1
|
Sims CM, Zheng M, Fagan JA. Single-wall carbon nanotube separations via aqueous two-phase extraction: new prospects enabled by high-throughput methods. Chem Commun (Camb) 2025; 61:2026-2039. [PMID: 39760507 DOI: 10.1039/d4cc06096b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Aqueous two-phase extraction (ATPE) is an effective and scalable liquid-phase processing method for purifying single species of single-wall carbon nanotubes (SWCNTs) from multiple species mixtures. Recent metrological developments have led to advances in the speed of identifying solution parameters leading to more efficient ATPE separations with greater fidelities. In this feature article, we review these developments and discuss their vast potential to further advance SWCNT separations science towards the optimization of production scale processes and the full realization of SWCNT-enabled technologies.
Collapse
Affiliation(s)
- Christopher M Sims
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 21045, USA.
| | - Ming Zheng
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 21045, USA.
| | - Jeffrey A Fagan
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 21045, USA.
| |
Collapse
|
2
|
Zhou X, Wang P, Li Y, Han Y, Chen J, Tang K, Shi L, Zhang Y, Zhang R, Lin Z. Accurate DNA Sequence Prediction for Sorting Target-Chirality Carbon Nanotubes and Manipulating Their Functionalities. ACS NANO 2025; 19:2665-2676. [PMID: 39763197 DOI: 10.1021/acsnano.4c14603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Synthetic single-wall carbon nanotubes (SWCNTs) contain various chiralities, which can be sorted by DNA. However, finding DNA sequences for this purpose mainly relies on trial-and-error methods. Predicting the right DNA sequences to sort SWCNTs remains a substantial challenge. Moreover, it is even more daunting to predict sequences for sorting SWCNTs with target chirality. Here, we present a deep-learning (DL) enhanced strategy for the accurate prediction of DNA sequences capable of sorting target-chirality nanotubes. We first experimentally screened 216 DNA sequences using aqueous two-phase (ATP) separation, resulting in 116 resolving sequences that can purify 17 distinct single-chirality SWCNTs. These experimental results created a comprehensive training data set. We utilized the recently released 3D molecular representation learning framework, Uni-Mol, to construct a DL workflow that maps atomistic-level structural information on DNA sequences into the feature space. This information captures the structural features of DNA molecules that are crucial for their interactions with SWCNTs. This may account for the superior performance of our DL models. The models successfully predicted resolving sequences for (6,5), (6,6), and (7,4) SWCNTs with accuracy rates of 87.5, 90, and 70%, respectively. Importantly, the discovery of numerous resolving sequences for (6,5) SWCNTs allows us to systematically manipulate the sequence-dependent absorption spectral shift, photoluminescence intensity, and surfactant sensitivity of DNA-(6,5) hybrids and elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Xuan Zhou
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Pengbo Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Yinong Li
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Yaoxuan Han
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Jianying Chen
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Kunpeng Tang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Lei Shi
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yi Zhang
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
| | - Rui Zhang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Zhiwei Lin
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
3
|
Basu S, Hendler-Neumark A, Bisker G. Dynamic Tracking of Biological Processes Using Near-Infrared Fluorescent Single-Walled Carbon Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2024; 16. [PMID: 39377262 PMCID: PMC11492180 DOI: 10.1021/acsami.4c10955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/02/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024]
Abstract
Biological processes are characterized by dynamic and elaborate temporal patterns driven by the interplay of genes, proteins, and cellular components that are crucial for adaptation to changing environments. This complexity spans from molecular to organismal scales, necessitating their real-time monitoring and tracking to unravel the active processes that fuel living systems and enable early disease detection, personalized medicine, and drug development. Single-walled carbon nanotubes (SWCNTs), with their unique physicochemical and optical properties, have emerged as promising tools for real-time tracking of such processes. This perspective highlights the key properties of SWCNTs that make them ideal for such monitoring. Subsequently, it surveys studies utilizing SWCNTs to track dynamic biological phenomena across hierarchical levels─from molecules to cells, tissues, organs, and whole organisms─acknowledging their pivotal role in advancing this field. Finally, the review outlines challenges and future directions, aiming to expand the frontier of real-time biological monitoring using SWCNTs, contributing to deeper insights and novel applications in biomedicine.
Collapse
Affiliation(s)
- Srestha Basu
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Adi Hendler-Neumark
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gili Bisker
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- Center
for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
- Center
for Nanoscience and Nanotechnology, Tel
Aviv University, Tel Aviv 6997801, Israel
- Center
for Light-Matter Interaction, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
4
|
Dolan M, Hughes LN, Tvrdy K. Hydrogel Composition Effects on Performance as Single-Walled Carbon Nanotube Purification Media. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:15923-15936. [PMID: 39371221 PMCID: PMC11448389 DOI: 10.1021/acs.jpcc.4c03765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 10/08/2024]
Abstract
Hydrogel microsphere media allows for postsynthetic purification of single-walled carbon nanotubes (SWNTs), affording characterization and application of their unique (n,m) chirality-dependent properties. This work reports the characterization of five hydrogel resins, Sephacryl S-100, S-200, S-300, S-400, and S-500, and the implementation of each as a SWNT purification medium. The physiochemical properties of each resin were explored spectroscopically through elemental analyses and with both light and electron microscopy. Both surface porosity and hydrogel swelling ratio were found to increase as the concentration of component allyl dextran (aDEX) decreased, each with an increasing Sephacryl S-number. Conversely, invariant properties included a hydrogel microsphere size distribution and concentrations of components methylenebisacrylamide and ammonium persulfate. When employed within gel-based SWNT purification schemes in overloading conditions, Sephacryl formulations of larger S-number adsorbed fewer SWNTs, but the chirality dependence of SWNT adsorption and elution was approximately consistent across all resins. In underloading conditions, approximately one-third of introduced SWNTs passed through each resin unabsorbed, while the resins showed varying chirality-dependent adsorption efficiencies. These observations collectively identify aDEX-rich gel regions as being responsible for SWNT purification, along with a SWNT-exclusive parameter other than chirality (speculated as length) that convolutes the effectiveness of gel-based single-chirality purification.
Collapse
Affiliation(s)
- Marshal Dolan
- Department of Chemistry & Biochemistry, University of Colorado at Colorado Springs, Colorado Springs, Colorado 80918, United States
| | - Laurique N Hughes
- Department of Chemistry & Biochemistry, University of Colorado at Colorado Springs, Colorado Springs, Colorado 80918, United States
| | - Kevin Tvrdy
- Department of Chemistry & Biochemistry, University of Colorado at Colorado Springs, Colorado Springs, Colorado 80918, United States
| |
Collapse
|
5
|
Allard C, Alvarez L, Bantignies JL, Bendiab N, Cambré S, Campidelli S, Fagan JA, Flahaut E, Flavel B, Fossard F, Gaufrès E, Heeg S, Lauret JS, Loiseau A, Marceau JB, Martel R, Marty L, Pichler T, Voisin C, Reich S, Setaro A, Shi L, Wenseleers W. Advanced 1D heterostructures based on nanotube templates and molecules. Chem Soc Rev 2024; 53:8457-8512. [PMID: 39036944 DOI: 10.1039/d3cs00467h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Recent advancements in materials science have shed light on the potential of exploring hierarchical assemblies of molecules on surfaces, driven by both fundamental and applicative challenges. This field encompasses diverse areas including molecular storage, drug delivery, catalysis, and nanoscale chemical reactions. In this context, the utilization of nanotube templates (NTs) has emerged as promising platforms for achieving advanced one-dimensional (1D) molecular assemblies. NTs offer cylindrical, crystalline structures with high aspect ratios, capable of hosting molecules both externally and internally (Mol@NT). Furthermore, NTs possess a wide array of available diameters, providing tunability for tailored assembly. This review underscores recent breakthroughs in the field of Mol@NT. The first part focuses on the diverse panorama of structural properties in Mol@NT synthesized in the last decade. The advances in understanding encapsulation, adsorption, and ordering mechanisms are detailed. In a second part, the review highlights the physical interactions and photophysics properties of Mol@NT obtained by the confinement of molecules and nanotubes in the van der Waals distance regime. The last part of the review describes potential applicative fields of these 1D heterostructures, providing specific examples in photovoltaics, luminescent materials, and bio-imaging. A conclusion gathers current challenges and perspectives of the field to foster discussion in related communities.
Collapse
Affiliation(s)
| | - Laurent Alvarez
- Laboratoire Charles Coulomb, CNRS-Université de Montpellier, France
| | | | | | | | | | | | - Emmanuel Flahaut
- CIRIMAT, Université Toulouse 3 Paul Sabatier, Toulouse INP, CNRS, Université de Toulouse, 118 Route de Narbonne, 31062 Toulouse, cedex 9, France
| | | | - Frédéric Fossard
- Laboratoire d'Étude des Microstructures, CNRS-Onera, Chatillon, France
| | - Etienne Gaufrès
- Laboratoire Photonique, Numérique et Nanosciences, CNRS-Université de Bordeaux-IOGS, Talence, France.
| | | | - Jean-Sebastien Lauret
- LUMIN, Université Paris Saclay, ENS Paris Saclay, Centrale Supelec, CNRS, Orsay, France
| | - Annick Loiseau
- Laboratoire d'Étude des Microstructures, CNRS-Onera, Chatillon, France
| | - Jean-Baptiste Marceau
- Laboratoire Photonique, Numérique et Nanosciences, CNRS-Université de Bordeaux-IOGS, Talence, France.
| | | | | | | | | | | | - Antonio Setaro
- Free University of Berlin, Germany
- Faculty of Engineering and Informatics, Pegaso University, Naples, Italy
| | - Lei Shi
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Nanotechnology and Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | | |
Collapse
|
6
|
Shapturenka P, Barnes BK, Mansfield E, Noor MM, Fagan JA. Universalized and robust length separation of carbon and boron nitride nanotubes with improved polymer depletion-based fractionation. RSC Adv 2024; 14:25490-25506. [PMID: 39206342 PMCID: PMC11353058 DOI: 10.1039/d4ra01883d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Partitioning nanoparticles by shape and dimension is paramount for advancing nanomaterial standardization, fundamental colloidal investigations, and technologies such as biosensing and digital electronics. Length-separation methods for single-walled carbon nanotubes (SWCNTs) have historically incurred trade-offs in precision and mass throughput, and boron nitride nanotubes (BNNTs) are a rapidly emerging material analogue. We extend and detail a polymer precipitation-based method to fractionate populations of either nanotube type at significant mass scale for four distinct nanotube sources of increasing average diameter (0.7 nm to >2 nm). Such separations result in a supernant phase containing shorter nanotubes and a pellet phase containing the longer nanotubes, with the threshold length for depletion decreasing with increasing polymer concentration. Cross-comparison through analytical ultracentrifugation, spectroscopy, and microscopy versus applied polymer concentration show tailorable and precise length fractionation for 100 nm through >1 μm rod lengths, with fractionation also designable to remove non-nanotube impurities. The threshold length of depletion is further found to increase for decreasing nanotube diameter at fixed polymer concentration, a finding consistent with scaling attributable to nanotube radial excluded volume. The capabilities demonstrated herein promise to significantly advance nanotube implementation within the scientific community.
Collapse
Affiliation(s)
- Pavel Shapturenka
- Materials Science and Engineering Division, National Institute of Standards and Technology Gaithersburg MD 20899 USA
| | - Benjamin K Barnes
- Materials Science and Engineering Division, National Institute of Standards and Technology Gaithersburg MD 20899 USA
| | - Elisabeth Mansfield
- Applied Chemicals and Materials Division, National Institute of Standards and Technology Boulder CO 80305 USA
| | - Matthew M Noor
- Materials Science and Engineering Division, National Institute of Standards and Technology Gaithersburg MD 20899 USA
- Department of Mechanical Engineering and Energy Processes, Southern Illinois University Carbondale IL 62901 USA
| | - Jeffrey A Fagan
- Materials Science and Engineering Division, National Institute of Standards and Technology Gaithersburg MD 20899 USA
| |
Collapse
|
7
|
Li Y, Li Z, Misra RP, Liang C, Gillen AJ, Zhao S, Abdullah J, Laurence T, Fagan JA, Aluru N, Blankschtein D, Noy A. Molecular transport enhancement in pure metallic carbon nanotube porins. NATURE MATERIALS 2024; 23:1123-1130. [PMID: 38937586 DOI: 10.1038/s41563-024-01925-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 05/16/2024] [Indexed: 06/29/2024]
Abstract
Nanofluidic channels impose extreme confinement on water and ions, giving rise to unusual transport phenomena strongly dependent on the interactions at the channel-wall interface. Yet how the electronic properties of the nanofluidic channels influence transport efficiency remains largely unexplored. Here we measure transport through the inner pores of sub-1 nm metallic and semiconducting carbon nanotube porins. We find that water and proton transport are enhanced in metallic nanotubes over semiconducting nanotubes, whereas ion transport is largely insensitive to the nanotube bandgap value. Molecular simulations using polarizable force fields highlight the contributions of the anisotropic polarizability tensor of the carbon nanotubes to the ion-nanotube interactions and the water friction coefficient. We also describe the origin of the proton transport enhancement in metallic nanotubes using deep neural network molecular dynamics simulations. These results emphasize the complex role of the electronic properties of nanofluidic channels in modulating transport under extreme nanoscale confinement.
Collapse
Affiliation(s)
- Yuhao Li
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Zhongwu Li
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Rahul Prasanna Misra
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Chenxing Liang
- Walker Department of Mechanical Engineering, Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Alice J Gillen
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
- Vivani Medical Inc., Emeryville, CA, USA
| | - Sidi Zhao
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
- School of Engineering, University of California Merced, Merced, CA, USA
| | - Jobaer Abdullah
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
- School of Natural Sciences, University of California Merced, Merced, CA, USA
| | - Ted Laurence
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jeffrey A Fagan
- Materials Science and Engineering Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA
| | - Narayana Aluru
- Walker Department of Mechanical Engineering, Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA.
| | - Daniel Blankschtein
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Aleksandr Noy
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.
- School of Natural Sciences, University of California Merced, Merced, CA, USA.
| |
Collapse
|
8
|
Settele S, Stammer F, Sebastian FL, Lindenthal S, Wald SR, Li H, Flavel BS, Zaumseil J. Easy Access to Bright Oxygen Defects in Biocompatible Single-Walled Carbon Nanotubes via a Fenton-like Reaction. ACS NANO 2024; 18:20667-20678. [PMID: 39051444 PMCID: PMC11308917 DOI: 10.1021/acsnano.4c06448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
The covalent functionalization of single-walled carbon nanotubes (SWNTs) with luminescent oxygen defects increases their brightness and enables their application as optical biosensors or fluorescent probes for in vivo imaging in the second-biological window (NIR-II). However, obtaining luminescent defects with high brightness is challenging with the current functionalization methods due to a restricted window of reaction conditions or the necessity for controlled irradiation with ultraviolet light. Here, we report a method for introducing luminescent oxygen defects via a Fenton-like reaction that uses benign and inexpensive chemicals without light irradiation. (6,5) SWNTs in aqueous dispersion functionalized with this method show bright E11* emission (1105 nm) with 3.2 times higher peak intensities than the pristine E11 emission and a reproducible photoluminescence quantum yield of 3%. The functionalization can be performed within a wide range of reaction parameters and even with unsorted nanotube raw material at high concentrations (100 mg L-1), giving access to large amounts of brightly luminescent SWNTs. We further find that the introduced oxygen defects rearrange under light irradiation, which gives additional insights into the structure and dynamics of oxygen defects. Finally, the functionalization of ultrashort SWNTs with oxygen defects also enables high photoluminescence quantum yields. Their excellent emission properties are retained after surfactant exchange with biocompatible pegylated phospholipids or single-stranded DNA to make them suitable for in vivo NIR-II imaging and dopamine sensing.
Collapse
Affiliation(s)
- Simon Settele
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| | - Florian Stammer
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| | - Finn L. Sebastian
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| | - Sebastian Lindenthal
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| | - Simon R. Wald
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| | - Han Li
- Department
of Mechanical and Materials Engineering, University of Turku, FI-20014 Turku, Finland
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology, Kaiserstraße
12, D-76131 Karlsruhe, Germany
| | - Benjamin S. Flavel
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology, Kaiserstraße
12, D-76131 Karlsruhe, Germany
| | - Jana Zaumseil
- Institute
for Physical Chemistry, Universität
Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
9
|
Baghbanbashi M, Shiran HS, Kakkar A, Pazuki G, Ristroph K. Recent advances in drug delivery applications of aqueous two-phase systems. PNAS NEXUS 2024; 3:pgae255. [PMID: 39006476 PMCID: PMC11245733 DOI: 10.1093/pnasnexus/pgae255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 07/16/2024]
Abstract
Aqueous two-phase systems (ATPSs) are liquid-liquid equilibria between two aqueous phases that usually contain over 70% water content each, which results in a nontoxic organic solvent-free environment for biological compounds and biomolecules. ATPSs have attracted significant interest in applications for formulating carriers (microparticles, nanoparticles, hydrogels, and polymersomes) which can be prepared using the spontaneous phase separation of ATPSs as a driving force, and loaded with a wide range of bioactive materials, including small molecule drugs, proteins, and cells, for delivery applications. This review provides a detailed analysis of various ATPSs, including strategies employed for particle formation, polymerization of droplets in ATPSs, phase-guided block copolymer assemblies, and stimulus-responsive carriers. Processes for loading various bioactive payloads are discussed, and applications of these systems for drug delivery are summarized and discussed.
Collapse
Affiliation(s)
- Mojhdeh Baghbanbashi
- Department of Agricultural and Biological Engineering, Purdue University, 610 Purdue Mall, West Lafayette, IN 47907, USA
| | - Hadi Shaker Shiran
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 1591634311, Iran
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke St West, Montreal, QC H3A 0B8, Canada
| | - Gholamreza Pazuki
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 1591634311, Iran
| | - Kurt Ristroph
- Department of Agricultural and Biological Engineering, Purdue University, 610 Purdue Mall, West Lafayette, IN 47907, USA
| |
Collapse
|
10
|
Basu S, Hendler-Neumark A, Bisker G. Monitoring Enzyme Activity Using Near-Infrared Fluorescent Single-Walled Carbon Nanotubes. ACS Sens 2024; 9:2237-2253. [PMID: 38669585 PMCID: PMC11129355 DOI: 10.1021/acssensors.4c00377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
Enzymes serve as pivotal biological catalysts that accelerate essential chemical reactions, thereby influencing a variety of physiological processes. Consequently, the monitoring of enzyme activity and inhibition not only yields crucial insights into health and disease conditions but also forms the basis of research in drug discovery, toxicology, and the understanding of disease mechanisms. In this context, near-infrared (NIR) fluorescent single-walled carbon nanotubes (SWCNTs) have emerged as effective tools for tracking enzyme activity and inhibition through diverse strategies. This perspective explores the physicochemical attributes of SWCNTs that render them well-suited for such monitoring. Additionally, we delve into the various strategies developed so far for successfully monitoring enzyme activity and inhibition, emphasizing the distinctive features of each principle. Furthermore, we contrast the benefits of SWCNT-based NIR probes with conventional gold standards in monitoring enzyme activity. Lastly, we highlight the current challenges faced in this field and suggest potential solutions to propel it forward. This perspective aims to contribute to the ongoing progress in biodiagnostics and seeks to engage the wider community in developing and applying enzymatic assays using SWCNTs.
Collapse
Affiliation(s)
- Srestha Basu
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Adi Hendler-Neumark
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gili Bisker
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- Center
for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
- Center
for Nanoscience and Nanotechnology, Tel
Aviv University, Tel Aviv 6997801, Israel
- Center
for Light-Matter Interaction, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
11
|
Just D, Dzienia A, Milowska KZ, Mielańczyk A, Janas D. High-yield and chirality-selective isolation of single-walled carbon nanotubes using conjugated polymers and small molecular chaperones. MATERIALS HORIZONS 2024; 11:758-767. [PMID: 37991874 DOI: 10.1039/d3mh01687k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) have potential for a wide range of applications in diverse fields, but the heterogeneous properties of the synthesized mixtures of SWCNT types hinder the realization of these aspirations. Recent developments in extractive purification methods of polychiral SWCNT mixtures have somewhat gradually alleviated this problem, but either the yield or purity of the obtained fractions remains unsatisfactory. In this work, we showed the possibility of simultaneously achieving both the aforementioned goals, commonly considered mutually exclusive, via the enhancement of the capabilities of the conjugated polymer extraction (CPE) technique. We found that combining small molecular species, which alone are unwanted in the system, with a selective poly(9,9'-dioctylfluorenyl-2,7-diyl-alt-6,6'-(2,2'-bipyridine)) polymer increased the concentration of the harvested SWCNTs by an order of magnitude while maintaining near-monochiral purity of the materials. The conducted modeling revealed that the presence of these additives facilitated the folding of conjugated polymers around (6,5) SWCNTs, leading to a substantial increase in the concentration and quality of the SWCNT suspension. The obtained results lay the foundation for the widescale implementation of the CPE of usually scarcely available chirality-defined SWCNTs owing to the molecular chaperones expediting the folding of the conjugated polymers.
Collapse
Affiliation(s)
- D Just
- Department of Chemistry, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland.
| | - A Dzienia
- Department of Chemistry, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland.
| | - K Z Milowska
- CIC nanoGUNE, Donostia-San Sebastián 20018, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao 48013, Spain
| | - A Mielańczyk
- Department of Chemistry, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland.
| | - D Janas
- Department of Chemistry, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland.
| |
Collapse
|
12
|
Sims CM, Fagan JA. An Automated Gradient Titration Fluorescence Methodology for High-Resolution Identification of Aqueous Two-Polymer Phase Extraction Conditions for Single-Wall Carbon Nanotubes. CARBON 2024; 219:10.1016/j.carbon.2024.118813. [PMID: 38882683 PMCID: PMC11177791 DOI: 10.1016/j.carbon.2024.118813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
A significant advance in rate and precision of identifying the co-surfactant concentrations leading to differential extraction of specific single-wall carbon nanotube (SWCNT) species in aqueous two-polymer phase extraction experiments is reported. These gains are achieved through continuous titration of co-surfactant and other solution components during automated fluorescence measurements on SWCNT dispersions. The resulting fluorescence versus concentration curves display intensity and wavelength shift transitions traceable to the nature of the adsorbed surfactant layer on specific SWCNT structures at the (n,m) species and enantiomer level at high resolution. The increased precision and speed of the titration method resolve previously invisible complexity in the SWCNT fluorescence during the transition from one surfactant dominating the SWCNT interface to the other, offering insight into the fine details of the competitive exchange process. For the first time, we additionally demonstrate that the competitive process of the surfactant switch is direction independent (reversible) and hysteresis-free; the latter data effectively specifies an upper bound for the time scale of the exchange process. Titration curves are compared to literature results and initial advanced parameter variation is conducted for previously unreasonable to investigate solution conditions.
Collapse
Affiliation(s)
- Christopher M. Sims
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD USA 20899
| | - Jeffrey A. Fagan
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD USA 20899
| |
Collapse
|
13
|
Sims CM, Fagan JA. Orthogonal Determination of Competing Surfactant Adsorption onto Single-Wall Carbon Nanotubes During Aqueous Two-Polymer Phase Extraction via Fluorescence Spectroscopy and Analytical Ultracentrifugation. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:10.1021/acs.jpcc.4c02568. [PMID: 39444379 PMCID: PMC11494907 DOI: 10.1021/acs.jpcc.4c02568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
A combination of analytical ultracentrifugation (AUC) and fluorescence spectroscopy are utilized to orthogonally probe compositions of adsorbed surfactant layers on the surface of (7,5) species single-wall carbon nanotubes (SWCNTs) under conditions known to achieve differential partitioning in aqueous two-phase extraction (ATPE) separations. Fluorescence emission intensity and AUC anhydrous particle density measurements independently probe and can discriminate between adsorbed surfactant layers on a (7,5) nanotube comprised of either of two common nanotube dispersants, the anionic surfactants sodium deoxycholate and sodium dodecyl sulfate. Measurements on dispersions containing mixtures of both surfactants indicate near total direct exchange of the dominant surfactant species adsorbed to the carbon nanotube at a critical concentration ratio consistent with the ratio leading to partitioning change in the ATPE separation. By conducting these orthogonal measurements in a complex environment reflective of an ATPE separation, including multiple surfactant and polymer solution components, the results provide direct evidence for the hypothesis that it is the nature of the adsorbed surfactant layer that primarily controls partitioning behavior in selective ATPE separations of SWCNTs.
Collapse
Affiliation(s)
- Christopher M. Sims
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD USA 20899
| | - Jeffrey A. Fagan
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD USA 20899
| |
Collapse
|
14
|
Lei K, Bachilo SM, Weisman RB. Diameter-Dependent Competitive Adsorption of Sodium Dodecyl Sulfate and Single-Stranded DNA on Carbon Nanotubes. J Phys Chem Lett 2023; 14:11043-11049. [PMID: 38047931 DOI: 10.1021/acs.jpclett.3c02872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The equilibrium compositions of coatings on single-wall carbon nanotubes were spectroscopically deduced for samples dispersed in dilute sodium dodecyl sulfate (SDS) and then exposed to low concentrations of ssDNA oligomers. With all studied oligomers, displacement of the SDS tended to occur at lower ssDNA concentrations for smaller diameter nanotubes than for larger diameter ones. However, the behavior varied significantly with oligomer. For example, the diameter dependence was steeper for (TAT)4 than for (ATT)4, suggesting that interstrand head-to-tail hydrogen bonding interactions play a role in SWCNT wrapping. Concentrations of ssDNA in the range of several μg/mL displace SDS from nanotubes dispersed in 1500 μg/mL SDS solutions. This effect allows the use of coating exchange to prepare ssDNA dispersions with minimal oligomer costs. Another demonstrated use exploits the structure-dependent relative coating affinities in a simple filtration method for the diameter enrichment of SWCNT mixtures.
Collapse
Affiliation(s)
- Kunhua Lei
- Department of Chemistry and the Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
| | - Sergei M Bachilo
- Department of Chemistry and the Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
| | - R Bruce Weisman
- Department of Chemistry and the Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
15
|
Dzienia A, Just D, Taborowska P, Mielanczyk A, Milowska KZ, Yorozuya S, Naka S, Shiraki T, Janas D. Mixed-Solvent Engineering as a Way around the Trade-Off between Yield and Purity of (7,3) Single-Walled Carbon Nanotubes Obtained Using Conjugated Polymer Extraction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304211. [PMID: 37467281 DOI: 10.1002/smll.202304211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/11/2023] [Indexed: 07/21/2023]
Abstract
The inability to purify nanomaterials such as single-walled carbon nanotubes (SWCNTs) to the desired extent hampers the progress in nanoscience. Various SWCNT types can be purified by extraction, but it is challenging to establish conditions giving rise to the isolation of high-purity fractions. The problem stems from the fact that common organic solvents or water cannot provide an optimal environment for purification. Consequently, one must often decide between the separation yield and purity of the product. This article reports how through the self-synthesis of poly(9,9-dioctylfluorene-alt-benzothiadiazole) with tailored characteristics, in-depth elucidation of the extraction process, and mixed-solvent engineering, a high-yield isolation of monochiral (7,3) SWCNTs is developed. The combination of toluene and tetralin affords a separation medium of unique properties, wherein both high yield and exceptional purity can be attained simultaneously. The reported results pave the way for further research on this rare chirality, which, as illustrated herein, is much more reactive than any of the previously separated SWCNTs.
Collapse
Affiliation(s)
- Andrzej Dzienia
- Department of Chemistry, Silesian University of Technology, B. Krzywoustego 4, Gliwice, 44-100, Poland
- Institute of Materials Engineering, University of Silesia in Katowice, Bankowa 12, Katowice, 40-007, Poland
| | - Dominik Just
- Department of Chemistry, Silesian University of Technology, B. Krzywoustego 4, Gliwice, 44-100, Poland
| | - Patrycja Taborowska
- Department of Chemistry, Silesian University of Technology, B. Krzywoustego 4, Gliwice, 44-100, Poland
| | - Anna Mielanczyk
- Department of Chemistry, Silesian University of Technology, B. Krzywoustego 4, Gliwice, 44-100, Poland
| | - Karolina Z Milowska
- CIC nanoGUNE, Donostia-San Sebastián, 20018, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain
- TCM Group, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Shunji Yorozuya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Sadahito Naka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tomohiro Shiraki
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Dawid Janas
- Department of Chemistry, Silesian University of Technology, B. Krzywoustego 4, Gliwice, 44-100, Poland
| |
Collapse
|
16
|
Zhao S, Gillen AJ, Li Y, Noy A. Sonochemical Synthesis and Ion Transport Properties of Surfactant-Stabilized Carbon Nanotube Porins. J Phys Chem Lett 2023; 14:9372-9376. [PMID: 37823530 DOI: 10.1021/acs.jpclett.3c01950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Carbon nanotube porins (CNTPs), short segments of carbon nanotubes stabilized by a lipid coating, are a promising example of artificial membrane channels that mimic a number of key behaviors of biological ion channels. While the lipid-assisted synthesis of CNTPs may facilitate their subsequent incorporation into lipid bilayers, it limits the applicability of these pores in other self-assembled membrane materials and also precludes the use of large-scale purified CNT feedstocks. Here we demonstrate that CNTPs can be synthesized by sonochemical cutting of long CNT feedstocks in the presence of different surfactants, producing CNTS with transport properties identical with those obtained by the lipid-assisted procedure. Our results open up a wide variety of synthetic routes for CNTP production.
Collapse
Affiliation(s)
- Sidi Zhao
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- School of Engineering, University of California, Merced, Merced, California 95343, United States
| | - Alice J Gillen
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Yuhao Li
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Aleksandr Noy
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- School of Natural Sciences, University of California, Merced, Merced, California 95343, United States
| |
Collapse
|
17
|
Ma C, Schrage CA, Gretz J, Akhtar A, Sistemich L, Schnitzler L, Li H, Tschulik K, Flavel BS, Kruss S. Stochastic Formation of Quantum Defects in Carbon Nanotubes. ACS NANO 2023; 17:15989-15998. [PMID: 37527201 DOI: 10.1021/acsnano.3c04314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Small perturbations in the structure of materials significantly affect their properties. One example is single wall carbon nanotubes (SWCNTs), which exhibit chirality-dependent near-infrared (NIR) fluorescence. They can be modified with quantum defects through the reaction with diazonium salts, and the number or distribution of these defects determines their photophysics. However, the presence of multiple chiralities in typical SWCNT samples complicates the identification of defect-related emission features. Here, we show that quantum defects do not affect aqueous two-phase extraction (ATPE) of different SWCNT chiralities into different phases, which suggests low numbers of defects. For bulk samples, the bandgap emission (E11) of monochiral (6,5)-SWCNTs decreases, and the defect-related emission feature (E11*) increases with diazonium salt concentration and represents a proxy for the defect number. The high purity of monochiral samples from ATPE allows us to image NIR fluorescence contributions (E11 = 986 nm and E11* = 1140 nm) on the single SWCNT level. Interestingly, we observe a stochastic (Poisson) distribution of quantum defects. SWCNTs have most likely one to three defects (for low to high (bulk) quantum defect densities). Additionally, we verify this number by following single reaction events that appear as discrete steps in the temporal fluorescence traces. We thereby count single reactions via NIR imaging and demonstrate that stochasticity plays a crucial role in the optical properties of SWCNTs. These results show that there can be a large discrepancy between ensemble and single particle experiments/properties of nanomaterials.
Collapse
Affiliation(s)
- Chen Ma
- Department of Chemistry, Ruhr-University Bochum, Bochum 44801, Germany
| | | | - Juliana Gretz
- Department of Chemistry, Ruhr-University Bochum, Bochum 44801, Germany
| | - Anas Akhtar
- Analytical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Bochum 44801, Germany
| | - Linda Sistemich
- Department of Chemistry, Ruhr-University Bochum, Bochum 44801, Germany
| | - Lena Schnitzler
- Department of Chemistry, Ruhr-University Bochum, Bochum 44801, Germany
| | - Han Li
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Karlsruhe 76344, Germany
| | - Kristina Tschulik
- Analytical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Bochum 44801, Germany
| | - Benjamin S Flavel
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Karlsruhe 76344, Germany
| | - Sebastian Kruss
- Department of Chemistry, Ruhr-University Bochum, Bochum 44801, Germany
- Fraunhofer Institute for Microelectronic Circuits and Systems, Duisburg 47057, Germany
| |
Collapse
|
18
|
Tiwari P, Podleśny B, Krzywiecki M, Milowska KZ, Janas D. Understanding the partitioning behavior of single-walled carbon nanotubes using an aqueous two-phase extraction system composed of non-ionic surfactants and polymers. NANOSCALE HORIZONS 2023; 8:685-694. [PMID: 36919756 DOI: 10.1039/d3nh00023k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In this work, a Pluronic/Dextran system was developed to discover the mechanism of the aqueous two-phase extraction (ATPE) technique, which is widely employed for the sorting of single-walled carbon nanotubes (SWCNTs) and other types of nanomaterials. The role of the phase-forming components and partitioning modulators was comprehensively investigated to gain greater insights into the differentiation process. The obtained results revealed that sodium dodecyl sulfate and sodium dodecylbenzene sulfonate operated as excellent partitioning modulators, enabling the diameter-based sorting of SWCNTs. Additionally, the data strongly suggested that different densities of various SWCNT species drove the movement of SWCNTs in the ATPE system. Consequently, the largest diameter SWCNTs were first influenced by surfactants and, thus, the nanotubes migrated towards a lower density top phase in the following order (7,5) > (8,3) > (6,5) > (6,4). Based on the in-depth analysis of the partitioning system, a mechanism was proposed that described the method in which the popular ATPE separation technique operates.
Collapse
Affiliation(s)
- Pranjala Tiwari
- Department of Chemistry, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland.
| | - Błażej Podleśny
- Department of Chemistry, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland.
| | - Maciej Krzywiecki
- Institute of Physics-CSE, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
| | - Karolina Z Milowska
- CIC nanoGUNE, 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- TCM Group, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - Dawid Janas
- Department of Chemistry, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland.
| |
Collapse
|
19
|
Podlesny B, Hinkle KR, Hayashi K, Niidome Y, Shiraki T, Janas D. Highly-Selective Harvesting of (6,4) SWCNTs Using the Aqueous Two-Phase Extraction Method and Nonionic Surfactants. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207218. [PMID: 36856265 DOI: 10.1002/advs.202207218] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/26/2023] [Indexed: 05/18/2023]
Abstract
Monochiral single-walled carbon nanotubes (SWCNTs) are indispensable for advancing the technology readiness level of nanocarbon-based concepts. In recent times, many separation techniques have been developed to obtain specific SWCNTs from raw unsorted materials to catalyze the development in this area. This work presents how the aqueous two-phase extraction (ATPE) method can be enhanced for the straightforward isolation of (6,4) SWCNTs in one step. Introducing nonionic surfactant into the typically employed mixture of anionic surfactants, which drive the partitioning, is essential to increasing the ATPE system's resolution. A thorough analysis of the parameter space by experiments and modeling reveals the underlying interactions between SWCNTs, surfactants, and phase-forming agents, which drive the partitioning. Based on new insight gained on this front, a separation mechanism is proposed. Notably, the developed method is highly robust, which is proven by isolating (6,4) SWCNTs from several raw SWCNT materials, including SWCNT waste generated over the years in the laboratory.
Collapse
Affiliation(s)
- Blazej Podlesny
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, Gliwice, 44-100, Poland
| | - Kevin R Hinkle
- Department of Chemical and Materials Engineering, University of Dayton, Dayton, OH, 45469, USA
| | - Keita Hayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yoshiaki Niidome
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tomohiro Shiraki
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Dawid Janas
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, Gliwice, 44-100, Poland
| |
Collapse
|
20
|
Finnie P, Ouyang J, Fagan JA. Broadband Full-Spectrum Raman Excitation Mapping Reveals Intricate Optoelectronic-Vibrational Resonance Structure of Chirality-Pure Single-Walled Carbon Nanotubes. ACS NANO 2023; 17:7285-7295. [PMID: 37010116 PMCID: PMC10134487 DOI: 10.1021/acsnano.2c10524] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
The Raman excitation spectra of chirality-pure (6,5), (7,5), and (8,3) single-walled carbon nanotubes (SWCNTs) are explored for homogeneous solid film samples over broad excitation energy and scattering energy ranges using a rapid and relatively simple full spectrum Raman excitation mapping technique. Identification of variation in scattering intensity with sample type and phonon energy related to different vibrational bands is clearly realized. Excitation profiles are found to vary strongly for different phonon modes. Some modes' Raman excitation profiles are extracted, with the G band profile compared to earlier work. Other modes, such as the M and iTOLA modes, have quite sharp resonance profiles and strong resonances. Conventional fixed wavelength Raman spectroscopy can miss these effects on the scattering intensities entirely due to the significant intensity changes observed for small variations in excitation wavelength. Peak intensities for phonon modes traceable to a pristine carbon lattice forming a SWCNT sidewall were greater for high-crystallinity materials. In the case of highly defective SWCNTs, the scattering intensities of the G band and the defect-related D band are demonstrated to be affected both in absolute intensities and in relative ratio, with the ratio that would be measured by single wavelength Raman scattering dependent on the excitation wavelength due to differences in the resonance energy profiles of the two bands. Lastly it is shown that the approach of this contribution yields a clear path toward increasing the rigor and quantification of resonance Raman scattering intensity measurements through tractable corrections of excitation and emission side variations in efficiency with excitation wavelength.
Collapse
Affiliation(s)
- Paul Finnie
- National
Research Council Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
| | - Jianying Ouyang
- National
Research Council Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
| | - Jeffrey A. Fagan
- Materials
Science and Engineering Division, National
Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899, United States
| |
Collapse
|
21
|
Ko J, Kim D, Sim G, Moon SY, Lee SS, Jang SG, Ahn S, Im SG, Joo Y. Scalable, Highly Pure, and Diameter-Sorted Boron Nitride Nanotube by Aqueous Polymer Two-Phase Extraction. SMALL METHODS 2023; 7:e2201341. [PMID: 36707408 DOI: 10.1002/smtd.202201341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/27/2022] [Indexed: 06/18/2023]
Abstract
Boron nitride nanotube (BNNT) has attracted recent attention owing to its exceptional material properties; yet, practical implementation in real-life applications has been elusive, mainly due to the purity issues associated with its large-scale synthesis. Although different purification methods have been discussed so far, there lacks a scalable solution method in the community. In this work, a simple, high-throughput, and scalable purification of BNNT is reported via modification of an established sorting technique, aqueous polymer two-phase extraction. A complete partition mapping of the boron nitride species is established, which enables the segregation of the highly pure BNNT with a major impurity removal efficiency of > 98%. A successful scaling up of the process is illustrated and provides solid evidence of its diameter sorting behavior. Last, towards its macroscopic assemblies, a liquid crystal of the purified BNNT is demonstrated. The effort toward large-scale solution purification of BNNT is believed to contribute significantly to the macroscopic realization of its exceptional properties in the near future.
Collapse
Affiliation(s)
- Jaehyoung Ko
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), Wanju-gun, Jeonbuk, 55324, Republic of Korea
- Department of Chemical and Biomolecular Engineering and KAIST Institute for Nano Century, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Daeun Kim
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), Wanju-gun, Jeonbuk, 55324, Republic of Korea
| | - Giho Sim
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), Wanju-gun, Jeonbuk, 55324, Republic of Korea
| | - Se Youn Moon
- Department of Quantum System Engineering, Jeonbuk National University, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Sang Seok Lee
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), Wanju-gun, Jeonbuk, 55324, Republic of Korea
| | - Se Gyu Jang
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), Wanju-gun, Jeonbuk, 55324, Republic of Korea
| | - Seokhoon Ahn
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), Wanju-gun, Jeonbuk, 55324, Republic of Korea
| | - Sung Gap Im
- Department of Chemical and Biomolecular Engineering and KAIST Institute for Nano Century, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yongho Joo
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), Wanju-gun, Jeonbuk, 55324, Republic of Korea
- Division of Nano and Information Technology, KIST School, Korea University of Science and Technology (UST), Jeonbuk, 55324, South Korea
| |
Collapse
|
22
|
Rust C, Shapturenka P, Spari M, Jin Q, Li H, Bacher A, Guttmann M, Zheng M, Adel T, Walker ARH, Fagan JA, Flavel BS. The Impact of Carbon Nanotube Length and Diameter on their Global Alignment by Dead-End Filtration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206774. [PMID: 36549899 DOI: 10.1002/smll.202206774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Dead-end filtration has proven to effectively prepare macroscopically (3.8 cm2 ) aligned thin films from solutionbased single-wall carbon nanotubes (SWCNTs). However, to make this technique broadly applicable, the role of SWCNT length and diameter must be understood. To date, most groups report the alignment of unsorted, large diameter (≈1.4 nm) SWCNTs, but systematic studies on their small diameter are rare (≈0.78 nm). In this work, films with an area of A = 3.81 cm2 and a thickness of ≈40 nm are prepared from length-sorted fractions comprising of small and large diameter SWCNTs, respectively. The alignment is characterized by cross-polarized microscopy, scanning electron microscopy, absorption and Raman spectroscopy. For the longest fractions (Lavg = 952 nm ± 431 nm, Δ = 1.58 and Lavg = 667 nm ± 246 nm, Δ = 1.55), the 2D order parameter, S2D, values of ≈0.6 and ≈0.76 are reported for the small and large diameter SWCNTs over an area of A = 625 µm2 , respectively. A comparison of Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory calculations with the aligned domain size is then used to propose a law identifying the required length of a carbon nanotube with a given diameter and zeta potential.
Collapse
Affiliation(s)
- Christian Rust
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Straße 2, 64287, Darmstadt, Germany
| | - Pavel Shapturenka
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Manuel Spari
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Qihao Jin
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstraße 13, 76131, Karlsruhe, Germany
| | - Han Li
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Andreas Bacher
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Markus Guttmann
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Ming Zheng
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Tehseen Adel
- Quantum Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Angela R Hight Walker
- Quantum Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Jeffrey A Fagan
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Benjamin S Flavel
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
23
|
Sudakov I, Goovaerts E, Wenseleers W, Blackburn JL, Duque JG, Cambré S. Chirality Dependence of Triplet Excitons in (6,5) and (7,5) Single-Wall Carbon Nanotubes Revealed by Optically Detected Magnetic Resonance. ACS NANO 2023; 17:2190-2204. [PMID: 36669768 PMCID: PMC9933588 DOI: 10.1021/acsnano.2c08392] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
The excitonic structure of single-wall carbon nanotubes (SWCNTs) is chirality dependent and consists of multiple singlet and triplet excitons (TEs) of which only one singlet exciton (SE) is optically bright. In particular, the dark TEs have a large impact on the integration of SWCNTs in optoelectronic devices, where excitons are created electrically, such as in infrared light-emitting diodes, thereby strongly limiting their quantum efficiency. Here, we report the characterization of TEs in chirality-purified samples of (6,5) and (7,5) SWCNTs, either randomly oriented in a frozen solution or with in-plane preferential orientation in a film, by means of optically detected magnetic resonance (ODMR) spectroscopy. In both chiral structures, the nanotubes are shown to sustain three types of TEs. One TE exhibits axial symmetry with zero-field splitting (ZFS) parameters depending on SWCNT diameter, in good agreement with the tighter confinement expected in narrower-diameter nanotubes. The ZFS of this TE also depends on nanotube environment, pointing to slightly weaker confinement for surfactant-coated than for polymer-wrapped SWCNTs. A second TE type, with much smaller ZFS, does not show the same systematic trends with diameter and environment and has a less well-defined axial symmetry. This most likely corresponds to TEs trapped at defect sites at low temperature, as exemplified by comparing SWCNT samples from different origins and after different treatments. A third triplet has unresolved ZFS, implying it originates from weakly interacting spin pairs. Aside from the diameter dependence, ODMR thus provides insights in both the symmetry, confinement, and nature of TEs on semiconducting SWCNTs.
Collapse
Affiliation(s)
- Ivan Sudakov
- Department
of Physics, University of Antwerp, Universiteitsplein 1, 2610Antwerp, Belgium
- Department
of Chemistry, University of Antwerp, Universiteitsplein 1, 2610Antwerp, Belgium
| | - Etienne Goovaerts
- Department
of Physics, University of Antwerp, Universiteitsplein 1, 2610Antwerp, Belgium
| | - Wim Wenseleers
- Department
of Physics, University of Antwerp, Universiteitsplein 1, 2610Antwerp, Belgium
| | - Jeffrey L. Blackburn
- Materials
Science Center, National Renewable Energy
Laboratory, Golden, Colorado80401, United States
| | - Juan G. Duque
- Chemistry
Division, Physical Chemistry and Applied Spectroscopy Group (C-PCS), Los Alamos National Laboratory, Los Alamos, New Mexico87544, United States
| | - Sofie Cambré
- Department
of Physics, University of Antwerp, Universiteitsplein 1, 2610Antwerp, Belgium
| |
Collapse
|
24
|
Zhang C, Fortner J, Wang P, Fagan JA, Wang S, Liu M, Maruyama S, Wang Y. van der Waals SWCNT@BN Heterostructures Synthesized from Solution-Processed Chirality-Pure Single-Wall Carbon Nanotubes. ACS NANO 2022; 16:18630-18636. [PMID: 36346984 DOI: 10.1021/acsnano.2c07128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Single-wall carbon nanotubes in boron nitride (SWCNT@BN) are one-dimensional van der Waals heterostructures that exhibit intriguing physical and chemical properties. As with their carbon nanotube counterparts, these heterostructures can form from different combinations of chiralities, providing rich structures but also posing a significant synthetic challenge to controlling their structure. Enabled by advances in nanotube chirality sorting, clean removal of the surfactant used for solution processing, and a simple method to fabricate free-standing submonolayer films of chirality pure SWCNTs as templates for the BN growth, we show it is possible to directly grow BN on chirality enriched SWCNTs from solution processing to form van der Waals heterostructures. We further report factors affecting the heterostructure formation, including an accelerated growth rate in the presence of H2, and significantly improved crystallization of the grown BN, with the BN thickness controlled down to one single BN layer, through the presence of a Cu foil in the reactor. Transmission electron microscopy and electron energy-loss spectroscopic mapping confirm the synthesis of SWCNT@BN from the solution purified nanotubes. The photoluminescence peaks of both (7,5)- and (8,4)-SWCNT@BN heterostructures are found to redshift (by ∼10 nm) relative to the bare SWCNTs. Raman scattering suggests that the grown BN shells pose a confinement effect on the SWCNT core.
Collapse
Affiliation(s)
- Chiyu Zhang
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive, College Park, Maryland 20742, United States
| | - Jacob Fortner
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive, College Park, Maryland 20742, United States
| | - Peng Wang
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive, College Park, Maryland 20742, United States
| | - Jeffrey A Fagan
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Shuhui Wang
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Ming Liu
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Shigeo Maruyama
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive, College Park, Maryland 20742, United States
- Maryland NanoCenter, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
25
|
Kurnosov N, Karachevtsev V. Observation of hole doping of metallic carbon nanotubes contained in unsorted species by Raman spectroscopy. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Avramenko M, Defillet J, López Carrillo MÁ, Martinati M, Wenseleers W, Cambré S. Variations in bile salt surfactant structure allow tuning of the sorting of single-wall carbon nanotubes by aqueous two-phase extraction. NANOSCALE 2022; 14:15484-15497. [PMID: 36226764 PMCID: PMC9612395 DOI: 10.1039/d2nr03883h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/11/2022] [Indexed: 05/19/2023]
Abstract
Being some of the most efficient agents to individually solubilize single-wall carbon nanotubes (SWCNTs), bile salt surfactants (BSS) represent the foundation for the surfactant-based structure sorting and spectroscopic characterization of SWCNTs. In this work, we investigate three BSS in their ability to separate different SWCNT chiral structures by aqueous two-phase extraction (ATPE): sodium deoxycholate (DOC), sodium cholate (SC) and sodium chenodeoxycholate (CDOC). The small difference in their chemical structure (just one hydroxyl group) leads to significant differences in their stacking behavior on SWCNT walls with different diameter and chiral structure that, in turn, has direct consequences for the chiral sorting of SWCNTs using these BSS. By performing several series of systematic ATPE experiments, we reveal that, in general, the stacking of DOC and CDOC is more enantioselective than the stacking of SC on the SWCNT walls, while SC has a clear diameter preference for efficiently solubilizing the SWCNTs in comparison to DOC and CDOC. Moreover, combining sodium dodecylsulfate with SC allows for resolving the ATPE sorting transitions of empty and water-filled SWCNTs for a number of SWCNT chiralities. We also show that addition of SC to combinations of DOC and sodium dodecylbenzenesulfonate can enhance separations of particular chiralities.
Collapse
Affiliation(s)
- Marina Avramenko
- Nanostructured and Organic Optical and Electronic Materials, Physics Department, University of Antwerp, Belgium.
| | - Joeri Defillet
- Nanostructured and Organic Optical and Electronic Materials, Physics Department, University of Antwerp, Belgium.
| | - Miguel Ángel López Carrillo
- Nanostructured and Organic Optical and Electronic Materials, Physics Department, University of Antwerp, Belgium.
| | - Miles Martinati
- Nanostructured and Organic Optical and Electronic Materials, Physics Department, University of Antwerp, Belgium.
| | - Wim Wenseleers
- Nanostructured and Organic Optical and Electronic Materials, Physics Department, University of Antwerp, Belgium.
| | - Sofie Cambré
- Nanostructured and Organic Optical and Electronic Materials, Physics Department, University of Antwerp, Belgium.
| |
Collapse
|
27
|
Erkens M, Levshov D, Wenseleers W, Li H, Flavel BS, Fagan JA, Popov VN, Avramenko M, Forel S, Flahaut E, Cambré S. Efficient Inner-to-Outer Wall Energy Transfer in Highly Pure Double-Wall Carbon Nanotubes Revealed by Detailed Spectroscopy. ACS NANO 2022; 16:16038-16053. [PMID: 36167339 PMCID: PMC9620404 DOI: 10.1021/acsnano.2c03883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
The coaxial stacking of two single-wall carbon nanotubes (SWCNTs) into a double-wall carbon nanotube (DWCNT), forming a so-called one-dimensional van der Waals structure, leads to synergetic effects that dramatically affect the optical and electronic properties of both layers. In this work, we explore these effects in purified DWCNT samples by combining absorption, wavelength-dependent infrared fluorescence-excitation (PLE), and wavelength-dependent resonant Raman scattering (RRS) spectroscopy. Purified DWCNTs are obtained by careful solubilization that strictly avoids ultrasonication or by electronic-type sorting, both followed by a density gradient ultracentrifugation to remove unwanted SWCNTs that could obscure the DWCNT characterization. Chirality-dependent shifts of the radial breathing mode vibrational frequencies and transition energies of the inner and outer DWCNT walls with respect to their SWCNT analogues are determined by advanced two-dimensional fitting of RRS and PLE data of DWCNT and their reference SWCNT samples. This exhaustive data set verifies that fluorescence from the inner DWCNT walls of well-purified samples is severely quenched through efficient energy transfer from the inner to the outer DWCNT walls. Combined analysis of the PLE and RRS results further reveals that this transfer is dependent on the inner and outer wall chirality, and we identify the specific combinations dominant in our DWCNT samples. These obtained results demonstrate the necessity and value of a combined structural characterization approach including PLE and RRS spectroscopy for bulk DWCNT samples.
Collapse
Affiliation(s)
- Maksiem Erkens
- Nanostructured
and Organic Optical and Electronic Materials, Department of Physics, University of Antwerp, B-2610 Antwerp, Belgium
| | - Dmitry Levshov
- Nanostructured
and Organic Optical and Electronic Materials, Department of Physics, University of Antwerp, B-2610 Antwerp, Belgium
| | - Wim Wenseleers
- Nanostructured
and Organic Optical and Electronic Materials, Department of Physics, University of Antwerp, B-2610 Antwerp, Belgium
| | - Han Li
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Benjamin S. Flavel
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Jeffrey A. Fagan
- Materials
Science and Engineering Division, National
Institute of Standards and Technology, 20899 Gaithersburg, Maryland, United States
| | | | - Marina Avramenko
- Nanostructured
and Organic Optical and Electronic Materials, Department of Physics, University of Antwerp, B-2610 Antwerp, Belgium
| | - Salomé Forel
- Nanostructured
and Organic Optical and Electronic Materials, Department of Physics, University of Antwerp, B-2610 Antwerp, Belgium
- Laboratoire
des Multimatériaux et Interfaces, UMR CNRS 5615, Univ Lyon, Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France
| | - Emmanuel Flahaut
- CIRIMAT,
UMR 5085, CNRS-INP-UPS, Université
Toulouse 3 Paul Sabatier, 118 route de Narbonne, F-31062 Toulouse cedex 9, France
| | - Sofie Cambré
- Nanostructured
and Organic Optical and Electronic Materials, Department of Physics, University of Antwerp, B-2610 Antwerp, Belgium
| |
Collapse
|
28
|
Kharlamova MV, Burdanova MG, Paukov MI, Kramberger C. Synthesis, Sorting, and Applications of Single-Chirality Single-Walled Carbon Nanotubes. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5898. [PMID: 36079282 PMCID: PMC9457432 DOI: 10.3390/ma15175898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/12/2022] [Accepted: 08/21/2022] [Indexed: 05/06/2023]
Abstract
The synthesis of high-quality chirality-pure single-walled carbon nanotubes (SWCNTs) is vital for their applications. It is of high importance to modernize the synthesis processes to decrease the synthesis temperature and improve the quality and yield of SWCNTs. This review is dedicated to the chirality-selective synthesis, sorting of SWCNTs, and applications of chirality-pure SWCNTs. The review begins with a description of growth mechanisms of carbon nanotubes. Then, we discuss the synthesis methods of semiconducting and metallic conductivity-type and single-chirality SWCNTs, such as the epitaxial growth method of SWCNT ("cloning") using nanocarbon seeds, the growth method using nanocarbon segments obtained by organic synthesis, and the catalyst-mediated chemical vapor deposition synthesis. Then, we discuss the separation methods of SWCNTs by conductivity type, such as electrophoresis (dielectrophoresis), density gradient ultracentrifugation (DGC), low-speed DGC, ultrahigh DGC, chromatography, two-phase separation, selective solubilization, and selective reaction methods and techniques for single-chirality separation of SWCNTs, including density gradient centrifugation, two-phase separation, and chromatography methods. Finally, the applications of separated SWCNTs, such as field-effect transistors (FETs), sensors, light emitters and photodetectors, transparent electrodes, photovoltaics (solar cells), batteries, bioimaging, and other applications, are presented.
Collapse
Affiliation(s)
- Marianna V. Kharlamova
- Centre for Advanced Material Application (CEMEA), Slovak Academy of Sciences, Dubrávská cesta 5807/9, 854 11 Bratislava, Slovakia
- Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9-BC-2, 1060 Vienna, Austria
- Laboratory of Nanobiotechnologies, Moscow Institute of Physics and Technology, Institutskii Pereulok 9, 141700 Dolgoprudny, Russia
| | - Maria G. Burdanova
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 9, Institutsky Lane, 141700 Dolgoprudny, Russia
- Institute of Solid State Physics, Russian Academy of Sciences, 142432 Chernogolovka, Russia
| | - Maksim I. Paukov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 9, Institutsky Lane, 141700 Dolgoprudny, Russia
| | - Christian Kramberger
- Faculty of Physics, University of Vienna, Strudlhofgasse 4, 1090 Vienna, Austria
| |
Collapse
|
29
|
Martin-Gassin G, Paineau E, Launois P, Gassin PM. Water Organization around Inorganic Nanotubes in Suspension Probed by Polarization-Resolved Second Harmonic Scattering. J Phys Chem Lett 2022; 13:6883-6888. [PMID: 35862242 DOI: 10.1021/acs.jpclett.2c01392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Imogolite nanotube (INT) is a fascinating one-dimensional (1D) material that can be synthesized in the liquid phase. Its behavior in solution is crucial for many applications and depends on the organization of water at the liquid-wall interface. We study here this water organization by using the nonlinear optical technique of polarization-resolved second harmonic scattering (SHS). A microscopic model is proposed to interpret the origin of the coherent SHS signal recovered in this 1D colloidal system. This work demonstrates that the SHS technique is able to probe the shell of water molecules oriented around the nanotubes. Water organization results from the electric field induced by the nanotube walls, and it is strongly dependent on the ionic strength of the suspension.
Collapse
Affiliation(s)
| | - Erwan Paineau
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Pascale Launois
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | | |
Collapse
|
30
|
The Effect of Elution Speed Control on Purity of Separated Large-Diameter Single-Walled Carbon Nanotubes in Gel Chromatography. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Nißler R, Ackermann J, Ma C, Kruss S. Prospects of Fluorescent Single-Chirality Carbon Nanotube-Based Biosensors. Anal Chem 2022; 94:9941-9951. [PMID: 35786856 DOI: 10.1021/acs.analchem.2c01321] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Semiconducting single-wall carbon nanotubes (SWCNTs) fluoresce in the near-infrared (NIR), and the emission wavelength depends on their structure (chirality). Interactions with other molecules affect their fluorescence, which has successfully been used for SWCNT-based molecular sensors. So far, most such sensors are assembled from crude mixtures of different SWCNT chiralities, which causes polydisperse sensor responses as well as spectral congestion and limits their performance. The advent of chirality-pure SWCNTs is about to overcome this limitation and paves the way for the next generation of biosensors. Here, we discuss the first examples of chirality-pure SWCNT-based fluorescent biosensors. We introduce routes to such sensors via aqueous two-phase extraction-assisted purification of SWCNTs and highlight the critical interplay between purification and surface modification procedures. Applications include the NIR detection and imaging of neurotransmitters, reactive oxygen species, lipids, bacterial motives, and plant metabolites. Most importantly, we outline a path toward how such monodisperse (chirality-pure) sensors will enable advanced multiplexed sensing with enhanced bioanalytical performance.
Collapse
Affiliation(s)
- Robert Nißler
- Nanoparticle Systems Engineering Lab, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland.,Laboratory for Particles-Biology Interactions, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.,Department of Chemistry, Bochum University, Universitätsstrasse 150, 44801 Bochum, Germany
| | - Julia Ackermann
- Fraunhofer Institute of Microelectronic Circuits and Systems, Finkenstrasse 61, 47057 Duisburg, Germany
| | - Chen Ma
- Department of Chemistry, Bochum University, Universitätsstrasse 150, 44801 Bochum, Germany
| | - Sebastian Kruss
- Department of Chemistry, Bochum University, Universitätsstrasse 150, 44801 Bochum, Germany.,Fraunhofer Institute of Microelectronic Circuits and Systems, Finkenstrasse 61, 47057 Duisburg, Germany
| |
Collapse
|
32
|
Forel S, Li H, van Bezouw S, Campo J, Wieland L, Wenseleers W, Flavel BS, Cambré S. Diameter-dependent single- and double-file stacking of squaraine dye molecules inside chirality-sorted single-wall carbon nanotubes. NANOSCALE 2022; 14:8385-8397. [PMID: 35635153 PMCID: PMC9202598 DOI: 10.1039/d2nr01630c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
The filling of single-wall carbon nanotubes (SWCNTs) with dye molecules has become a novel path to add new functionalities through the mutual interaction of confined dyes and host SWCNTs. In particular cases, the encapsulated dye molecules form strongly interacting molecular arrays and these result in severely altered optical properties of the dye molecules. Here, we present the encapsulation of a squaraine dye inside semiconducting chirality-sorted SWCNTs with diameters ranging from ∼1.15 nm, in which the dye molecules can only be encapsulated in a single-file molecular arrangement, up to ∼1.5 nm, in which two or three molecular files can fit side-by-side. Through the chirality-selective observation of energy transfer from the dye molecules to the surrounding SWCNTs, we find that the absorption wavelength of the dye follows a peculiar SWCNT diameter dependence, originating from the specific stacking of the dye inside the host SWCNTs. Corroborated by a theoretical model, we find that for each SWCNT diameter, the dye molecules adopt a close packing geometry, resulting in tunable optical properties of the hybrid when selecting a specific SWCNT chirality.
Collapse
Affiliation(s)
- Salomé Forel
- Nanostructured and Organic Optical and Electronic Materials, Physics Department, University of Antwerp, Belgium.
- Université Claude Bernard Lyon 1, UMR CNRS 5615, Lyon, France
| | - Han Li
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany.
| | - Stein van Bezouw
- Nanostructured and Organic Optical and Electronic Materials, Physics Department, University of Antwerp, Belgium.
| | - Jochen Campo
- Nanostructured and Organic Optical and Electronic Materials, Physics Department, University of Antwerp, Belgium.
| | - Laura Wieland
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany.
- Institute of Materials Science, Technische Universität at Darmstadt, Alarich-Weiss-Straße 2, Darmstadt, 64287, Germany
| | - Wim Wenseleers
- Nanostructured and Organic Optical and Electronic Materials, Physics Department, University of Antwerp, Belgium.
| | - Benjamin S Flavel
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany.
| | - Sofie Cambré
- Nanostructured and Organic Optical and Electronic Materials, Physics Department, University of Antwerp, Belgium.
| |
Collapse
|
33
|
Sims CM, Fagan JA. Surfactant Chemistry and Polymer Choice Affect Single-Wall Carbon Nanotube Extraction Conditions in Aqueous Two-Polymer Phase Extraction. CARBON 2022; 191:10.1016/j.carbon.2022.01.062. [PMID: 36579357 PMCID: PMC9791978 DOI: 10.1016/j.carbon.2022.01.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Quantitative determination of the effects of surfactant chemistry and polymer chain length on the concentration conditions necessary to yield extraction of specific single-wall carbon nanotube (SWNCT) species in an aqueous two-polymer phase extraction (ATPE) separation are reported. In particular, the effects of polyethylene glycol (PEG) chain length, surfactant ratios, and systematic structural variations of alkyl surfactants and bile salts on the surfactant ratios necessary for extraction were investigated using a recently reported fluorescence-based method. Alkyl surfactant tail length was observed to strongly affect the amount of surfactant necessary to cause PEG-phase extraction of nanotube species in ATPE, while variation in the anionic sulfate/sulfonate head group chemistry has less impact on the concentration necessary for extraction. Substitution of different bile salts results in different surfactant packings on the SWCNTs, with substitution greatly affecting the alkyl surfactant concentrations required for (n,m) extraction. Finally, distinct alkyl-to-bile surfactant ratios were found to extract specific (n,m) SWCNTs across the whole effective window of absolute concentrations, supporting the hypothesized competitive adsorption mechanism model of SWCNT sorting. Altogether, these results provide valuable insights into the underlying mechanisms behind ATPE-based SWCNT separations, towards further development and optimization of the ATPE method for SWCNT chirality and handedness sorting.
Collapse
|
34
|
Lin Z, Yang Y, Jagota A, Zheng M. Machine Learning-Guided Systematic Search of DNA Sequences for Sorting Carbon Nanotubes. ACS NANO 2022; 16:4705-4713. [PMID: 35213805 DOI: 10.1021/acsnano.1c11448] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The prerequisite of utilizing DNA in sequence-dependent applications is to search specific sequences. Developing a strategy for efficient DNA sequence screening represents a grand challenge due to the countless possibilities of sequence combination. Herein, relying on sequence-dependent recognition between DNA and single-wall carbon nanotubes (SWCNTs), we demonstrate a method for systematic search of DNA sequences for sorting single-chirality SWCNTs. Different from previously documented empirical search, which has a low efficiency and accuracy, our approach combines machine learning and experimental investigation. The number of resolving sequences and the success rate of finding them are improved from ∼102 to ∼103 and from ∼10% to >90%, respectively. Moreover, the resolving sequence patterns determined from 5-mer and 6-mer short sequences can be extended to sequence search in longer DNA subspaces.
Collapse
Affiliation(s)
- Zhiwei Lin
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Yoona Yang
- Department of Chemical & Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Anand Jagota
- Departments of Chemical & Biomolecular Engineering and of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Ming Zheng
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
35
|
Gong X, Shuai L, Beingessner RL, Yamazaki T, Shen J, Kuehne M, Jones K, Fenniri H, Strano MS. Size Selective Corona Interactions from Self-Assembled Rosette and Single-Walled Carbon Nanotubes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104951. [PMID: 35060337 DOI: 10.1002/smll.202104951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Nanoparticle corona phases, especially those surrounding anisotropic particles, are central to determining their catalytic, molecular recognition, and interfacial properties. It remains a longstanding challenge to chemically synthesize and control such phases at the nanoparticle surface. In this work, the supramolecular chemistry of rosette nanotubes (RNTs), well-defined hierarchically self-assembled nanostructures formed from heteroaromatic bicyclic bases, is used to create molecularly precise and continuous corona phases on single-walled carbon nanotubes (SWCNTs). These RNT-SWCNT (RS) complexes exhibit the lowest solvent-exposed surface area (147.8 ± 60 m-1 ) measured to date due to its regular structure. Through Raman spectroscopy, molecular-scale control of the free volume is also observed between the two annular structures and the effects of confined water. SWCNT photoluminescence (PL) within the RNT is also modulated considerably as a function of their diameter and chirality, especially for the (11, 1) species, where a PL increase compared to other species can be attributed to their chiral angle and the RNT's inward facing electron densities. In summary, RNT chemistry is extended to the problem of chemically defining both the exterior and interior corona interfaces of an encapsulated particle, thereby opening the door to precision control of core-shell nanoparticle interfaces.
Collapse
Affiliation(s)
- Xun Gong
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 66, Cambridge, MA, 02139, USA
| | - Liang Shuai
- National Institute for Nanotechnology and Department of Chemistry, University of Alberta, 11421 Saskatchewan Drive, Edmonton, Alberta, T6G2M9, Canada
| | - Rachel L Beingessner
- National Institute for Nanotechnology and Department of Chemistry, University of Alberta, 11421 Saskatchewan Drive, Edmonton, Alberta, T6G2M9, Canada
| | - Takeshi Yamazaki
- National Institute for Nanotechnology and Department of Chemistry, University of Alberta, 11421 Saskatchewan Drive, Edmonton, Alberta, T6G2M9, Canada
| | - Jianliang Shen
- Wenzhou Institute, University of Chinese Academy of Sciences, No.16 Xinsan Road, Hi-tech Industry Park, Wenzhou, Zhejiang, 325000, China
| | - Matthias Kuehne
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 66, Cambridge, MA, 02139, USA
| | - Kelvin Jones
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 66, Cambridge, MA, 02139, USA
| | - Hicham Fenniri
- Department of Chemical Engineering, Department of Bioengineering, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115-5000, USA
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 66, Cambridge, MA, 02139, USA
| |
Collapse
|
36
|
Walker JS, Macdermid ZJ, Fagan JA, Kolmakov A, Biacchi AJ, Searles TA, Walker ARH, Rice WD. Dependence of Single-Wall Carbon Nanotube Alignment on the Filter Membrane Interface in Slow Vacuum Filtration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105619. [PMID: 35064635 DOI: 10.1002/smll.202105619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/19/2021] [Indexed: 06/14/2023]
Abstract
The recent introduction of slow vacuum filtration (SVF) technology has shown great promise for reproducibly creating high-quality, large-area aligned films of single-wall carbon nanotubes (SWCNTs) from solution-based dispersions. Despite clear advantages over other SWCNT alignment techniques, SVF remains in the developmental stages due to a lack of an agreed-upon alignment mechanism, a hurdle which hinders SVF optimization. In this work, the filter membrane surface is modified to show how the resulting SWCNT nematic order can be significantly enhanced. It is observed that directional mechanical grooving on filter membranes does not play a significant role in SWCNT alignment, despite the tendency for nanotubes to follow the groove direction. Chemical treatments to the filter membrane are shown to increase SWCNT alignment by nearly 1/3. These findings suggest that membrane surface structure acts to create a directional flow along the filter membrane surface that can produce global SWCNT alignment during SVF, rather serving as an alignment template.
Collapse
Affiliation(s)
- Joshua S Walker
- Department of Physics & Astronomy, University of Wyoming, 1000 E. University Ave., Laramie, WY, 82071, USA
| | - Zia J Macdermid
- Department of Physics & Astronomy, University of Wyoming, 1000 E. University Ave., Laramie, WY, 82071, USA
| | - Jeffrey A Fagan
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Andrei Kolmakov
- Nanoscale Device Characterization Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Adam J Biacchi
- Nanoscale Device Characterization Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Thomas A Searles
- Department of Physics & Astronomy, Howard University, Washington, D.C., 20059, USA
| | - Angela R Hight Walker
- Nanoscale Device Characterization Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - William D Rice
- Department of Physics & Astronomy, University of Wyoming, 1000 E. University Ave., Laramie, WY, 82071, USA
| |
Collapse
|
37
|
Heimfarth D, Balcı Leinen M, Klein P, Allard S, Scherf U, Zaumseil J. Enhancing Electrochemical Transistors Based on Polymer-Wrapped (6,5) Carbon Nanotube Networks with Ethylene Glycol Side Chains. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8209-8217. [PMID: 35108486 DOI: 10.1021/acsami.1c23586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Organic electrochemical transistors (ECTs) are an important building block for bioelectronics. To promote the required ion transport through the active layer, state-of-the-art semiconducting polymers feature hydrophilic ethylene glycol side chains that increase the volumetric capacitance and transconductance of the devices. Here, we apply this concept to polymer-wrapped single-walled carbon nanotubes (SWCNTs) as a high-mobility semiconducting material. We replace the polyfluorene copolymer (PFO-BPy), which is used for selectively dispersing semiconducting (6,5) SWCNTs and contains octyl side chains, by an equivalent polymer with tetraethylene glycol side chains. Aerosol-jet printed networks of these SWCNTs are applied as the active layer in water-gated ECTs. These show high hole mobilities (3-15 cm2·V-1·s-1), significantly improved volumetric capacitances and larger transconductances. Thin networks of SWCNTs reach (219 ± 16) F·cm-1·V-1·s-1 as the product of mobility and volumetric capacitance. In situ photoluminescence measurements show more efficient quenching of the near-infrared fluorescence for nanotube networks with hydrophilic glycol side chains compared to those with hydrophobic alkyl side chains, thus corroborating more complete charging under bias. Overall, networks of semiconducting SWCNTs with such tailored wrapping polymers provide excellent device performance. Combined with their inherent mechanical flexibility and durability, they constitute a competitive material for bioelectronics.
Collapse
Affiliation(s)
- Daniel Heimfarth
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
- Centre for Advanced Materials, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Merve Balcı Leinen
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Patrick Klein
- Macromolecular Chemistry and Wuppertal Center for Smart Materials and Systems, Bergische Universität Wuppertal, D-42097 Wuppertal, Germany
| | - Sybille Allard
- Macromolecular Chemistry and Wuppertal Center for Smart Materials and Systems, Bergische Universität Wuppertal, D-42097 Wuppertal, Germany
| | - Ullrich Scherf
- Macromolecular Chemistry and Wuppertal Center for Smart Materials and Systems, Bergische Universität Wuppertal, D-42097 Wuppertal, Germany
| | - Jana Zaumseil
- Institute for Physical Chemistry, Universität Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
38
|
Wulf V, Slor G, Rathee P, Amir RJ, Bisker G. Dendron-Polymer Hybrids as Tailorable Responsive Coronae of Single-Walled Carbon Nanotubes. ACS NANO 2021; 15:20539-20549. [PMID: 34878763 DOI: 10.1021/acsnano.1c09125] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Functional composite materials that can change their spectral properties in response to external stimuli have a plethora of applications in fields ranging from sensors to biomedical imaging. One of the most promising types of materials used to design spectrally active composites are fluorescent single-walled carbon nanotubes (SWCNTs), noncovalently functionalized by synthetic amphiphilic polymers. These coated SWCNTs can exhibit modulations in their fluorescence spectra in response to interactions with target analytes. Hence, identifying new amphiphiles with interchangeable building blocks that can form individual coronae around the SWCNTs and can be tailored for a specific application is of great interest. This study presents highly modular amphiphilic polymer-dendron hybrids, composed of hydrophobic dendrons and hydrophilic polyethylene glycol (PEG) that can be synthesized with a high degree of structural freedom, for suspending SWCNTs in aqueous solution. Taking advantage of the high molecular precision of these PEG-dendrons, we show that precise differences in the chemical structure of the hydrophobic end groups of the dendrons can be used to control the interactions of the amphiphiles with the SWCNT surface. These interactions can be directly related to differences in the intrinsic near-infrared fluorescence emission of the various chiralities in a SWCNT sample. Utilizing the susceptibility of the PEG-dendrons toward enzymatic degradation, we demonstrate the ability to monitor enzymatic activity through changes in the SWCNT fluorescent signal. These findings pave the way for a rational design of functional SWCNTs, which can be used for optical sensing of enzymatic activity in the near-infrared spectral range.
Collapse
Affiliation(s)
- Verena Wulf
- Department of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Gadi Slor
- Department of Organic Chemistry, School of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
- The Center for Physics and Chemistry of Living Systems, Tel-Aviv University, Tel Aviv 6997801, Israel
- Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Parul Rathee
- Department of Organic Chemistry, School of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
- The Center for Physics and Chemistry of Living Systems, Tel-Aviv University, Tel Aviv 6997801, Israel
- Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Roey J Amir
- Department of Organic Chemistry, School of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
- The Center for Physics and Chemistry of Living Systems, Tel-Aviv University, Tel Aviv 6997801, Israel
- Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel Aviv 6997801, Israel
- ADAMA Center for Novel Delivery Systems in Crop Protection, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Gili Bisker
- Department of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel Aviv 6997801, Israel
- The Center for Physics and Chemistry of Living Systems, Tel-Aviv University, Tel Aviv 6997801, Israel
- Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel Aviv 6997801, Israel
- Center for Light Matter Interaction, Tel-Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
39
|
Wang P, Barnes B, Huang Z, Wang Z, Zheng M, Wang Y. Beyond Color: The New Carbon Ink. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005890. [PMID: 33938063 PMCID: PMC8560657 DOI: 10.1002/adma.202005890] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/11/2020] [Indexed: 05/12/2023]
Abstract
For thousands of years, carbon ink has been used as a black color pigment for writing and painting purposes. However, recent discoveries of nanocarbon materials, including fullerenes, carbon nanotubes, graphene, and their various derivative forms, together with the advances in large-scale synthesis, are enabling a whole new generation of carbon inks that can serve as an intrinsically programmable materials platform for developing advanced functionalities far beyond color. The marriage between these multifunctional nanocarbon inks with modern printing technologies is facilitating and even transforming many applications, including flexible electronics, wearable and implantable sensors, actuators, and autonomous robotics. This review examines recent progress in the reborn field of carbon inks, highlighting their programmability and multifunctionality for applications in flexible electronics and stimuli-responsive devices. Current challenges and opportunities will also be discussed from a materials science perspective towards the advancement of carbon ink for new applications beyond color.
Collapse
Affiliation(s)
- Peng Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Benjamin Barnes
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
- Department of Material Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Zhongjie Huang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Ziyi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Ming Zheng
- Materials Science and Engineering Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
- Maryland NanoCenter, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
40
|
Yao YC, Li Z, Gillen AJ, Yosinski S, Reed MA, Noy A. Electrostatic gating of ion transport in carbon nanotube porins: A modeling study. J Chem Phys 2021; 154:204704. [PMID: 34241182 DOI: 10.1063/5.0049550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Carbon nanotube porins (CNTPs) are biomimetic membrane channels that demonstrate excellent biocompatibility and unique water and ion transport properties. Gating transport in CNTPs with external voltage could increase control over ion flow and selectivity. Herein, we used continuum modeling to probe the parameters that enable and further affect CNTP gating efficiency, including the size and composition of the supporting lipid membrane, slip flow in the carbon nanotube, and the intrinsic electronic properties of the nanotube. Our results show that the optimal gated CNTP device consists of a semiconducting CNTP inserted into a small membrane patch containing an internally conductive layer. Moreover, we demonstrate that the ionic transport modulated by gate voltages is controlled by the charge distribution along the CNTP under the external gate electric potential. The theoretical understanding developed in this study offers valuable guidance for the design of gated CNTP devices for nanofluidic studies, novel biomimetic membranes, and cellular interfaces in the future.
Collapse
Affiliation(s)
- Yun-Chiao Yao
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Zhongwu Li
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Alice J Gillen
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Shari Yosinski
- Department of Electrical Engineering, Yale University, New Haven, Connecticut 06520, USA
| | - Mark A Reed
- Department of Electrical Engineering, Yale University, New Haven, Connecticut 06520, USA
| | - Aleksandr Noy
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| |
Collapse
|
41
|
Zanoni S, Watts BP, Tvrdy K. Single-Walled Carbon Nanotube Chiral Selectivity Exhibited by Commercially Available Hydrogels of Varying Composition. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33635-33643. [PMID: 34242015 DOI: 10.1021/acsami.1c06961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Despite the commercial availability of many different hydrogel formulations, the effective gel-based purification of single-walled carbon nanotubes (SWNT) remains exclusive to the gel Sephacryl S-200. In this study, 12 commercially available gels and two custom-synthesized gels were investigated for their ability to effectively purify SWNT, as determined through quantification of SWNT adsorption, elution, chiral selectivity, and overall process efficiency. The ability of each gel to separate SWNT was found to correlate with physiochemical properties, such as hydrogel pore size, the presence of ionic ligands, and both polysaccharide backbone and cross-linker compositions. While Sephacryl S-200 demonstrated superior separation efficiency and chiral selectivity among the gels studied, Superose 6 was found to adsorb more SWNT than Sephacryl S-200 per cm2 of the gel surface area and exhibited a unique preference for the (7,3) and (7,5) SWNT chiralities, in contrast to the established selectivity of Sephacryl S-200 for the (6,5) chirality. Collectively, this work both identifies gels that exhibit unique SWNT chiral selectivity and provides insights into the rational design of gels tailored for SWNT purification.
Collapse
Affiliation(s)
- Sophia Zanoni
- Department of Chemistry & Biochemistry, University of Colorado, Colorado Springs, Colorado Springs, Colorado 80918, United States
| | - Brennan P Watts
- Department of Chemistry & Biochemistry, University of Colorado, Colorado Springs, Colorado Springs, Colorado 80918, United States
| | - Kevin Tvrdy
- Department of Chemistry & Biochemistry, University of Colorado, Colorado Springs, Colorado Springs, Colorado 80918, United States
| |
Collapse
|
42
|
Podlesny B, Olszewska B, Yaari Z, Jena PV, Ghahramani G, Feiner R, Heller DA, Janas D. En route to single-step, two-phase purification of carbon nanotubes facilitated by high-throughput spectroscopy. Sci Rep 2021; 11:10618. [PMID: 34011997 PMCID: PMC8134628 DOI: 10.1038/s41598-021-89839-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/04/2021] [Indexed: 11/16/2022] Open
Abstract
Chirality purification of single-walled carbon nanotubes (SWCNTs) is desirable for applications in many fields, but general utility is currently hampered by low throughput. We discovered a method to obtain single-chirality SWCNT enrichment by the aqueous two-phase extraction (ATPE) method in a single step. To achieve appropriate resolution, a biphasic system of non-ionic tri-block copolymer surfactant is varied with an ionic surfactant. A nearly-monochiral fraction of SWCNTs can then be harvested from the top phase. We also found, via high-throughput, near-infrared excitation-emission photoluminescence spectroscopy, that the parameter space of ATPE can be mapped to probe the mechanics of the separation process. Finally, we found that optimized conditions can be used for sorting of SWCNTs wrapped with ssDNA as well. Elimination of the need for surfactant exchange and simplicity of the separation process make the approach promising for high-yield generation of purified single-chirality SWCNT preparations.
Collapse
Affiliation(s)
- Blazej Podlesny
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland
| | - Barbara Olszewska
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland
| | - Zvi Yaari
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Prakrit V Jena
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Gregory Ghahramani
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Ron Feiner
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Daniel A Heller
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA.
| | - Dawid Janas
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland.
| |
Collapse
|
43
|
Nißler R, Kurth L, Li H, Spreinat A, Kuhlemann I, Flavel BS, Kruss S. Sensing with Chirality-Pure Near-Infrared Fluorescent Carbon Nanotubes. Anal Chem 2021; 93:6446-6455. [PMID: 33830740 DOI: 10.1021/acs.analchem.1c00168] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Semiconducting single-wall carbon nanotubes (SWCNTs) fluoresce in the near-infrared (NIR) region, and the emission wavelength depends on their chirality (n,m). Interactions with the environment affect the fluorescence and can be tailored by functionalizing SWCNTs with biopolymers such as DNA, which is the basis for fluorescent biosensors. So far, such biosensors have been mainly assembled from mixtures of SWCNT chiralities with large spectral overlap, which affects sensitivity as well as selectivity and prevents multiplexed sensing. The main challenge to gain chirality-pure sensors has been to combine approaches to isolate specific SWCNTs and generic (bio)functionalization approaches. Here, we created chirality-pure SWCNT-based NIR biosensors for important analytes such as neurotransmitters and investigated the effect of SWCNT chirality/handedness as well as long-term stability and sensitivity. For this purpose, we used aqueous two-phase extraction (ATPE) to gain chirality-pure (6,5)-, (7,5)-, (9,4)-, and (7,6)-SWCNTs (emission at ∼990, 1040, 1115, and 1130 nm, respectively). An exchange of the surfactant sodium deoxycholate (DOC) to specific single-stranded (ss)DNA sequences yielded monochiral sensors for small analytes (dopamine, riboflavin, ascorbic acid, pH). DOC residues impaired sensitivity, and therefore substantial removal was necessary. The assembled monochiral (6,5)-SWCNTs were up to 10 times brighter than their nonpurified counterparts, and the ssDNA sequence determined the absolute fluorescence intensity as well as colloidal (long-term) stability and selectivity for the analytes. (GT)40-(6,5)-SWCNTs displayed the maximum fluorescence response to the neurotransmitter dopamine (+140%, Kd = 1.9 × 10-7 M) and a long-term stability of >14 days. The specific ssDNA sequences imparted selectivity to the analytes mostly independent of SWCNT chirality and handedness of (±) (6,5)-SWCNTs, which allowed a predictable design. Finally, multiple monochiral/single-color SWCNTs were combined to achieve ratiometric/multiplexed sensing of the important analytes dopamine, riboflavin, H2O2, and pH. In summary, we demonstrated the assembly, characteristics, and potential of monochiral (single-color) SWCNTs for NIR fluorescence sensing applications.
Collapse
Affiliation(s)
- Robert Nißler
- Institute of Physical Chemistry, Göttingen University, 37077 Göttingen, Germany.,Physical Chemistry II, Bochum University, 44801 Bochum, Germany
| | - Larissa Kurth
- Institute of Physical Chemistry, Göttingen University, 37077 Göttingen, Germany
| | - Han Li
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Alexander Spreinat
- Institute of Physical Chemistry, Göttingen University, 37077 Göttingen, Germany
| | - Ilyas Kuhlemann
- Institute of Physical Chemistry, Göttingen University, 37077 Göttingen, Germany
| | - Benjamin S Flavel
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Sebastian Kruss
- Institute of Physical Chemistry, Göttingen University, 37077 Göttingen, Germany.,Physical Chemistry II, Bochum University, 44801 Bochum, Germany.,Fraunhofer Institute for Microelectronic Circuits and Systems, 47057 Duisburg, Germany
| |
Collapse
|
44
|
Abstract
This perspective article describes the application opportunities of carbon nanotube (CNT) films for the energy sector. Up to date progress in this regard is illustrated with representative examples of a wide range of energy management and transformation studies employing CNT ensembles. Firstly, this paper features an overview of how such macroscopic networks from nanocarbon can be produced. Then, the capabilities for their application in specific energy-related scenarios are described. Among the highlighted cases are conductive coatings, charge storage devices, thermal interface materials, and actuators. The selected examples demonstrate how electrical, thermal, radiant, and mechanical energy can be converted from one form to another using such formulations based on CNTs. The article is concluded with a future outlook, which anticipates the next steps which the research community will take to bring these concepts closer to implementation.
Collapse
|
45
|
Zheng Y, Alizadehmojarad AA, Bachilo SM, Kolomeisky AB, Weisman RB. Dye Quenching of Carbon Nanotube Fluorescence Reveals Structure-Selective Coating Coverage. ACS NANO 2020; 14:12148-12158. [PMID: 32845604 DOI: 10.1021/acsnano.0c05720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Many properties and applications of single-wall carbon nanotubes (SWCNTs) depend strongly on the coatings that allow their suspension in aqueous media. We report that SWCNT fluorescence is quenched by reversible physisorption of dye molecules such as methylene blue, and that measurements of that quenching can be used to infer structure-specific exposures of the nanotube surface to the surrounding solution. SWCNTs suspended in single-stranded DNA oligomers show quenching dependent on the combination of nanotube structure and ssDNA base sequence. Several sequences are found to give notably high or low surface coverages for specific SWCNT species. These effects seem correlated with the selective recognitions used for DNA-based structural sorting of nanotubes. One notable example is that dye quenching of fluorescence from SWCNTs coated with the (ATT)4 base sequence is far stronger for one (7,5) enantiomer than for the other, showing that coating coverage is associated with the coating affinity difference reported previously for this system. Equilibrium modeling of quenching data has been used to extract parameters for comparative complexation constants and accessible surface areas. Further insights are obtained from molecular dynamics simulations, which give estimated contact areas between ssDNA and SWCNTs that correlate with experimentally inferred surface exposures and account for the enantiomeric discrimination of (ATT)4.
Collapse
Affiliation(s)
- Yu Zheng
- Department of Chemistry and the Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
| | - Ali A Alizadehmojarad
- Department of Chemistry and the Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
| | - Sergei M Bachilo
- Department of Chemistry and the Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
| | - Anatoly B Kolomeisky
- Department of Chemistry and the Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
| | - R Bruce Weisman
- Department of Chemistry and the Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
46
|
Podlesny B, Kumanek B, Borah A, Yamaguchi R, Shiraki T, Fujigaya T, Janas D. Thermoelectric Properties of Thin Films from Sorted Single-Walled Carbon Nanotubes. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3808. [PMID: 32872266 PMCID: PMC7504438 DOI: 10.3390/ma13173808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/18/2020] [Accepted: 08/27/2020] [Indexed: 01/25/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) remain one of the most promising materials of our times. One of the goals is to implement semiconducting and metallic SWCNTs in photonics and microelectronics, respectively. In this work, we demonstrated how such materials could be obtained from the parent material by using the aqueous two-phase extraction method (ATPE) at a large scale. We also developed a dedicated process on how to harvest the SWCNTs from the polymer matrices used to form the biphasic system. The technique is beneficial as it isolates SWCNTs with high purity while simultaneously maintaining their surface intact. To validate the utility of the metallic and semiconducting SWCNTs obtained this way, we transformed them into thin free-standing films and characterized their thermoelectric properties.
Collapse
Affiliation(s)
- Blazej Podlesny
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland; (B.P.); (B.K.)
| | - Bogumila Kumanek
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland; (B.P.); (B.K.)
| | - Angana Borah
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (A.B.); (R.Y.); (T.S.); (T.F.)
| | - Ryohei Yamaguchi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (A.B.); (R.Y.); (T.S.); (T.F.)
| | - Tomohiro Shiraki
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (A.B.); (R.Y.); (T.S.); (T.F.)
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan
| | - Tsuyohiko Fujigaya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (A.B.); (R.Y.); (T.S.); (T.F.)
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan
- Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Dawid Janas
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland; (B.P.); (B.K.)
| |
Collapse
|
47
|
Podlesny B, Shiraki T, Janas D. One-step sorting of single-walled carbon nanotubes using aqueous two-phase extraction in the presence of basic salts. Sci Rep 2020; 10:9250. [PMID: 32513999 PMCID: PMC7280227 DOI: 10.1038/s41598-020-66264-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/18/2020] [Indexed: 11/22/2022] Open
Abstract
We demonstrate a simple one-step approach to separate (6,5) CNTs from raw material by using the aqueous two-phase extraction method. To reach this goal, stable and inexpensive K2CO3, Na2CO3, Li2CO3, and K3PO4 basic salts are used as modulators of the differentiation process. Under the appropriate parameters, near monochiral fractions become available for straightforward harvesting. In parallel, we show that the isolation process is strongly affected not only by pH but by the inherent nature of the introduced chemical species as well. The results of our study also reveal that the commonly used ingredients of the biphasic system make a strong contribution to the course of the separation by having far from neutral pH values themselves.
Collapse
Affiliation(s)
- Blazej Podlesny
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland
| | - Tomohiro Shiraki
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, 819-0395, Fukuoka, Japan
| | - Dawid Janas
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland.
| |
Collapse
|
48
|
Karandish M, Fardindoost S, Pazuki G. A Novel Approach in Sorting Chirality Species of Single-Wall Carbon Nanotubes Based on an Aqueous Two-Phase System of Polymer-Salt. Sci Rep 2020; 10:2025. [PMID: 32029877 PMCID: PMC7005278 DOI: 10.1038/s41598-020-58993-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/23/2020] [Indexed: 11/08/2022] Open
Abstract
Sorting of distinct (n, m) chirality species of single-wall carbon nanotubes (SWCNTs) is essential for progress in technical applications in the field of electronic and optic devices. The purpose of this study is to investigate the isolation of single-wall carbon nanotubes based on diameters/chirality in a polymer-salt (polyethylene glycol and sodium citrate) aqueous two-phase system (ATPS) a substitute for common polymer-polymer (polyethylene glycol and dextran) system. The ATPS based on polymer-salt used instead of the common polymer-polymer system due to low viscosity, reduced surface tension, and lower cost of sodium citrate compared to the dextran. For this purpose, the ratio of concentrations of polyethylene glycol to sodium citrate as well as the effect of temperature on the isolation are both investigated and the selectivity and the recovery estimated approximately. The absorbance spectra from both top and bottom phases at different polymer and salt contents and at different temperatures show that by using this system in optimal conditions of polymer to salt ratio of 2:1 at temperature of 20 °C, a suitable separation of nanotubes with 85% yield of the chiral groups of 9 and 10 can be obtained.
Collapse
Affiliation(s)
- Marziyeh Karandish
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | | | - Gholamreza Pazuki
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| |
Collapse
|
49
|
Li H, Gordeev G, Garrity O, Peyyety NA, Selvasundaram PB, Dehm S, Krupke R, Cambré S, Wenseleers W, Reich S, Zheng M, Fagan JA, Flavel BS. Separation of Specific Single-Enantiomer Single-Wall Carbon Nanotubes in the Large-Diameter Regime. ACS NANO 2020; 14:948-963. [PMID: 31742998 PMCID: PMC6994058 DOI: 10.1021/acsnano.9b08244] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 11/19/2019] [Indexed: 05/06/2023]
Abstract
The enantiomer-level isolation of single-walled carbon nanotubes (SWCNTs) in high concentration and with high purity for nanotubes greater than 1.1 nm in diameter is demonstrated using a two-stage aqueous two-phase extraction (ATPE) technique. In total, five different nanotube species of ∼1.41 nm diameter are isolated, including both metallics and semiconductors. We characterize these populations by absorbance spectroscopy, circular dichroism spectroscopy, resonance Raman spectroscopy, and photoluminescence mapping, revealing and substantiating mod-dependent optical dependencies. Using knowledge of the competitive adsorption of surfactants to the SWCNTs that controls partitioning within the ATPE separation, we describe an advanced acid addition methodology that enables the fine control of the separation of these select nanotubes. Furthermore, we show that endohedral filling is a previously unrecognized but important factor to ensure a homogeneous starting material and further enhance the separation yield, with the best results for alkane-filled SWCNTs, followed by empty SWCNTs, with the intrinsic inhomogeneity of water-filled SWCNTs causing them to be worse for separations. Lastly, we demonstrate the potential use of these nanotubes in field-effect transistors.
Collapse
Affiliation(s)
- Han Li
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology, Karlsruhe 76021, Germany
| | - Georgy Gordeev
- Department
of Physics, Freie Universität Berlin, Berlin 14195, Germany
| | - Oisin Garrity
- Department
of Physics, Freie Universität Berlin, Berlin 14195, Germany
| | - Naga Anirudh Peyyety
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology, Karlsruhe 76021, Germany
- Institute
of Materials Science, Technische Universität
Darmstadt, Darmstadt 64287, Germany
| | - Pranauv Balaji Selvasundaram
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology, Karlsruhe 76021, Germany
- Institute
of Materials Science, Technische Universität
Darmstadt, Darmstadt 64287, Germany
| | - Simone Dehm
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology, Karlsruhe 76021, Germany
| | - Ralph Krupke
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology, Karlsruhe 76021, Germany
- Institute
of Materials Science, Technische Universität
Darmstadt, Darmstadt 64287, Germany
| | - Sofie Cambré
- Physics
Department, University of Antwerp, Antwerp 2020, Belgium
| | - Wim Wenseleers
- Physics
Department, University of Antwerp, Antwerp 2020, Belgium
| | - Stephanie Reich
- Department
of Physics, Freie Universität Berlin, Berlin 14195, Germany
| | - Ming Zheng
- Materials
Science and Engineering Division, National
Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Jeffrey A. Fagan
- Materials
Science and Engineering Division, National
Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Benjamin S. Flavel
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology, Karlsruhe 76021, Germany
| |
Collapse
|
50
|
Lyu M, Meany B, Yang J, Li Y, Zheng M. Toward Complete Resolution of DNA/Carbon Nanotube Hybrids by Aqueous Two-Phase Systems. J Am Chem Soc 2019; 141:20177-20186. [PMID: 31783712 DOI: 10.1021/jacs.9b09953] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Sequence-dependent interactions between DNA and single-wall carbon nanotubes (SWCNTs) are shown to provide resolution for the atomic-structure-based sorting of DNA-wrapped SWCNTs. Previous studies have demonstrated that aqueous two-phase (ATP) systems are very effective for sorting DNA-wrapped SWCNTs (DNA-SWCNTs). However, most separations have been carried out with a polyethylene glycol (PEG)/polyacrylamide (PAM) ATP system, which shows severe interfacial trapping for many DNA-SWCNT dispersions, resulting in significant material loss and limiting multistage extraction. Here, we report a study of several new ATP systems for sorting DNA-SWCNTs. We have developed a convenient method to explore these systems without knowledge of the corresponding phase diagram. We further show that the molecular weight of the polymer strongly affects the partition behavior and separation results for DNA-SWCNTs in PEG/dextran (DX) ATP systems. This leads to the identification of the PEG1.5kDa/DX250kDa ATP system as an effective vehicle for the chirality separation of DNA-SWCNTs. Additionally, this ATP system exhibits greatly reduced interfacial trapping, enabling for the first time continuous multistep sorting of four species of SWCNTs from a single dispersion. Enhanced stability of DNA-SWCNTs in the PEG1.5kDa/DX250kDa ATP system also allows us to investigate pH dependent sorting of SWCNTs wrapped by C-rich sequences. Our observations suggest that hydrogen bonding may form between the DNA bases at lower pH, enabling a more ordered wrapping structure on the SWCNTs and improvement in sorting (11,0). Together, these findings reveal that the new ATP system is suitable for searching DNA sequences leading toward more complete resolution of DNA-SWCNTs. A new concept of "resolving sequences", evolved from the old notion of "recognition sequences", is proposed to describe a broader range of behaviors of DNA/SWCNT interactions and sorting.
Collapse
Affiliation(s)
- Min Lyu
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Brendan Meany
- Materials Science and Engineering Division , National Institute of Standards and Technology , 100 Bureau Drive , Gaithersburg , Maryland 20899 , United States
| | - Juan Yang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Yan Li
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Ming Zheng
- Materials Science and Engineering Division , National Institute of Standards and Technology , 100 Bureau Drive , Gaithersburg , Maryland 20899 , United States
| |
Collapse
|