1
|
Mukai M, Kobayashi T, Sato M, Asada J, Ueno K, Furukawa T, Maruo S. Bubble Printing of Liquid Metal Colloidal Particles for Conductive Patterns. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1665. [PMID: 39453001 PMCID: PMC11510549 DOI: 10.3390/nano14201665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024]
Abstract
Bubble printing is a patterning method in which particles are accumulated by the convection of bubbles generated by laser focusing. It is attracting attention as a method that enables the high-speed, high-precision patterning of various micro/nanoparticles. Although the bubble printing method is used for metallic particles and organic particles, most reports have focused on the patterning of solid particles and not on the patterning of liquid particles. In this study, liquid metal wiring patterns were fabricated using a bubble printing method in which eutectic gallium‒indium alloy (EGaIn) colloidal particles (≈diameter 0.7 µm) were fixed on a glass substrate by generating microbubbles through heat generation by focusing a femtosecond laser beam on the EGaIn colloidal particles. The wiring was then made conductive by replacing gallium oxide, which served as a resistance layer on the surface of the EGaIn colloidal particles, with silver via galvanic replacement. Fine continuous lines of liquid metal colloids with a line width of 3.4 µm were drawn by reducing the laser power. Liquid metal wiring with a conductivity of ≈1.5 × 105 S/m was formed on a glass substrate. It was confirmed that the conductivity remained consistent even when the glass substrate was bent to a curvature of 0.02 m-1.
Collapse
Affiliation(s)
- Masaru Mukai
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan; (M.M.); (K.U.)
| | - Tatsuya Kobayashi
- Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Mitsuki Sato
- Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Juri Asada
- Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Kazuhide Ueno
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan; (M.M.); (K.U.)
| | - Taichi Furukawa
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan; (M.M.); (K.U.)
| | - Shoji Maruo
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan; (M.M.); (K.U.)
| |
Collapse
|
2
|
Ye S, Chen X, Sun X, Patel SB, Wu Y, Singler TJ, Zhang P, Zhou G. Oxidation-Induced Oxide Shell Rupture and Phase Separation in Eutectic Gallium-Indium Nanoparticles. ACS NANO 2024; 18:25107-25117. [PMID: 39190644 DOI: 10.1021/acsnano.4c06764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Eutectic gallium-indium (EGaIn), a room-temperature liquid metal, has garnered significant attention for its applications in soft electronics, multifunctional materials, energy engineering and drug delivery. A key factor influencing these diverse applications is the spontaneous formation of a native passivating oxide shell that not only encapsulates the liquid metal but also alters the properties from the bulk counterpart. Using environmental scanning transmission electron microscopy, we report in situ observations of the oxidation of EGaIn nanoparticles by ambient air under high-energy electron beam irradiation. Our findings demonstrate that uneven oxide shell growth, driven by inward diffusion of adsorbed O species, creates unbalanced stresses. This compels the liquid metal to deform toward regions with slower oxide growth, resulting in shell rupture and allowing the liquid metal core to flow out. This process initiates top-down self-similar replication of the core-shell liquid metal nanoparticles, causing larger particles to break down into smaller particles. Additionally, internal oxidation triggers phase separation within the liquid core, ultimately leading to the pulverization of the liquid metal into finer solid particles rich in indium. These mechanistic insights into the oxidation behavior of the liquid metal hold practical implications for leveraging this process to reconfigure EGaIn nanoparticles for various applications.
Collapse
Affiliation(s)
- Shuonan Ye
- Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Xiaobo Chen
- Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Xianhu Sun
- Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Shyam Bharatkumar Patel
- Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Yupeng Wu
- Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Timothy J Singler
- Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Pu Zhang
- Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Guangwen Zhou
- Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York at Binghamton, Binghamton, New York 13902, United States
| |
Collapse
|
3
|
Kim JH, Kim S, Dickey MD, So JH, Koo HJ. Interface of gallium-based liquid metals: oxide skin, wetting, and applications. NANOSCALE HORIZONS 2024; 9:1099-1119. [PMID: 38716614 DOI: 10.1039/d4nh00067f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Gallium-based liquid metals (GaLMs) are promising for a variety of applications-especially as a component material for soft devices-due to their fluidic nature, low toxicity and reactivity, and high electrical and thermal conductivity comparable to solid counterparts. Understanding the interfacial properties and behaviors of GaLMs in different environments is crucial for most applications. When exposed to air or water, GaLMs form a gallium oxide layer with nanoscale thickness. This "oxide nano-skin" passivates the metal surface and allows for the formation of stable microstructures and films despite the high-surface tension of liquid metal. The oxide skin easily adheres to most smooth surfaces. While it enables effective printing and patterning of the GaLMs, it can also make the metals challenging to handle because it adheres to most surfaces. The oxide also affects the interfacial electrical resistance of the metals. Its formation, thickness, and composition can be chemically or electrochemically controlled, altering the physical, chemical, and electrical properties of the metal interface. Without the oxide, GaLMs wet metallic surfaces but do not wet non-metallic substrates such as polymers. The topography of the underlying surface further influences the wetting characteristics of the metals. This review outlines the interfacial attributes of GaLMs in air, water, and other environments and discusses relevant applications based on interfacial engineering. The effect of surface topography on the wetting behaviors of the GaLMs is also discussed. Finally, we suggest important research topics for a better understanding of the GaLMs interface.
Collapse
Affiliation(s)
- Ji-Hye Kim
- Department of Energy and Chemical Engineering, Seoul National University of Science & Technology, 232 Gongneung-ro, Nowon-gu, Seoul, 01811, Republic of Korea
| | - Sooyoung Kim
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Ju-Hee So
- Material & Component Convergence R&D Department, Korea Institute of Industrial Technology, Ansan-si, 15588, Republic of Korea.
| | - Hyung-Jun Koo
- Department of Chemical & Biomolecular Engineering, Seoul National University of Science & Technology, 232 Gongneung-ro, Nowon-gu, Seoul, 01811, Republic of Korea.
| |
Collapse
|
4
|
Kim M, Hong S, Park JJ, Jung Y, Choi SH, Cho C, Ha I, Won P, Majidi C, Ko SH. A Gradient Stiffness-Programmed Circuit Board by Spatially Controlled Phase-Transition of Supercooled Hydrogel for Stretchable Electronics Integration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313344. [PMID: 38380843 DOI: 10.1002/adma.202313344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/25/2024] [Indexed: 02/22/2024]
Abstract
Due to emerging demands in soft electronics, there is an increasing need for material architectures that support robust interfacing between soft substrates, stretchable electrical interconnects, and embedded rigid microelectronics chips. Though researchers have adopted rigid-island structures to solve the issue, this approach merely shifts stress concentrations from chip-conductor interfaces to rigid-island-soft region interfaces in the substrate. Here, a gradient stiffness-programmed circuit board (GS-PCB) that possesses high stretchability and stability with surface mounted chips is introduced. The board comprises a stiffness-programmed hydrogel substrate and a laser-patterned liquid metal conductor. The hydrogel simultaneously obtains a large stiffness disparity and robust interfaces between rigid-islands and soft regions. These seemingly contradictory conditions are accomplished by adopting a gradient stiffness structure at the interfaces, enabled by combining polymers with different interaction energies and a supercooled sodium acetate solution. By integrating the gel with laser-patterned liquid metal with exceptional properties, GS-PCB exhibits higher electromechanical stability than other rigid-island research. To highlight the practicality of this approach, a finger-sensor device that successfully distinguishes objects by direct physical contact is fabricated, demonstrating its stability under various mechanical disturbances.
Collapse
Affiliation(s)
- Minwoo Kim
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Sangwoo Hong
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jung Jae Park
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Yeongju Jung
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Seok Hwan Choi
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Chulmin Cho
- Mechatronics Research, Device Solution, Samsung Electronics, 1, Samsungjeonja-ro, Hwaseong-si, Gyeonggi-do, 18848, South Korea
| | - Inho Ha
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Phillip Won
- Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Carmel Majidi
- Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Seung Hwan Ko
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
- Institute of Engineering Research/Institute of Advanced Machinery and Design (SNU-IAMD), Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| |
Collapse
|
5
|
Muller B, Feig VR, Colella NS, Traverso G, Hashmi SM. Thiol Coordination Softens Liquid Metal Particles To Improve On-Demand Conductivity. ACS NANO 2024; 18:13768-13780. [PMID: 38745441 PMCID: PMC11140741 DOI: 10.1021/acsnano.4c01988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/24/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024]
Abstract
Achieving tunable rupturing of eutectic gallium indium (EGaIn) particles holds great significance in flexible electronic applications, particularly pressure sensors. We tune the mechanosensitivity of EGaIn particles by preparing them in toluene with thiol surfactants and demonstrate an improvement over typical preparations in ethanol. We observe, across multiple length scales, that thiol surfactants and the nonpolar solvent synergistically reduce the applied stress requirements for electromechanical actuation. At the nanoscale, dodecanethiol and propanethiol in toluene suppress gallium oxide growth, as characterized by transmission electron microscopy and X-ray photoelectron spectroscopy. Quantitative AFM imaging produces force-indentation curves and height images, while conductive AFM measures current while probing individual EGaIn particles. As the applied force increases, thiolated particles demonstrate intensified softening, rupturing, and stress-induced electrical activation at forces 40% lower than those for bare particles in ethanol. To confirm that thiolation facilitates rupturing at the macroscale, a laser is used to ablate samples of EGaIn particles. Scanning electron microscopy and resistance measurements across macroscopic samples confirm that thiolated EGaIn particles coalesce to exhibit electrical activation at 0.1 W. Particles prepared in ethanol, however, require 3 times higher laser power to demonstrate a similar behavior. This unique collection of advanced techniques demonstrates that our particle synthesis conditions can facilitate on-demand functionality to benefit electronic applications.
Collapse
Affiliation(s)
- Benjamin
N. Muller
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
- Division
of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s
Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- David
H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Vivian R. Feig
- Division
of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s
Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- David
H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Nicholas S. Colella
- Center
for Nanoscale Systems, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Giovanni Traverso
- Division
of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s
Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- David
H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sara M. Hashmi
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
- Department
of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
- Department
of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
6
|
Zhu J, Li J, Tong Y, Hu T, Chen Z, Xiao Y, Zhang S, Yang H, Gao M, Pan T, Cheng H, Lin Y. Recent progress in multifunctional, reconfigurable, integrated liquid metal-based stretchable sensors and standalone systems. PROGRESS IN MATERIALS SCIENCE 2024; 142:101228. [PMID: 38745676 PMCID: PMC11090487 DOI: 10.1016/j.pmatsci.2023.101228] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Possessing a unique combination of properties that are traditionally contradictory in other natural or synthetical materials, Ga-based liquid metals (LMs) exhibit low mechanical stiffness and flowability like a liquid, with good electrical and thermal conductivity like metal, as well as good biocompatibility and room-temperature phase transformation. These remarkable properties have paved the way for the development of novel reconfigurable or stretchable electronics and devices. Despite these outstanding properties, the easy oxidation, high surface tension, and low rheological viscosity of LMs have presented formidable challenges in high-resolution patterning. To address this challenge, various surface modifications or additives have been employed to tailor the oxidation state, viscosity, and patterning capability of LMs. One effective approach for LM patterning is breaking down LMs into microparticles known as liquid metal particles (LMPs). This facilitates LM patterning using conventional techniques such as stencil, screening, or inkjet printing. Judiciously formulated photo-curable LMP inks or the introduction of an adhesive seed layer combined with a modified lift-off process further provide the micrometer-level LM patterns. Incorporating porous and adhesive substrates in LM-based electronics allows direct interfacing with the skin for robust and long-term monitoring of physiological signals. Combined with self-healing polymers in the form of substrates or composites, LM-based electronics can provide mechanical-robust devices to heal after damage for working in harsh environments. This review provides the latest advances in LM-based composites, fabrication methods, and their novel and unique applications in stretchable or reconfigurable sensors and resulting integrated systems. It is believed that the advancements in LM-based material preparation and high-resolution techniques have opened up opportunities for customized designs of LM-based stretchable sensors, as well as multifunctional, reconfigurable, highly integrated, and even standalone systems.
Collapse
Affiliation(s)
- Jia Zhu
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Jiaying Li
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yao Tong
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215011, PR China
| | - Taiqi Hu
- School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Ziqi Chen
- School of Physical Sciences, University of Science and Technology of China, Hefei 230026, PR China
| | - Yang Xiao
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Senhao Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215011, PR China
| | - Hongbo Yang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215011, PR China
| | - Min Gao
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Taisong Pan
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Yuan Lin
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
- Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronics Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
7
|
Shukla D, Wang H, Awartani O, Dickey MD, Zhu Y. Surface Embedded Metal Nanowire-Liquid Metal-Elastomer Hybrid Composites for Stretchable Electronics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:14183-14197. [PMID: 38457372 DOI: 10.1021/acsami.4c00318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Both liquid metal (LM) and metallic filler-based conductive composites are promising stretchable conductors. LM alloys exhibit intrinsically high deformability but present challenges for patterning on polymeric substrates due to high surface tension. On the other hand, conductive composites comprising metallic fillers undergo considerable decrease in electrical conductivity under mechanical deformation. To address the challenges, we present silver nanowire (AgNW)-LM-elastomer hybrid composite films, where AgNWs and LM are embedded below the surface of an elastomeric matrix, using two fabrication approaches, sequential and mixed. We investigate and understand the process-structure-property relationship of the AgNW-LM-elastomer hybrid composites fabricated using two approaches. Different weight ratios of AgNWs and LM particles provide tunable electrical conductivity. The hybrid composites show more stable electromechanical performance than the composites with AgNWs alone. In particular, 1:2.4 (AgNW:LMP w/w) sequential hybrid composite shows electromechanical stability similar to that of the LM-elastomer composite, with a resistance increase of 2.04% at 90% strain. The sequential approach is found to form AgIn2 intermetallic compounds which along with Ga-In bonds, imparts large deformability to the sequential hybrid composite as well as mechanical robustness against scratching, cutting, peeling, and wiping. To demonstrate the application of the hybrid composite for stretchable electronics, a laser patterned stretchable heater on textile and a stretchable circuit including a light-emitting diode are fabricated.
Collapse
Affiliation(s)
- Darpan Shukla
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Hongyu Wang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Omar Awartani
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
8
|
Qi J, Yang S, Jiang Y, Cheng J, Wang S, Rao Q, Jiang X. Liquid Metal-Polymer Conductor-Based Conformal Cyborg Devices. Chem Rev 2024; 124:2081-2137. [PMID: 38393351 DOI: 10.1021/acs.chemrev.3c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Gallium-based liquid metal (LM) exhibits exceptional properties such as high conductivity and biocompatibility, rendering it highly valuable for the development of conformal bioelectronics. When combined with polymers, liquid metal-polymer conductors (MPC) offer a versatile platform for fabricating conformal cyborg devices, enabling functions such as sensing, restoration, and augmentation within the human body. This review focuses on the synthesis, fabrication, and application of MPC-based cyborg devices. The synthesis of functional materials based on LM and the fabrication techniques for MPC-based devices are elucidated. The review provides a comprehensive overview of MPC-based cyborg devices, encompassing their applications in sensing diverse signals, therapeutic interventions, and augmentation. The objective of this review is to serve as a valuable resource that bridges the gap between the fabrication of MPC-based conformal devices and their potential biomedical applications.
Collapse
Affiliation(s)
- Jie Qi
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China
| | - Shuaijian Yang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Yizhou Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, P. R. China
| | - Jinhao Cheng
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Saijie Wang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Qingyan Rao
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
9
|
Lu G, Ni E, Jiang Y, Wu W, Li H. Room-Temperature Liquid Metals for Flexible Electronic Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304147. [PMID: 37875665 DOI: 10.1002/smll.202304147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/26/2023] [Indexed: 10/26/2023]
Abstract
Room-temperature gallium-based liquid metals (RT-GaLMs) have garnered significant interest recently owing to their extraordinary combination of fluidity, conductivity, stretchability, self-healing performance, and biocompatibility. They are ideal materials for the manufacture of flexible electronics. By changing the composition and oxidation of RT-GaLMs, physicochemical characteristics of the liquid metal can be adjusted, especially the regulation of rheological, wetting, and adhesion properties. This review highlights the advancements in the liquid metals used in flexible electronics. Meanwhile related characteristics of RT-GaLMs and underlying principles governing their processing and applications for flexible electronics are elucidated. Finally, the diverse applications of RT-GaLMs in self-healing circuits, flexible sensors, energy harvesting devices, and epidermal electronics, are explored. Additionally, the challenges hindering the progress of RT-GaLMs are discussed, while proposing future research directions and potential applications in this emerging field. By presenting a concise and critical analysis, this paper contributes to the advancement of RT-GaLMs as an advanced material applicable for the new generation of flexible electronics.
Collapse
Affiliation(s)
- Guixuan Lu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Erli Ni
- The Institute for Advanced Studies of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, China
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Weikang Wu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Hui Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| |
Collapse
|
10
|
Chen J, Tian G, Liang C, Yang D, Zhao Q, Liu Y, Qi D. Liquid metal-hydrogel composites for flexible electronics. Chem Commun (Camb) 2023; 59:14353-14369. [PMID: 37916888 DOI: 10.1039/d3cc04198k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
As an emerging functional material, liquid metal-hydrogel composites exhibit excellent biosafety, high electrical conductivity, tunable mechanical properties and good adhesion, thus providing a unique platform for a wide range of flexible electronics applications such as wearable devices, medical devices, actuators, and energy conversion devices. Through different composite methods, liquid metals can be integrated into hydrogel matrices to form multifunctional composite material systems, which further expands the application range of hydrogels. In this paper, we provide a brief overview of the two materials: hydrogels and liquid metals, and discuss the synthesis method of liquid metal-hydrogel composites, focusing on the improvement of the performance of hydrogel materials by liquid metals. In addition, we summarize the research progress of liquid metal-hydrogel composites in the field of flexible electronics, pointing out the current challenges and future prospects of this material.
Collapse
Affiliation(s)
- Jianhui Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450046, P. R. China
| | - Gongwei Tian
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450046, P. R. China
| | - Cuiyuan Liang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450046, P. R. China
| | - Dan Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450046, P. R. China
| | - Qinyi Zhao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450046, P. R. China
| | - Yan Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450046, P. R. China
| | - Dianpeng Qi
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450046, P. R. China
| |
Collapse
|
11
|
Monnens W, Zhang B, Zhou Z, Snels L, Binnemans K, Molina-Lopez F, Fransaer J. Scalable Electrodeposition of Liquid Metal from an Acetonitrile-Based Electrolyte for Highly Integrated Stretchable Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305967. [PMID: 37703420 DOI: 10.1002/adma.202305967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/14/2023] [Indexed: 09/15/2023]
Abstract
The advancement of highly integrated stretchable electronics requires the development of scalable sub-micrometer conductor patterning. Eutectic gallium indium (EGaIn) is an attractive conductor for stretchable electronics, as its liquid metallic character grants it high electrical conductivity upon deformation. However, its high surface tension makes its patterning with sub-micrometer resolution challenging. In this work, this limitation is overcome by way of the electrodeposition of EGaIn. A non-aqueous acetonitrile-based electrolyte that exhibits high electrochemical stability and chemical orthogonality is used. The electrodeposited material leads to low-resistance lines that remain stable upon (repeated) stretching to a 100% strain. Because electrodeposition benefits from the resolution of mature nanofabrication methods used to pattern the base metal, the proposed "bottom-up" approach achieves a record-high density integration of EGaIn regular lines of 300 nm half-pitch on an elastomer substrate by plating on a gold seed layer prepatterned by nanoimprinting. Moreover, vertical integration is enabled by filling high-aspect-ratio vias. This capability is conceptualized by the fabrication of an omnidirectionally stretchable 3D electronic circuit, and demonstrates a soft-electronic analog of the stablished damascene process used to fabricate microchip interconnects. Overall, this work proposes a simple route to address the challenge of metallization in highly integrated (3D) stretchable electronics.
Collapse
Affiliation(s)
- Wouter Monnens
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, P. O. box 2450, Leuven, B-3001, Belgium
| | - Bokai Zhang
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, P. O. box 2450, Leuven, B-3001, Belgium
| | - Zhenyu Zhou
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, P. O. box 2450, Leuven, B-3001, Belgium
| | - Laurens Snels
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, P. O. box 2450, Leuven, B-3001, Belgium
| | - Koen Binnemans
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, P. O. box 2404, Leuven, B-3001, Belgium
| | - Francisco Molina-Lopez
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, P. O. box 2450, Leuven, B-3001, Belgium
| | - Jan Fransaer
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, P. O. box 2450, Leuven, B-3001, Belgium
| |
Collapse
|
12
|
Zhou J, Zhao S, Tang L, Zhang D, Sheng B. Programmable and Weldable Superelastic EGaIn/TPU Composite Fiber by Wet Spinning for Flexible Electronics. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38031357 DOI: 10.1021/acsami.3c11068] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
As an essential component of flexible electronics, superelastic conductive fibers with good mechanical and electrical properties have drawn significant attention, especially in their preparation. In this study, we prepared a superelastic conductive fiber composed of eutectic gallium-indium (EGaIn) and thermoplastic polyurethane (TPU) by simple wet spinning. The composite conductive fiber with a liquid metal (LM) content of 85 wt % achieved a maximum strain at a break of 659.2%, and after the conductive pathway in the porous structure of the composite fibers was fully activated, high conductivity (1.2 × 105 S/m) was achieved with 95 wt % LM by mechanical sintering and training processes. The prepared conductive fibers exhibited a stable resistive response as the fibers were strained and could be sewn into fabrics and used as wearable strain sensors to monitor various human motions. These conductive fibers can be molded into helical by heating, and they have excellent electrical properties at a maximum mechanical strain of 3400% (resistance change <0.27%) with a helical index of 11. Moreover, the conductive fibers can be welded to various two or three-dimensional conductors. In summary, with a scalable manufacturing process, weldability, superelasticity, and high electrical conductivity, EGaIn/TPU composite fibers fabricated by wet spinning have considerable potential for flexible electronics.
Collapse
Affiliation(s)
- Jingyu Zhou
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| | - Shanshan Zhao
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| | - Lei Tang
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| | - Dawei Zhang
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| | - Bin Sheng
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| |
Collapse
|
13
|
Sato T, Iwase E. High-Accuracy Contact Resistance Measurement Method for Liquid Metal by Considering Current-Density Distribution in Transfer Length Method Measurement. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44404-44412. [PMID: 37695862 PMCID: PMC10521730 DOI: 10.1021/acsami.3c05070] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Liquid metals (LMs) are used as stretchable conductors in various stretchable electronic devices. Moreover, such devices using Ga-based LMs have attracted considerable attention. Herein, we propose a method for accurately determining the contact resistance (Rc) between galinstan and Cu electrodes by considering the current-density distribution in transfer length method (TLM) measurement. Conventional TLM measurements assume that the sheet resistance of the metal electrode (Rshe) is negligible compared with that of the object (Rsho), such as Si. However, this assumption may be problematic because the Rsho of Ga-based liquid metals (LMs) is close to the Rshe. Therefore, we developed a method of applying current to each measuring electrode and compared it with the conventional method of applying current to the outer electrodes. Simulation results indicated that Rshe cannot be ignored for galinstan, and the measured resistance in the contact area (RcTotal) included <10% of the Rc component when current was applied to the outer electrodes. In contrast, RcTotal included the entire Rc component when current was applied to each electrode. Furthermore, we found that the volume resistances of the object and electrode included in RcTotal cannot be ignored. Therefore, for accurate measurement, current must be applied to each electrode, and Rc must be determined from the intersections of the measured and simulated RcTotal. The obtained contact resistivity (ρc), i.e., the contact resistance per unit contact area, was 0.115 mΩ·mm2. The maximum error was 0.085 mΩ·mm2, which was lower than the ρc of the solders (≥10-1 mΩ·mm2) with the lowest ρc among the electrical interface materials between the electronic components and wiring. This study provides valuable insight into the Rc measurement of LMs, along with new opportunities for the development of stretchable electronics using LMs.
Collapse
Affiliation(s)
- Takashi Sato
- Department
of Materials Science, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Eiji Iwase
- Department
of Materials Science, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Department
of Applied Mechanics and Aerospace Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Kagami
Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku-ku, Tokyo 169-0051, Japan
| |
Collapse
|
14
|
Ryu G, Park I, Kim H. Liquid Metal Micro- and Nanodroplets: Characteristics, Fabrication Techniques, and Applications. ACS OMEGA 2023; 8:15819-15830. [PMID: 37179631 PMCID: PMC10173329 DOI: 10.1021/acsomega.3c01382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023]
Abstract
Gallium-based liquid metal micro- and nanodroplets are being extensively explored in innumerable emerging technologies. Although many of these systems involve the interfaces of liquid metal with a continuous phase liquid (e.g., microfluidic channels and emulsions), the static or dynamic phenomena at the interface have been scarcely discussed. In this study, we begin by introducing the interfacial phenomena and characteristics observed at the interface between a liquid metal and continuous-phase liquids. Based on these results, we can employ various methods to fabricate liquid metal droplets with tunable surface properties. Finally, we discuss how these techniques can be directly applied to a wide range of state-of-the-art technologies including microfluidics, soft electronics, catalysts, and biomedicines.
Collapse
Affiliation(s)
- Gaabhin Ryu
- Department
of Mechanical Engineering, Korea Advanced
Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Inkyu Park
- Department
of Mechanical Engineering, Korea Advanced
Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Email
for I.P.:
| | - Hyoungsoo Kim
- Department
of Mechanical Engineering, Korea Advanced
Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Email for H.K.:
| |
Collapse
|
15
|
Ma J, Krisnadi F, Vong MH, Kong M, Awartani OM, Dickey MD. Shaping a Soft Future: Patterning Liquid Metals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205196. [PMID: 36044678 DOI: 10.1002/adma.202205196] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/23/2022] [Indexed: 05/12/2023]
Abstract
This review highlights the unique techniques for patterning liquid metals containing gallium (e.g., eutectic gallium indium, EGaIn). These techniques are enabled by two unique attributes of these liquids relative to solid metals: 1) The fluidity of the metal allows it to be injected, sprayed, and generally dispensed. 2) The solid native oxide shell allows the metal to adhere to surfaces and be shaped in ways that would normally be prohibited due to surface tension. The ability to shape liquid metals into non-spherical structures such as wires, antennas, and electrodes can enable fluidic metallic conductors for stretchable electronics, soft robotics, e-skins, and wearables. The key properties of these metals with a focus on methods to pattern liquid metals into soft or stretchable devices are summari.
Collapse
Affiliation(s)
- Jinwoo Ma
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Febby Krisnadi
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Man Hou Vong
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Minsik Kong
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Omar M Awartani
- Department of Mechanical Engineering, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, 1107-2020, Lebanon
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
16
|
Shim J, Kim YU, Kim YB, Ji SG, Kim YJ, Jo Y, Lee EJ, Yuk DG, Lee SY, Lee SS, Kim SK, Kim HS, Park JH, Jeong S. A Surface Conformal Laser‐Assisted Alloying Reaction for 3D‐Printable Solid/Liquid Biphasic Conductors. SMALL SCIENCE 2023. [DOI: 10.1002/smsc.202200089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Jiyun Shim
- Department of Advanced Materials Engineering for Information and Electronics Integrated Education Institute for Frontier Science & Technology (BK21 Four) Kyung Hee University Yongin-si 17104 Republic of Korea
| | - Yeon Uk Kim
- Department of Mechanical Design Engineering Kumoh National Institute of Technology 61 Daehak-ro Gumi Gyeongbuk 39177 Republic of Korea
| | - Young-Bin Kim
- Department of Applied Physics Kyung Hee University Yongin-si 17104 Republic of Korea
| | - Seul Gi Ji
- Division of Advanced Materials Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
| | - Yeon Ju Kim
- Department of Advanced Materials Engineering for Information and Electronics Integrated Education Institute for Frontier Science & Technology (BK21 Four) Kyung Hee University Yongin-si 17104 Republic of Korea
| | - Yejin Jo
- Department of Advanced Materials Engineering for Information and Electronics Integrated Education Institute for Frontier Science & Technology (BK21 Four) Kyung Hee University Yongin-si 17104 Republic of Korea
| | - Eun Jung Lee
- Division of Advanced Materials Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
| | - Do-Gyeong Yuk
- Department of Aeronautics, Mechanical and Electronic Convergence Engineering Kumoh National Institute of Technology 61 Daehak-ro Gumi Gyeongbuk 39177 Republic of Korea
| | - Su Yeon Lee
- Division of Advanced Materials Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
| | - Sun Sook Lee
- Division of Advanced Materials Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
| | - Sun-Kyung Kim
- Department of Applied Physics Kyung Hee University Yongin-si 17104 Republic of Korea
| | - Hyung-Seok Kim
- KHU-KIST Department of Converging Science and Technology Kyung Hee University Seoul 02447 Republic of Korea
| | - Jung Hwan Park
- Department of Aeronautics, Mechanical and Electronic Convergence Engineering Kumoh National Institute of Technology 61 Daehak-ro Gumi Gyeongbuk 39177 Republic of Korea
| | - Sunho Jeong
- Department of Advanced Materials Engineering for Information and Electronics Integrated Education Institute for Frontier Science & Technology (BK21 Four) Kyung Hee University Yongin-si 17104 Republic of Korea
- KHU-KIST Department of Converging Science and Technology Kyung Hee University Seoul 02447 Republic of Korea
| |
Collapse
|
17
|
Kim M, Lim H, Ko SH. Liquid Metal Patterning and Unique Properties for Next-Generation Soft Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205795. [PMID: 36642850 PMCID: PMC9951389 DOI: 10.1002/advs.202205795] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/27/2022] [Indexed: 05/28/2023]
Abstract
Room-temperature liquid metal (LM)-based electronics is expected to bring advancements in future soft electronics owing to its conductivity, conformability, stretchability, and biocompatibility. However, various difficulties arise when patterning LM because of its rheological features such as fluidity and surface tension. Numerous attempts are made to overcome these difficulties, resulting in various LM-patterning methods. An appropriate choice of patterning method based on comprehensive understanding is necessary to fully utilize the unique properties. Therefore, the authors aim to provide thorough knowledge about patterning methods and unique properties for LM-based future soft electronics. First, essential considerations for LM-patterning are investigated. Then, LM-patterning methods-serial-patterning, parallel-patterning, intermetallic bond-assisted patterning, and molding/microfluidic injection-are categorized and investigated. Finally, perspectives on LM-based soft electronics with unique properties are provided. They include outstanding features of LM such as conformability, biocompatibility, permeability, restorability, and recyclability. Also, they include perspectives on future LM-based soft electronics in various areas such as radio frequency electronics, soft robots, and heterogeneous catalyst. LM-based soft devices are expected to permeate the daily lives if patterning methods and the aforementioned features are analyzed and utilized.
Collapse
Affiliation(s)
- Minwoo Kim
- Applied Nano and Thermal Science LabDepartment of Mechanical EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826South Korea
| | - Hyungjun Lim
- Applied Nano and Thermal Science LabDepartment of Mechanical EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826South Korea
- Department of Mechanical EngineeringPohang University of Science and Technology77 Chungam‐ro, Nam‐guPohang37673South Korea
| | - Seung Hwan Ko
- Applied Nano and Thermal Science LabDepartment of Mechanical EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826South Korea
- Institute of Advanced Machinery and Design/Institute of Engineering ResearchSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826South Korea
| |
Collapse
|
18
|
Choe M, Sin D, Bhuyan P, Lee S, Jeon H, Park S. Ultrasoft and Ultrastretchable Wearable Strain Sensors with Anisotropic Conductivity Enabled by Liquid Metal Fillers. MICROMACHINES 2022; 14:17. [PMID: 36677078 PMCID: PMC9862167 DOI: 10.3390/mi14010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/28/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Herein, ultrasoft and ultrastretchable wearable strain sensors enabled by liquid metal fillers in an elastic polymer are described. The wearable strain sensors that can change the effective resistance upon strains are prepared by mixing silicone elastomer with liquid metal (EGaIn, Eutectic gallium-indium alloy) fillers. While the silicone is mixed with the liquid metal by shear mixing, the liquid metal is rendered into small droplets stabilized by an oxide, resulting in a non-conductive liquid metal elastomer. To attain electrical conductivity, localized mechanical pressure is applied using a stylus onto the thermally cured elastomer, resulting in the formation of a handwritten conductive trace by rupturing the oxide layer of the liquid metal droplets and subsequent percolation. Although this approach has been introduced previously, the liquid metal dispersed elastomers developed here are compelling because of their ultra-stretchable (elongation at break of 4000%) and ultrasoft (Young’s modulus of <0.1 MPa) mechanical properties. The handwritten conductive trace in the elastomers can maintain metallic conductivity when strained; however, remarkably, we observed that the electrical conductivity is anisotropic upon parallel and perpendicular strains to the conductive trace. This anisotropic conductivity of the liquid metal elastomer film can manipulate the locomotion of a robot by routing the power signals between the battery and the driving motor of a robot upon parallel and perpendicular strains to the hand-written circuit. In addition, the liquid metal dispersed elastomers have a high degree of deformation and adhesion; thus, they are suitable for use as a wearable sensor for monitoring various body motions.
Collapse
Affiliation(s)
- Minjae Choe
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Dongho Sin
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Priyanuj Bhuyan
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Sangmin Lee
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Hongchan Jeon
- Sustainable Materials Research Team, Research & Development Division, Hyundai Motor Group, Uiwang 16082, Republic of Korea
| | - Sungjune Park
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
19
|
Xiao C, Feng J, Xu H, Xu R, Zhou T. Scalable Strategy to Directly Prepare 2D and 3D Liquid Metal Circuits Based on Laser-Induced Selective Metallization. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20000-20013. [PMID: 35467834 DOI: 10.1021/acsami.2c01201] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Selective wetting of a gallium-based liquid metal on copper circuits is one of the ways to prepare liquid metal circuits. However, the complex fabrication processes of an adhesion layer between copper circuits (or patterns) and substrates were still inevitable, limiting scalable applications. Our work developed a facile way to directly prepare 2D and 3D liquid metal circuits by combining laser-induced selective metallization and selective wetting for the first time. The copper template was obtained on elastomers using laser-induced selective metallization, and high-resolution liquid metal circuits were fabricated by brushing Galinstan on the copper template in the alkali solution. The distribution of Cu element not only was on the top surface but also extended to the interior of the elastomer substrate. This revealed that the Cu layer prepared by laser-induced selective metallization is born to firmly embed into the substrate, which endowed the circuits with strong adhesion, reaching the highest 5B level. Moreover, the prepared liquid metal circuits (or patterns) had a typical layered structure. The liquid metal circuits exhibit good flexibility, stretchability, self-healing ability, and acid-alkaline resistance. Compared with the traditional methods of patterning liquid metals, fabricating liquid metal circuits based on laser-induced selective metallization has irreplaceable advantages, such as strong adhesion between circuits and substrate, fabricating 3D circuits, good acid-alkaline resistance, cost-effectiveness, maskless use, time savings, arbitrary design of patterns, and convenient operation, which endow this method with great application prospect.
Collapse
Affiliation(s)
- Chengchao Xiao
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Jin Feng
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Haoran Xu
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Rui Xu
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Tao Zhou
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| |
Collapse
|
20
|
Kim J, Lee J. Liquid-Suspended and Liquid-Bridged Liquid Metal Microdroplets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2108069. [PMID: 35150080 DOI: 10.1002/smll.202108069] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Liquid metals (LMs) and alloys are attracting increasing attention owing to their combined advantages of high conductivity and fluidity, and have shown promising results in various emerging applications. Patterning technologies using LMs are being actively researched; among them, direct ink writing is considered a potentially viable approach for efficient LM additive manufacturing. However, true LM additive manufacturing with arbitrary printing geometries remains challenging because of the intrinsically low rheological strength of LMs. Herein, colloidal suspensions of LM droplets amenable to additive manufacturing (or "3D printing") are realized using formulations containing minute amounts of liquid capillary bridges. The resulting LM suspensions exhibit exceptionally high rheological strength with yield stress values well above 103 Pa, attributed to inter-droplet capillary attraction mediated by the liquid bridges adsorbed on the oxide skin of the LM droplets. Such liquid-bridged LM suspensions, as extrudable ink-type filaments, are based on uncurable continuous-phase liquid media, have a long pot-life and outstanding shear-thinning properties, and shape retention, demonstrating excellent rheological processability suitable for 3D printing. These findings will enable the emergence of a variety of new advanced applications that necessitate LM patterning into highly complicated multidimensional structures.
Collapse
Affiliation(s)
- Jieun Kim
- Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do, 17058, Korea
| | - Joohyung Lee
- Department of Chemical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do, 17058, Korea
| |
Collapse
|
21
|
Alhalaili B, Al-Duweesh A, Popescu IN, Vidu R, Vladareanu L, Islam MS. Improvement of Schottky Contacts of Gallium Oxide (Ga2O3) Nanowires for UV Applications. SENSORS 2022; 22:s22052048. [PMID: 35271195 PMCID: PMC8914786 DOI: 10.3390/s22052048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/07/2022] [Accepted: 03/03/2022] [Indexed: 12/04/2022]
Abstract
Interest in the synthesis and fabrication of gallium oxide (Ga2O3) nanostructures as wide bandgap semiconductor-based ultraviolet (UV) photodetectors has recently increased due to their importance in cases of deep-UV photodetectors operating in high power/temperature conditions. Due to their unique properties, i.e., higher surface-to-volume ratio and quantum effects, these nanostructures can significantly enhance the sensitivity of detection. In this work, two Ga2O3 nanostructured films with different nanowire densities and sizes obtained by thermal oxidation of Ga on quartz, in the presence and absence of Ag catalyst, were investigated. The electrical properties influenced by the density of Ga2O3 nanowires (NWs) were analyzed to define the configuration of UV detection. The electrical measurements were performed on two different electric contacts and were located at distances of 1 and 3 mm. Factors affecting the detection performance of Ga2O3 NWs film, such as the distance between metal contacts (1 and 3 mm apart), voltages (5–20 V) and transient photocurrents were discussed in relation to the composition and nanostructure of the Ga2O3 NWs film.
Collapse
Affiliation(s)
- Badriyah Alhalaili
- Nanotechnology and Advanced Materials Program, Kuwait Institute for Scientific Research, P.O. Box 24885, Kuwait City 13109, Kuwait; (B.A.); (A.A.-D.)
| | - Ahmad Al-Duweesh
- Nanotechnology and Advanced Materials Program, Kuwait Institute for Scientific Research, P.O. Box 24885, Kuwait City 13109, Kuwait; (B.A.); (A.A.-D.)
| | - Ileana Nicoleta Popescu
- Faculty of Materials Engineering and Mechanics, Valahia University of Targoviste, 130004 Targoviste, Romania;
| | - Ruxandra Vidu
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Department of Electrical and Computer Engineering, University of California, Davis, Davis, CA 95616, USA;
- Correspondence: (R.V.); (L.V.)
| | - Luige Vladareanu
- Robotics and Mechatronics Department, Institute of Solid Mechanics, Romanian Academy, 030167 Bucharest, Romania
- Correspondence: (R.V.); (L.V.)
| | - M. Saif Islam
- Department of Electrical and Computer Engineering, University of California, Davis, Davis, CA 95616, USA;
| |
Collapse
|
22
|
Jo Y, Hwang JH, Lee SS, Lee SY, Kim YS, Kim DG, Choi Y, Jeong S. Printable Self-Activated Liquid Metal Stretchable Conductors from Polyvinylpyrrolidone-Functionalized Eutectic Gallium Indium Composites. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10747-10757. [PMID: 35099918 DOI: 10.1021/acsami.1c20185] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Stretchable electronic circuits are critical in a variety of next-generation electronics applications, including soft robots, wearable technologies, and biomedical applications. To date, printable composite conductors comprising various types of conductive fillers have been suggested to achieve high electrical conductance and excellent stretchability. Among them, liquid metal particles have been considered as a viable candidate filler that can meet the necessary prerequisites. However, a mechanical activation process is needed to generate interconnected liquid channels inside elastomeric polymers. In this study, we have developed a chemical strategy of surface-functionalizing liquid metal particles to eliminate the necessity of additional mechanical activation processes. We found that the characteristic conformations of the polyvinylpyrrolidone surrounding eutectic gallium indium particles are highly dependent on the molecular weight of polyvinylpyrrolidone. By virtue of the specific chemical roles of polyvinylpyrrolidone, the as-printed composite layers are highly conductive and stretchable, exhibiting an electrical conductivity approaching 8372 S/cm at 100% strain and an invariant resistance change of 0.92 even at 75% strain after a 60,000 cycle test. The results demonstrate that the self-activated liquid metal-based composite conductors are applicable to traditional stretchable electronics, healable stretchable electronics, and shape-morphable applications.
Collapse
Affiliation(s)
- Yejin Jo
- Department of Advanced Materials Engineering for Information and Electronics, and Integrated Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Korea
| | - Jae Hyuk Hwang
- Division of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeongro, Yuseong-gu, Daejeon 34114, Korea
| | - Sun Sook Lee
- Division of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeongro, Yuseong-gu, Daejeon 34114, Korea
| | - Su Yeon Lee
- Division of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeongro, Yuseong-gu, Daejeon 34114, Korea
| | - Yong Seok Kim
- Division of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeongro, Yuseong-gu, Daejeon 34114, Korea
| | - Dong-Gyun Kim
- Division of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeongro, Yuseong-gu, Daejeon 34114, Korea
| | - Youngmin Choi
- Division of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeongro, Yuseong-gu, Daejeon 34114, Korea
| | - Sunho Jeong
- Department of Advanced Materials Engineering for Information and Electronics, and Integrated Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Korea
| |
Collapse
|
23
|
Allioux FM, Ghasemian MB, Xie W, O'Mullane AP, Daeneke T, Dickey MD, Kalantar-Zadeh K. Applications of liquid metals in nanotechnology. NANOSCALE HORIZONS 2022; 7:141-167. [PMID: 34982812 DOI: 10.1039/d1nh00594d] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Post-transition liquid metals (LMs) offer new opportunities for accessing exciting dynamics for nanomaterials. As entities with free electrons and ions as well as fluidity, LM-based nanomaterials are fundamentally different from their solid counterparts. The low melting points of most post-transition metals (less than 330 °C) allow for the formation of nanodroplets from bulk metal melts under mild mechanical and chemical conditions. At the nanoscale, these liquid state nanodroplets simultaneously offer high electrical and thermal conductivities, tunable reactivities and useful physicochemical properties. They also offer specific alloying and dealloying conditions for the formation of multi-elemental liquid based nanoalloys or the synthesis of engineered solid nanomaterials. To date, while only a few nanosized LM materials have been investigated, extraordinary properties have been observed for such systems. Multi-elemental nanoalloys have shown controllable homogeneous or heterogeneous core and surface compositions with interfacial ordering at the nanoscale. The interactions and synergies of nanosized LMs with polymeric, inorganic and bio-materials have also resulted in new compounds. This review highlights recent progress and future directions for the synthesis and applications of post-transition LMs and their alloys. The review presents the unique properties of these LM nanodroplets for developing functional materials for electronics, sensors, catalysts, energy systems, and nanomedicine and biomedical applications, as well as other functional systems engineered at the nanoscale.
Collapse
Affiliation(s)
- Francois-Marie Allioux
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Mohammad B Ghasemian
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Wanjie Xie
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Anthony P O'Mullane
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| | - Torben Daeneke
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Kourosh Kalantar-Zadeh
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| |
Collapse
|
24
|
Su R, Park SH, Ouyang X, Ahn SI, McAlpine MC. 3D-printed flexible organic light-emitting diode displays. SCIENCE ADVANCES 2022; 8:eabl8798. [PMID: 34995118 PMCID: PMC8741182 DOI: 10.1126/sciadv.abl8798] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/16/2021] [Indexed: 05/28/2023]
Abstract
The ability to fully 3D-print active electronic and optoelectronic devices will enable unique device form factors via strategies untethered from conventional microfabrication facilities. Currently, the performance of 3D-printed optoelectronics can suffer from nonuniformities in the solution-deposited active layers and unstable polymer-metal junctions. Here, we demonstrate a multimodal printing methodology that results in fully 3D-printed flexible organic light-emitting diode displays. The electrodes, interconnects, insulation, and encapsulation are all extrusion-printed, while the active layers are spray-printed. Spray printing leads to improved layer uniformity via suppression of directional mass transport in the printed droplets. By exploiting the viscoelastic oxide surface of the printed cathode droplets, a mechanical reconfiguration process is achieved to increase the contact area of the polymer-metal junctions. The uniform cathode array is intimately interfaced with the top interconnects. This hybrid approach creates a fully 3D-printed flexible 8 × 8 display with all pixels turning on successfully.
Collapse
Affiliation(s)
- Ruitao Su
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sung Hyun Park
- Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology, Jeju-si, Jeju-do 63243, Republic of Korea
| | - Xia Ouyang
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Song Ih Ahn
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- School of Mechanical Engineering, Pusan National University, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Michael C. McAlpine
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
25
|
Galogahi FM, An H, Zhu Y, Nguyen NT. Thermal and mechanical stabilities of Core-shell microparticles containing a liquid core. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Monnens W, Lin PC, Deferm C, Binnemans K, Fransaer J. Electrochemical behavior and electrodeposition of gallium in 1,2-dimethoxyethane-based electrolytes. Phys Chem Chem Phys 2021; 23:15492-15502. [PMID: 34142695 PMCID: PMC8317176 DOI: 10.1039/d1cp01074c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electrochemical behavior and electrodeposition of gallium was studied in a non-aqueous electrolyte comprising of gallium(iii) chloride and 1,2-dimethoxyethane (DME). Electrochemical quartz crystal microbalance (EQCM) and rotating ring disk electrode (RRDE) measurements indicate that reduction of gallium(iii) is a two-step process: first from gallium(iii) to gallium(i), and then from gallium(i) to gallium(0). The morphology and elemental composition of the electrodeposited layer were examined using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Metallic gallium was deposited as spheres with diameters of several hundred nanometers that were stacked on top of each other. X-ray photoelectron spectroscopy (XPS) revealed that each gallium sphere was covered by a thin gallium oxide shell. Electrochemical experiments indicated that these oxide layers are electrically conductive, as gallium can be electrodeposited and partially stripped on or from the layer of spheres below. This was further evidenced by simultaneous electrodeposition of gallium and indium, using indium as a tracer. Electrodeposition of gallium from an O2-containing electrolyte resulted in spheres with smaller diameters. This was due to the formation thicker oxide shells, through which diffusion of gallium atoms that were electrodeposited on the surface, was slower. The concentration of gallium adatoms on top of the gallium spheres to form a new sphere therefore reaches the critical concentration for nucleating a new gallium sphere sooner, leading to smaller spheres.
Collapse
Affiliation(s)
- Wouter Monnens
- KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44, P. O. box 2450, B-3001 Leuven, Belgium.
| | - Pin-Cheng Lin
- KU Leuven, Department of Physics and Astronomy, Celestijnenlaan 200D, B-3001 Leuven, Belgium
| | - Clio Deferm
- KU Leuven, Department of Chemistry, Celestijnenlaan 200F, P. O. box 2404, B-3001 Leuven, Belgium
| | - Koen Binnemans
- KU Leuven, Department of Chemistry, Celestijnenlaan 200F, P. O. box 2404, B-3001 Leuven, Belgium
| | - Jan Fransaer
- KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44, P. O. box 2450, B-3001 Leuven, Belgium.
| |
Collapse
|
27
|
Abstract
Soft wearable electronics are rapidly developing through exploration of new materials, fabrication approaches, and design concepts. Although there have been many efforts for decades, a resurgence of interest in liquid metals (LMs) for sensing and wiring functional properties of materials in soft wearable electronics has brought great advances in wearable electronics and materials. Various forms of LMs enable many routes to fabricate flexible and stretchable sensors, circuits, and functional wearables with many desirable properties. This review article presents a systematic overview of recent progresses in LM-enabled wearable electronics that have been achieved through material innovations and the discovery of new fabrication approaches and design architectures. We also present applications of wearable LM technologies for physiological sensing, activity tracking, and energy harvesting. Finally, we discuss a perspective on future opportunities and challenges for wearable LM electronics as this field continues to grow.
Collapse
Affiliation(s)
- Phillip Won
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Seongmin Jeong
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Carmel Majidi
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Seung Hwan Ko
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
- Institute of Advanced Machines and Design / Institute of Engineering Research, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
28
|
Liu S, Kim SY, Henry KE, Shah DS, Kramer-Bottiglio R. Printed and Laser-Activated Liquid Metal-Elastomer Conductors Enabled by Ethanol/PDMS/Liquid Metal Double Emulsions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:28729-28736. [PMID: 34125509 DOI: 10.1021/acsami.0c23108] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Soft electronic systems require stretchable, printable conductors for applications in soft robotics, wearable technologies, and human-machine interfaces. Gallium-based room-temperature liquid metals (LMs) have emerged as promising candidates, and recent liquid metal-embedded elastomers (LMEEs) have demonstrated favorable properties such as stable conductivity during strain, cyclic durability, and patternability. Here, we present an ethanol/polydimethylsiloxane/liquid metal (EtOH/PDMS/LM) double emulsion ink that enables a fast, scalable method to print LM conductors with high conductivity (7.7 × 105 S m-1), small resistance change when strained, and consistent cyclic performance (over 10,000 cycles). EtOH, the carrier solvent, is leveraged for its low viscosity to print the ink onto silicone substrates. PDMS resides at the EtOH/LM interface and cures upon deposition and EtOH evaporation, consequently bonding the LM particles to each other and to the silicone substrate. The printed PDMS-LM composite can be subsequently activated by direct laser writing, forming high-resolution electrically conductive pathways. We demonstrate the utility of the double emulsion ink by creating intricate electrical interconnects for stretchable electronic circuits. This work combines the speed, consistency, and precision of laser-assisted manufacturing with the printability, high conductivity, strain insensitivity, and mechanical robustness of the PDMS-LM composite, unlocking high-yield, high-throughput, and high-density stretchable electronics.
Collapse
Affiliation(s)
- Shanliangzi Liu
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- School of Engineering and Applied Science, Yale University, New Haven, Connecticut 06520, United States
| | - Sang Yup Kim
- School of Engineering and Applied Science, Yale University, New Haven, Connecticut 06520, United States
| | - Kristen E Henry
- School of Engineering and Applied Science, Yale University, New Haven, Connecticut 06520, United States
| | - Dylan S Shah
- School of Engineering and Applied Science, Yale University, New Haven, Connecticut 06520, United States
| | - Rebecca Kramer-Bottiglio
- School of Engineering and Applied Science, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
29
|
Liu S, Shah DS, Kramer-Bottiglio R. Highly stretchable multilayer electronic circuits using biphasic gallium-indium. NATURE MATERIALS 2021; 20:851-858. [PMID: 33603186 DOI: 10.1038/s41563-021-00921-8] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 01/06/2021] [Indexed: 05/23/2023]
Abstract
Stretchable electronic circuits are critical for soft robots, wearable technologies and biomedical applications. Development of sophisticated stretchable circuits requires new materials with stable conductivity over large strains, and low-resistance interfaces between soft and conventional (rigid) electronic components. To address this need, we introduce biphasic Ga-In, a printable conductor with high conductivity (2.06 × 106 S m-1), extreme stretchability (>1,000%), negligible resistance change when strained, cyclic stability (consistent performance over 1,500 cycles) and a reliable interface with rigid electronics. We employ a scalable transfer-printing process to create various stretchable circuit board assemblies that maintain their performance when stretched, including a multilayer light-emitting diode display, an amplifier circuit and a signal conditioning board for wearable sensing applications. The compatibility of biphasic Ga-In with scalable manufacturing methods, robust interfaces with off-the-shelf electronic components and electrical/mechanical cyclic stability enable direct conversion of established circuit board assemblies to soft and stretchable forms.
Collapse
Affiliation(s)
- Shanliangzi Liu
- School of Engineering and Applied Science, Yale University, New Haven, CT, USA
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Dylan S Shah
- School of Engineering and Applied Science, Yale University, New Haven, CT, USA
| | | |
Collapse
|
30
|
Sato T, Yamagishi K, Hashimoto M, Iwase E. Method to Reduce the Contact Resistivity between Galinstan and a Copper Electrode for Electrical Connection in Flexible Devices. ACS APPLIED MATERIALS & INTERFACES 2021; 13:18247-18254. [PMID: 33830734 DOI: 10.1021/acsami.1c00431] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This study demonstrates a method to mount electronic components using gallium-based liquid metals (LMs) with reduced contact resistivity between the LM and a copper (Cu) electrode. Gallium-based LMs have low volume resistivity and low melting points, and they are used as electronic components such as interconnects and sensors of stretchable electronic devices. However, the high contact resistivity of the oxide layer on the surface of the Ga-based LMs becomes a problem when the Ga-based LMs are used in contact with rigid electronic components. To overcome this problem, we studied herein the effect of the oxide layer on contact resistivity via the contact methods of the Ga-based LM (galinstan) and the Cu film. Through the placement of galinstan after the placement of the Cu film and application of vacuum to reduce the effect of the oxide layer, the contact resistivity was reduced to 0.59 × 10-7 Ωm2, which was 90% lower than that in the case where the Cu film was placed on galinstan on which the oxide layer grew (5.7 × 10-7 Ωm2) (day 1). Additionally, it was found that the contact resistivity decreased in the same order (10-8 Ωm2) over time regardless of the methods in which galinstan was applied (day 103). Furthermore, alloy formation on the Cu film surface was confirmed via elemental analysis. Finally, the mounting method using galinstan was demonstrated, which enabled the change in contact resistance to be maintained as low as 7.2% during 100% stretching deformation repeated 100 times (day 1 and day 130). Our results show that low and stable contact resistance with a high stretch tolerance can be achieved via the mounting method using galinstan based on our contact methods. This mounting method, therefore, expands the range of materials suitable for use as substrates and provides new opportunities for the development of stretchable electronics.
Collapse
Affiliation(s)
- Takashi Sato
- Department of Material Science, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Kento Yamagishi
- Digital Manufacturing and Design Centre, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372
| | - Michinao Hashimoto
- Digital Manufacturing and Design Centre, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372
| | - Eiji Iwase
- Department of Material Science, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Department of Applied Mechanics and Aerospace Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
31
|
Lopes PA, Fernandes DF, Silva AF, Marques DG, de Almeida AT, Majidi C, Tavakoli M. Bi-Phasic Ag-In-Ga-Embedded Elastomer Inks for Digitally Printed, Ultra-Stretchable, Multi-layer Electronics. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14552-14561. [PMID: 33689286 DOI: 10.1021/acsami.0c22206] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A bi-phasic ternary Ag-In-Ga ink that demonstrates high electrical conductivity, extreme stretchability, and low electromechanical gauge factor (GF) is introduced. Unlike popular liquid metal alloys such as eutectic gallium-indium (EGaIn), this ink is easily printable and nonsmearing and bonds strongly to a variety of substrates. Using this ink and a simple extrusion printer, the ability to perform direct writing of ultrathin, multi-layer circuits that are highly stretchable (max. strain >600%), have excellent conductivity (7.02 × 105 S m-1), and exhibit only a modest GF (0.9) related to the ratio of percent increase in trace resistance with mechanical strain is demonstrated. The ink is synthesized by mixing optimized quantities of EGaIn, Ag microflakes, and styrene-isoprene block copolymers, which functions as a hyperelastic binder. When compared to the same composite without EGaIn, the Ag-In-Ga ink shows over 1 order of magnitude larger conductivity, up to ∼27× lower GF, and ∼5× greater maximum stretchability. No significant change over the resistance of the ink was observed after 1000 strain cycles. Microscopic analysis shows that mixing EGaIn and Ag microflakes promotes the formation of AgIn2 microparticles, resulting in a cohesive bi-phasic ink. The ink can be sintered at room temperature, making it compatible with many heat-sensitive substrates. Additionally, utilizing a simple commercial extrusion based printer, the ability to perform stencil-free, digital printing of multi-layer stretchable circuits over various substrates, including medical wound-dressing adhesives, is demonstrated for the first time.
Collapse
Affiliation(s)
- Pedro Alhais Lopes
- Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra, Coimbra 3030-290, Portugal
| | - Daniel Félix Fernandes
- Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra, Coimbra 3030-290, Portugal
| | - André F Silva
- Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra, Coimbra 3030-290, Portugal
| | - Daniel Green Marques
- Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra, Coimbra 3030-290, Portugal
| | - Aníbal T de Almeida
- Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra, Coimbra 3030-290, Portugal
| | - Carmel Majidi
- Integrated Soft Materials Lab, Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Mahmoud Tavakoli
- Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra, Coimbra 3030-290, Portugal
| |
Collapse
|
32
|
Almadhoun MN, Speckbacher M, Olsen BC, Luber EJ, Sayed SY, Tornow M, Buriak JM. Bipolar Resistive Switching in Junctions of Gallium Oxide and p-type Silicon. NANO LETTERS 2021; 21:2666-2674. [PMID: 33689381 DOI: 10.1021/acs.nanolett.1c00539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, native GaOx is positioned between bulk gallium and degenerately doped p-type silicon (p+-Si) to form Ga/GaOx/SiOx/p+-Si junctions. These junctions show memristive behavior, exhibiting large current-voltage hysteresis. When cycled between -2.5 and 2.5 V, an abrupt insulator-metal transition is observed that is reversible when the polarity is reversed. The ON/OFF ratio between the high and low resistive states in these junctions can reach values on the order of 108 and retain the ON and OFF resistive states for up to 105 s with an endurance exceeding 100 cycles. The presence of a nanoscale layer of gallium oxide is critical to achieving reversible resistive switching by formation and dissolution of the gallium filament across the switching layer.
Collapse
Affiliation(s)
- Mahmoud N Almadhoun
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Maximilian Speckbacher
- Molecular Electronics, Department of Electrical and Computer Engineering, Technical University of Munich, 80333 Munich, Germany
| | - Brian C Olsen
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Erik J Luber
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Sayed Youssef Sayed
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Marc Tornow
- Molecular Electronics, Department of Electrical and Computer Engineering, Technical University of Munich, 80333 Munich, Germany
- Center for NanoScience (CeNS), Ludwig-Maximilians-University, 80539 Munich, Germany
- Fraunhofer Research Institution for Microsystems and Solid State Technologies (EMFT), 80686 Munich, Germany
| | - Jillian M Buriak
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
33
|
Ochirkhuyag N, Matsuda R, Song Z, Nakamura F, Endo T, Ota H. Liquid metal-based nanocomposite materials: fabrication technology and applications. NANOSCALE 2021; 13:2113-2135. [PMID: 33465221 DOI: 10.1039/d0nr07479a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Research on liquid metals has been steadily garnering more interest in recent times, especially in flexible electronics applications because of their properties like possessing high conductivity and being liquid state at room temperature. The unique properties afforded by such materials at low temperatures can compensate for the limitations of stretchable electronic devices, particularly robustness and their fluidic property, which can enhance the flexibility and deformation of these devices. Therefore, interest in liquid-metal nanoparticles and liquid metals with nanocomposites has enabled research into their fabrication technologies as well as utilisation in fields such as chemistry, polymer engineering, computational modelling, and nanotechnology. In particular, in flexible and stretchable electronic device applications, the research attention is focused on the fabrication methodologies of liquid-metal nanoparticles and liquid metals containing nanocomposites. This review attempts to summarise the available stretchable and flexible electronics applications that use liquid-metal nanoparticles as well as liquid metals with nanomaterial additives.
Collapse
Affiliation(s)
| | - Ryosuke Matsuda
- Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Zihao Song
- Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Fumika Nakamura
- Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Takuma Endo
- Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Hiroki Ota
- Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| |
Collapse
|
34
|
Neumann TV, Kara B, Sargolzaeiaval Y, Im S, Ma J, Yang J, Ozturk MC, Dickey MD. Aerosol Spray Deposition of Liquid Metal and Elastomer Coatings for Rapid Processing of Stretchable Electronics. MICROMACHINES 2021; 12:146. [PMID: 33535606 PMCID: PMC7912875 DOI: 10.3390/mi12020146] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/24/2021] [Accepted: 01/28/2021] [Indexed: 11/16/2022]
Abstract
We report a spray deposition technique for patterning liquid metal alloys to form stretchable conductors, which can then be encapsulated in silicone elastomers via the same spraying procedure. While spraying has been used previously to deposit many materials, including liquid metals, this work focuses on quantifying the spraying process and combining it with silicones. Spraying generates liquid metal microparticles (~5 μm diameter) that pass through openings in a stencil to produce traces with high resolution (~300 µm resolution using stencils from a craft cutter) on a substrate. The spraying produces sufficient kinetic energy (~14 m/s) to distort the particles on impact, which allows them to merge together. This merging process depends on both particle size and velocity. Particles of similar size do not merge when cast as a film. Likewise, smaller particles (<1 µm) moving at the same speed do not rupture on impact either, though calculations suggest that such particles could rupture at higher velocities. The liquid metal features can be encased by spraying uncured silicone elastomer from a volatile solvent to form a conformal coating that does not disrupt the liquid metal features during spraying. Alternating layers of liquid metal and elastomer may be patterned sequentially to build multilayer devices, such as soft and stretchable sensors.
Collapse
Affiliation(s)
- Taylor V. Neumann
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA; (T.V.N.); (S.I.); (J.M.); (J.Y.)
| | - Berra Kara
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695, USA; (B.K.); (Y.S.); (M.C.O.)
| | - Yasaman Sargolzaeiaval
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695, USA; (B.K.); (Y.S.); (M.C.O.)
| | - Sooik Im
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA; (T.V.N.); (S.I.); (J.M.); (J.Y.)
| | - Jinwoo Ma
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA; (T.V.N.); (S.I.); (J.M.); (J.Y.)
| | - Jiayi Yang
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA; (T.V.N.); (S.I.); (J.M.); (J.Y.)
| | - Mehmet C. Ozturk
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695, USA; (B.K.); (Y.S.); (M.C.O.)
| | - Michael D. Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA; (T.V.N.); (S.I.); (J.M.); (J.Y.)
| |
Collapse
|
35
|
Wang C, Gong Y, Cunning BV, Lee S, Le Q, Joshi SR, Buyukcakir O, Zhang H, Seong WK, Huang M, Wang M, Lee J, Kim GH, Ruoff RS. A general approach to composites containing nonmetallic fillers and liquid gallium. SCIENCE ADVANCES 2021; 7:eabe3767. [PMID: 33523863 PMCID: PMC7775790 DOI: 10.1126/sciadv.abe3767] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/06/2020] [Indexed: 05/15/2023]
Abstract
We report a versatile method to make liquid metal composites by vigorously mixing gallium (Ga) with non-metallic particles of graphene oxide (G-O), graphite, diamond, and silicon carbide that display either paste or putty-like behavior depending on the volume fraction. Unlike Ga, the putty-like mixtures can be kneaded and rolled on any surface without leaving residue. By changing temperature, these materials can be stiffened, softened, and, for the G-O-containing composite, even made porous. The gallium putty (GalP) containing reduced G-O (rG-O) has excellent electromagnetic interference shielding effectiveness. GalP with diamond filler has excellent thermal conductivity and heat transfer superior to a commercial liquid metal-based thermal paste. Composites can also be formed from eutectic alloys of Ga including Ga-In (EGaIn), Ga-Sn (EGaSn), and Ga-In-Sn (EGaInSn or Galinstan). The versatility of our approach allows a variety of fillers to be incorporated in liquid metals, potentially allowing filler-specific "fit for purpose" materials.
Collapse
Affiliation(s)
- Chunhui Wang
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Yan Gong
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Benjamin V Cunning
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea.
| | - Seunghwan Lee
- School of Mechanical, Aerospace and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Quan Le
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Shalik R Joshi
- School of Mechanical, Aerospace and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Onur Buyukcakir
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Hanyang Zhang
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Won Kyung Seong
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Ming Huang
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Meihui Wang
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jaeseon Lee
- School of Mechanical, Aerospace and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Gun-Ho Kim
- School of Mechanical, Aerospace and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Rodney S Ruoff
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea.
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
36
|
Liu Y, Zhang W, Wang H. Synthesis and application of core-shell liquid metal particles: a perspective of surface engineering. MATERIALS HORIZONS 2021; 8:56-77. [PMID: 34821290 DOI: 10.1039/d0mh01117g] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Liquid metal micro/nano particles (LMPs) from gallium and its alloys have attracted tremendous attention in the last decade due to the unique combination of their metallic and fluidic properties at relatively low temperatures. Unfortunately, there is limited success so far in realizing the highly controllable fabrication and functionalization of this emerging material, posing great obstacles to further promoting its fundamental and applied studies. This review aims to explore solutions for the on-demand design and manipulation of LMPs through physicochemically engineering their surface microenvironment, including compositions, structures, and properties, which are featured by the encapsulation of LMPs inside a variety of synthetic shell architectures. These heterophase, core-shell liquid metal composites display adjustable size and structure-property relationships, rendering improved performances in several attractive scenarios including but not limited to soft electronics, nano/biomedicine, catalysis, and energy storage/conversion. Challenges and opportunities regarding this burgeoning field are also disclosed at the end of this review.
Collapse
Affiliation(s)
- Yong Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing 100190, P. R. China.
| | | | | |
Collapse
|
37
|
Li X, Li M, Shou Q, Zhou L, Ge A, Pei D, Li C. Liquid Metal Initiator of Ring-Opening Polymerization: Self-Capsulation into Thermal/Photomoldable Powder for Multifunctional Composites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003553. [PMID: 32954573 DOI: 10.1002/adma.202003553] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/11/2020] [Indexed: 05/15/2023]
Abstract
Liquid metal nanodroplets not only share similar metallic properties and nanoscale effect with solid metal nanoparticles, but also possess the additional uniqueness in nonvolatile fluidity and ambient sintering ability into continuous conductors. In most cases, liquid metal nanodroplets are encapsulated into ultrathin and fragile shells of oxides and amphiphile monolayers, and may be hindered from incorporating homogeneously into various composites through conventional processing methods. In this study, ring-opening polymerization is found to be initiated by sonicating the liquid metal EGaIn in fluidic lactones. By this in situ polymerization, EGaIn nanodroplets are encapsulated into polylactone shells with tunable thickness, which can further be dried into a solid powder. Besides high chemical stability and dispersibility in organic solvents, the powder of the EGaIn capsules combines the exceptional properties of the EGaIn droplets (e.g., photothermal effect) and the polylactone shells (e.g., biocompatibility, biodegradability, and compatibility with different polymer matrixes), being capable of being introduced into thermoplastic composites through liquid casting and thermal- or photomolding for the notch-insensitive tearing property, sintering-induced electric conductivity, and photothermal effect. Thus, the EGaIn initiator of ring-opening polymerization may start a pathway to produce stable andthermal/photomoldable powders of EGaIn capsules and their multifunctionalcomposites, applicable in biomedicines, soft electronics, and smart robots.
Collapse
Affiliation(s)
- Xiankai Li
- Group of Biomimetic Smart Materials, CAS Key Lab of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Qingdao, 266101, P. R. China
- Center of Material and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Mingjie Li
- Group of Biomimetic Smart Materials, CAS Key Lab of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Qingdao, 266101, P. R. China
- Center of Material and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Qinghui Shou
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Qingdao, 266101, P. R. China
| | - Li Zhou
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Qingdao, 266101, P. R. China
| | - Anle Ge
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Qingdao, 266101, P. R. China
| | - Danfeng Pei
- Group of Biomimetic Smart Materials, CAS Key Lab of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Qingdao, 266101, P. R. China
| | - Chaoxu Li
- Group of Biomimetic Smart Materials, CAS Key Lab of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Qingdao, 266101, P. R. China
- Center of Material and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
38
|
Neumann TV, Facchine EG, Leonardo B, Khan S, Dickey MD. Direct write printing of a self-encapsulating liquid metal-silicone composite. SOFT MATTER 2020; 16:6608-6618. [PMID: 32613217 DOI: 10.1039/d0sm00803f] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Silicone composites featuring inclusions of liquid metal particles are soft and stretchable materials with useful electric, dielectric, mechanical, and thermal properties. Until recently, these materials have primarily been cast as films. This work examines the possibility of using uncured liquid metal-elastomer (LME) composites as inks for direct writing. The liquid metal inclusions act as rheological modifiers for the silicone, forming a gel-structure that can be extruded from a nozzle and hold its shape after printing. Additionally, by tuning the particle size, larger particles in the printed structures can settle to form metal-rich regions at the bottom of the structures, encased by metal-depleted (insulating) regions. Using mechanical force, the liquid metal-rich interior can be rendered conductive by sintering without affecting the insulating exterior. Thus, it is possible to print this soft and stretchable material while creating conductors with self-insulating shells.
Collapse
Affiliation(s)
- Taylor V Neumann
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Emily G Facchine
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Brian Leonardo
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Saad Khan
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
39
|
Lin Y, Genzer J, Dickey MD. Attributes, Fabrication, and Applications of Gallium-Based Liquid Metal Particles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000192. [PMID: 32596120 PMCID: PMC7312306 DOI: 10.1002/advs.202000192] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/19/2020] [Indexed: 05/14/2023]
Abstract
This work discusses the attributes, fabrication methods, and applications of gallium-based liquid metal particles. Gallium-based liquid metals combine metallic and fluidic properties at room temperature. Unlike mercury, which is toxic and has a finite vapor pressure, gallium possesses low toxicity and effectively zero vapor pressure at room temperature, which makes it amenable to many applications. A variety of fabrication methods produce liquid metal particles with variable sizes, ranging from nm to mm (which is the upper limit set by the capillary length). The liquid nature of gallium enables fabrication methods-such as microfluidics and sonication-that are not possible with solid materials. Gallium-based liquid metal particles possess several notable attributes, including a metal-metal oxide (liquid-solid) core-shell structure as well as the ability to self-heal, merge, and change shape. They also have unusual phase behavior that depends on the size of the particles. The particles have no known commercial applications, but they show promise for drug delivery, soft electronics, microfluidics, catalysis, batteries, energy harvesting, and composites. Existing challenges and future opportunities are discussed herein.
Collapse
Affiliation(s)
- Yiliang Lin
- Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleighNC27695‐7905USA
| | - Jan Genzer
- Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleighNC27695‐7905USA
| | - Michael D. Dickey
- Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleighNC27695‐7905USA
| |
Collapse
|
40
|
Uppal A, Ralphs M, Kong W, Hart M, Rykaczewski K, Wang RY. Pressure-Activated Thermal Transport via Oxide Shell Rupture in Liquid Metal Capsule Beds. ACS APPLIED MATERIALS & INTERFACES 2020; 12:2625-2633. [PMID: 31859474 DOI: 10.1021/acsami.9b17358] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Liquid metal (LM)-based thermal interface materials (TIMs) have the potential to dissipate high heat loads in modern electronics and often consist of LM microcapsules embedded in a polymer matrix. The shells of these microcapsules consist of a thin LM oxide that forms spontaneously. Unfortunately, these oxide shells degrade heat transfer between LM capsules. Thus, rupturing these oxide shells to release their LM and effectively bridge the microcapsules is critical for achieving the full potential of LM-based TIMs. While this process has been studied from an electrical perspective, such results do not fully translate to thermal applications because electrical transport requires only a single percolation path. In this work, we introduce a novel method to study the rupture mechanics of beds composed solely of LM capsules. Specifically, by measuring the electrical and thermal resistances of capsule beds during compression, we can distinguish between the pressure at which capsule rupture initiates and the pressure at which widespread capsule rupture occurs. These pressures significantly differ, and we find that the pressure for widespread rupture corresponds to a peak in thermal conductivity during compression; hence, this pressure is more relevant to LM thermal applications. Next, we quantify the rupture pressure dependence on LM capsule age, size distribution, and oxide shell chemical treatment. Our results show that large freshly prepared capsules yield higher thermal conductivities and rupture more easily. We also show that chemically treating the oxide shell further facilitates rupture and increases thermal conductivity. We achieve a thermal conductivity of 16 W m-1 K-1 at a pressure below 0.2 MPa for capsules treated with dodecanethiol and hydrochloric acid. Importantly, this pressure is within the acceptable range for TIM applications.
Collapse
Affiliation(s)
- Aastha Uppal
- School for Engineering of Matter, Transport and Energy , Arizona State University , Tempe , Arizona 85287 , United States
| | - Matthew Ralphs
- School for Engineering of Matter, Transport and Energy , Arizona State University , Tempe , Arizona 85287 , United States
| | - Wilson Kong
- School for Engineering of Matter, Transport and Energy , Arizona State University , Tempe , Arizona 85287 , United States
| | - Matthew Hart
- School for Engineering of Matter, Transport and Energy , Arizona State University , Tempe , Arizona 85287 , United States
| | - Konrad Rykaczewski
- School for Engineering of Matter, Transport and Energy , Arizona State University , Tempe , Arizona 85287 , United States
| | - Robert Y Wang
- School for Engineering of Matter, Transport and Energy , Arizona State University , Tempe , Arizona 85287 , United States
| |
Collapse
|