takehisa M, Kawamura Y, Hasegawa H, Usui T. Solid Solutions of Plastic/Ferroelectric Crystals: Toward Tailor-Made Functional Materials. J Am Chem Soc 2024. [PMID: 39026392 DOI: 10.1021/jacs.4c07676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Plastic crystals that show ferroelectricity are highly promising materials for a wide range of applications. Their inherent remarkable malleability and highly symmetric cubic structures in the plastic crystal phase ensure that their ferroelectricity and related properties are retained in their bulk polycrystals. To develop functional materials based on such plastic/ferroelectric crystals, methods to tune their properties for specific applications are required. Here, we report the preparation of solid solutions of plastic/ferroelectric ionic crystals by mixing crystals with a common anion but different cations, or crystals with a common cation but different anions, which allows a continuous modification of the Curie temperature of the ferroelectric system over a range of 100 K. This adjustment of the Curie temperature allows the flexible tuning of the pyroelectric properties of the solid solutions, including a significant enhancement of room-temperature performance. The solid solutions also exhibit morphotropic phase boundaries in the composition-temperature phase diagrams, which shows an abrupt change in crystal structures with a variation of composition. This study showcases a simple and versatile property-tuning method that can be expected to pave the way for major progress in the development of materials based on plastic/ferroelectric crystals, which will eventually advance to the stage of pursuing tailor-made functional materials with desired properties.
Collapse
Affiliation(s)
- Jun Harada
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Mika Takehisa
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yuto Kawamura
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Hiroyuki Hasegawa
- Faculty of Education, Shimane University, Matsue, Shimane 690-8504, Japan
| | - Tomoyasu Usui
- Murata Manufacturing Co., Ltd., Kyoto 617-8555, Japan
| |
Collapse
|
12
|
Muraleedharan AK, Co K, Vallet M, Zaki A, Karolak F, Bogicevic C, Perronet K, Dkhil B, Paillard C, Fiorini-Debuisschert C, Treussart F. Ferroelectric Texture of Individual Barium Titanate Nanocrystals. ACS NANO 2024; 18:18355-18367. [PMID: 38952163 DOI: 10.1021/acsnano.4c02291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Ferroelectric materials display exotic polarization textures at the nanoscale that could be used to improve the energetic efficiency of electronic components. The vast majority of studies were conducted in two dimensions on thin films that can be further nanostructured, but very few studies address the situation of individual isolated nanocrystals (NCs) synthesized in solution, while such structures could have other fields of applications. In this work, we experimentally and theoretically studied the polarization texture of ferroelectric barium titanate (BaTiO3, BTO) NCs attached to a conductive substrate and surrounded by air. We synthesized NCs of well-defined quasicubic shape and 160 nm average size that conserve the tetragonal structure of BTO at room temperature. We then investigated the inverse piezoelectric properties of such pristine individual NCs by vector piezoresponse force microscopy (PFM), taking particular care to suppress electrostatic artifacts. In all of the NCs studied, we could not detect any vertical PFM signal, and the maps of the lateral response all displayed larger displacement amplitude on the edges with deformations converging toward the center. Using field phase simulations dedicated to ferroelectric nanostructures, we were able to predict the equilibrium polarization texture. These simulations revealed that the NC core is composed of 180° up and down domains defining the polar axis that rotate by 90° in the two facets orthogonal to this axis, eventually lying within these planes forming a layer of about 10 nm thickness mainly composed of 180° domains along an edge. From this polarization distribution, we predicted the lateral PFM response, which was revealed to be in very good qualitative agreement with the experimental observations. This work positions PFM as a relevant tool to evaluate the potential of complex ferroelectric nanostructures to be used as sensors.
Collapse
Affiliation(s)
- Athulya K Muraleedharan
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, CentraleSupélec, LuMIn, 91190 Gif-sur-Yvette, France
| | - Kevin Co
- Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire SPMS, 91190 Gif-sur-Yvette, France
| | - Maxime Vallet
- Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire SPMS, 91190 Gif-sur-Yvette, France
| | - Abdelali Zaki
- Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire SPMS, 91190 Gif-sur-Yvette, France
| | - Fabienne Karolak
- Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire SPMS, 91190 Gif-sur-Yvette, France
| | - Christine Bogicevic
- Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire SPMS, 91190 Gif-sur-Yvette, France
| | - Karen Perronet
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, CentraleSupélec, LuMIn, 91190 Gif-sur-Yvette, France
| | - Brahim Dkhil
- Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire SPMS, 91190 Gif-sur-Yvette, France
| | - Charles Paillard
- Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire SPMS, 91190 Gif-sur-Yvette, France
- Smart Ferroic Materials Center, Institute for Nanoscience & Engineering and Department of Physics, University of Arkansas, Fayetteville, 72701 Arkansas, United States
| | | | - François Treussart
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, CentraleSupélec, LuMIn, 91190 Gif-sur-Yvette, France
| |
Collapse
|
13
|
Gu ZX, Zhang N, Zhang Y, Liu B, Jiang HH, Xu HM, Wang P, Jiang Q, Xiong RG, Zhang HY. Molecular orbital breaking in photo-mediated organosilicon Schiff base ferroelectric crystals. Nat Commun 2024; 15:4416. [PMID: 38789426 PMCID: PMC11126662 DOI: 10.1038/s41467-024-48405-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Ferroelectric materials, whose electrical polarization can be switched under external stimuli, have been widely used in sensors, data storage, and energy conversion. Molecular orbital breaking can result in switchable structural and physical bistability in ferroelectric materials as traditional spatial symmetry breaking does. Differently, molecular orbital breaking interprets the phase transition mechanism from the perspective of electronics and sheds new light on manipulating the physical properties of ferroelectrics. Here, we synthesize a pair of organosilicon Schiff base ferroelectric crystals, (R)- and (S)-N-(3,5-di-tert-butylbenzylidene)-1-((triphenylsilyl)oxy)ethanamine, which show optically controlled phase transition accompanying the molecular orbital breaking. The molecular orbital breaking is manifested as the breaking and reformation of covalent bonds during the phase transition process, that is, the conversion between C = N and C-O in the enol form and C-N and C = O in the keto form. This process brings about photo-mediated bistability with multiple physical channels such as dielectric, second-harmonic generation, and ferroelectric polarization. This work further explores this newly developed mechanism of ferroelectric phase transition and highlights the significance of photo-mediated ferroelectric materials for photo-controlled smart devices and bio-sensors.
Collapse
Affiliation(s)
- Zhu-Xiao Gu
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, P. R. China
| | - Nan Zhang
- Jiangsu Key Laboratory for Biomaterials and Devices, State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, P. R. China
| | - Yao Zhang
- Jiangsu Key Laboratory for Biomaterials and Devices, State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, P. R. China
| | - Bin Liu
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, P. R. China
| | - Huan-Huan Jiang
- Jiangsu Key Laboratory for Biomaterials and Devices, State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, P. R. China
| | - Hua-Ming Xu
- Jiangsu Key Laboratory for Biomaterials and Devices, State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, P. R. China
| | - Peng Wang
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, P. R. China
- Jiangsu Key Laboratory for Biomaterials and Devices, State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, P. R. China
| | - Qing Jiang
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, P. R. China
| | - Ren-Gen Xiong
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Han-Yue Zhang
- Jiangsu Key Laboratory for Biomaterials and Devices, State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, P. R. China.
| |
Collapse
|
14
|
Zhang ZX, Wang H, Ni HF, Wang N, Wang CF, Huang PZ, Jia QQ, Teri G, Fu DW, Zhang Y, An Z, Zhang Y. Organic-Inorganic Hybrid Ferroelectric and Antiferroelectric with Afterglow Emission. Angew Chem Int Ed Engl 2024; 63:e202319650. [PMID: 38275283 DOI: 10.1002/anie.202319650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 01/27/2024]
Abstract
Luminescent ferroelectrics are holding exciting prospect for integrated photoelectronic devices due to potential light-polarization interactions at electron scale. Integrating ferroelectricity and long-lived afterglow emission in a single material would offer new possibilities for fundamental research and applications, however, related reports have been a blank to date. For the first time, we here achieved the combination of notable ferroelectricity and afterglow emission in an organic-inorganic hybrid material. Remarkably, the presented (4-methylpiperidium)CdCl3 also shows noticeable antiferroelectric behavior. The implementation of cationic customization and halogen engineering not only enables a dramatic enhancement of Curie temperature of 114.4 K but also brings a record longest emission lifetime up to 117.11 ms under ambient conditions, realizing a leapfrog improvement of at least two orders of magnitude compared to reported hybrid ferroelectrics so far. This finding would herald the emergence of novel application potential, such as multi-level density data storage or multifunctional sensors, towards the future integrated optoelectronic devices with multitasking capabilities.
Collapse
Affiliation(s)
- Zhi-Xu Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - He Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211800, People's Republic of China
| | - Hao-Fei Ni
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Na Wang
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou, 341000, People's Republic of China
| | - Chang-Feng Wang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Pei-Zhi Huang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Qiang-Qiang Jia
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Gele Teri
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Da-Wei Fu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Yujian Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Zhongfu An
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211800, People's Republic of China
| | - Yi Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| |
Collapse
|
15
|
Zheng H, Loh KP. Ferroics in Hybrid Organic-Inorganic Perovskites: Fundamentals, Design Strategies, and Implementation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308051. [PMID: 37774113 DOI: 10.1002/adma.202308051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/13/2023] [Indexed: 10/01/2023]
Abstract
Hybrid organic-inorganic perovskites (HOIPs) afford highly versatile structure design and lattice dimensionalities; thus, they are actively researched as material platforms for the tailoring of ferroic behaviors. Unlike single-phase organic or inorganic materials, the interlayer coupling between organic and inorganic components in HOIPs allows the modification of strain and symmetry by chirality transfer or lattice distortion, thereby enabling the coexistence of ferroic orders. This review focuses on the principles for engineering one or multiple ferroic orders in HOIPs, and the conditions for achieving multiferroicity and magnetoelectric properties. The prospects of multilevel ferroic modulation, chiral spin textures, and spin orbitronics in HOIPs are also presented.
Collapse
Affiliation(s)
- Haining Zheng
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Kian Ping Loh
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
16
|
Zhang H, Guo W, Du W, Peng Z, Wei Z, Cai H. A Metal-Free Molecular Ferroelectric [4-Me-cyclohexylamine]ClO 4 Introduced by Boat and Chair Conformations of Cyclohexylamine. Chemistry 2024; 30:e202302671. [PMID: 37920946 DOI: 10.1002/chem.202302671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 11/04/2023]
Abstract
Organic ferroelectrics have received a great deal of interest due to their exclusive properties. However, organic ferroelectrics have not been fully explored, which hinders their practical application. Here, we presented a novel metal-free organic molecular ferroelectric [4-MCHA][ClO4 ] (1) (4-MCHA=trans-4-methylcyclohexylamine), which exhibits an above-room-temperature of 328 K. Strikingly, the single crystal structure analysis of 1 shows that the driving force of phase transition is related to the interesting chair-boat conformation change of 4-MCHA cation, in addition to the order-disorder transition of ClO4 - anion. Using piezoelectric response force microscopy (PFM), the presence of domains and the implemented polarization switching were clearly observed, which explicitly determined the presence of room-temperature ferroelectricity of 1. As far as we know, the ferroelectric phase transition mechanism attributed to the conformational change in a trans isomeric cation is very rare. This research enriched the path of designing ferroelectric materials and smart materials.
Collapse
Affiliation(s)
- Haina Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang City, 330031, Jiangxi Province, P. R. China
| | - Wenjing Guo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang City, 330031, Jiangxi Province, P. R. China
| | - Wenqing Du
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang City, 330031, Jiangxi Province, P. R. China
| | - Ziqin Peng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang City, 330031, Jiangxi Province, P. R. China
| | - Zhenhong Wei
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang City, 330031, Jiangxi Province, P. R. China
| | - Hu Cai
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang City, 330031, Jiangxi Province, P. R. China
| |
Collapse
|
17
|
Deswal S, Panday R, Naphade DR, Cazade PA, Guerin S, Zaręba JK, Steiner A, Ogale S, Anthopoulos TD, Boomishankar R. Design and Piezoelectric Energy Harvesting Properties of a Ferroelectric Cyclophosphazene Salt. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300792. [PMID: 37485599 DOI: 10.1002/smll.202300792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/03/2023] [Indexed: 07/25/2023]
Abstract
Cyclophosphazenes offer a robust and easily modifiable platform for a diverse range of functional systems that have found applications in a wide variety of areas. Herein, for the first time, it reports an organophosphazene-based supramolecular ferroelectric [(PhCH2 NH)6 P3 N3 Me]I, [PMe]I. The compound crystallizes in the polar space group Pc and its thin-film sample exhibits remnant polarization of 5 µC cm-2 . Vector piezoresponse force microscopy (PFM) measurements indicated the presence of multiaxial polarization. Subsequently, flexible composites of [PMe]I are fabricated for piezoelectric energy harvesting applications using thermoplastic polyurethane (TPU) as the matrix. The highest open-circuit voltages of 13.7 V and the maximum power density of 34.60 µW cm-2 are recorded for the poled 20 wt.% [PMe]I/TPU device. To understand the molecular origins of the high performance of [PMe]I-based mechanical energy harvesting devices, piezoelectric charge tensor values are obtained from DFT calculations of the single crystal structure. These indicate that the mechanical stress-induced distortions in the [PMe]I crystals are facilitated by the high flexibility of the layered supramolecular assembly.
Collapse
Affiliation(s)
- Swati Deswal
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Rishukumar Panday
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Dipti R Naphade
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal, 23955-6900, Saudi Arabia
| | - Pierre-Andre Cazade
- Department of Physics, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Sarah Guerin
- Department of Physics, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Jan K Zaręba
- Institute of Advanced Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, 50- 370, Poland
| | - Alexander Steiner
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
| | - Satishchandra Ogale
- Department of Physics and Centre for Energy Science, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune, 411008, India
- Research Institute for Sustainable Energy (RISE), TCG Centres for Research and Education in Science and Technology (TCG-CREST), Salt Lake, Kolkata, 700091, India
| | - Thomas D Anthopoulos
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal, 23955-6900, Saudi Arabia
| | - Ramamoorthy Boomishankar
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|
18
|
Zhang N, Sun W, Zhang Y, Jiang HH, Xiong RG, Dong S, Zhang HY. Organic radical ferroelectric crystals with martensitic phase transition. Nat Commun 2023; 14:5854. [PMID: 37730766 PMCID: PMC10511434 DOI: 10.1038/s41467-023-41560-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023] Open
Abstract
Organic martensitic compounds are an emerging type of smart material with intriguing physical properties including thermosalient effect, ferroelasticity, and shape memory effect. However, due to the high structural symmetry and limited design theories for these materials, the combination of ferroelectricity and martensitic transformation has rarely been found in organic systems. Here, based on the chemical design strategies for molecular ferroelectrics, we show a series of asymmetric 1,4,5,8-naphthalenediimide derivatives with the homochiral amine and 2,2,6,6-tetramethylpiperidine-N-oxyl components, which adopt the low-symmetric polar structure and so allow ferroelectricity. Upon H/F substitution, the fluorinated compounds exhibit reversible ferroelectric and martensitic transitions at 399 K accompanied by a large thermal hysteresis of 132 K. This large thermal hysteresis with two competing (meta)-stable phases is further confirmed by density functional theory calculations. The rare combination of martensitic phase transition and ferroelectricity realizes the bistability with two different ferroelectric phases at room temperature. Our finding provides insight into the exploration of martensitic ferroelectric compounds with potential applications in switchable memory devices, soft robotics, and smart actuators.
Collapse
Affiliation(s)
- Nan Zhang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Wencong Sun
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, P. R. China
| | - Yao Zhang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Huan-Huan Jiang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Ren-Gen Xiong
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Shuai Dong
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, P. R. China.
| | - Han-Yue Zhang
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, P. R. China.
| |
Collapse
|
19
|
Du GW, Xiong YA, Pan Q, Feng ZJ, Cao XX, Yao J, Gu ZX, Lu J, You YM. Revealing the Polarizations of Molecular Ferroelectrics via SHG Polarimetry at the Nanoscale. NANO LETTERS 2023; 23:7419-7426. [PMID: 37539988 DOI: 10.1021/acs.nanolett.3c01848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Multifarious molecular ferroelectrics with multipolar axial characteristics have emerged in recent years, enriching the scenarios for energy harvesting, sensing, and information processing. The increased polar axes have enhanced the urgency of distinguishing different polarization states in material design, mechanism exploration, etc. However, conventional methods hardly meet the requirements of in situ, fast, microscale, contactless, and nondestructive features due to their inherent limitations. Herein, SHG polarimetry is introduced to probe the multioriented polarizations on a nanosized multiaxial molecular ferroelectric, i.e., TMCM-CdCl3 nanoplates, as an example. Combined with the analysis of the second-order susceptibility tensor, SHG polarimetry could serve as an effective method to detect the polarization orders and domain distributions of molecular ferroelectrics. Profiting from the full-optical feature, SHG polarimetry can even be performed on samples covered by transparent mediums, 2D materials, or thin metal electrodes. Our research might spark further fundamental studies and expand the application boundaries of next-generation ferroelectric materials.
Collapse
Affiliation(s)
- Guo-Wei Du
- School of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 211189, People's Republic of China
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| | - Yu-An Xiong
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| | - Qiang Pan
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| | - Zi-Jie Feng
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| | - Xiao-Xing Cao
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| | - Jie Yao
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| | - Zhu-Xiao Gu
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, 321 Zhongshan Road, Nanjing 210008, Jiangsu, People's Republic of China
| | - Junpeng Lu
- School of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 211189, People's Republic of China
| | - Yu-Meng You
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| |
Collapse
|
20
|
Peng H, Xu ZK, Du Y, Li PF, Wang ZX, Xiong RG, Liao WQ. The First Enantiomeric Stereogenic Sulfur-Chiral Organic Ferroelectric Crystals. Angew Chem Int Ed Engl 2023; 62:e202306732. [PMID: 37272456 DOI: 10.1002/anie.202306732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/06/2023]
Abstract
Chiral ferroelectric crystals with intriguing features have attracted great interest and many with point or axial chirality based on the stereocarbon have been successively developed in recent years. However, ferroelectric crystals with stereogenic heteroatomic chirality have never been documented so far. Here, we discover and report a pair of enantiomeric stereogenic sulfur-chiral single-component organic ferroelectric crystals, Rs -tert-butanesulfinamide (Rs -tBuSA) and Ss -tert-butanesulfinamide (Ss -tBuSA) through the deep understanding of the chemical design of molecular ferroelectric crystals. Both enantiomers adopt chiral-polar point group 2 (C2 ) and exhibit mirror-image relationships. They undergo high-temperature 432F2-type plastic ferroelectric phase transition around 348 K. The ferroelectricity has been well confirmed by ferroelectric hysteresis loops and domains. Polarized light microscopy records the evolution of the ferroelastic domains, according with the fact that the 432F2-type phase transition is both ferroelectric and ferroelastic. The very soft characteristics with low elastic modulus and hardness reveals their excellent mechanical flexibility. This finding indicates the first stereosulfur chiral molecular ferroelectric crystals, opening up new fertile ground for exploring molecular ferroelectric crystals with great application prospects.
Collapse
Affiliation(s)
- Hang Peng
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Zhe-Kun Xu
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Ye Du
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P. R. China
| | - Peng-Fei Li
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Zhong-Xia Wang
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P. R. China
| | - Ren-Gen Xiong
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Wei-Qiang Liao
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| |
Collapse
|
21
|
Sahoo S, Kothavade PA, Naphade DR, Torris A, Praveenkumar B, Zaręba JK, Anthopoulos TD, Shanmuganathan K, Boomishankar R. 3D-printed polymer composite devices based on a ferroelectric chiral ammonium salt for high-performance piezoelectric energy harvesting. MATERIALS HORIZONS 2023; 10:3153-3161. [PMID: 37227322 DOI: 10.1039/d3mh00444a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Three-dimensional printing (3DP) is an emerging technology to fabricate complex architectures, necessary to realize state-of-the-art flexible and wearable electronic devices. In this regard, top-performing devices containing organic ferro- and piezoelectric compounds are desired to circumvent significant shortcomings of conventional piezoceramics, e.g. toxicity and high-temperature device processibility. Herein, we report on a 3D-printed composite of a chiral ferroelectric organic salt {[Me3CCH(Me)NH3][BF4]} (1) with a biodegradable polycaprolactone (PCL) polymer that serves as a highly efficient piezoelectric nanogenerator (PENG). The ferroelectric property of 1 originates from its polar tetragonal space group P42, verified by P-E loop measurements. The ferroelectric domain characteristics of 1 were further probed by piezoresponse force microscopy (PFM), which gave characteristic 'butterfly' and hysteresis loops. The PFM amplitude vs. drive voltage measurements gave a relatively high magnitude of the converse piezoelectric coefficient for 1. PCL polymer composites with various weight percentages (wt%) of 1 were prepared and subjected to piezoelectric energy harvesting tests, which gave a maximum open-circuit voltage of 36.2 V and a power density of 48.1 μW cm-2 for the 10 wt% 1-PCL champion device. Furthermore, a gyroid-shaped 3D-printed 10 wt% 1-PCL composite was fabricated to test its practical utility, which gave an excellent output voltage of 41 V and a power density of 56.8 μW cm-2. These studies promise the potential of simple organic compounds for building PENG devices using advanced manufacturing technologies.
Collapse
Affiliation(s)
- Supriya Sahoo
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pune - 411008, India.
| | - Premkumar Anil Kothavade
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune, 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Dipti R Naphade
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal 23955-6900, Saudi Arabia.
| | - Arun Torris
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune, 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Balu Praveenkumar
- PZT Centre, Armament Research and Development Establishment, Dr Homi Bhabha Road, Pune - 411021, India.
| | - Jan K Zaręba
- Institute of Advanced Materials, Wrocław University of Science and Technology, Wrocław-50-370, Poland.
| | - Thomas D Anthopoulos
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal 23955-6900, Saudi Arabia.
| | - Kadhiravan Shanmuganathan
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune, 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Ramamoorthy Boomishankar
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pune - 411008, India.
| |
Collapse
|
22
|
Chen HR, Wan M, Li ZM, Zhong WH, Ye SY, Jia QQ, Li JY, Chen LZ. Precise Design of Molecular Ferroelectrics with High TC and Tunable Band Gap by Molecular Modification. Inorg Chem 2023. [PMID: 37463296 DOI: 10.1021/acs.inorgchem.3c01497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Molecular ferroelectric materials are widely applied in piezoelectric converters, non-volatile memorizers, and photovoltaic devices due to their advantages of adjustable structure, lightweight, easy processing, and environmental friendliness. However, designing multifunctional molecular ferroelectrics with excellent properties has always been a great challenge. Herein, a multiaxial molecular ferroelectric is successfully designed by modifying the quasi-spherical cation dabco with CuBr2 to obtain halogenated [Bretdabco]CuBr4 (Bretdabco = N-bromoethyl-N'-diazabicyclo [2.2.2]octane), which crystallizes in polar point groups (C6). Typical ferroelectric behaviors featured by the P-E hysteresis loop and switched ferroelectric domain are exhibited. Notably, the molecular ferroelectric shows a high TC of 460 K, which is rare in the field and could greatly expand the application range of this material. In addition, the band gap is adjustable through the regulation of halogen. Both the UV absorption spectra and theoretical calculations indicate that the molecular ferroelectrics belong to a direct band gap (2.14 eV) semiconductor. This tunable and narrow band gap semiconductor molecular ferroelectric material with high TC can be utilized more effectively in the study of optoelectronics and sensors, including piezoelectric energy harvesters. This research may provide a promising approach for the development of multiaxial molecular ferroelectrics with a tiny band gap and high TC.
Collapse
Affiliation(s)
- Hao-Ran Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
| | - Min Wan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
| | - Zi-Mu Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
| | - Wen-He Zhong
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
| | - Si-Yu Ye
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
| | - Qiang-Qiang Jia
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
| | - Jun-Yi Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
| | - Li-Zhuang Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
| |
Collapse
|
23
|
Xu WJ, Li MF, Garcia AR, Romanyuk K, Martinho JMG, Zelenovskii P, Tselev A, Verissimo L, Zhang WX, Chen XM, Kholkin A, Rocha J. Molecular Design of a Metal-Nitrosyl Ferroelectric with Reversible Photoisomerization. J Am Chem Soc 2023. [PMID: 37329320 DOI: 10.1021/jacs.3c01530] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The development of photo-responsive ferroelectrics whose polarization may be remotely controlled by optical means is of fundamental importance for basic research and technological applications. Herein, we report the design and synthesis of a new metal-nitrosyl ferroelectric crystal (DMA)(PIP)[Fe(CN)5(NO)] (1) (DMA = dimethylammonium, PIP = piperidinium) with potential phototunable polarization via a dual-organic-cation molecular design strategy. Compared to the parent non-ferroelectric (MA)2[Fe(CN)5(NO)] (MA = methylammonium) material with a phase transition at 207 K, the introduction of larger dual organic cations both lowers the crystal symmetry affording robust ferroelectricity and increases the energy barrier of molecular motions, endowing 1 with a large polarization of up to 7.6 μC cm-2 and a high Curie temperature (Tc) of 316 K. Infrared spectroscopy shows that the reversible photoisomerization of the nitrosyl ligand is accomplished by light irradiation. Specifically, the ground state with the N-bound nitrosyl ligand conformation can be reversibly switched to both the metastable state I (MSI) with isonitrosyl conformation and the metastable state II (MSII) with side-on nitrosyl conformation. Quantum chemistry calculations suggest that the photoisomerization significantly changes the dipole moment of the [Fe(CN)5(NO)]2- anion, thus leading to three ferroelectric states with different values of macroscopic polarization. Such optical accessibility and controllability of different ferroelectric states via photoinduced nitrosyl linkage isomerization open up a new and attractive route to optically controllable macroscopic polarization.
Collapse
Affiliation(s)
- Wei-Jian Xu
- Department of Chemistry & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mao-Fan Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ana R Garcia
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
| | - Konstantin Romanyuk
- Department of Physics & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - José M G Martinho
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
| | - Pavel Zelenovskii
- Department of Chemistry & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Alexander Tselev
- Department of Physics & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Luís Verissimo
- Department of Chemistry & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Wei-Xiong Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiao-Ming Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Andrei Kholkin
- Department of Physics & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - João Rocha
- Department of Chemistry & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
24
|
He W, Yang Y, Li C, Wong WPD, Cimpoesu F, Toader AM, Wu Z, Wu X, Lin Z, Xu QH, Leng K, Stroppa A, Loh KP. Near-90° Switch in the Polar Axis of Dion-Jacobson Perovskites by Halide Substitution. J Am Chem Soc 2023. [PMID: 37315326 DOI: 10.1021/jacs.3c03921] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ferroelectricity in two-dimensional hybrid (2D) organic-inorganic perovskites (HOIPs) can be engineered by tuning the chemical composition of the organic or inorganic components to lower the structural symmetry and order-disorder phase change. Less efforts are made toward understanding how the direction of the polar axis is affected by the chemical structure, which directly impacts the anisotropic charge order and nonlinear optical response. To date, the reported ferroelectric 2D Dion-Jacobson (DJ) [PbI4]2- perovskites exhibit exclusively out-of-plane polarization. Here, we discover that the polar axis in ferroelectric 2D Dion-Jacobson (DJ) perovskites can be tuned from the out-of-plane (OOP) to the in-plane (IP) direction by substituting the iodide with bromide in the lead halide layer. The spatial symmetry of the nonlinear optical response in bromide and iodide DJ perovskites was probed by polarized second harmonic generation (SHG). Density functional theory calculations revealed that the switching of the polar axis, synonymous with the change in the orientation of the sum of the dipole moments (DMs) of organic cations, is caused by the conformation change of organic cations induced by halide substitution.
Collapse
Affiliation(s)
- Weixin He
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- Department of Physics, National University of Singapore, Singapore 117551, Singapore
| | - Yali Yang
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Chuanzhao Li
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong, China
| | - Walter P D Wong
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Fanica Cimpoesu
- Institute of Physical Chemistry of Romanian Academy, Splaiul Independentei 202, Bucharest 060021, Romania
| | - Ana Maria Toader
- Institute of Physical Chemistry of Romanian Academy, Splaiul Independentei 202, Bucharest 060021, Romania
| | - Zhenyue Wu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Xiao Wu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Zexin Lin
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Qing-Hua Xu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Kai Leng
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong, China
| | - Alessandro Stroppa
- Consiglio Nazionale delle Ricerche, Institute for Superconducting and Innovative Materials and Devices (CNR-SPIN), c/o Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio, I-67100 Coppito, L'Aquila, Italy
| | - Kian Ping Loh
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
25
|
Ding K, Ye H, Su C, Xiong YA, Du G, You YM, Zhang ZX, Dong S, Zhang Y, Fu DW. Superior ferroelectricity and nonlinear optical response in a hybrid germanium iodide hexagonal perovskite. Nat Commun 2023; 14:2863. [PMID: 37208340 DOI: 10.1038/s41467-023-38590-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/09/2023] [Indexed: 05/21/2023] Open
Abstract
Abundant chemical diversity and structural tunability make organic-inorganic hybrid perovskites (OIHPs) a rich ore for ferroelectrics. However, compared with their inorganic counterparts such as BaTiO3, their ferroelectric key properties, including large spontaneous polarization (Ps), low coercive field (Ec), and strong second harmonic generation (SHG) response, have long been great challenges, which hinder their commercial applications. Here, a quasi-one-dimensional OIHP DMAGeI3 (DMA = Dimethylamine) is reported, with notable ferroelectric attributes at room temperature: a large Ps of 24.14 μC/cm2 (on a par with BaTiO3), a low Ec below 2.2 kV/cm, and the strongest SHG intensity in OIHP family (about 12 times of KH2PO4 (KDP)). Revealed by the first-principles calculations, its large Ps originates from the synergistic effects of the stereochemically active 4s2 lone pair of Ge2+ and the ordering of organic cations, and its low kinetic energy barrier of small DMA cations results in a low Ec. Our work brings the comprehensive ferroelectric performances of OIHPs to a comparable level with commercial inorganic ferroelectric perovskites.
Collapse
Affiliation(s)
- Kun Ding
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, China
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321019, China
| | - Haoshen Ye
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Changyuan Su
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, China
| | - Yu-An Xiong
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, China
| | - Guowei Du
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, China
| | - Yu-Meng You
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, China
| | - Zhi-Xu Zhang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, China.
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321019, China.
| | - Shuai Dong
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China.
| | - Yi Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321019, China.
| | - Da-Wei Fu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321019, China.
| |
Collapse
|
26
|
Wang ZJ, Wu LK, Wang N, Hu QQ, Li JR, Ye HY. Tuning the luminescent properties of a three-dimensional perovskite ferroelectric (Me-Hdabco)CsI 3via Sn(II) doping. Dalton Trans 2023; 52:2799-2803. [PMID: 36752146 DOI: 10.1039/d2dt03939g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
As promising functional materials, organic-inorganic hybrid metal halide perovskites have attracted significant interest because of their excellent photovoltaic performance. However, although considerable efforts have been made, three-dimensional (3D) metal halide perovskites beyond lead halides have been rarely reported. Herein, a new 3D organic-inorganic hybrid ferroelectric material (Me-Hdabco)CsI3 (1, Me-Hdabco = N-methyl-1,4-diazoniabicyclo[2.2.2]octane) was synthesized and characterized. 1 underwent a ferroelectric to paraelectric phase transition at Tc = 441 K, which was investigated by differential scanning calorimetry (DSC), dielectric measurements, and variable temperature structural analyses. Moreover, 1 shows a clear ferroelectric domain switching recorded by piezoelectric force microscopy. More interestingly, the pristine colorless crystal of 1 has no photoluminescence properties, while 10% Sn(II):(Me-Hdabco)CsI3 shows intense photoluminescence with a quantum yield of 8.90% under UV excitation. This finding will open up a new avenue to probe organic-inorganic hybrid multifunctional materials integrated ferroelectric and photoluminescence.
Collapse
Affiliation(s)
- Ze-Jie Wang
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China.
| | - Ling-Kun Wu
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China.
| | - Na Wang
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China.
| | - Qian-Qian Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Jian-Rong Li
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China. .,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Heng-Yun Ye
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China.
| |
Collapse
|
27
|
Lv HP, Li YR, Song XJ, Zhang N, Xiong RG, Zhang HY. A Poling-Free Supramolecular Crown Ether Compound with Large Piezoelectricity. J Am Chem Soc 2023; 145:3187-3195. [PMID: 36700656 DOI: 10.1021/jacs.2c12951] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Supramolecular host-guest ferroelectrics based on solution processing are highly desirable because they are generally created with intrinsic piezoelectricity/ferroelectricity and do not need further poling. Poly(vinylidene fluoride) (PVDF) in the electric-active beta phase after stretching/annealing still shows no piezoelectric response unless poled. Although many supramolecular host-guest ferroelectrics have been discovered, their piezoelectricity is relatively small. Based on H/F substitution, we reported a supramolecular host-guest compound [(CF3-C6H4-NH3)(18-crown-6)][TFSA] (CF3-C6H4-NH3 = 4-trifluoromethylanilinium, TFSA = bis(trifluoromethanesulfonyl)ammonium) with a remarkable piezoelectric response of 42 pC/N under no poling condition. The introduction of F atoms increases phase transition temperature, polar axes, second harmonic generation (SHG) intensity, and piezoelectric coefficient d33. To our knowledge, such a large piezoelectric performance of [(CF3-C6H4-NH3)(18-crown-6)][TFSA] makes its d33, piezoelectric voltage coefficient g33, and mechanical quality factor Qm the highest among the reported supramolecular host-guest ferroelectric compounds and even larger than the values of PVDF. This work provides inspiration for optimizing piezoelectricity on molecular materials.
Collapse
Affiliation(s)
- Hui-Peng Lv
- Ordered Matter Science Research Center, Nanchang University, Nanchang330031, People's Republic of China
| | - Yi-Rong Li
- Ordered Matter Science Research Center, Nanchang University, Nanchang330031, People's Republic of China
| | - Xian-Jiang Song
- Ordered Matter Science Research Center, Nanchang University, Nanchang330031, People's Republic of China
| | - Nan Zhang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing210096, People's Republic of China
| | - Ren-Gen Xiong
- Ordered Matter Science Research Center, Nanchang University, Nanchang330031, People's Republic of China
| | - Han-Yue Zhang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing210096, People's Republic of China
| |
Collapse
|
28
|
Harada J, Takahashi H, Notsuka R, Takehisa M, Takahashi Y, Usui T, Taniguchi H. Ferroelectric Ionic Molecular Crystals with Significant Plasticity and a Low Melting Point: High Performance in Hot-Pressed Polycrystalline Plates and Melt-Grown Crystalline Sheets. Angew Chem Int Ed Engl 2023; 62:e202215286. [PMID: 36408901 DOI: 10.1002/anie.202215286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/22/2022]
Abstract
Among ferroelectric crystals based on small molecules, plastic/ferroelectric crystals are currently receiving particular attention because they can be used as bulk polycrystals. Herein, we show that an ionic molecular ferroelectric crystal, guanidinium tetrafluoroborate, exhibits significant malleability and multiaxial ferroelectricity despite the absence of a plastic crystal phase. Powder samples of this crystal can be processed into transparent bulk crystalline plates either by press-forming or by melt-growing. The plates show high ferroelectric performance and related properties, demonstrating the largest hitherto reported spontaneous polarization for bulk polycrystals of small-molecule-based ferroelectrics. Owing to the ready availability of large-scale materials and processability into various bulk crystalline forms, this ferroelectric crystal represents a highly promising functional material that will boost research on diverse applications as bulk crystals.
Collapse
Affiliation(s)
- Jun Harada
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.,Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-0810, Japan
| | - Haruka Takahashi
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-0810, Japan
| | - Rin Notsuka
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-0810, Japan
| | - Mika Takehisa
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Yukihiro Takahashi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.,Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-0810, Japan
| | - Tomoyasu Usui
- Murata Manufacturing Co., Ltd., Kyoto, 617-8555, Japan
| | - Hiroki Taniguchi
- Department of Physics, Nagoya University, Nagoya, 464-8602, Japan
| |
Collapse
|
29
|
Ying T, Tan Y, Tang Y, Fan X, Wang F, Wan M, Liao J, Huang Y. High-Tc Quadratic Nonlinear Optical and Dielectric Switchings in Fe-Based Plastic Crystalline Ferroelectric. Inorg Chem 2022; 61:20608-20615. [DOI: 10.1021/acs.inorgchem.2c03486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- TingTing Ying
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - YuHui Tan
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - YunZhi Tang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - XiaoWei Fan
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - FangXin Wang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - MingYang Wan
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Juan Liao
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - YanLe Huang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| |
Collapse
|
30
|
Hu ZB, Wang CF, Sha TT, Shi C, Ye L, Ye HY, Song Y, You YM, Zhang Y. An Effective Strategy of Introducing Chirality to Achieve Multifunctionality in Rare-Earth Double Perovskite Ferroelectrics. SMALL METHODS 2022; 6:e2200421. [PMID: 35790109 DOI: 10.1002/smtd.202200421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The hybrid rare-earth double perovskite (HREDP) system provides great convenience for the construction of multifunctional materials. However, suffering from the high symmetry of their intrinsic structure, HREDPs face the challenges in the realization and optimization of ferroelectric and piezoelectric properties. For the first time, after a systematic investigation of the chirality transformation principle, it is found that the introduction of chirality is an efficient strategy for the targeted construction of multifunctionality, which simultaneously increases the possibility of obtaining multiaxial ferroelectricity and ferroelasticity, and effectively realizes a large piezoelectric response. Moreover, chirality induced ferroelasticity will also achieve excellent magnetic or optical response driven by pressure-sensitive. To verify the feasibility of the above ideas, by using rare-earth ions (Ce3+ ) and suitable chiral organic cations, a new HREDP, (R-N-methyl-3-hydroxylquinuclidinium)2 RbCe(NO3 )6 (R1) is successfully designed, in which ferroelasticity, multiaxial ferroelectricity, satisfactory piezoelectric response, and the pressure-driven single-ion magnetics switch are simultaneously achieved for the first time. This work shows that the induction of chirality and the HREDP system provide an effective strategy and ideal platform for the expansion and optimization of the functions in perovskite ferroelectrics.
Collapse
Affiliation(s)
- Zhao-Bo Hu
- Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Chang-Feng Wang
- Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Tai-Ting Sha
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Chao Shi
- Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Le Ye
- Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Heng-Yun Ye
- Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - You Song
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yu-Meng You
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Yi Zhang
- Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P. R. China
| |
Collapse
|
31
|
Wang CF, Shi C, Zheng A, Wu Y, Ye L, Wang N, Ye HY, Ju MG, Duan P, Wang J, Zhang Y. Achieving circularly polarized luminescence and large piezoelectric response in hybrid rare-earth double perovskite by a chirality induction strategy. MATERIALS HORIZONS 2022; 9:2450-2459. [PMID: 35880616 DOI: 10.1039/d2mh00698g] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Chirality, an intrinsic property of nature, has received increased attention in chemistry, biology, and materials science because it can induce optical rotation, ferroelectricity, nonlinear optical response, and other unique properties. Here, by introducing chirality into hybrid rare-earth double perovskites (HREDPs), we successfully designed and synthesized a pair of enantiomeric three-dimensional (3D) HREDPs, [(R)-N-methyl-3-hydroxylquinuclidinium]2RbEu(NO3)6 (R1) and [(S)-N-methyl-3-hydroxylquinuclidinium]2RbEu(NO3)6 (S1), which possess ferroelasticity, multiaxial ferroelectricity, high quantum yields (84.71% and 83.55%, respectively), and long fluorescence lifetimes (5.404 and 5.256 ms, respectively). Notably, the introduction of chirality induces the coupling of multiaxial ferroelectricity and ferroelasticity, which brings about a satisfactory large piezoelectric response (103 and 101 pC N-1 for R1 and S1, respectively). Moreover, in combination with the chirality and outstanding photoluminescence properties, circularly polarized luminescence (CPL) was first realized in HREDPs. This work sheds light on the design strategy of molecule-based materials with a large piezoelectric response and excellent CPL activity, and will inspire researchers to further explore the role of chirality in the construction of novel multifunctional materials.
Collapse
Affiliation(s)
- Chang-Feng Wang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
- Chaotic Matter Science Research Center, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Chao Shi
- Chaotic Matter Science Research Center, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Anyi Zheng
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11, ZhongGuanCun BeiYiTiao, Beijing 100190, People's Republic of China.
| | - Yilei Wu
- School of Physics, Southeast University, Nanjing 211189, People's Republic of China.
| | - Le Ye
- Chaotic Matter Science Research Center, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Na Wang
- Chaotic Matter Science Research Center, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Heng-Yun Ye
- Chaotic Matter Science Research Center, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Ming-Gang Ju
- School of Physics, Southeast University, Nanjing 211189, People's Republic of China.
| | - Pengfei Duan
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11, ZhongGuanCun BeiYiTiao, Beijing 100190, People's Republic of China.
| | - Jinlan Wang
- School of Physics, Southeast University, Nanjing 211189, People's Republic of China.
| | - Yi Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
- Chaotic Matter Science Research Center, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
- Ordered Matter Science Research Center, Southeast University, Nanjing, 211189, People's Republic of China.
| |
Collapse
|
32
|
Song XJ, Tang SY, Chen XG, Ai Y. Chemical design of homochiral heterocyclic organic ferroelectric crystals. Chem Commun (Camb) 2022; 58:10361-10364. [PMID: 36017633 DOI: 10.1039/d2cc03881a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single component organic ferroelectrics of spirooxazacamphorsultam derivatives, 1-SSR and 1-RRS, exhibit well-defined ferroelectricity (Ps = 2.2 μC cm-2) and piezoelectricity (d33 = 10 pC N-1) below their melting point. More importantly, they possess a low acoustic impedance value of 2.7 × 106 kg s-1 m-2, which is well-matched with body tissues.
Collapse
Affiliation(s)
- Xian-Jiang Song
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, P. R. China.
| | - Shu-Yu Tang
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, P. R. China.
| | - Xiao-Gang Chen
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, P. R. China.
| | - Yong Ai
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, P. R. China.
| |
Collapse
|
33
|
Jia QQ, Tong L, Zhang WY, Fu DW, Lu HF. Two-Step Dielectric Responsive Organic-Inorganic Hybrid Material with Mid-Band Light Emission. Chemistry 2022; 28:e202200579. [PMID: 35467772 DOI: 10.1002/chem.202200579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Indexed: 12/17/2022]
Abstract
Hybrid organic-inorganic perovskite (HOIP) have received tremendous scientific attention because of the phase transition and photovoltaic properties. However, achieving the special perovskite structure with both two-step dielectric response and luminescence characteristics is rarely reported. Herein, we report an organic-inorganic hybrid perovskite, [(BA)2 ⋅ PbI4 ] (Compound 1, BA=n-butylamine) by introducing flexible organic cations (HBA+ ), with direct mid-band gap as 2.28 eV. Interestingly, this material exhibits two-step reversible dielectric response at 350 K and 460 K (in heating process), respectively. Besides, the photoluminescence was found: it emits charming green light under 365 nm lamp (Photoluminescence quantum yield is 9.52 %). The outstanding two-step dielectric response and luminescence characteristics of this compound might pave the way for the application of dielectric and ferroelectric functional materials in temperature sensors and mechanical switches.
Collapse
Affiliation(s)
- Qiang-Qiang Jia
- Institute for Science and Applications of Molecular Ferroelectrics Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Liang Tong
- School of Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212002, P.R. China
| | - Wan-Ying Zhang
- Institute for Science and Applications of Molecular Ferroelectrics Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Da-Wei Fu
- Institute for Science and Applications of Molecular Ferroelectrics Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Hai-Feng Lu
- Institute for Science and Applications of Molecular Ferroelectrics Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P. R. China
| |
Collapse
|
34
|
Xiong YA, Gu ZX, Song XJ, Yao J, Pan Q, Feng ZJ, Du GW, Ji HR, Sha TT, Xiong RG, You YM. Rational Design of Molecular Ferroelectrics with Negatively Charged Domain Walls. J Am Chem Soc 2022; 144:13806-13814. [PMID: 35816081 DOI: 10.1021/jacs.2c04872] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ferroelectric domains and domain walls are unique characteristics of ferroelectric materials. Among them, charged domain walls (CDWs) are a special kind of peculiar microstructure that highly improve conductivity, piezoelectricity, and photovoltaic efficiency. Thus, CDWs are believed to be the key to ferroelectrics' future application in fields of energy, sensing, information storage, and so forth. Studies on CDWs are one of the most attractive directions in conventional inorganic ferroelectric ceramics. However, in newly emerged molecular ferroelectrics, which have advantages such as lightweight, easy preparation, simple film fabrication, mechanical flexibility, and biocompatibility, CDWs are rarely observed due to the lack of free charges. In inorganic ferroelectrics, doping is a traditional method to induce free charges, but for molecular ferroelectrics fabricated by solution processes, doping usually causes phase separation or phase transition, which destabilizes or removes ferroelectricity. To realize stable CDWs in molecular systems, we designed and synthesized an n-type molecular ferroelectric, 1-adamantanammonium hydroiodate. In this compound, negative charges are induced by defects in the I- vacancy, and CDWs can be achieved. Nanometer-scale CDWs that are stable at temperatures as high as 373 K can be "written" precisely by an electrically biased metal tip. More importantly, this is the first time that the charge diffusion of CDWs at variable temperatures has been investigated in molecular ferroelectrics. This work provides a new design strategy for n-type molecular ferroelectrics and may shed light on their future applications in flexible electronics, microsensors, and so forth.
Collapse
Affiliation(s)
- Yu-An Xiong
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| | - Zhu-Xiao Gu
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| | - Xian-Jiang Song
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Jie Yao
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| | - Qiang Pan
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| | - Zi-Jie Feng
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| | - Guo-Wei Du
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| | - Hao-Ran Ji
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| | - Tai-Ting Sha
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| | - Ren-Gen Xiong
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China.,Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Yu-Meng You
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, People's Republic of China
| |
Collapse
|
35
|
Lead-free bilayer heterometallic halide perovskite with reversible phase transition and photoluminescence properties. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Jia Q, Feng K, Tong L, Wang GX, Chen LZ. Study on the Luminescence and Coordination Behavior of Semi‐rigid Dual‐Benzimidazole Ligands and Complexes. ChemistrySelect 2022. [DOI: 10.1002/slct.202104332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qiangqiang Jia
- Institute for Science and Applications of Molecular Ferroelectrics Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Zhejiang Normal University Jinhua 321004 P. R. China
- Zhenjiang Key Laboratory of Functional Chemistry Zhenjiang College Zhenjiang 212003 P.R. China
| | - Kangkang Feng
- Medical School of Nanjing University Nanjing University Nanjing Jiangsu 210093 China
| | - Liang Tong
- Institute for Science and Applications of Molecular Ferroelectrics Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Zhejiang Normal University Jinhua 321004 P. R. China
| | - Guoxi X. Wang
- Zhenjiang Key Laboratory of Functional Chemistry Zhenjiang College Zhenjiang 212003 P.R. China
| | - Lizhuang Z. Chen
- Institute for Science and Applications of Molecular Ferroelectrics Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Zhejiang Normal University Jinhua 321004 P. R. China
| |
Collapse
|
37
|
Deng BB, Cheng TT, Hu YT, Cheng SP, Huang CR, Yu H, Wang ZX. The first salicylaldehyde Schiff base organic-inorganic hybrid lead iodide perovskite ferroelectric. Chem Commun (Camb) 2022; 58:2192-2195. [PMID: 35072183 DOI: 10.1039/d1cc05278k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A salicylaldehyde Schiff base hybrid lead iodide perovskite [SAPD]PbI3 (SAPD = 1-((2-hydroxybenzylidene)amino)pyridin-1-ium) was found to show a robust nonlinear optical response and large spontaneous polarization. We expect this work to inspire researchers to investigate the optical control of ferroelectricity in hybrid perovskites.
Collapse
Affiliation(s)
- Bin-Bin Deng
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, P. R. China.
| | - Ting-Ting Cheng
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, P. R. China.
| | - Yan-Ting Hu
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, P. R. China.
| | - Shu-Ping Cheng
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, P. R. China.
| | - Chao-Ran Huang
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, P. R. China.
| | - Hang Yu
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, P. R. China.
| | - Zhong-Xia Wang
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, P. R. China.
| |
Collapse
|
38
|
Ai Y, Li PF, Yang MJ, Xu YQ, Li MZ, Xiong RG. An organic plastic ferroelectric with high Curie point. Chem Sci 2022; 13:748-753. [PMID: 35173939 PMCID: PMC8768881 DOI: 10.1039/d1sc06781h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 12/16/2021] [Indexed: 01/24/2023] Open
Abstract
Plastic ferroelectrics, featuring large entropy changes in phase transitions, hold great potential application for solid-state refrigeration due to the electrocaloric effect. Although conventional ceramic ferroelectrics (e.g., BaTiO3 and KNbO3) have been widely investigated in the fields of electrocaloric material and catalysis, organic plastic ferroelectrics with a high Curie point (T c) are rarely reported but are of great importance for the sake of environmental protection. Here, we reported an organic plastic ferroelectric, (-)-camphanic acid, which crystallizes in the P21 space group, chiral polar 2 (C2) point group, at room temperature. It undergoes plastic paraelectric-to-ferroelectric phase transition with the Aizu notation of 23F2 and high T c of 414 K, showing large entropy gain (ΔS t = 48.2 J K-1 mol-1). More importantly, the rectangular polarization-electric field (P-E) hysteresis loop was recorded on the thin film samples with a large saturated polarization (P s) of 5.2 μC cm-2. The plastic phase transition is responsible for its multiaxial ferroelectric feature. This work highlights the discovery of organic multiaxial ferroelectrics driven by the motive of combining chirality and plastic phase transition, which will extensively promote the practical application of such unique functional materials.
Collapse
Affiliation(s)
- Yong Ai
- Ordered Matter Science Research Center, Nanchang University Nanchang 330031 P. R. China
| | - Peng-Fei Li
- Ordered Matter Science Research Center, Nanchang University Nanchang 330031 P. R. China
| | - Meng-Juan Yang
- Ordered Matter Science Research Center, Nanchang University Nanchang 330031 P. R. China
| | - Yu-Qiu Xu
- Ordered Matter Science Research Center, Nanchang University Nanchang 330031 P. R. China
| | - Meng-Zhen Li
- Ordered Matter Science Research Center, Nanchang University Nanchang 330031 P. R. China
| | - Ren-Gen Xiong
- Ordered Matter Science Research Center, Nanchang University Nanchang 330031 P. R. China
| |
Collapse
|
39
|
Li YK, Tan YH, Tang YZ, Fan XW, Wang SF, Ying TT, Zhang H. Unusual high-temperature host–guest inclusion compound-based ferroelectrics with nonlinear optical switching and large spontaneous polarization behaviours. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01020h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Host–guest inclusion compound-based ferroelectrics [Hcta-(18-crown-6)]+[BF4]− (1) and [Hcta-(18-crown-6)]+[ClO4]− (2) with a high Curie temperature (Tc = 403/394 K) and large spontaneous polarization (Ps = 5.7/4.7 μC cm−2) are reported.
Collapse
Affiliation(s)
- Yu-Kong Li
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| | - Yu-Hui Tan
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| | - Yun-Zhi Tang
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| | - Xiao-Wei Fan
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| | - Su-Fen Wang
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| | - Ting-Ting Ying
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| | - Hao Zhang
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China
| |
Collapse
|
40
|
Liu Z, Wu H, Zhuang J, Niu G, Zhang N, Ren W, Ye ZG. High Curie temperature bismuth-based piezo-/ferroelectric single crystals of complex perovskite structure: recent progress and perspectives. CrystEngComm 2022. [DOI: 10.1039/d1ce00962a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The recent progress in high TC bismuth-based piezo-/ferroelectric single crystals is reviewed in terms of materials design, crystal growth, physical properties, crystal chemistry, and complex domain structures, and the future perspectives are discussed.
Collapse
Affiliation(s)
- Zenghui Liu
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Hua Wu
- Department of Applied Physics, Donghua University, Ren Min Road 2999, Songjiang, Shanghai, 201620, China
| | - Jian Zhuang
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Gang Niu
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Nan Zhang
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Wei Ren
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zuo-Guang Ye
- Department of Chemistry and 4D LABS, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| |
Collapse
|
41
|
Liu JC, Di FF, Zeng YP, Chen WJ, Huang XY, Luo YL, Zhu X, Zhou L, Tang YY. Dual-channel control of ferroelastic domains in a host–guest inclusion compound. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01824a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By replacing [PF6]− with the larger [TFSA]−, the phase transition temperature is increased from 305 K to 342 K in a host–guest inclusion ferroelastic crystal, [(3,4-DFA)(18-crown-6)][TFSA], which can realize dual-channel (thermal and stress) control of ferroelastic domains.
Collapse
Affiliation(s)
- Jun-Chao Liu
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Fang-Fang Di
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Yi-Piao Zeng
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Wu-Jia Chen
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Xiao-Yun Huang
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Yan-Ling Luo
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Xuan Zhu
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Lin Zhou
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Yuan-Yuan Tang
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| |
Collapse
|
42
|
Peng H, Qi JC, Song XJ, Xiong RG, Liao WQ. An unprecedented azobenzene-based organic single-component ferroelectric. Chem Sci 2022; 13:4936-4943. [PMID: 35655879 PMCID: PMC9067575 DOI: 10.1039/d2sc00689h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/04/2022] [Indexed: 12/31/2022] Open
Abstract
The first azobenzene-based organic single-component ferroelectric 2-amino-2′,4,4′,6,6′-pentafluoroazobenzene was designed, which shows an exceptionally high Curie temperature (Tc) of 443 K.
Collapse
Affiliation(s)
- Hang Peng
- Ordered Matter Science Research Center, Nanchang University, 330031, P. R. China
| | - Jun-Chao Qi
- Ordered Matter Science Research Center, Nanchang University, 330031, P. R. China
| | - Xian-Jiang Song
- Ordered Matter Science Research Center, Nanchang University, 330031, P. R. China
| | - Ren-Gen Xiong
- Ordered Matter Science Research Center, Nanchang University, 330031, P. R. China
| | - Wei-Qiang Liao
- Ordered Matter Science Research Center, Nanchang University, 330031, P. R. China
| |
Collapse
|
43
|
Li PF, Ai Y, Zeng YL, Liu JC, Xu ZK, Wang ZX. Highest-Tc single-component homochiral organic ferroelectrics. Chem Sci 2022; 13:657-664. [PMID: 35173929 PMCID: PMC8768840 DOI: 10.1039/d1sc04322f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/15/2021] [Indexed: 01/10/2023] Open
Abstract
Organic single-component ferroelectrics with low molecular mass have drawn great attention for application in organic electronics. However, the discovery of high-Tc single-component organic ferroelectrics has been very scarce. Herein, we report a pair of homochiral single-component organic ferroelectrics (R)-10-camphorsulfonylimine and (S)-10-camphorsulfonylimine under the guidance of ferroelectric chiral chemistry. They crystallize in the chiral–polar space group P21, and their mirror image relations have been identified using vibrational circular dichroism spectra. They both exhibit 422F2 multiaxial ferroelectricity with Tc as high as 429 K. Besides, they possess superior acoustic impedance characteristics with a value of 2.45 × 106 kg s−1 m−2, lower than that of PVDF. To our knowledge, enantiomeric (R and S)-10-camphorsulfonylimine show the highest Tc among the known organic single-component ferroelectrics and low acoustic impedance well matching with that of bodily tissues. This work promotes the development of high-performance organic single-component ferroelectrics and is of great inspiration to explore their application in next-generation flexible smart devices. A pair of enantiomeric organic ferroelectrics (R and S)-10-camphorsulfonylimine show the highest Tc among the known single-component organic ferroelectrics.![]()
Collapse
Affiliation(s)
- Peng-Fei Li
- Ordered Matter Science Research Center, Nanchang University, 330031, P. R. China
| | - Yong Ai
- Ordered Matter Science Research Center, Nanchang University, 330031, P. R. China
| | - Yu-Ling Zeng
- Ordered Matter Science Research Center, Nanchang University, 330031, P. R. China
| | - Jun-Chao Liu
- Ordered Matter Science Research Center, Nanchang University, 330031, P. R. China
| | - Zhe-Kun Xu
- Ordered Matter Science Research Center, Nanchang University, 330031, P. R. China
| | - Zhong-Xia Wang
- Ordered Matter Science Research Center, Nanchang University, 330031, P. R. China
| |
Collapse
|
44
|
Liu M, Liang J, Tian Y, Liu Z. Post-synthetic modification within MOFs: a valuable strategy for modulating their ferroelectric performance. CrystEngComm 2022. [DOI: 10.1039/d1ce01567b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is a great route designing new MOF ferroelectrics to enrich the scope of ferroelectrics or improving the ferroelectric performance to enhance the opportunity of applications through the strategy of post-synthetic modification (PSM).
Collapse
Affiliation(s)
- Meiying Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China
| | - Jingjing Liang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China
| | - Yadong Tian
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China
| | - Zhiliang Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China
| |
Collapse
|
45
|
Zhang YF, Di FF, Li PF, Xiong RG. Crown Ether Host-Guest Molecular Ferroelectrics. Chemistry 2021; 28:e202102990. [PMID: 34792222 DOI: 10.1002/chem.202102990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Indexed: 11/06/2022]
Abstract
In recent years, molecular ferroelectrics have received great attention due to their low weight, mechanical flexibility, easy preparation and excellent ferroelectric properties. Among them, crown-ether-based molecular ferroelectrics, which are typically composed of the host crown ethers, the guest cations anchored in the crown ethers, and the counterions, are of great interest because of the host-guest structure. Such a structure allows the components to occur order-disorder transition easily, which is beneficial for inducing ferroelectric phase transition. Herein, we summarized the research progress of crown ether host-guest molecular ferroelectrics, focusing on their crystal structure, phase transition, ferroelectric-related properties. In view of the small spontaneous polarization and uniaxial nature, we outlook the chemical design strategies for obtaining high-performance crown-ether-based molecular ferroelectrics. This minireview will be of guiding significance for the future exploration of crown ether host-guest molecular ferroelectrics.
Collapse
Affiliation(s)
- Yun-Fang Zhang
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Fang-Fang Di
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Peng-Fei Li
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Ren-Gen Xiong
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| |
Collapse
|
46
|
Olubowale O, Biswas S, Azom G, Prather BL, Owoso SD, Rinee KC, Marroquin K, Gates KA, Chambers MB, Xu A, Garno JC. "May the Force Be with You!" Force-Volume Mapping with Atomic Force Microscopy. ACS OMEGA 2021; 6:25860-25875. [PMID: 34660949 PMCID: PMC8515370 DOI: 10.1021/acsomega.1c03829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/30/2021] [Indexed: 06/02/2023]
Abstract
Information of the chemical, mechanical, and electrical properties of materials can be obtained using force volume mapping (FVM), a measurement mode of scanning probe microscopy (SPM). Protocols have been developed with FVM for a broad range of materials, including polymers, organic films, inorganic materials, and biological samples. Multiple force measurements are acquired with the FVM mode within a defined 3D volume of the sample to map interactions (i.e., chemical, electrical, or physical) between the probe and the sample. Forces of adhesion, elasticity, stiffness, deformation, chemical binding interactions, viscoelasticity, and electrical properties have all been mapped at the nanoscale with FVM. Subsequently, force maps can be correlated with features of topographic images for identifying certain chemical groups presented at a sample interface. The SPM tip can be coated to investigate-specific reactions; for example, biological interactions can be probed when the tip is coated with biomolecules such as for recognition of ligand-receptor pairs or antigen-antibody interactions. This review highlights the versatility and diverse measurement protocols that have emerged for studies applying FVM for the analysis of material properties at the nanoscale.
Collapse
|
47
|
Tang YY, Liu JC, Zeng YL, Peng H, Huang XQ, Yang MJ, Xiong RG. Optical Control of Polarization Switching in a Single-Component Organic Ferroelectric Crystal. J Am Chem Soc 2021; 143:13816-13823. [PMID: 34425050 DOI: 10.1021/jacs.1c06108] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The optical control of polarization switching is attracting tremendous interest because photoirradiation stands out as a nondestructive, noncontact, and remote-control means beyond an electric or strain field. The current research mainly uses various photoexcited electronic effects to achieve the photocontrol polarization, such as a light-driven flexoelectric effect and a photovoltaic effect. However, since photochromism was discovered in 1867, the structural phase transition caused by photoisomerization has never been associated with ferroelectricity. Here, we successfully synthesized an organic photochromic ferroelectric with polar space group Pna21, 3,4,5-trifluoro-N-(3,5-di-tert-butylsalicylidene)aniline, whose color can change between yellow and orange via laser illumination. Its dielectric permittivity and spontaneous polarization can be switched reversibly with a photoinduced phase transition triggered by structural photoisomerization between the enol form and the trans-keto form. To our knowledge, this is the first photoswitchable ferroelectric crystal to achieve polarization switching through a structural phase transition triggered by photoisomerization. This finding paves the way toward photocontrol of smart materials and biomechanical applications in the future.
Collapse
Affiliation(s)
- Yuan-Yuan Tang
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Jun-Chao Liu
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Yu-Ling Zeng
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Hang Peng
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Xue-Qin Huang
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Meng-Juan Yang
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Ren-Gen Xiong
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| |
Collapse
|
48
|
Huang Y, Zhang T, Chu LL, Zhang Y, Ge JZ, Fu DW. A hybrid hydrochromic molecular crystal applicable to invisible ink with high reversibility. NEW J CHEM 2021. [DOI: 10.1039/d1nj04470b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Highly reversible hydrochromic behavior is realized in a novel hybrid molecular crystal by controlling the gain and loss of coordinated water.
Collapse
Affiliation(s)
- Yao Huang
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Tie Zhang
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Lu-Lu Chu
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Yi Zhang
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Jia-Zhen Ge
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Da-Wei Fu
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| |
Collapse
|
49
|
Zhang T, Song ST, Zhu HN, Chu LL, Fu DW, Zhang Y. Unique cation-template three-dimensional hybrid material demonstrates dielectric switchable response. Dalton Trans 2021; 50:10142-10146. [PMID: 34231597 DOI: 10.1039/d1dt01812d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The strict tolerance space of three-dimensional (3D) crystalline structures is still a significant challenge in the area of switching dielectrics in comparison with lower-dimensional structures. Generally, the function of crystalline materials can be given or adjusted by controlling the environment in which synthesis takes place or the packing rearrangement. Using this method, special functional enhancements or changes in the dielectrics can be realized by improving the synthetic strategies. Here, a 3D switchable dielectric compound [MeHdabco]K(BF4)3 was achieved by employing the temperature selective effect. In particular, its structure is completely different from the usual 3D perovskite structure, which is constructed using two different cation-template frameworks. Moreover, the 3D [MeHdabco]K(BF4)3 shows a structural phase transition at 358 K. The thermal analysis (differential scanning calorimetry (DSC)) and X-ray diffractometry results provided evidence of these phase changes. This work provides a feasible strategy that can be used to achieve the different structures of an 'isomer', and enrich the method used for designing diverse functional materials.
Collapse
Affiliation(s)
- Tie Zhang
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P.R. China.
| | - Shuang-Teng Song
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P.R. China.
| | - Hao-Nan Zhu
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P.R. China.
| | - Lu-Lu Chu
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P.R. China.
| | - Da-Wei Fu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China.
| | - Yi Zhang
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P.R. China.
| |
Collapse
|
50
|
Wang Y, Zhang T, Lun MM, Zhou FL, Fu DW, Zhang Y. Halogen regulation triggers NLO and dielectric dual switches in hybrid compounds with green fluorescence. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00736j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An effective strategy of using halogens to modify organic–inorganic hybrid materials to obtain NLO switching characteristics, which is expected to be used for the directional adjustment of NLO switch activity.
Collapse
Affiliation(s)
- Ying Wang
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P.R. China
| | - Tie Zhang
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P.R. China
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China
| | - Meng-Meng Lun
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P.R. China
| | - Fo-Ling Zhou
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P.R. China
| | - Da-Wei Fu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P.R. China
| | - Yi Zhang
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P.R. China
| |
Collapse
|