1
|
Butola M, Nainwal N. Non-Invasive Techniques of Nose to Brain Delivery Using Nanoparticulate Carriers: Hopes and Hurdles. AAPS PharmSciTech 2024; 25:256. [PMID: 39477829 DOI: 10.1208/s12249-024-02946-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/15/2024] [Indexed: 12/12/2024] Open
Abstract
Intranasal drug delivery route has emerged as a promising non-invasive method of administering drugs directly to the brain, bypassing the blood-brain barrier (BBB) and blood-cerebrospinal fluid barriers (BCSF). BBB and BCSF prevent many therapeutic molecules from entering the brain. Intranasal drug delivery can transport drugs from the nasal mucosa to the brain, to treat a variety of Central nervous system (CNS) diseases. Intranasal drug delivery provides advantages over invasive drug delivery techniques such as intrathecal or intraparenchymal which can cause infection. Many strategies, including nanocarriers liposomes, solid-lipid NPs, nano-emulsion, nanostructured lipid carriers, dendrimers, exosomes, metal NPs, nano micelles, and quantum dots, are effective in nose-to-brain drug transport. However, the biggest obstacles to the nose-to-brain delivery of drugs include mucociliary clearance, poor drug retention, enzymatic degradation, poor permeability, bioavailability, and naso-mucosal toxicity. The current review aims to compile current approaches for drug delivery to the CNS via the nose, focusing on nanotherapeutics and nasal devices. Along with a brief overview of the related pathways or mechanisms, it also covers the advantages of nasal drug delivery as a potential method of drug administration. It also offers several possibilities to improve drug penetration across the nasal barrier. This article overviews various in-vitro, ex-vivo, and in-vivo techniques to assess drug transport from the nasal epithelium into the brain.
Collapse
Affiliation(s)
- Mansi Butola
- Department of Pharmaceutics, Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248001, India
| | - Nidhi Nainwal
- Department of Pharmaceutics, Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248001, India.
| |
Collapse
|
2
|
Hu Y, Wang X, Niu Y, He K, Tang M. Application of quantum dots in brain diseases and their neurotoxic mechanism. NANOSCALE ADVANCES 2024; 6:3733-3746. [PMID: 39050959 PMCID: PMC11265591 DOI: 10.1039/d4na00028e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/01/2024] [Indexed: 07/27/2024]
Abstract
The early-stage diagnosis and therapy of brain diseases pose a persistent challenge in the field of biomedicine. Quantum dots (QDs), nano-luminescent materials known for their small size and fluorescence imaging capabilities, present promising capabilities for diagnosing, monitoring, and treating brain diseases. Although some investigations about QDs have been conducted in clinical trials, the concerns about the toxicity of QDs have continued. In addition, the lack of effective toxicity evaluation methods and systems and the difference between in vivo and in vitro toxicity evaluation hinder QDs application. The primary objective of this paper is to introduce the neurotoxic effects and mechanisms attributable to QDs. First, we elucidate the utilization of QDs in brain disorders. Second, we sketch out three pathways through which QDs traverse into brain tissue. Ultimately, expound upon the adverse consequences of QDs on the brain and the mechanism of neurotoxicity in depth. Finally, we provide a comprehensive summary and outlook on the potential development of quantum dots in neurotoxicity and the difficulties to be overcome.
Collapse
Affiliation(s)
- Yuanyuan Hu
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University Nanjing Jiangsu 210009 China
| | - Xiaoli Wang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University Nanjing Jiangsu 210009 China
| | - Yiru Niu
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University Nanjing Jiangsu 210009 China
| | - Keyu He
- Blood Transfusion Department, Clinical Laboratory, Zhongda Hospital, Southeast University Nanjing Jiangsu 210009 China
| | - Meng Tang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University Nanjing Jiangsu 210009 China
| |
Collapse
|
3
|
Akmal MH, Kalashgrani MY, Mousavi SM, Rahmanian V, Sharma N, Gholami A, Althomali RH, Rahman MM, Chiang WH. Recent advances in synergistic use of GQD-based hydrogels for bioimaging and drug delivery in cancer treatment. J Mater Chem B 2024; 12:5039-5060. [PMID: 38716622 DOI: 10.1039/d4tb00024b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Graphene quantum dot (GQD) integration into hydrogel matrices has become a viable approach for improving drug delivery and bioimaging in cancer treatment in recent years. Due to their distinct physicochemical characteristics, graphene quantum dots (GQDs) have attracted interest as adaptable nanomaterials for use in biomedicine. When incorporated into hydrogel frameworks, these nanomaterials exhibit enhanced stability, biocompatibility, and responsiveness to external stimuli. The synergistic pairing of hydrogels with GQDs has created new opportunities to tackle the problems related to drug delivery and bioimaging in cancer treatment. Bioimaging plays a pivotal role in the early detection and monitoring of cancer. GQD-based hydrogels, with their excellent photoluminescence properties, offer a superior platform for high-resolution imaging. The tunable fluorescence characteristics of GQDs enable real-time visualization of biological processes, facilitating the precise diagnosis and monitoring of cancer progression. Moreover, the drug delivery landscape has been significantly transformed by GQD-based hydrogels. Because hydrogels are porous, therapeutic compounds may be placed into them and released in a controlled environment. The large surface area and distinct interactions of graphene quantum dots (GQDs) with medicinal molecules boost loading capacity and release dynamics, ultimately improving therapeutic efficacy. Moreover, GQD-based hydrogels' stimulus-responsiveness allows for on-demand medication release, which minimizes adverse effects and improves therapeutic outcomes. The ability of GQD-based hydrogels to specifically target certain cancer cells makes them notable. Functionalizing GQDs with targeting ligands minimizes off-target effects and delivers therapeutic payloads to cancer cells selectively. Combined with imaging capabilities, this tailored drug delivery creates a theranostic platform for customized cancer treatment. In this study, the most recent advancements in the synergistic use of GQD-based hydrogels are reviewed, with particular attention to the potential revolution these materials might bring to the area of cancer theranostics.
Collapse
Affiliation(s)
- Muhammad Hussnain Akmal
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan.
| | | | - Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan.
| | - Vahid Rahmanian
- Department of Mechanical Engineering, Université du Québec à Trois-Rivières, Drummondville, QC, Canada
| | - Neha Sharma
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan.
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Raed H Althomali
- Department of Chemistry, College of Art and Science, Prince Sattam bin Abdulaziz University, Wadi Al-Dawasir 11991, Al Kharj, Saudi Arabia
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, P.O. Box 80203, Saudi Arabia.
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan.
| |
Collapse
|
4
|
Bandaru S, Palanivel M, Ravipati M, Wu WY, Zahid S, Halkarni S, Dalapati GK, Ghosh KK, Gulyás B, Padmanabhan P, Chakrabortty S. Highly Monodisperse, Size Tunable Glucosamine Conjugated CdSe Quantum Dots for Enhanced Cellular Uptake and Bioimaging. ACS OMEGA 2024; 9:7452-7462. [PMID: 38405529 PMCID: PMC10882589 DOI: 10.1021/acsomega.3c04962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/14/2023] [Accepted: 10/19/2023] [Indexed: 02/27/2024]
Abstract
Semiconductor quantum dots (QDs) have been used in a variety of applications ranging from optoelectronics to biodiagnostic fields, primarily due to their size dependent fluorescent nature. CdSe nanocrystals (NCs) are generally synthesized via a hot injection method in an organic solvent. However, such NCs are insoluble in water and therefore preclude the direct usage toward biological systems. Thus, the preparation of more biocompatible water-soluble QDs with a high photoluminescent quantum yield (PLQY) is extremely important for imaging applications. Although previous literature has detailed on the synthesis of CdSe NCs in water, they suffer from poor size distribution and very low PLQY. The complex formation mechanism of CdSe NCs in an aqueous environment adversely affects the quality of NCs due to the presence of OH-, H+, and H2O moieties. Here in this article, we have presented the facile hydrothermal approach to obtain size tunable (2.9-5.1 nm), aqueous CdSe NCs with a narrow emission profile having ∼40 nm fwhm with 56% PLQY. Physicochemical properties of the synthesized water-soluble CdSe NCs were studied with the help of UV-vis, PL, XRD, FTIR, XPS, and HR-TEM analysis. Furthermore, the surface of the synthesized CdSe NCs was modified with d-glucosamine via EDC and NHS coupling to obtain a stable, biocompatible bioimaging probe. Furthermore, we demonstrated that their successful bioconjugation with glucosamine could facilitate effective internalization into the cellular matrix.
Collapse
Affiliation(s)
- Shamili Bandaru
- Department
of Chemistry, SRM University AP—Andhra
Pradesh, Mangalagiri, Andhra Pradesh 522 240, India
| | - Mathangi Palanivel
- Lee
Kong Chian School of Medicine, Nanyang Technological
University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Manaswini Ravipati
- Department
of Nanotechnology, Acharya Nagarjuna University, Guntur, Andhra Pradesh 522 240, India
| | - Wen-Ya Wu
- Institute
of Materials Research and Engineering, Agency
for Science, Technology and Research, 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Syed Zahid
- Department
of Mechanical Engineering, SRM University-AP, Mangalagiri, Andhra Pradesh 522 240, India
| | | | - Goutam Kumar Dalapati
- Center
for
Nanofibers and Nanotechnology, Mechanical Engineering Department, National University of Singapore, Singapore 117576, Singapore
| | - Krishna Kanta Ghosh
- Lee
Kong Chian School of Medicine, Nanyang Technological
University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Balázs Gulyás
- Lee
Kong Chian School of Medicine, Nanyang Technological
University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore
- Cognitive
Neuroimaging Centre, Nanyang Technological
University, 59 Nanyang
Drive, Singapore 636921, Singapore
- Department
of Clinical Neuroscience, Karolinska Institute, 17176 Stockholm, Sweden
| | - Parasuraman Padmanabhan
- Lee
Kong Chian School of Medicine, Nanyang Technological
University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore
- Cognitive
Neuroimaging Centre, Nanyang Technological
University, 59 Nanyang
Drive, Singapore 636921, Singapore
| | - Sabyasachi Chakrabortty
- Department
of Chemistry, SRM University AP—Andhra
Pradesh, Mangalagiri, Andhra Pradesh 522 240, India
| |
Collapse
|
5
|
Abstract
Primary brain cancer or brain cancer is the overgrowth of abnormal or malignant cells in the brain or its nearby tissues that form unwanted masses called brain tumors. People with malignant brain tumors suffer a lot, and the expected life span of the patients after diagnosis is often only around 14 months, even with the most vigorous therapies. The blood-brain barrier (BBB) is the main barrier in the body that restricts the entry of potential chemotherapeutic agents into the brain. The chances of treatment failure or low therapeutic effects are some significant drawbacks of conventional treatment methods. However, recent advancements in nanotechnology have generated hope in cancer treatment. Nanotechnology has shown a vital role starting from the early detection, diagnosis, and treatment of cancer. These tiny nanomaterials have great potential to deliver drugs across the BBB. Beyond just drug delivery, nanomaterials can be simulated to generate fluorescence to detect tumors. The current Review discusses in detail the challenges of brain cancer treatment and the application of nanotechnology to overcome those challenges. The success of chemotherapeutic treatment or the surgical removal of tumors requires proper imaging. Nanomaterials can provide imaging and therapeutic benefits for cancer. The application of nanomaterials in the diagnosis and treatment of brain cancer is discussed in detail by reviewing past studies.
Collapse
Affiliation(s)
- Yogita Ale
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Prem Nagar, Dehradun, Uttarakhand 248007, India
| | - Nidhi Nainwal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Prem Nagar, Dehradun, Uttarakhand 248007, India
| |
Collapse
|
6
|
Norouzi S, Dashtian K, Amourizi F, Zare-Dorabei R. Red-emissive carbon nanostructure-anchored molecularly imprinted Er-BTC MOF: a biosensor for visual anthrax monitoring. Analyst 2023. [PMID: 37366050 DOI: 10.1039/d3an00865g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Investigating effective fluorescence strategies for real-time monitoring of dipicolinic acid (DPA) is of paramount importance in safeguarding human health. Herein, we present the design of a desirable red-emissive carbon nanostructure anchoring a molecularly imprinted Er-BTC MOF as a fluorescence biosensor for the visual determination of DPA. DPA is a biomarker of Bacillus anthracis, a subcategory of serious infectious diseases and bioweapons. We introduce a paper test strip sensitized with the aforementioned nanostructure, which is integrated with online UV excitation and smartphone digital imaging, resulting in a DPA signal-off sensing platform. The proposed fluorometric visual paper-based biosensor demonstrates wide linear ranges for DPA (10-125 μM) with a LOQ and LOD of 4.32 and 1.28 μM, respectively. The designed platform exhibits impressive emission properties and adaptable surface functional groups, which confirm its desirable selective sensing capabilities against other biological molecules and DPA isomers. As a proof of concept, DPA monitoring is successfully applied to real samples of tap water and urine. This integrated selective paper-based nano-biosensor, coupled with smartphone signal recording, holds great promise for state-of-the-art practical applications including fluorometric/colorimetric detection in healthcare and environmental monitoring, food safety analysis, and point-of-care testing.
Collapse
Affiliation(s)
- Solmaz Norouzi
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Kheibar Dashtian
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Fereshteh Amourizi
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Rouholah Zare-Dorabei
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| |
Collapse
|
7
|
Orientation of nanocarriers in subarachnoid space: A tweak in strategic transport for effective CNS delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Analysis of Nanomaterials on Biological and Environmental Systems and New Analytical Methods for Improved Detection. Int J Mol Sci 2022; 23:ijms23116331. [PMID: 35683010 PMCID: PMC9181213 DOI: 10.3390/ijms23116331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/28/2022] [Accepted: 06/03/2022] [Indexed: 11/30/2022] Open
Abstract
The advancing field of nanoscience has produced lower mass, smaller size, and expanded chemical composition nanoparticles over recent years. These new nanoparticles have challenged traditional analytical methods of qualification and quantification. Such advancements in nanoparticles and nanomaterials have captured the attention of toxicologists with concerns regarding the environment and human health impacts. Given that nanoparticles are only limited by size (1–100 nm), their chemical and physical characteristics can drastically change and thus alter their overall nanotoxicity in unpredictable ways. A significant limitation to the development of nanomaterials is that traditional regulatory and scientific methods used to assess the biological and environmental toxicity of chemicals do not generally apply to the assessment of nanomaterials. Significant research effort has been initiated, but much more is still needed to develop new and improved analytical measurement methods for detecting and quantitating nanomaterials in biological and environmental systems.
Collapse
|
9
|
Hersh AM, Alomari S, Tyler BM. Crossing the Blood-Brain Barrier: Advances in Nanoparticle Technology for Drug Delivery in Neuro-Oncology. Int J Mol Sci 2022; 23:4153. [PMID: 35456971 PMCID: PMC9032478 DOI: 10.3390/ijms23084153] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 12/10/2022] Open
Abstract
The blood-brain barrier (BBB) constitutes a microvascular network responsible for excluding most drugs from the brain. Treatment of brain tumors is limited by the impermeability of the BBB and, consequently, survival outcomes for malignant brain tumors remain poor. Nanoparticles (NPs) represent a potential solution to improve drug transport to brain tumors, given their small size and capacity to target tumor cells. Here, we review the unique physical and chemical properties of NPs that aid in BBB transport and discuss mechanisms of NP transport across the BBB, including paracellular transport, carrier-mediated transport, and adsorptive- and receptor-mediated transcytosis. The major types of NPs investigated for treatment of brain tumors are detailed, including polymeric NPs, liposomes, solid lipid NPs, dendrimers, metals, quantum dots, and nanogels. In addition to their role in drug delivery, NPs can be used as imaging contrast agents and can be conjugated with imaging probes to assist in visualizing tumors, demarcating lesion boundaries and margins, and monitoring drug delivery and treatment response. Multifunctional NPs can be designed that are capable of targeting tumors for both imaging and therapeutic purposes. Finally, limitations of NPs for brain tumor treatment are discussed.
Collapse
Affiliation(s)
| | | | - Betty M. Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.M.H.); (S.A.)
| |
Collapse
|
10
|
Yuan T, Gao L, Zhan W, Dini D. Effect of Particle Size and Surface Charge on Nanoparticles Diffusion in the Brain White Matter. Pharm Res 2022; 39:767-781. [PMID: 35314997 PMCID: PMC9090877 DOI: 10.1007/s11095-022-03222-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/02/2022] [Indexed: 11/27/2022]
Abstract
Purpose Brain disorders have become a serious problem for healthcare worldwide. Nanoparticle-based drugs are one of the emerging therapies and have shown great promise to treat brain diseases. Modifications on particle size and surface charge are two efficient ways to increase the transport efficiency of nanoparticles through brain-blood barrier; however, partly due to the high complexity of brain microstructure and limited visibility of Nanoparticles (NPs), our understanding of how these two modifications can affect the transport of NPs in the brain is insufficient. Methods In this study, a framework, which contains a stochastic geometric model of brain white matter (WM) and a mathematical particle tracing model, was developed to investigate the relationship between particle size/surface charge of the NPs and their effective diffusion coefficients (D) in WM. Results The predictive capabilities of this method have been validated using published experimental tests. For negatively charged NPs, both particle size and surface charge are positively correlated with D before reaching a size threshold. When Zeta potential (Zp) is less negative than -10 mV, the difference between NPs’ D in WM and pure interstitial fluid (IF) is limited. Conclusion A deeper understanding on the relationships between particle size/surface charge of NPs and their D in WM has been obtained. The results from this study and the developed modelling framework provide important tools for the development of nano-drugs and nano-carriers to cure brain diseases.
Collapse
Affiliation(s)
- Tian Yuan
- Department of Mechanical Engineering, Imperial College London, London, SW7 2AZ, UK.
| | - Ling Gao
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas Hospital, London, SE1 7EH, UK
| | - Wenbo Zhan
- School of Engineering, King's College, University of Aberdeen, Aberdeen, AB24 3UE, UK
| | - Daniele Dini
- Department of Mechanical Engineering, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
11
|
Abstract
Brain disease remains a significant health, social, and economic burden with a high failure rate of translation of therapeutics to the clinic. Nanotherapeutics have represented a promising area of technology investment to improve drug bioavailability and delivery to the brain, with several successes for nanotherapeutic use for central nervous system disease that are currently in the clinic. However, renewed and continued research on the treatment of neurological disorders is critically needed. We explore the challenges of drug delivery to the brain and the ways in which nanotherapeutics can overcome these challenges. We provide a summary and overview of general design principles that can be applied to nanotherapeutics for uptake and penetration in the brain. We next highlight remaining questions that limit the translational potential of nanotherapeutics for application in the clinic. Lastly, we provide recommendations for ongoing preclinical research to improve the overall success of nanotherapeutics against neurological disease. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Andrea Joseph
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - Elizabeth Nance
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA;
| |
Collapse
|
12
|
Thangam R, Paulmurugan R, Kang H. Functionalized Nanomaterials as Tailored Theranostic Agents in Brain Imaging. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:18. [PMID: 35009968 PMCID: PMC8746658 DOI: 10.3390/nano12010018] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022]
Abstract
Functionalized nanomaterials of various categories are essential for developing cancer nano-theranostics for brain diseases; however, some limitations exist in their effectiveness and clinical translation, such as toxicity, limited tumor penetration, and inability to cross blood-brain and blood-tumor barriers. Metal nanomaterials with functional fluorescent tags possess unique properties in improving their functional properties, including surface plasmon resonance (SPR), superparamagnetism, and photo/bioluminescence, which facilitates imaging applications in addition to their deliveries. Moreover, these multifunctional nanomaterials could be synthesized through various chemical modifications on their physical surfaces via attaching targeting peptides, fluorophores, and quantum dots (QD), which could improve the application of these nanomaterials by facilitating theranostic modalities. In addition to their inherent CT (Computed Tomography), MRI (Magnetic Resonance Imaging), PAI (Photo-acoustic imaging), and X-ray contrast imaging, various multifunctional nanoparticles with imaging probes serve as brain-targeted imaging candidates in several imaging modalities. The primary criteria of these functional nanomaterials for translational application to the brain must be zero toxicity. Moreover, the beneficial aspects of nano-theranostics of nanoparticles are their multifunctional systems proportioned towards personalized disease management via comprising diagnostic and therapeutic abilities in a single biodegradable nanomaterial. This review highlights the emerging aspects of engineered nanomaterials to reach and deliver therapeutics to the brain and how to improve this by adopting the imaging modalities for theranostic applications.
Collapse
Affiliation(s)
- Ramar Thangam
- Department of Materials Science and Engineering, College of Engineering, Korea University, Seoul 02841, Korea
- Institute for High Technology Materials and Devices, Korea University, Seoul 02841, Korea
| | - Ramasamy Paulmurugan
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford University, Palo Alto, CA 94304, USA;
- Molecular Imaging Program at Stanford, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Heemin Kang
- Department of Materials Science and Engineering, College of Engineering, Korea University, Seoul 02841, Korea
- Institute for High Technology Materials and Devices, Korea University, Seoul 02841, Korea
- Department of Biomicrosystem Technology, College of Engineering, Korea University, Seoul 02841, Korea
| |
Collapse
|
13
|
Seven ES, Seven YB, Zhou Y, Poudel-Sharma S, Diaz-Rucco JJ, Kirbas Cilingir E, Mitchell GS, Van Dyken JD, Leblanc RM. Crossing the blood-brain barrier with carbon dots: uptake mechanism and in vivo cargo delivery. NANOSCALE ADVANCES 2021; 3:3942-3953. [PMID: 34263140 PMCID: PMC8243484 DOI: 10.1039/d1na00145k] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/30/2021] [Indexed: 06/10/2023]
Abstract
The blood-brain barrier (BBB) is a major obstacle for drug delivery to the central nervous system (CNS) such that most therapeutics lack efficacy against brain tumors or neurological disorders due to their inability to cross the BBB. Therefore, developing new drug delivery platforms to facilitate drug transport to the CNS and understanding their mechanism of transport are crucial for the efficacy of therapeutics. Here, we report (i) carbon dots prepared from glucose and conjugated to fluorescein (GluCD-F) cross the BBB in zebrafish and rats without the need of an additional targeting ligand and (ii) uptake mechanism of GluCDs is glucose transporter-dependent in budding yeast. Glucose transporter-negative strain of yeast showed undetectable GluCD accumulation unlike the glucose transporter-positive yeast, suggesting glucose-transporter-dependent GluCD uptake. We tested GluCDs' ability to cross the BBB using both zebrafish and rat models. Following the injection to the heart, wild-type zebrafish showed GluCD-F accumulation in the central canal consistent with the transport of GluCD-F across the BBB. In rats, following intravenous administration, GluCD-F was observed in the CNS. GluCD-F was localized in the gray matter (e.g. ventral horn, dorsal horn, and middle grey) of the cervical spinal cord consistent with neuronal accumulation. Therefore, neuron targeting GluCDs hold tremendous potential as a drug delivery platform in neurodegenerative disease, traumatic injury, and malignancies of the CNS.
Collapse
Affiliation(s)
- Elif S Seven
- Department of Chemistry, University of Miami 1301 Memorial Dr. Coral Gables FL 33146 USA
| | - Yasin B Seven
- Department of Physical Therapy, University of Florida 101 Newell Dr. Gainesville FL 32603 USA
- McKnight Brain Institute, University of Florida 1149 Newell Dr. Gainesville FL 32610 USA
| | - Yiqun Zhou
- Department of Chemistry, University of Miami 1301 Memorial Dr. Coral Gables FL 33146 USA
| | - Sijan Poudel-Sharma
- Department of Biology, University of Miami 1301 Memorial Dr. Coral Gables FL 33146 USA
| | - Juan J Diaz-Rucco
- Department of Chemistry, University of Miami 1301 Memorial Dr. Coral Gables FL 33146 USA
| | - Emel Kirbas Cilingir
- Department of Chemistry, University of Miami 1301 Memorial Dr. Coral Gables FL 33146 USA
| | - Gordon S Mitchell
- Department of Physical Therapy, University of Florida 101 Newell Dr. Gainesville FL 32603 USA
- McKnight Brain Institute, University of Florida 1149 Newell Dr. Gainesville FL 32610 USA
| | - J David Van Dyken
- Department of Biology, University of Miami 1301 Memorial Dr. Coral Gables FL 33146 USA
| | - Roger M Leblanc
- Department of Chemistry, University of Miami 1301 Memorial Dr. Coral Gables FL 33146 USA
| |
Collapse
|
14
|
McKenna M, Shackelford D, Ferreira Pontes H, Ball B, Nance E. Multiple Particle Tracking Detects Changes in Brain Extracellular Matrix and Predicts Neurodevelopmental Age. ACS NANO 2021; 15:8559-8573. [PMID: 33969999 PMCID: PMC8281364 DOI: 10.1021/acsnano.1c00394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Brain extracellular matrix (ECM) structure mediates many aspects of neural development and function. Probing structural changes in brain ECM could thus provide insights into mechanisms of neurodevelopment, the loss of neural function in response to injury, and the detrimental effects of pathological aging and neurological disease. We demonstrate the ability to probe changes in brain ECM microstructure using multiple particle tracking (MPT). We performed MPT of colloidally stable polystyrene nanoparticles in organotypic rat brain slices collected from rats aged 14-70 days old. Our analysis revealed an inverse relationship between nanoparticle diffusive ability in the brain extracellular space and age. Additionally, the distribution of effective ECM pore sizes in the cortex shifted to smaller pores throughout development. We used the raw data and features extracted from nanoparticle trajectories to train a boosted decision tree capable of predicting chronological age with high accuracy. Collectively, this work demonstrates the utility of combining MPT with machine learning for measuring changes in brain ECM structure and predicting associated complex features such as chronological age. This will enable further understanding of the roles brain ECM play in development and aging and the specific mechanisms through which injuries cause aberrant neuronal function. Additionally, this approach has the potential to develop machine learning models capable of detecting the presence of injury or indicating the extent of injury based on changes in the brain microenvironment microstructure.
Collapse
Affiliation(s)
- Michael McKenna
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - David Shackelford
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Hugo Ferreira Pontes
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Brendan Ball
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Elizabeth Nance
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
- Department of Radiology, University of Washington, Seattle, Washington 98195, United States
- Center on Human Development and Disability, University of Washington, Seattle, Washington 98195, United States
- eScience Institute, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
15
|
Liang Y, Zhang T, Tang M. Toxicity of quantum dots on target organs and immune system. J Appl Toxicol 2021; 42:17-40. [PMID: 33973249 DOI: 10.1002/jat.4180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 11/06/2022]
Abstract
Quantum dots (QDs), due to their superior luminous properties, have been proven to be a very promising biological probe, which can be used as a candidate material for clinical applications. The toxicity of QDs in the environment and biological systems has caused widespread concern in the nanosphere, but their immune toxicity and their impact on the immune system are still relatively unknown. At present, the research on the toxicity of QDs is mainly focused on in vitro models, but few have systematically evaluated their adverse effects on target organs. Animal studies have shown that QDs can be accumulated in various organs due to their main exposure routes, thereby posing a potential threat to major organs. This review briefly describes general characteristics and the wide medical applications of QDs and focuses on the adverse effects of QDs on major target organs, such as liver, lung, kidney, brain, and spleen, after acute and chronic exposure. QDs mainly cause changes in the corresponding indicators of target organs, such as oxidative damage, and in severe cases cause hyperemia, tissue necrosis, and even death. In addition to causing direct damage to target organs, QDs can also cause a large number of immune cells to accumulate and cause inflammatory reactions when causing damage to other major organs. Whether it is to avoid the risk of people contacting QDs in production and life, or to realize the clinical applications of QDs, is very essential to conduct systematic in vivo toxicity assessment of QDs.
Collapse
Affiliation(s)
- Ying Liang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Tao Zhang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
16
|
Wang Z, Tang M. The cytotoxicity of core-shell or non-shell structure quantum dots and reflection on environmental friendly: A review. ENVIRONMENTAL RESEARCH 2021; 194:110593. [PMID: 33352186 DOI: 10.1016/j.envres.2020.110593] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/19/2020] [Accepted: 12/02/2020] [Indexed: 05/23/2023]
Abstract
Quantum dots are widely applicated into bioindustry and research owing to its superior properties such as broad excitation spectra, narrow bandwidth emission spectra and high resistance to photo-bleaching. However, the toxicity of quantum dots should not be underestimated and aroused widespread concern. The surface properties and size of quantum dots are critical relevant properties on toxicity. Then, the core/shell structure becomes one common way to affect the activity of quantum dots such as enhance biocompatibility and stability. Except those toxicity it induced, the problem it brought into the environment such as the degradation of quantum dot similarly becomes a hot issue. This review initially took a brief scan of current research on the cytotoxicity of QDs and the mechanism behind that over the past five years. Mainly discussion concentrated on the diversity of structure on quantum dots whether played a key role on the cytotoxicty of quantum dots. It also discussed the role of different shells with metal or nonmetal cores and the influence on the environment.
Collapse
Affiliation(s)
- Zhihui Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China.
| |
Collapse
|
17
|
Jampilek J, Kralova K. Advances in Drug Delivery Nanosystems Using Graphene-Based Materials and Carbon Nanotubes. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1059. [PMID: 33668271 PMCID: PMC7956197 DOI: 10.3390/ma14051059] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
Abstract
Carbon is one of the most abundant elements on Earth. In addition to the well-known crystallographic modifications such as graphite and diamond, other allotropic carbon modifications such as graphene-based nanomaterials and carbon nanotubes have recently come to the fore. These carbon nanomaterials can be designed to help deliver or target drugs more efficiently and to innovate therapeutic approaches, especially for cancer treatment, but also for the development of new diagnostic agents for malignancies and are expected to help combine molecular imaging for diagnosis with therapies. This paper summarizes the latest designed drug delivery nanosystems based on graphene, graphene quantum dots, graphene oxide, reduced graphene oxide and carbon nanotubes, mainly for anticancer therapy.
Collapse
Affiliation(s)
- Josef Jampilek
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10 Bratislava, Slovakia
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia;
| |
Collapse
|
18
|
Sun H, Wang M, Lei C, Li R. Cell wall: An important medium regulating the aggregation of quantum dots in maize (Zea mays L.) seedlings. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123960. [PMID: 33265003 DOI: 10.1016/j.jhazmat.2020.123960] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/02/2020] [Accepted: 09/10/2020] [Indexed: 06/12/2023]
Abstract
Quantum dots (QDs) find various applications in many fields, leading to increasing concerns regarding their uptake and subsequent interaction with plant body. Cell wall (CW), serving as a first target place that interacts with xenobiotic substances into plant body, its role in regulating the QDs cellular uptake needs to be explored. In the present study, maize (Zea mays L.) seedlings were hydroponically exposed to PEG-COOH-CdS/ZnS QDs (QDs-PEG-COOH) and MPA-CdS/ZnS QDs (QDs-MPA) functionalized with negatively charged and neutral coatings, respectively. Uptake rate of QDs-PEG-COOH was approximately 3.5 times lower than that of QDs-MPA due to electrostatic repulsion to the negatively charged root CW. Both types of QDs had obvious aggregation on surfaces of taproot, lateral root and fibrous root, and QDs-MPA aggregates were approximately 1.8 times larger than QDs-PEG-COOH aggregates. The strong hydrogen bond formed by hydroxyl group in cellulose of CW and carboxyl group on surface coatings of QDs-PEG-COOH constituted the key mechanism for QDs-PEG-COOH aggregation, while conjugated C˭C chains between lignin and QDs-MPA dominated the occurrences of QDs-MPA aggregation. Results of this work highlight the importance of plant CW in regulating uptake rate and aggregation of QDs, potentially limiting their internalization into plant body and introduction into food webs.
Collapse
Affiliation(s)
- Haifeng Sun
- College of Environment and Resource, Shanxi University, Taiyuan 030006, PR China; Key Laboratory of Soil Environment and Nutrient Resources of Shanxi Province, Taiyuan 030031, PR China
| | - Meng Wang
- College of Environment and Resource, Shanxi University, Taiyuan 030006, PR China
| | - Chunli Lei
- College of Environment and Resource, Shanxi University, Taiyuan 030006, PR China
| | - Ruilong Li
- School of Marine Sciences, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
19
|
CdSe/ZnS Core-Shell-Type Quantum Dot Nanoparticles Disrupt the Cellular Homeostasis in Cellular Blood-Brain Barrier Models. Int J Mol Sci 2021; 22:ijms22031068. [PMID: 33499077 PMCID: PMC7866238 DOI: 10.3390/ijms22031068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 12/16/2022] Open
Abstract
Two immortalized brain microvascular endothelial cell lines (hCMEC/D3 and RBE4, of human and rat origin, respectively) were applied as an in vitro model of cellular elements of the blood–brain barrier in a nanotoxicological study. We evaluated the impact of CdSe/ZnS core-shell-type quantum dot nanoparticles on cellular homeostasis, using gold nanoparticles as a largely bioorthogonal control. While the investigated nanoparticles had surprisingly negligible acute cytotoxicity in the evaluated models, a multi-faceted study of barrier-related phenotypes and cell condition revealed a complex pattern of homeostasis disruption. Interestingly, some features of the paracellular barrier phenotype (transendothelial electrical resistance, tight junction protein gene expression) were improved by exposure to nanoparticles in a potential hormetic mechanism. However, mitochondrial potential and antioxidant defences largely collapsed under these conditions, paralleled by a strong pro-apoptotic shift in a significant proportion of cells (evidenced by apoptotic protein gene expression, chromosomal DNA fragmentation, and membrane phosphatidylserine exposure). Taken together, our results suggest a reactive oxygen species-mediated cellular mechanism of blood–brain barrier damage by quantum dots, which may be toxicologically significant in the face of increasing human exposure to this type of nanoparticles, both intended (in medical applications) and more often unintended (from consumer goods-derived environmental pollution).
Collapse
|
20
|
Kubicek-Sutherland JZ, Makarov NS, Stromberg ZR, Lenz KD, Castañeda C, Mercer AN, Mukundan H, McDaniel H, Ramasamy K. Exploring the Biocompatibility of Near-IR CuInSe xS 2-x/ZnS Quantum Dots for Deep-Tissue Bioimaging. ACS APPLIED BIO MATERIALS 2020; 3:8567-8574. [PMID: 35019627 DOI: 10.1021/acsabm.0c00939] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Near-infrared (NIR) emitting quantum dots (QDs) with emission in the biological transparency windows (NIR-I: 650-950 nm and NIR-II: 1000-1350 nm) are promising candidates for deep-tissue bioimaging. However, they typically contain toxic heavy metals such as cadmium, mercury, arsenic, or lead. We report on the biocompatibility of high brightness CuInSexS2-x/ZnS (CISeS/ZnS) QDs with a tunable emission covering the visible to NIR (550-1300 nm peak emission) and quantify the transmission of their photoluminescence through multiple biological components to evaluate their use as imaging agents. In general, CISeS/ZnS QDs were less cytotoxic to mouse fibroblast cells when compared with commercial CdSe/ZnS and InP/ZnS QDs. Surprisingly, InP/ZnS QDs significantly upregulated expression of apoptotic genes in mouse fibroblast cells, while cells exposed to CISeS/ZnS QDs did not. These findings provide insight into biocompatibility and cytotoxicity of CISeS/ZnS QDs that could be used for bioimaging.
Collapse
Affiliation(s)
- Jessica Z Kubicek-Sutherland
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | | | - Zachary R Stromberg
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Kiersten D Lenz
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | | | - Amanda N Mercer
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Harshini Mukundan
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | | | | |
Collapse
|
21
|
Helmbrecht H, Joseph A, McKenna M, Zhang M, Nance E. Governing Transport Principles for Nanotherapeutic Application in the Brain. Curr Opin Chem Eng 2020; 30:112-119. [PMID: 33304774 DOI: 10.1016/j.coche.2020.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neurological diseases account for a significant portion of the global disease burden. While research efforts have identified potential drugs or drug targets for neurological diseases, most therapeutic platforms are still ineffective at reaching the target location selectively and with high yield. Restricted transport, including passage across the blood-brain barrier, through the brain parenchyma, and into specific cells, is a major cause of ineffective therapeutic delivery. However, nanotechnology is a promising, tailorable platform for overcoming these transport barriers and improving therapeutic delivery to the brain. We provide a transport-oriented analysis of nanotechnology's ability to navigate these transport barriers in the brain. We also provide an opinion on the need for technology development for increasing our capacity to characterize and quantify nanoparticle passage through each transport barrier. Finally, we highlight the importance of incorporating the effect of disease, metabolic state, and regional dependencies to better understand transport of nanotherapeutics in the brain.
Collapse
Affiliation(s)
- Hawley Helmbrecht
- Department of Chemical Engineering, University of Washington, Seattle WA 98195
| | - Andrea Joseph
- Department of Chemical Engineering, University of Washington, Seattle WA 98195
| | - Michael McKenna
- Department of Chemical Engineering, University of Washington, Seattle WA 98195
| | - Mengying Zhang
- Molecular Engineering and Sciences Institute, University of Washington, Seattle WA 98105
| | - Elizabeth Nance
- Department of Chemical Engineering, University of Washington, Seattle WA 98195.,Molecular Engineering and Sciences Institute, University of Washington, Seattle WA 98105.,Department of Radiology, University of Washington, Seattle WA 98195.,eScience Institute, University of Washington, Seattle WA 98195
| |
Collapse
|
22
|
Badıllı U, Mollarasouli F, Bakirhan NK, Ozkan Y, Ozkan SA. Role of quantum dots in pharmaceutical and biomedical analysis, and its application in drug delivery. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
23
|
Tosat-Bitrián C, Palomo V. CdSe quantum dots evaluation in primary cellular models or tissues derived from patients. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 30:102299. [PMID: 32931928 DOI: 10.1016/j.nano.2020.102299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 12/18/2022]
Abstract
In recent years quantum dots (QDs) have risen as useful luminescent nanoparticles with multiple applications ranging from laser, image displays and biomedical applications. Here we review and discuss the studies of these nanoparticles in patient derived cellular samples or tissues, including cellular models from iPSCs from patients, biopsied and post-mortem tissue. QD-based multiplexed imaging has been proved to overcome most of the major drawbacks of conventional techniques, exhibiting higher sensitivity, reliability, accuracy and simultaneous labeling of key biomarkers. In this sense, QDs are very promising tools to be further used in clinical applications including diagnosis and therapy approaches. Analyzing the possibilities of these materials in these biological samples gives an overview of the future applications of the nanoparticles in models closer to patients and their specific disease.
Collapse
Affiliation(s)
| | - Valle Palomo
- Centro de Investigaciones Biológicas Margarita Salas CSIC, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, Madrid, Spain.
| |
Collapse
|
24
|
Joseph A, Liao R, Zhang M, Helmbrecht H, McKenna M, Filteau JR, Nance E. Nanoparticle-microglial interaction in the ischemic brain is modulated by injury duration and treatment. Bioeng Transl Med 2020; 5:e10175. [PMID: 33005740 PMCID: PMC7510458 DOI: 10.1002/btm2.10175] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022] Open
Abstract
Cerebral ischemia is a major cause of death in both neonates and adults, and currently has no cure. Nanotechnology represents one promising area of therapeutic development for cerebral ischemia due to the ability of nanoparticles to overcome biological barriers in the brain. ex vivo injury models have emerged as a high-throughput alternative that can recapitulate disease processes and enable nanoscale probing of the brain microenvironment. In this study, we used oxygen-glucose deprivation (OGD) to model ischemic injury and studied nanoparticle interaction with microglia, resident immune cells in the brain that are of increasing interest for therapeutic delivery. By measuring cell death and glutathione production, we evaluated the effect of OGD exposure time and treatment with azithromycin (AZ) on slice health. We found a robust injury response with 0.5 hr of OGD exposure and effective treatment after immediate application of AZ. We observed an OGD-induced shift in microglial morphology toward increased heterogeneity and circularity, and a decrease in microglial number, which was reversed after treatment. OGD enhanced diffusion of polystyrene-poly(ethylene glycol) (PS-PEG) nanoparticles, improving transport and ability to reach target cells. While microglial uptake of dendrimers or quantum dots (QDs) was not enhanced after injury, internalization of PS-PEG was significantly increased. For PS-PEG, AZ treatment restored microglial uptake to normal control levels. Our results suggest that different nanoparticle platforms should be carefully screened before application and upon doing so; disease-mediated changes in the brain microenvironment can be leveraged by nanoscale drug delivery devices for enhanced cell interaction.
Collapse
Affiliation(s)
- Andrea Joseph
- Department of Chemical EngineeringUniversity of WashingtonSeattleWashingtonUSA
| | - Rick Liao
- Department of Chemical EngineeringUniversity of WashingtonSeattleWashingtonUSA
| | - Mengying Zhang
- Molecular Engineering and Sciences InstituteUniversity of WashingtonSeattleWashingtonUSA
| | - Hawley Helmbrecht
- Department of Chemical EngineeringUniversity of WashingtonSeattleWashingtonUSA
| | - Michael McKenna
- Department of Chemical EngineeringUniversity of WashingtonSeattleWashingtonUSA
| | - Jeremy R. Filteau
- Department of Chemical EngineeringUniversity of WashingtonSeattleWashingtonUSA
| | - Elizabeth Nance
- Department of Chemical EngineeringUniversity of WashingtonSeattleWashingtonUSA
- Molecular Engineering and Sciences InstituteUniversity of WashingtonSeattleWashingtonUSA
- Department of RadiologyUniversity of WashingtonSeattleWashingtonUSA
- eScience InstituteUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
25
|
Nanda SS, Kim M, Yoo SJ, Papaefthymiou GC, Yi DK. Monolayer Quantum-Dot Based Light-Sensor by a Photo-Electrochemical Mechanism. MICROMACHINES 2020; 11:E817. [PMID: 32872368 PMCID: PMC7570193 DOI: 10.3390/mi11090817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/23/2020] [Accepted: 08/27/2020] [Indexed: 11/18/2022]
Abstract
Monolayer nanocrystal-based light sensors with cadmium-selenium thin film electrodes have been investigated using electrochemical cyclic voltammetry tests. An indium tin oxide electrode system, with a monolayer of homogeneously deposited cadmium-selenium quantum dots was proven to work as a photo-sensor via an electrochemical cell mechanism; it was possible to tune current densities under light illumination. Electrochemical tests on a quantum dot capacitor, using different sized (red, yellow and green) cadmium-selenium quantum dots on indium tin oxide substrates, showed typical capacitive behavior of cyclic voltammetry curves in 2M H2SO4 aqueous solutions. This arrangement provides a beneficial effect in, both, charge separation and light sensory characteristics. Importantly, the photocurrent density depended on quantum yield rendering tunable photo-sensing properties.
Collapse
Affiliation(s)
- Sitansu Sekhar Nanda
- Department of Chemistry, Myongji University, Yongin-si 17058, Korea; (S.S.N.); (M.K.)
| | - Minjik Kim
- Department of Chemistry, Myongji University, Yongin-si 17058, Korea; (S.S.N.); (M.K.)
| | - Sung Jong Yoo
- Center for Hydrogen·Fuel Cell Research, Korea Institute of Science and Technology, Hwarang-ro, 14-gil, Seoul 02792, Korea;
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | | | - Dong Kee Yi
- Department of Chemistry, Myongji University, Yongin-si 17058, Korea; (S.S.N.); (M.K.)
| |
Collapse
|
26
|
Zhang M, Vojtech L, Ye Z, Hladik F, Nance E. Quantum Dot Labeling and Visualization of Extracellular Vesicles. ACS APPLIED NANO MATERIALS 2020; 3:7211-7222. [PMID: 34568770 PMCID: PMC8460064 DOI: 10.1021/acsanm.0c01553] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Extracellular vesicles (EVs) are important mediators of intercellular communication. Their role in disease processes, uncovered mostly over the last two decades, makes them potential biomarkers, leading to a need to fundamentally understand EV biology. Direct visualization of EVs can provide insights into EV behavior, but current labeling techniques are often restricted by false-positive signals and rapid photobleaching. Hence, we developed a method of labeling EVs through conjugation with quantum dots (QDs)-high photoluminescent nanosized semi-conductors-using click chemistry. We showed that QD-EV conjugation could be tailored by altering QD to EV ratio or by using a catalyst. This conjugation chemistry was stable in a biological environment and upon storage for up to a week. Using size-exclusion chromatography, QD-EV conjugates could be separated from unconjugated QDs, enabling EV-specific signal detection. We demonstrate that these QD-EV conjugates can be live- and fixed-imaged in high resolution on cells and in tissue sheets, and the conjugates have better photostability compared with the commonly used EV dye DiI. We labeled two distinct EV populations: human semen EVs (sEVs) from fresh semen samples donated by healthy volunteers and brain EVs (bEVs) from excised rat brain tissues. We visualized QD-sEVs in epithelial sheets isolated from human vaginal mucosa and time-lapse imaged QD-bEV interactions with microglial BV-2 cells. The development of the QD-EV conjugate will benefit the study of EV localization, movement, and function and accelerate their potential use as biomarkers, therapeutic agents, or drug-delivery vehicles.
Collapse
Affiliation(s)
- Mengying Zhang
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195-1652, United States
| | - Lucia Vojtech
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington 98195-6460, United States
| | - Ziming Ye
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195-1750, United States
| | - Florian Hladik
- Department of Obstetrics and Gynecology and Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington 98195-6460, United States
| | - Elizabeth Nance
- Molecular Engineering and Sciences Institute, Department of Chemical Engineering, Center on Human Development and Disability, and Department of Radiology, University of Washington, Seattle, Washington 98195-1652, United States
| |
Collapse
|
27
|
Qiao LL, Yao WJ, Zhang ZQ, Yang X, Zhao MX. The Biological Activity Research of the Nano-Drugs Based on 5-Fluorouracil-Modified Quantum Dots. Int J Nanomedicine 2020; 15:2765-2776. [PMID: 32425520 PMCID: PMC7186888 DOI: 10.2147/ijn.s244693] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/01/2020] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Over the past decades, quantum dots (QDs) have shown the broad application in diverse fields, especially in intracellular probing and drug delivery, due to their high fluorescence intensity, long fluorescence lifetime, strong light-resistant bleaching ability, and strong light stability. Therefore, we explore a kind of therapeutic potential against cancer with fluorescent imaging. METHODS In the current study, a new type of QDs (QDs@L-Cys-TAEA-5-FUA) capped with L-cysteine (L-Cys) and tris(2-aminoethyl)amine (TAEA) ligands, and conjugated with 5-fluorouracil-1-acetic acid (5-FUA) has been synthesized. Ligands were characterized by electrospray ionization mass spectrometry and H-nuclear magnetic resonance (1H NMR) spectroscopy. The modified QDs were characterized by transmission electron microscopy, ultraviolet and visible spectrophotometry (UV-Vis), and fluorescence microscopy. And the biological activity of modified QDs was explored by using MTT assay with HeLa, SMMC-7721 HepG2, and QSG-7701 cells. The fluorescence imaging of modified QDs was obtained by fluorescence microscope. RESULTS The modified QDs are of controllable sizes in the range of 4-5 nm and they possess strong optical emission properties. UV-Vis and fluorescence spectra demonstrated that the L-Cys-TAEA-5-FUA was successfully incorporated into QD nanoparticles. The MTT results demonstrated that L-Cys-TAEA-5-FUA modified QDs could efficiently inhibit the proliferation of cancer cells as compared to the normal cells, illustrating their antitumor efficacy. The mechanistic studies revealed that the effective internalization of modified QDs inside cancer cells could inhibit their proliferation, through excessive production of intracellular reactive oxygen species, leading to apoptosis process. CONCLUSION The present study suggests that modified QDs can enter cells efficiently and could be employed as therapeutic agents for the treatment of various types of cancers with fluorescent imaging.
Collapse
Affiliation(s)
- Lu-Lu Qiao
- Key Laboratory of Natural Medicine and Immune Engineering of Henan Province, Henan University, Kaifeng475004, People’s Republic of China
| | - Wen-Jing Yao
- Key Laboratory of Natural Medicine and Immune Engineering of Henan Province, Henan University, Kaifeng475004, People’s Republic of China
| | - Zhi-Qiang Zhang
- Key Laboratory of Natural Medicine and Immune Engineering of Henan Province, Henan University, Kaifeng475004, People’s Republic of China
| | - Xiaojing Yang
- Key Laboratory of Natural Medicine and Immune Engineering of Henan Province, Henan University, Kaifeng475004, People’s Republic of China
| | - Mei-Xia Zhao
- Key Laboratory of Natural Medicine and Immune Engineering of Henan Province, Henan University, Kaifeng475004, People’s Republic of China
| |
Collapse
|
28
|
Thal LB, Mann VR, Sprinzen D, McBride JR, Reid KR, Tomlinson ID, McMahon DG, Cohen BE, Rosenthal SJ. Ligand-conjugated quantum dots for fast sub-diffraction protein tracking in acute brain slices. Biomater Sci 2020; 8:837-845. [PMID: 31790090 PMCID: PMC7002256 DOI: 10.1039/c9bm01629e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Semiconductor quantum dots (QDs) have demonstrated utility in long-term single particle tracking of membrane proteins in live cells in culture. To extend the superior optical properties of QDs to more physiologically relevant cell platforms, such as acute brain slices, we examine the photophysics of compact ligand-conjugated CdSe/CdS QDs using both ensemble and single particle analysis in brain tissue media. We find that symmetric core passivation is critical for both photostability in oxygenated media and for prolonged single particle imaging in brain slices. We then demonstrate the utility of these QDs by imaging single dopamine transporters in acute brain slices, achieving 20 nm localization precision at 10 Hz frame rates. These findings detail design requirements needed for new QD probes in complex living environments, and open the door to physiologically relevant studies that capture the utility of QD probes in acute brain slices.
Collapse
Affiliation(s)
- Lucas B Thal
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sinha R, Purkayastha P. Daunomycin delivery by ultrasmall graphene quantum dots to DNA duplexes: understanding the dynamics by resonance energy transfer. J Mater Chem B 2020; 8:9756-9763. [DOI: 10.1039/d0tb01831g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Crystalline graphene quantum dots are shown to carry daunomycin to DNA via π–π stacking with the planar anthracenyl moiety of the drug.
Collapse
Affiliation(s)
- Riya Sinha
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER) Kolkata
- Mohanpur 741246
- India
| | - Pradipta Purkayastha
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER) Kolkata
- Mohanpur 741246
- India
| |
Collapse
|