1
|
Curcio A, Curé G, Espinosa A, Menguy N, Galarreta-Rodriguez I, Abou-Hassan A, Piquet B, Motte L, Lalatonne Y, Wilhelm C, Van de Walle A. Elucidating the Dynamics of Biodegradation and Biosynthesis of Magnetic Nanoparticles in Human Stem Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407034. [PMID: 39439159 DOI: 10.1002/smll.202407034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Iron oxide nanoparticles, due to their magnetic properties, are versatile tools for biomedical applications serving both diagnostic and therapeutic roles. Their performance is intricately intertwined with their fate in the demanding biological environment. Once inside cells, these nanoparticles can be degraded, implying a loss of magnetic efficacy, but also transformed into neo-synthesized magnetic nanoparticles, potentially restoring functionality. This study aims to delineate biological features governing these processes. Magnetic nanoparticles are internalized in human mesenchymal stem cells (hMSCs), and their biotransformations are investigated from nano- to micro-scale using electron microscopy (STEM-HAADF, HRTEM, SAED), a benchtop magnetic sensor, and fine structural characterizations (synchrotron XRD, VSM). Results evidence a delicate equilibrium between the biodegradation and biosynthesis of magnetic nanoparticles, with biotransformation kinetics depending on cell density at magnetic labeling and on spatial cell configuration (monolayers vs spheroids). The biotransformed nanoparticles, composed of magnetite or maghemite, are localized within endosomal/lysosomal compartments and associated with the recruitment of ferritin proteins.
Collapse
Affiliation(s)
- Alberto Curcio
- Laboratoire Physique des Cellules et Cancer, Institut Curie, CNRS, Université PSL, Paris, 75005, France
| | - Guilhem Curé
- Laboratoire Physique des Cellules et Cancer, Institut Curie, CNRS, Université PSL, Paris, 75005, France
| | - Ana Espinosa
- Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC, Madrid, 28049, Spain
| | - Nicolas Menguy
- Sorbonne Université, UMR CNRS 7590, MNHN, de physique des matériaux et de cosmochimie (IMPMC), Paris, 75005, France
| | - Itziar Galarreta-Rodriguez
- Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC, Madrid, 28049, Spain
- Spanish CRG beamline at the European Synchrotron (ESRF), B.P. 220, Grenoble, F-38043, France
| | - Ali Abou-Hassan
- CNRS, Physicochimie des Électrolytes et Nanosystèmes InterfaciauX (PHENIX), Sorbonne Université, Paris, F-75005, France
- Institut Universitaire de France (IUF), Paris, 75231 Cedex 05, France
| | - Bérénice Piquet
- Electron Microscopy Platform, Muséum National d'Histoire Naturelle, CP 39, 12 rue Buffon, Paris, 75231 CEDEX 05, France
| | - Laurence Motte
- INSERM, LVTS, Université Sorbonne Paris Nord and Université Paris Cité, Paris, F-75018, France
| | - Yoann Lalatonne
- INSERM, LVTS, Université Sorbonne Paris Nord and Université Paris Cité, Paris, F-75018, France
- Service de Biophysique et Médecine Nucléaire, Hôpital Avicenne AP-HP, Bobigny, F-93009, France
| | - Claire Wilhelm
- Laboratoire Physique des Cellules et Cancer, Institut Curie, CNRS, Université PSL, Paris, 75005, France
| | - Aurore Van de Walle
- Laboratoire Physique des Cellules et Cancer, Institut Curie, CNRS, Université PSL, Paris, 75005, France
| |
Collapse
|
2
|
Benassai E, Daffé N, Aygun E, Geeverding A, Ulku Saritas E, Wilhelm C, Abou-Hassan A. Biodegradation by Cancer Cells of Magnetite Nanoflowers with and without Encapsulation in PS- b-PAA Block Copolymer Micelles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34772-34782. [PMID: 38943572 DOI: 10.1021/acsami.4c08727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Magnetomicelles were produced by the self-assembly of magnetite iron oxide nanoflowers and the amphiphilic poly(styrene)-b-poly(acrylic acid) block copolymer to deliver a multifunctional theranostic agent. Their bioprocessing by cancer cells was investigated in a three-dimensional spheroid model over a 13-day period and compared with nonencapsulated magnetic nanoflowers. A degradation process was identified and monitored at various scales, exploiting different physicochemical fingerprints. At a collective level, measurements were conducted using magnetic, photothermal, and magnetic resonance imaging techniques. At the nanoscale, transmission electron microscopy was employed to identify the morphological integrity of the structures, and X-ray absorption spectroscopy was used to analyze the degradation at the crystalline phase and chemical levels. All of these measurements converge to demonstrate that the encapsulation of magnetic nanoparticles in micelles effectively mitigates their degradation compared to individual nonencapsulated magnetic nanoflowers. This protective effect consequently resulted in better maintenance of their therapeutic photothermal potential. The structural degradation of magnetomicelles occurred through the formation of an oxidized iron phase in ferritin from the magnetic nanoparticles, leaving behind empty spherical polymeric ghost shells. These results underscore the significance of encapsulation of iron oxides in micelles in preserving nanomaterial integrity and regulating degradation, even under challenging physicochemical conditions within cancer cells.
Collapse
Affiliation(s)
- Emilia Benassai
- CNRS, Physicochimie des Électrolytes et Nanosystèmes InterfaciauX (PHENIX), Sorbonne Université, F-75005 Paris, France
| | - Niéli Daffé
- Swiss Light Source, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Elif Aygun
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara 06800, Turkey
| | - Audrey Geeverding
- CNRS, Institut de Biologie Paris-Seine (IBPS), Service de Microscopie Electronique (IBPS-SME), Sorbonne Université, F-75005 Paris, France
| | - Emine Ulku Saritas
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara 06800, Turkey
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara 06800, Turkey
| | - Claire Wilhelm
- Laboratoire Physico Chimie Curie, Institut Curie, CNRS, PSL Research University, 75006 Paris, France
| | - Ali Abou-Hassan
- CNRS, Physicochimie des Électrolytes et Nanosystèmes InterfaciauX (PHENIX), Sorbonne Université, F-75005 Paris, France
- Institut Universitaire de France (IUF), 75231 Paris, Cedex 05, France
| |
Collapse
|
3
|
Maltoni P, Baričić M, Barucca G, Spadaro MC, Arbiol J, Yaacoub N, Peddis D, Mathieu R. Tunable particle-agglomeration and magnetic coupling in bi-magnetic nanocomposites. Phys Chem Chem Phys 2023; 25:27817-27828. [PMID: 37814895 DOI: 10.1039/d3cp03689h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
A set of non-stoichiometric Zn-Co-ferrite nanoparticles (NPs) was prepared by thermal decomposition of metallic complexes, in the presence of oleic acid, and, after a ligand-exchange process, was coated by a hydrophilic surfactant: these NPs were used as seeds in a sol-gel self-combustion synthesis to prepare nanocomposites (NCs) with a fixed weight ratio. Our focus here is the development of an efficient synthetic approach to control the magnetic coupling between a hard-magnetic matrix (Sr-ferrite) and NPs. The physico-chemical synthetic conditions (temperature, pH, colloidal stability) were optimized in order to tune their effect on the final particles' agglomeration in the matrix. We demonstrate that our synthetic approach is a novel way to produce strongly magnetically coupled NCs, where the final extrinsic properties could be tuned by controlling (i) the agglomeration of seeds in the matrix and (ii) their elemental doping.
Collapse
Affiliation(s)
- Pierfrancesco Maltoni
- Department of Materials Science and Engineering, Uppsala University, Box 35, Uppsala, 751 03, Sweden.
| | - Miran Baričić
- Dipartimento di Chimica e Chimica Industriale & INSTM, nM2-Lab, Università degli Studi di, Genova, Via Dodecaneso 31, Genova, 1-16146, Italy.
| | - Gianni Barucca
- Dipartimento di Scienze e Ingegneria della Materia dell'Ambiente ed Urbanistica - SIMAU, Università Politecnica delle Marche, Ancona 60131, Italy
- Consiglio Nazionale delle Ricerche, Istituto di Strttura della Materia, nM2-lab, Monterotondo Scalo (RM), 00015, Italy
| | - Maria Chiara Spadaro
- Dipartimento di Scienze e Ingegneria della Materia dell'Ambiente ed Urbanistica - SIMAU, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Jordi Arbiol
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Catalonia, Spain
- ICREA, Pg. Lluís Companys 23, 08020, Barcelona, Catalonia, Spain
| | - Nader Yaacoub
- Le Mans Université, Institut des Molécules et Matériaux du Mans, CNRS UMR-6283, Avenue Olivier Messiaen, Le Mans, 72085, France
| | - Davide Peddis
- Dipartimento di Chimica e Chimica Industriale & INSTM, nM2-Lab, Università degli Studi di, Genova, Via Dodecaneso 31, Genova, 1-16146, Italy.
- Consiglio Nazionale delle Ricerche, Istituto di Strttura della Materia, nM2-lab, Monterotondo Scalo (RM), 00015, Italy
| | - Roland Mathieu
- Department of Materials Science and Engineering, Uppsala University, Box 35, Uppsala, 751 03, Sweden.
| |
Collapse
|
4
|
Ibáñez-Moragues M, Fernández-Barahona I, Santacruz R, Oteo M, Luján-Rodríguez VM, Muñoz-Hernando M, Magro N, Lagares JI, Romero E, España S, Espinosa-Rodríguez A, García-Díez M, Martínez-Nouvilas V, Sánchez-Tembleque V, Udías JM, Valladolid-Onecha V, Martín-Rey MÁ, Almeida-Cordon EI, Viñals i Onsès S, Pérez JM, Fraile LM, Herranz F, Morcillo MÁ. Zinc-Doped Iron Oxide Nanoparticles as a Proton-Activatable Agent for Dose Range Verification in Proton Therapy. Molecules 2023; 28:6874. [PMID: 37836718 PMCID: PMC10574368 DOI: 10.3390/molecules28196874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/13/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Proton therapy allows the treatment of specific areas and avoids the surrounding tissues. However, this technique has uncertainties in terms of the distal dose fall-off. A promising approach to studying the proton range is the use of nanoparticles as proton-activatable agents that produce detectable signals. For this, we developed an iron oxide nanoparticle doped with Zn (IONP@Zn-cit) with a hydrodynamic size of 10 nm and stability in serum. Cytotoxicity, defined as half of the surveillance, was 100 μg Zn/mL in the U251 cell line. The effect on clonogenic cell death was tested after X-ray irradiation, which suggested a radioprotective effect of these nanoparticles at low concentrations (1-10 μg Zn/mL). To evaluate the production of positron emitters and prompt-gamma signals, IONP@Zn-cit was irradiated with protons, obtaining prompt-gamma signals at the lowest measured concentration (10 mg Zn/mL). Finally, 67Ga-IONP@Zn-cit showed accumulation in the liver and spleen and an accumulation in the tumor tissue of 0.95% ID/g in a mouse model of U251 cells. These results suggest the possibility of using Zn nanoparticles as proton-activatable agents to verify the range by prompt gamma detection and face the challenges of prompt gamma detection in a specific biological situation, opening different avenues to go forward in this field.
Collapse
Affiliation(s)
- Marta Ibáñez-Moragues
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas CIEMAT, Medical Applications of Ionizing Radiation Unit, 28040 Madrid, Spain; (R.S.); (M.O.); (V.M.L.-R.); (N.M.); (J.I.L.); (E.R.); (J.M.P.)
| | - Irene Fernández-Barahona
- Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain;
- Instituto de Química Médica—Consejo Superior de Investigaciones Científicas IQM-CSIC, Nanomedicine and Molecular Imaging Group, 28006 Madrid, Spain; (M.M.-H.)
| | - Rocío Santacruz
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas CIEMAT, Medical Applications of Ionizing Radiation Unit, 28040 Madrid, Spain; (R.S.); (M.O.); (V.M.L.-R.); (N.M.); (J.I.L.); (E.R.); (J.M.P.)
| | - Marta Oteo
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas CIEMAT, Medical Applications of Ionizing Radiation Unit, 28040 Madrid, Spain; (R.S.); (M.O.); (V.M.L.-R.); (N.M.); (J.I.L.); (E.R.); (J.M.P.)
| | - Víctor M. Luján-Rodríguez
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas CIEMAT, Medical Applications of Ionizing Radiation Unit, 28040 Madrid, Spain; (R.S.); (M.O.); (V.M.L.-R.); (N.M.); (J.I.L.); (E.R.); (J.M.P.)
| | - María Muñoz-Hernando
- Instituto de Química Médica—Consejo Superior de Investigaciones Científicas IQM-CSIC, Nanomedicine and Molecular Imaging Group, 28006 Madrid, Spain; (M.M.-H.)
| | - Natalia Magro
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas CIEMAT, Medical Applications of Ionizing Radiation Unit, 28040 Madrid, Spain; (R.S.); (M.O.); (V.M.L.-R.); (N.M.); (J.I.L.); (E.R.); (J.M.P.)
| | - Juan I. Lagares
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas CIEMAT, Medical Applications of Ionizing Radiation Unit, 28040 Madrid, Spain; (R.S.); (M.O.); (V.M.L.-R.); (N.M.); (J.I.L.); (E.R.); (J.M.P.)
| | - Eduardo Romero
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas CIEMAT, Medical Applications of Ionizing Radiation Unit, 28040 Madrid, Spain; (R.S.); (M.O.); (V.M.L.-R.); (N.M.); (J.I.L.); (E.R.); (J.M.P.)
| | - Samuel España
- Nuclear Physics Group, Universidad Complutense de Madrid, IPARCOS &EMFTEL, CEI Moncloa, 28040 Madrid, Spain; (S.E.); (A.E.-R.); (M.G.-D.); (V.M.-N.); (V.S.-T.); (J.M.U.); (V.V.-O.); (L.M.F.)
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, 28040 Madrid, Spain
| | - Andrea Espinosa-Rodríguez
- Nuclear Physics Group, Universidad Complutense de Madrid, IPARCOS &EMFTEL, CEI Moncloa, 28040 Madrid, Spain; (S.E.); (A.E.-R.); (M.G.-D.); (V.M.-N.); (V.S.-T.); (J.M.U.); (V.V.-O.); (L.M.F.)
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, 28040 Madrid, Spain
| | - Miguel García-Díez
- Nuclear Physics Group, Universidad Complutense de Madrid, IPARCOS &EMFTEL, CEI Moncloa, 28040 Madrid, Spain; (S.E.); (A.E.-R.); (M.G.-D.); (V.M.-N.); (V.S.-T.); (J.M.U.); (V.V.-O.); (L.M.F.)
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, 28040 Madrid, Spain
| | - Víctor Martínez-Nouvilas
- Nuclear Physics Group, Universidad Complutense de Madrid, IPARCOS &EMFTEL, CEI Moncloa, 28040 Madrid, Spain; (S.E.); (A.E.-R.); (M.G.-D.); (V.M.-N.); (V.S.-T.); (J.M.U.); (V.V.-O.); (L.M.F.)
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, 28040 Madrid, Spain
| | - Víctor Sánchez-Tembleque
- Nuclear Physics Group, Universidad Complutense de Madrid, IPARCOS &EMFTEL, CEI Moncloa, 28040 Madrid, Spain; (S.E.); (A.E.-R.); (M.G.-D.); (V.M.-N.); (V.S.-T.); (J.M.U.); (V.V.-O.); (L.M.F.)
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, 28040 Madrid, Spain
| | - José Manuel Udías
- Nuclear Physics Group, Universidad Complutense de Madrid, IPARCOS &EMFTEL, CEI Moncloa, 28040 Madrid, Spain; (S.E.); (A.E.-R.); (M.G.-D.); (V.M.-N.); (V.S.-T.); (J.M.U.); (V.V.-O.); (L.M.F.)
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, 28040 Madrid, Spain
| | - Víctor Valladolid-Onecha
- Nuclear Physics Group, Universidad Complutense de Madrid, IPARCOS &EMFTEL, CEI Moncloa, 28040 Madrid, Spain; (S.E.); (A.E.-R.); (M.G.-D.); (V.M.-N.); (V.S.-T.); (J.M.U.); (V.V.-O.); (L.M.F.)
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, 28040 Madrid, Spain
| | - Miguel Á. Martín-Rey
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas CIEMAT, Hematopoietic Innovative Therapies Unit, 28040 Madrid, Spain;
| | - Edilia I. Almeida-Cordon
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas CIEMAT, Animal Facility Unit, 28040 Madrid, Spain;
| | - Sílvia Viñals i Onsès
- Center for Microanalysis of Materials (CMAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - José Manuel Pérez
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas CIEMAT, Medical Applications of Ionizing Radiation Unit, 28040 Madrid, Spain; (R.S.); (M.O.); (V.M.L.-R.); (N.M.); (J.I.L.); (E.R.); (J.M.P.)
| | - Luis Mario Fraile
- Nuclear Physics Group, Universidad Complutense de Madrid, IPARCOS &EMFTEL, CEI Moncloa, 28040 Madrid, Spain; (S.E.); (A.E.-R.); (M.G.-D.); (V.M.-N.); (V.S.-T.); (J.M.U.); (V.V.-O.); (L.M.F.)
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, 28040 Madrid, Spain
| | - Fernando Herranz
- Instituto de Química Médica—Consejo Superior de Investigaciones Científicas IQM-CSIC, Nanomedicine and Molecular Imaging Group, 28006 Madrid, Spain; (M.M.-H.)
| | - Miguel Ángel Morcillo
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas CIEMAT, Medical Applications of Ionizing Radiation Unit, 28040 Madrid, Spain; (R.S.); (M.O.); (V.M.L.-R.); (N.M.); (J.I.L.); (E.R.); (J.M.P.)
| |
Collapse
|
5
|
Semkina A, Nikitin A, Ivanova A, Chmelyuk N, Sviridenkova N, Lazareva P, Abakumov M. 3,4-Dihydroxiphenylacetic Acid-Based Universal Coating Technique for Magnetic Nanoparticles Stabilization for Biomedical Applications. J Funct Biomater 2023; 14:461. [PMID: 37754875 PMCID: PMC10531619 DOI: 10.3390/jfb14090461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023] Open
Abstract
Magnetic nanoparticles based on iron oxide attract researchers' attention due to a wide range of possible applications in biomedicine. As synthesized, most of the magnetic nanoparticles do not form the stable colloidal solutions that are required for the evaluation of their interactions with cells or their efficacy on animal models. For further application in biomedicine, magnetic nanoparticles must be further modified with biocompatible coating. Both the size and shape of magnetic nanoparticles and the chemical composition of the coating have an effect on magnetic nanoparticles' interactions with living objects. Thus, a universal method for magnetic nanoparticles' stabilization in water solutions is needed, regardless of how magnetic nanoparticles were initially synthesized. In this paper, we propose the versatile and highly reproducible ligand exchange technique of coating with 3,4-dihydroxiphenylacetic acid (DOPAC), based on the formation of Fe-O bonds with hydroxyl groups of DOPAC leading to the hydrophilization of the magnetic nanoparticles' surfaces following phase transfer from organic solutions to water. The proposed technique allows for obtaining stable water-colloidal solutions of magnetic nanoparticles with sizes from 21 to 307 nm synthesized by thermal decomposition or coprecipitation techniques. Those stabilized by DOPAC nanoparticles were shown to be efficient in the magnetomechanical actuation of DNA duplexes, drug delivery of doxorubicin to cancer cells, and targeted delivery by conjugation with antibodies. Moreover, the diversity of possible biomedical applications of the resulting nanoparticles was presented. This finding is important in terms of nanoparticle design for various biomedical applications and will reduce nanomedicines manufacturing time, along with difficulties related to comparative studies of magnetic nanoparticles with different magnetic core characteristics.
Collapse
Affiliation(s)
- Alevtina Semkina
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (A.S.); (A.N.); (A.I.); (N.C.); (P.L.)
- Department of Basic and Applied Neurobiology, Serbsky National Medical Research Center for Psychiatry and Narcology, 119991 Moscow, Russia
| | - Aleksey Nikitin
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (A.S.); (A.N.); (A.I.); (N.C.); (P.L.)
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology (MISIS), 119049 Moscow, Russia
- Department of General and Inorganic Chemistry, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia;
| | - Anna Ivanova
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (A.S.); (A.N.); (A.I.); (N.C.); (P.L.)
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology (MISIS), 119049 Moscow, Russia
| | - Nelly Chmelyuk
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (A.S.); (A.N.); (A.I.); (N.C.); (P.L.)
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology (MISIS), 119049 Moscow, Russia
| | - Natalia Sviridenkova
- Department of General and Inorganic Chemistry, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia;
| | - Polina Lazareva
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (A.S.); (A.N.); (A.I.); (N.C.); (P.L.)
| | - Maxim Abakumov
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (A.S.); (A.N.); (A.I.); (N.C.); (P.L.)
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology (MISIS), 119049 Moscow, Russia
| |
Collapse
|
6
|
Fromain A, Perez JE, Van de Walle A, Lalatonne Y, Wilhelm C. Photothermia at the nanoscale induces ferroptosis via nanoparticle degradation. Nat Commun 2023; 14:4637. [PMID: 37532698 PMCID: PMC10397343 DOI: 10.1038/s41467-023-40258-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023] Open
Abstract
The Fe(II)-induced ferroptotic cell death pathway is an asset in cancer therapy, yet it calls into question the biocompatibility of magnetic nanoparticles. In the latter, Fe(II) is sequestered within the crystal structure and is released only upon nanoparticle degradation, a transition that is not well understood. Here, we dissect the chemical environment necessary for nanoparticle degradation and subsequent Fe(II) release. Importantly, temperature acts as an accelerator of the process and can be triggered remotely by laser-mediated photothermal conversion, as evidenced by the loss of the nanoparticles' magnetic fingerprint. Remarkably, the local hot-spot temperature generated at the nanoscale can be measured in operando, in the vicinity of each nanoparticle, by comparing the photothermal-induced nanoparticle degradation patterns with those of global heating. Further, remote photothermal irradiation accelerates degradation inside cancer cells in a tumor spheroid model, with efficiency correlating with the endocytosis progression state of the nanoparticles. High-throughput imaging quantification of Fe2+ release, ROS generation, lipid peroxidation and cell death at the spheroid level confirm the synergistic thermo-ferroptotic therapy due to the photothermal degradation at the nanoparticle level.
Collapse
Affiliation(s)
- Alexandre Fromain
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005, Paris, France
| | - Jose Efrain Perez
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005, Paris, France
| | - Aurore Van de Walle
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005, Paris, France
| | - Yoann Lalatonne
- Université Sorbonne Paris Nord, Université Paris Cité, Laboratory for Vascular Translational Science, LVTS, INSERM, UMR 1148, F‑ 93017, Bobigny, France
- Département de Biophysique et de Médecine Nucléaire, Assistance Publique-Hôpitaux de Paris, Hôpital Avicenne, F‑ 93009, Bobigny, France
| | - Claire Wilhelm
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005, Paris, France.
| |
Collapse
|
7
|
Yusefi M, Shameli K, Jahangirian H, Teow SY, Afsah-Hejri L, Mohamad Sukri SNA, Kuča K. How Magnetic Composites are Effective Anticancer Therapeutics? A Comprehensive Review of the Literature. Int J Nanomedicine 2023; 18:3535-3575. [PMID: 37409027 PMCID: PMC10319292 DOI: 10.2147/ijn.s375964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 05/31/2023] [Indexed: 07/07/2023] Open
Abstract
Chemotherapy is the most prominent route in cancer therapy for prolonging the lifespan of cancer patients. However, its non-target specificity and the resulting off-target cytotoxicities have been reported. Recent in vitro and in vivo studies using magnetic nanocomposites (MNCs) for magnetothermal chemotherapy may potentially improve the therapeutic outcome by increasing the target selectivity. In this review, magnetic hyperthermia therapy and magnetic targeting using drug-loaded MNCs are revisited, focusing on magnetism, the fabrication and structures of magnetic nanoparticles, surface modifications, biocompatible coating, shape, size, and other important physicochemical properties of MNCs, along with the parameters of the hyperthermia therapy and external magnetic field. Due to the limited drug-loading capacity and low biocompatibility, the use of magnetic nanoparticles (MNPs) as drug delivery system has lost traction. In contrast, MNCs show higher biocompatibility, multifunctional physicochemical properties, high drug encapsulation, and multi-stages of controlled release for localized synergistic chemo-thermotherapy. Further, combining various forms of magnetic cores and pH-sensitive coating agents can generate a more robust pH, magneto, and thermo-responsive drug delivery system. Thus, MNCs are ideal candidate as smart and remotely guided drug delivery system due to a) their magneto effects and guide-ability by the external magnetic fields, b) on-demand drug release performance, and c) thermo-chemosensitization under an applied alternating magnetic field where the tumor is selectively incinerated without harming surrounding non-tumor tissues. Given the important effects of synthesis methods, surface modifications, and coating of MNCs on their anticancer properties, we reviewed the most recent studies on magnetic hyperthermia, targeted drug delivery systems in cancer therapy, and magnetothermal chemotherapy to provide insights on the current development of MNC-based anticancer nanocarrier.
Collapse
Affiliation(s)
- Mostafa Yusefi
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Kamyar Shameli
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, 81675, Germany
| | | | - Sin-Yeang Teow
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, 325060, People’s Republic of China
| | - Leili Afsah-Hejri
- Department of Food Safety and Quality, School of Business, Science and Technology, Lakeland University Plymouth, WI 53073, USA
| | | | - Kamil Kuča
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
8
|
Kawassaki R, Romano M, Klimuk Uchiyama M, Cardoso RM, Baptista M, Farsky SHP, Chaim KT, Guimarães RR, Araki K. Novel Gadolinium-Free Ultrasmall Nanostructured Positive Contrast for Magnetic Resonance Angiography and Imaging. NANO LETTERS 2023; 23:5497-5505. [PMID: 37300521 PMCID: PMC10312191 DOI: 10.1021/acs.nanolett.3c00665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/04/2023] [Indexed: 06/12/2023]
Abstract
Nanostructured contrast agents are promising alternatives to Gd3+-based chelates in magnetic resonance (MR) imaging techniques. A novel ultrasmall paramagnetic nanoparticle (UPN) was strategically designed to maximize the number of exposed paramagnetic sites and r1 while minimizing r2, by decorating 3 nm titanium dioxide nanoparticles with suitable amounts of iron oxide. Its relaxometric parameters are comparable to those of gadoteric acid (GA) in agar phantoms, and the r2/r1 ratio of 1.38 at 3 T is close to the ideal unitary value. The strong and prolonged contrast enhancement of UPN before renal excretion was confirmed by T1-weighted MR images of Wistar rats after intravenous bolus injection. Those results associated with good biocompatibility indicate its high potential as an alternative blood-pool contrast agent to the GA gold standard for MR angiography, especially for patients with severe renal impairment.
Collapse
Affiliation(s)
- Rodrigo
Ken Kawassaki
- Laboratory
of Supramolecular Chemistry and Nanotechnology, Department of Fundamental
Chemistry, Institute of Chemistry, University
of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Mariana Romano
- Laboratory
of Supramolecular Chemistry and Nanotechnology, Department of Fundamental
Chemistry, Institute of Chemistry, University
of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Mayara Klimuk Uchiyama
- Laboratory
of Supramolecular Chemistry and Nanotechnology, Department of Fundamental
Chemistry, Institute of Chemistry, University
of Sao Paulo, Sao Paulo 05508-000, Brazil
- Laboratory
of Magnetic Resonance in Neuroradiology (LIM44), Department of Radiology
and Oncology, Faculty of Medicine, University
of Sao Paulo, Sao Paulo 01246-903, Brazil
| | - Roberta Mansini Cardoso
- Laboratory
of Supramolecular Chemistry and Nanotechnology, Department of Fundamental
Chemistry, Institute of Chemistry, University
of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Maurício
S. Baptista
- Laboratory
of Interfaces and Photoinduced Processes, Department of Biochemistry,
Institute of Chemistry, University of Sao
Paulo, Sao Paulo 05508-000, Brazil
| | - Sandra H. P. Farsky
- Laboratory
of Inflammation and Immunotoxicology, Department of Clinical and Toxicological
Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Khallil Taverna Chaim
- Laboratory
of Magnetic Resonance in Neuroradiology (LIM44), Department of Radiology
and Oncology, Faculty of Medicine, University
of Sao Paulo, Sao Paulo 01246-903, Brazil
- Imaging
Platform (PISA), Hospital das Clinicas HCFMUSP, Faculty of Medicine, University of Sao Paulo, Sao Paulo 01246-903, Brazil
| | - Robson Raphael Guimarães
- Laboratory
of Supramolecular Chemistry and Nanotechnology, Department of Fundamental
Chemistry, Institute of Chemistry, University
of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Koiti Araki
- Laboratory
of Supramolecular Chemistry and Nanotechnology, Department of Fundamental
Chemistry, Institute of Chemistry, University
of Sao Paulo, Sao Paulo 05508-000, Brazil
| |
Collapse
|
9
|
Arosio P, Orsini F, Brero F, Mariani M, Innocenti C, Sangregorio C, Lascialfari A. The effect of size, shape, coating and functionalization on nuclear relaxation properties in iron oxide core-shell nanoparticles: a brief review of the situation. Dalton Trans 2023; 52:3551-3562. [PMID: 36880505 DOI: 10.1039/d2dt03387a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
In this perspective article, we present a short selection of some of the most significant case studies on magnetic nanoparticles for potential applications in nanomedicine, mainly magnetic resonance. For almost 10 years, our research activity focused on the comprehension of the physical mechanisms on the basis of the nuclear relaxation of magnetic nanoparticles in the presence of magnetic fields; taking advantage of the insights gathered over this time span, we report on the dependence of the relaxation behaviour on the chemico-physical properties of magnetic nanoparticles and discuss them in full detail. In particular, a critical review is carried out on the correlations between their efficiency as contrast agents in magnetic resonance imaging and the magnetic core of magnetic nanoparticles (mainly iron oxides), their size and shape, and the coating and solvent used for making them biocompatible and well dispersible in physiological media. Finally, the heuristic model proposed by Roch and coworkers is presented, as it was extensively adopted to describe most of the experimental data sets. The large amount of data analyzed allowed us to highlight both the advantages and limitations of the model.
Collapse
Affiliation(s)
- Paolo Arosio
- Dipartimento di Fisica, INFN and INSTM RU, Università degli Studi di Milano, 20133 Milano, Italy.
| | - Francesco Orsini
- Dipartimento di Fisica, INFN and INSTM RU, Università degli Studi di Milano, 20133 Milano, Italy.
| | - Francesca Brero
- Dipartimento di Fisica, INFN and INSTM RU, Università degli Studi di Pavia, 27100 Pavia, Italy
| | - Manuel Mariani
- Dipartimento di Fisica, INFN and INSTM RU, Università degli Studi di Pavia, 27100 Pavia, Italy
| | - Claudia Innocenti
- Dipartimento di Chimica, Università di Firenze and INSTM, 50019 Sesto Fiorentino (FI), Italy
- ICCOM-CNR, 50019 Sesto Fiorentino (FI), Italy
| | - Claudio Sangregorio
- Dipartimento di Chimica, Università di Firenze and INSTM, 50019 Sesto Fiorentino (FI), Italy
- ICCOM-CNR, 50019 Sesto Fiorentino (FI), Italy
| | - Alessandro Lascialfari
- Dipartimento di Fisica, INFN and INSTM RU, Università degli Studi di Pavia, 27100 Pavia, Italy
| |
Collapse
|
10
|
Lim CC, Ng QH, Hoo PY, Enche Ab Rahim SK, Jamalludin MR, Nasib AM, Wicaksono ST, Pramata AD, Zullaikah S. Facial synthesis of colloidal stable magnetic nanoparticles coated with high hydrophilic negative charged poly(4‐styrenesulfonic acid co‐maleic acid) sodium for water remediation. POLYM ADVAN TECHNOL 2023. [DOI: 10.1002/pat.5974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Chuan Chuan Lim
- Faculty of Chemical Engineering & Technology Universiti Malaysia Perlis (UniMAP) Perlis Malaysia
| | - Qi Hwa Ng
- Faculty of Chemical Engineering & Technology Universiti Malaysia Perlis (UniMAP) Perlis Malaysia
- Centre of Excellence for Frontier Materials Research, (CFMR) Universiti Malaysia Perlis (UniMAP) Perlis Malaysia
| | - Peng Yong Hoo
- Faculty of Chemical Engineering & Technology Universiti Malaysia Perlis (UniMAP) Perlis Malaysia
- Centre of Excellence for Frontier Materials Research, (CFMR) Universiti Malaysia Perlis (UniMAP) Perlis Malaysia
| | - Siti Kartini Enche Ab Rahim
- Faculty of Chemical Engineering & Technology Universiti Malaysia Perlis (UniMAP) Perlis Malaysia
- Centre of Excellence for Frontier Materials Research, (CFMR) Universiti Malaysia Perlis (UniMAP) Perlis Malaysia
| | - Mohd Riduan Jamalludin
- Centre of Excellence for Frontier Materials Research, (CFMR) Universiti Malaysia Perlis (UniMAP) Perlis Malaysia
- Faculty of Mechanical Engineering & Technology Universiti Malaysia Perlis (UniMAP) Perlis Malaysia
| | - Amira Mohd Nasib
- Faculty of Chemical Engineering & Technology Universiti Malaysia Perlis (UniMAP) Perlis Malaysia
- Centre of Excellence for Frontier Materials Research, (CFMR) Universiti Malaysia Perlis (UniMAP) Perlis Malaysia
| | - Sigit Tri Wicaksono
- Department of Materials and Metallurgical Engineering Institut Teknologi Sepuluh Nopember Surabaya Indonesia
| | - Azzah Dyah Pramata
- Department of Materials and Metallurgical Engineering Institut Teknologi Sepuluh Nopember Surabaya Indonesia
| | - Siti Zullaikah
- Department of Chemical Engineering Institut Teknologi Sepuluh Nopember Surabaya Indonesia
| |
Collapse
|
11
|
Yaremenko AV, Zelepukin IV, Ivanov IN, Melikov RO, Pechnikova NA, Dzhalilova DS, Mirkasymov AB, Bragina VA, Nikitin MP, Deyev SM, Nikitin PI. Influence of magnetic nanoparticle biotransformation on contrasting efficiency and iron metabolism. J Nanobiotechnology 2022; 20:535. [PMID: 36528614 PMCID: PMC9758463 DOI: 10.1186/s12951-022-01742-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Magnetic nanoparticles are widely used in biomedicine for MRI imaging and anemia treatment. The aging of these nanomaterials in vivo may lead to gradual diminishing of their contrast properties and inducing toxicity. Here, we describe observation of the full lifecycle of 40-nm magnetic particles from their injection to the complete degradation in vivo and associated impact on the organism. We found that in 2 h the nanoparticles were eliminated from the bloodstream, but their initial biodistribution changed over time. In 1 week, a major part of the nanoparticles was transferred to the liver and spleen, where they degraded with a half-life of 21 days. MRI and a magnetic spectral approach revealed preservation of contrast in these organs for more than 1 month. The particle degradation led to the increased number of red blood cells and blood hemoglobin level due to released iron without causing any toxicity in tissues. We also observed an increase in gene expression level of Fe-associated proteins such as transferrin, DMT1, and ferroportin in the liver in response to the iron particle degradation. A deeper understanding of the organism response to the particle degradation can bring new directions to the field of MRI contrast agent design.
Collapse
Affiliation(s)
- Alexey V. Yaremenko
- grid.38142.3c000000041936754XCenter for Nanomedicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA ,grid.418853.30000 0004 0440 1573Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia ,grid.4793.90000000109457005School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ivan V. Zelepukin
- grid.418853.30000 0004 0440 1573Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia ,grid.183446.c0000 0000 8868 5198National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
| | - Ilya N. Ivanov
- grid.418853.30000 0004 0440 1573Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia ,grid.183446.c0000 0000 8868 5198National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia ,grid.78028.350000 0000 9559 0613Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Roman O. Melikov
- grid.418899.50000 0004 0619 5259Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Nadezhda A. Pechnikova
- grid.15447.330000 0001 2289 6897Saint Petersburg State University, 199034 Saint Petersburg, Russia ,grid.419591.1Saint Petersburg Pasteur Institute, 197101 Saint Petersburg, Russia
| | - Dzhuliia Sh. Dzhalilova
- grid.473325.4Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery, 117418 Moscow, Russia
| | - Aziz B. Mirkasymov
- grid.418853.30000 0004 0440 1573Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Vera A. Bragina
- grid.424964.90000 0004 0637 9699Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Maxim P. Nikitin
- grid.510477.0Sirius University of Science and Technology, 354340 Sirius, Russia ,Moscow Center for Advanced Studies, 123592 Moscow, Russia
| | - Sergey M. Deyev
- grid.418853.30000 0004 0440 1573Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia ,grid.183446.c0000 0000 8868 5198National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
| | - Petr I. Nikitin
- grid.183446.c0000 0000 8868 5198National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia ,grid.424964.90000 0004 0637 9699Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
12
|
Demri N, Dumas S, Nguyen M, Gropplero G, Abou‐Hassan A, Descroix S, Wilhelm C. Remote Magnetic Microengineering and Alignment of Spheroids into 3D Cellular Fibers. ADVANCED FUNCTIONAL MATERIALS 2022; 32. [DOI: 10.1002/adfm.202204850] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Indexed: 01/05/2025]
Abstract
AbstractDeveloping in vitro models that recapitulate the in vivo organization of living cells in a 3D microenvironment is one of the current challenges in the field of tissue engineering. In particular for anisotropic tissues where alignment of precursor cells is required for them to create functional structures. Herein, a new method is proposed that allows aligning in the direction of a uniform magnetic field both individual cells (muscle, stromal, and stem cells) or spheroids in a thermoresponsive collagen hydrogel. In an all‐in‐one approach, spheroids are generated at high throughput by magnetic engineering using microfabricated micromagnets and are used as building blocks to create 3D anisotropic tissue structures of different scales. The magnetic cells and spheroids alignment process is optimized in terms of magnetic cell labeling, concentration, and size. Anisotropic structures are induced to form fibers in the direction of the magnetic alignment, with the respective roles of the magnetic field, the mechanical stretching of hydrogel or co‐culture of the aligned cells with non‐magnetic stromal cells, being investigated. Over days, spheroids fuse into 3D tubular structures, oriented in the direction of the magnetic alignment. Moreover, in the case of the muscle cells model, multinucleated cells can be observed within the fibers.
Collapse
Affiliation(s)
- Noam Demri
- Laboratoire Physico Chimie Curie PCC CNRS UMR168 Institut Curie Sorbonne University PSL University 75005 Paris France
| | - Simon Dumas
- Laboratoire Physico Chimie Curie PCC CNRS UMR168 Institut Curie Sorbonne University PSL University 75005 Paris France
| | - Manh‐Louis Nguyen
- Laboratoire Physico Chimie Curie PCC CNRS UMR168 Institut Curie Sorbonne University PSL University 75005 Paris France
| | - Giacomo Gropplero
- Laboratoire Physico Chimie Curie PCC CNRS UMR168 Institut Curie Sorbonne University PSL University 75005 Paris France
| | - Ali Abou‐Hassan
- Institut Universitaire de France (IUF) 75231 Paris Cedex 05 France
- PHysico‐chimie des Electrolytes et Nanosystèmes InterfaciauX PHENIX CNRS UMR234 Sorbonne University 75005 Paris France
| | - Stéphanie Descroix
- Laboratoire Physico Chimie Curie PCC CNRS UMR168 Institut Curie Sorbonne University PSL University 75005 Paris France
| | - Claire Wilhelm
- Laboratoire Physico Chimie Curie PCC CNRS UMR168 Institut Curie Sorbonne University PSL University 75005 Paris France
| |
Collapse
|
13
|
Dhillon K, Aizel K, Broomhall TJ, Secret E, Goodman T, Rotherham M, Telling N, Siaugue JM, Ménager C, Fresnais J, Coppey M, El Haj AJ, Gates MA. Directional control of neurite outgrowth: emerging technologies for Parkinson's disease using magnetic nanoparticles and magnetic field gradients. J R Soc Interface 2022; 19:20220576. [PMID: 36349444 PMCID: PMC9653228 DOI: 10.1098/rsif.2022.0576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/19/2022] [Indexed: 08/08/2023] Open
Abstract
A challenge in current stem cell therapies for Parkinson's disease (PD) is controlling neuronal outgrowth from the substantia nigra towards the targeted area where connectivity is required in the striatum. Here we present progress towards controlling directional neurite extensions through the application of iron-oxide magnetic nanoparticles (MNPs) labelled neuronal cells combined with a magnetic array generating large spatially variant field gradients (greater than 20 T m-1). We investigated the viability of this approach in both two-dimensional and organotypic brain slice models and validated the observed changes in neurite directionality using mathematical models. Results showed that MNP-labelled cells exhibited a shift in directional neurite outgrowth when cultured in a magnetic field gradient, which broadly agreed with mathematical modelling of the magnetic force gradients and predicted MNP force direction. We translated our approach to an ex vivo rat brain slice where we observed directional neurite outgrowth of transplanted MNP-labelled cells from the substantia nigra towards the striatum. The improved directionality highlights the viability of this approach as a remote-control methodology for the control and manipulation of cellular growth for regenerative medicine applications. This study presents a new tool to overcome challenges faced in the development of new therapies for PD.
Collapse
Affiliation(s)
- K. Dhillon
- Healthcare Technologies Institute, Department of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - K. Aizel
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Physico Chimie, Paris, France
| | - T. J. Broomhall
- Healthcare Technologies Institute, Department of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - E. Secret
- Sorbonne Université, CNRS, Laboratoire Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, 75005 Paris, France
| | - T. Goodman
- School of Pharmacy and Bioengineering, Guy Hilton Research Centre, Keele University, Staffordshire, UK
| | - M. Rotherham
- Healthcare Technologies Institute, Department of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - N. Telling
- School of Pharmacy and Bioengineering, Guy Hilton Research Centre, Keele University, Staffordshire, UK
| | - J. M. Siaugue
- Sorbonne Université, CNRS, Laboratoire Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, 75005 Paris, France
| | - C. Ménager
- Sorbonne Université, CNRS, Laboratoire Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, 75005 Paris, France
| | - J. Fresnais
- Sorbonne Université, CNRS, Laboratoire Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, 75005 Paris, France
| | - M. Coppey
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Physico Chimie, Paris, France
| | - A. J. El Haj
- Healthcare Technologies Institute, Department of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - M. A. Gates
- School of Pharmacy and Bioengineering, Guy Hilton Research Centre, Keele University, Staffordshire, UK
- School of Medicine, Keele University, Staffordshire, UK
| |
Collapse
|
14
|
Cazelles A, Collard MK, Lalatonne Y, Doblas S, Zappa M, Labiad C, Cazals-Hatem D, Maggiori L, Treton X, Panis Y, Jarry U, Desvallées T, Eliat PA, Pineau R, Motte L, Letourneur D, Simon-Yarza T, Ogier-Denis E. A Preclinical Validation of Iron Oxide Nanoparticles for Treatment of Perianal Fistulizing Crohn's Disease. Int J Mol Sci 2022; 23:8324. [PMID: 35955465 PMCID: PMC9368411 DOI: 10.3390/ijms23158324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 07/25/2022] [Indexed: 11/26/2022] Open
Abstract
Fistulizing anoperineal lesions are severe complications of Crohn's disease (CD) that affect quality of life with a long-term risk of anal sphincter destruction, incontinence, permanent stoma, and anal cancer. Despite several surgical procedures, they relapse in about two-thirds of patients, mandating innovative treatments. Ultrasmall particles of iron oxide (USPIO) have been described to achieve in vivo rapid healing of deep wounds in the skin and liver of rats thanks to their nanobridging capability that could be adapted to fistula treatment. Our main purpose was to highlight preclinical data with USPIO for the treatment of perianal fistulizing CD. Twenty male Sprague Dawley rats with severe 2,4,6-trinitrobenzenesulfonic acid solution (TNBS)-induced proctitis were operated to generate two perianal fistulas per rat. At day 35, two inflammatory fistulas were obtained per rat and perineal magnetic resonance imaging (MRI) was performed. After a baseline MRI, a fistula tract was randomly drawn and topically treated either with saline or with USPIO for 1 min (n = 17 for each). The rats underwent a perineal MRI on postoperative days (POD) 1, 4, and 7 and were sacrificed for pathological examination. The primary outcome was the filling or closure of the fistula tract, including the external or internal openings. USPIO treatment allowed the closure and/or filling of all the treated fistulas from its application until POD 7 in comparison with the control fistulas (23%). The treatment with USPIO was safe, permanently closed the fistula along its entire length, including internal and external orifices, and paved new avenues for the treatment of perianal fistulizing Crohn's disease.
Collapse
Affiliation(s)
- Antoine Cazelles
- Département of Chirurgie Colorectale, Assistance Publique Hôpitaux de Paris, Hôpital Beaujon, CEDEX, 92110 Clichy, France; (A.C.); (M.K.C.); (C.L.); (L.M.); (Y.P.)
- Centre de Recherche sur l’Inflammation, INSERM, U1149, CNRS, ERL8252, Université Paris Cité, Team Gut Inflammation, BP 416, 75018 Paris, France; (D.C.-H.); (X.T.)
| | - Maxime K. Collard
- Département of Chirurgie Colorectale, Assistance Publique Hôpitaux de Paris, Hôpital Beaujon, CEDEX, 92110 Clichy, France; (A.C.); (M.K.C.); (C.L.); (L.M.); (Y.P.)
- Centre de Recherche sur l’Inflammation, INSERM, U1149, CNRS, ERL8252, Université Paris Cité, Team Gut Inflammation, BP 416, 75018 Paris, France; (D.C.-H.); (X.T.)
| | - Yoann Lalatonne
- Laboratory for Vascular Translational Science, Université Paris Cité, Université Sorbonne Paris Nord, LVTS, INSERM, UMR 1148, 75018 Paris, France; (Y.L.); (L.M.); (D.L.); (T.S.-Y.)
- Départements of Biochimie and de Médecine Nucléaire, Assistance Publique-Hôpitaux de Paris, Hôpital Avicenne, 93009 Bobigny, France
| | - Sabrina Doblas
- Centre de Recherche sur l’Inflammation, INSERM, U1149, CNRS, ERL8252, Laboratory of Imaging Biomarkers, Université Paris Cité, BP 416, 75018 Paris, France; (S.D.); (M.Z.)
| | - Magaly Zappa
- Centre de Recherche sur l’Inflammation, INSERM, U1149, CNRS, ERL8252, Laboratory of Imaging Biomarkers, Université Paris Cité, BP 416, 75018 Paris, France; (S.D.); (M.Z.)
- Département of Radiologie, Assistance Publique Hôpitaux de Paris, Hôpital Beaujon, CEDEX, 92110 Clichy, France
| | - Camélia Labiad
- Département of Chirurgie Colorectale, Assistance Publique Hôpitaux de Paris, Hôpital Beaujon, CEDEX, 92110 Clichy, France; (A.C.); (M.K.C.); (C.L.); (L.M.); (Y.P.)
- Centre de Recherche sur l’Inflammation, INSERM, U1149, CNRS, ERL8252, Université Paris Cité, Team Gut Inflammation, BP 416, 75018 Paris, France; (D.C.-H.); (X.T.)
| | - Dominique Cazals-Hatem
- Centre de Recherche sur l’Inflammation, INSERM, U1149, CNRS, ERL8252, Université Paris Cité, Team Gut Inflammation, BP 416, 75018 Paris, France; (D.C.-H.); (X.T.)
- Département of Pathologie, Assistance Publique Hôpitaux de Paris, Hôpital Beaujon, CEDEX, 92110 Clichy, France
| | - Léon Maggiori
- Département of Chirurgie Colorectale, Assistance Publique Hôpitaux de Paris, Hôpital Beaujon, CEDEX, 92110 Clichy, France; (A.C.); (M.K.C.); (C.L.); (L.M.); (Y.P.)
- Centre de Recherche sur l’Inflammation, INSERM, U1149, CNRS, ERL8252, Université Paris Cité, Team Gut Inflammation, BP 416, 75018 Paris, France; (D.C.-H.); (X.T.)
| | - Xavier Treton
- Centre de Recherche sur l’Inflammation, INSERM, U1149, CNRS, ERL8252, Université Paris Cité, Team Gut Inflammation, BP 416, 75018 Paris, France; (D.C.-H.); (X.T.)
- Département Gastroentérologie, Assistance Publique Hôpitaux de Paris, Hôpital Beaujon, CEDEX, 92110 Clichy, France
| | - Yves Panis
- Département of Chirurgie Colorectale, Assistance Publique Hôpitaux de Paris, Hôpital Beaujon, CEDEX, 92110 Clichy, France; (A.C.); (M.K.C.); (C.L.); (L.M.); (Y.P.)
- Centre de Recherche sur l’Inflammation, INSERM, U1149, CNRS, ERL8252, Université Paris Cité, Team Gut Inflammation, BP 416, 75018 Paris, France; (D.C.-H.); (X.T.)
| | - Ulrich Jarry
- Université Rennes, CNRS, INSERM, BIOSIT UAR 3480, US_S 018, Oncotrial, 35000 Rennes, France; (U.J.); (T.D.)
- Biotrial Pharmacology, Unité De Pharmacologie Préclinique, 35000 Rennes, France
| | - Thomas Desvallées
- Université Rennes, CNRS, INSERM, BIOSIT UAR 3480, US_S 018, Oncotrial, 35000 Rennes, France; (U.J.); (T.D.)
| | - Pierre-Antoine Eliat
- Université Rennes, CNRS, INSERM, BIOSIT UAR 3480, US_S 018, PRISM, 35000 Rennes, France;
- INRAE, INSERM, Institute NUMECAN, UMR_A 1341, Université Rennes, UMR_S 1241, 35000 Rennes, France
| | - Raphaël Pineau
- INSERM, CLCC Eugène Marquis, Oncogenesis, Stress Signaling, Université Rennes, UMR_S 1242, 35000 Rennes, France;
| | - Laurence Motte
- Laboratory for Vascular Translational Science, Université Paris Cité, Université Sorbonne Paris Nord, LVTS, INSERM, UMR 1148, 75018 Paris, France; (Y.L.); (L.M.); (D.L.); (T.S.-Y.)
| | - Didier Letourneur
- Laboratory for Vascular Translational Science, Université Paris Cité, Université Sorbonne Paris Nord, LVTS, INSERM, UMR 1148, 75018 Paris, France; (Y.L.); (L.M.); (D.L.); (T.S.-Y.)
| | - Teresa Simon-Yarza
- Laboratory for Vascular Translational Science, Université Paris Cité, Université Sorbonne Paris Nord, LVTS, INSERM, UMR 1148, 75018 Paris, France; (Y.L.); (L.M.); (D.L.); (T.S.-Y.)
| | - Eric Ogier-Denis
- Centre de Recherche sur l’Inflammation, INSERM, U1149, CNRS, ERL8252, Université Paris Cité, Team Gut Inflammation, BP 416, 75018 Paris, France; (D.C.-H.); (X.T.)
- INSERM, CLCC Eugène Marquis, Oncogenesis, Stress Signaling, Université Rennes, UMR_S 1242, 35000 Rennes, France;
- INSERM U1242, Centre Eugène Marquis, Rue de la Bataille de Flandres-Dunkerque, 35042 Rennes, France
| |
Collapse
|
15
|
Geinguenaud F, Catherine OS, Poirier F, Besnard V, Haddad O, Chaubet F, Lalatonne Y, Lutomski D, Sutton A, Motte L. Iron Oxide Nanoparticles Functionalized with Fucoidan: a Potential Theranostic Nanotool for Hepatocellular Carcinoma. Chembiochem 2022; 23:e202200265. [PMID: 35748603 DOI: 10.1002/cbic.202200265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/24/2022] [Indexed: 12/02/2022]
Abstract
Fucoidan is a natural sulfated polysaccharide with a large range of biological activities including anticancer and anti-oxidation activities. Hepatocellular carcinoma is the fourth most common aggressive cancer type. The aim of this study was to investigate the bioactivity of free fucoidan versus its vectorization using nanoparticles (NPs) in human hepatoma cells, Huh-7. Iron oxide NPs were functionalized with fucoidan by a one-step surface complexation. NP cellular uptake was quantified by magnetic measurement at various extracellular iron concentrations. Cell invasion and migration were reduced with NPs while free fucoidan increases these events at low fucoidan concentration (≤ 0.5 mM). Concomitantly, a high decrease of reactive oxygen species production related with a decrease of the matrix metalloproteinase-9 activity and an increase of its expression was observed with NPs compared to free fucoidan. A proteomic analysis evidenced that some fucoidan regulated proteins appeared related to protein synthesis, N-glycan processing, and cellular stress. To our knowledge, this is the first study which reveals such activity induced by fucoidan. These results pave the way for USPIO-fucoidan-NPs as potential theranostic nanotool for hepatocellular carcinoma treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Y Lalatonne
- Universite Sorbonne Paris Nord, LVTS, FRANCE
| | | | - A Sutton
- Universite Sorbonne Paris Nord, LVTS, FRANCE
| | - Laurence Motte
- Université Paris 13, Sorbonne Paris Cité, 74 Rue Marcel Cachin, bobigny, FRANCE
| |
Collapse
|
16
|
Deblock L, Goossens E, Pokratath R, De Buysser K, De Roo J. Mapping out the Aqueous Surface Chemistry of Metal Oxide Nanocrystals: Carboxylate, Phosphonate, and Catecholate Ligands. JACS AU 2022; 2:711-722. [PMID: 35373200 PMCID: PMC8969999 DOI: 10.1021/jacsau.1c00565] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 05/24/2023]
Abstract
Iron oxide and hafnium oxide nanocrystals are two of the few successful examples of inorganic nanocrystals used in a clinical setting. Although crucial to their application, their aqueous surface chemistry is not fully understood. The literature contains conflicting reports regarding the optimum binding group. To alleviate these inconsistencies, we set out to systematically investigate the interaction of carboxylic acids, phosphonic acids, and catechols to metal oxide nanocrystals in polar media. Using nuclear magnetic resonance spectroscopy and dynamic light scattering, we map out the pH-dependent binding affinity of the ligands toward hafnium oxide nanocrystals (an NMR-compatible model system). Carboxylic acids easily desorb in water from the surface and only provide limited colloidal stability from pH 2 to pH 6. Phosphonic acids, on the other hand, provide colloidal stability over a broader pH range but also feature a pH-dependent desorption from the surface. They are most suited for acidic to neutral environments (pH <8). Finally, nitrocatechol derivatives provide a tightly bound ligand shell and colloidal stability at physiological and basic pH (6-10). Whereas dynamically bound ligands (carboxylates and phosphonates) do not provide colloidal stability in phosphate-buffered saline, the tightly bound nitrocatechols provide long-term stability. We thus shed light on the complex ligand binding dynamics on metal oxide nanocrystals in aqueous environments. Finally, we provide a practical colloidal stability map, guiding researchers to rationally design ligands for their desired application.
Collapse
Affiliation(s)
- Loren Deblock
- Department
of Chemistry, Ghent University, 9000 Ghent, Belgium
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
| | - Eline Goossens
- Department
of Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Rohan Pokratath
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
| | | | - Jonathan De Roo
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
| |
Collapse
|
17
|
Hu B, Cheng Z, Liang S. Advantages and prospects of stem cells in nanotoxicology. CHEMOSPHERE 2022; 291:132861. [PMID: 34774913 DOI: 10.1016/j.chemosphere.2021.132861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Nanomaterials have been widely used in many fields, especially in biomedical and stem cell therapy. However, the potential risks associated with nanomaterials applications are also gradually increasing. Therefore, effective and robust toxicology models are critical to evaluate the developmental toxicity of nanomaterials. The development of stem cell research provides a new idea of developmental toxicology. Recently, many researchers actively investigated the effects of nanomaterials with different sizes and surface modifications on various stem cells (such as embryonic stem cells (ESCs), adult stem cells, etc.) to study the toxic effects and toxic mechanisms. In this review, we summarized the effects of nanomaterials on the proliferation and differentiation of ESCs, mesenchymal stem cells and neural stem cells. Moreover, we discussed the advantages of stem cells in nanotoxicology compared with other cell lines. Finally, combined with the latest research methods and new molecular mechanisms, we analyzed the application of stem cells in nanotoxicology.
Collapse
Affiliation(s)
- Bowen Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, 830017, China.
| | - Zhanwen Cheng
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shengxian Liang
- Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Baoding, 071000, China
| |
Collapse
|
18
|
Demin AM, Kandarakov OF, Belyavsky AV, Krasnov VP. Comparative study of L-Lys modification of gas-condensation and chemically obtained magnetic Fe3O4 nanoparticles for cell labelling. AIP CONFERENCE PROCEEDINGS 2022; 2390:030011. [DOI: 10.1063/5.0069275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
19
|
Mundy DC, Goldberg JL. Nanoparticles as Cell Tracking Agents in Human Ocular Cell Transplantation Therapy. CURRENT OPHTHALMOLOGY REPORTS 2021. [DOI: 10.1007/s40135-021-00275-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Kawassaki RK, Romano M, Dietrich N, Araki K. Titanium and Iron Oxide Nanoparticles for Cancer Therapy: Surface Chemistry and Biological Implications. FRONTIERS IN NANOTECHNOLOGY 2021; 3. [DOI: 10.3389/fnano.2021.735434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Currently, cancer is among the most challenging diseases due to its ability to continuously evolve into a more complex muldimentional system, in addition to its high capability to spread to other organs and tissues. In this context, the relevance of nanobiomaterials (NBMs) for the development of new more effective and less harmful treatments is increasing. NBMs provide the possibility of combining several functionalities on a single system, expectedly in a synergic way, to better perform the treatment and cure. However, the control of properties such as colloidal stability, circulation time, pharmacokinetics, and biodistribution, assuring the concentration in specific target tissues and organs, while keeping all desired properties, tends to be dependent on subtle changes in surface chemistry. Hence, the behavior of such materials in different media/environments is of uttermost relevance and concern since it can compromise their efficiency and safety on application. Given the bright perspectives, many efforts have been focused on the development of nanomaterials fulfilling the requirements for real application. These include robust and reproducible preparation methods to avoid aggregation while preserving the interaction properties. The possible impact of nanomaterials in different forms of diagnosis and therapy has been demonstrated in the past few years, given the perspectives on how revolutionary they can be in medicine and health. Considering the high biocompatibility and suitability, this review is focused on titanium dioxide– and iron oxide–based nanoagents highlighting the current trends and main advancements in the research for cancer therapies. The effects of phenomena, such as aggregation and agglomeration, the formation of the corona layer, and how they can compromise relevant properties of nanomaterials and their potential applicability, are also addressed. In short, this review summarizes the current understanding and perspectives on such smart nanobiomaterials for diagnostics, treatment, and theranostics of diseases.
Collapse
|
21
|
Modification of chemically and physically obtained Fe3O4 magnetic nanoparticles with l-Lys for cell labeling. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3205-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Curcio A, de Walle AV, Benassai E, Serrano A, Luciani N, Menguy N, Manshian BB, Sargsian A, Soenen S, Espinosa A, Abou-Hassan A, Wilhelm C. Massive Intracellular Remodeling of CuS Nanomaterials Produces Nontoxic Bioengineered Structures with Preserved Photothermal Potential. ACS NANO 2021; 15:9782-9795. [PMID: 34032115 DOI: 10.1021/acsnano.1c00567] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Despite efforts in producing nanoparticles with tightly controlled designs and specific physicochemical properties, these can undergo massive nano-bio interactions and bioprocessing upon internalization into cells. These transformations can generate adverse biological outcomes and premature loss of functional efficacy. Hence, understanding the intracellular fate of nanoparticles is a necessary prerequisite for their introduction in medicine. Among nanomaterials devoted to theranostics is copper sulfide (CuS), which provides outstanding optical properties along with easy synthesis and low cost. Herein, we performed a long-term multiscale study on the bioprocessing of hollow CuS nanoparticles (CuS NPs) and rattle-like iron oxide nanoflowers@CuS core-shell hybrids (IONF@CuS NPs) when inside stem cells and cancer cells, cultured as spheroids. In the spheroids, both CuS NPs and IONF@CuS NPs are rapidly dismantled into smaller units (day 0 to 3), and hair-like nanostructures are generated (day 9 to 21). This bioprocessing triggers an adaptation of the cellular metabolism to the internalized metals without impacting cell viability, differentiation, or oxidative stress response. Throughout the remodeling, a loss of IONF-derived magnetism is observed, but, surprisingly, the CuS photothermal potential is preserved, as demonstrated by a full characterization of the photothermal conversion across the bioprocessing process. The maintained photothermal efficiency correlated well with synchrotron X-ray absorption spectroscopy measurements, evidencing a similar chemical phase for Cu but not for Fe over time. These findings evidence that the intracellular bioprocessing of CuS nanoparticles can reshape them into bioengineered nanostructures without reducing the photothermal function and therapeutic potential.
Collapse
Affiliation(s)
- Alberto Curcio
- Laboratoire Matière et Systèmes Complexes MSC, UMR 7057, CNRS and University of Paris, 75205, Paris Cedex 13, France
- Laboratoire PhysicoChimie Curie, Institut Curie, PSL Research University-Sorbonne Université-CNRS, 75005 Paris, France
| | - Aurore Van de Walle
- Laboratoire Matière et Systèmes Complexes MSC, UMR 7057, CNRS and University of Paris, 75205, Paris Cedex 13, France
- Laboratoire PhysicoChimie Curie, Institut Curie, PSL Research University-Sorbonne Université-CNRS, 75005 Paris, France
| | - Emilia Benassai
- Laboratoire Matière et Systèmes Complexes MSC, UMR 7057, CNRS and University of Paris, 75205, Paris Cedex 13, France
- Sorbonne Université, CNRS UMR8234, PHysico-chimie des Electrolytes et Nanosystèmes InterfaciauX, PHENIX, F-75005 Paris, France
| | - Aida Serrano
- Spanish CRG beamline at the European Synchrotron (ESRF), B.P. 220, F-38043 Grenoble, France
- Departamento de Electrocerámica, Instituto de Cerámica y Vidrio, ICV-CSIC, Kelsen 5, 28049 Madrid, Spain
| | - Nathalie Luciani
- Laboratoire Matière et Systèmes Complexes MSC, UMR 7057, CNRS and University of Paris, 75205, Paris Cedex 13, France
| | - Nicolas Menguy
- Sorbonne Université, UMR CNRS 7590, MNHN, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005 Paris, France
| | - Bella B Manshian
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Ara Sargsian
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Stefaan Soenen
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Ana Espinosa
- IMDEA Nanociencia, c/ Faraday, 9, 28049 Madrid, Spain
- Nanobiotecnología (IMDEA-Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC), 28049 Madrid, Spain
| | - Ali Abou-Hassan
- Sorbonne Université, CNRS UMR8234, PHysico-chimie des Electrolytes et Nanosystèmes InterfaciauX, PHENIX, F-75005 Paris, France
| | - Claire Wilhelm
- Laboratoire Matière et Systèmes Complexes MSC, UMR 7057, CNRS and University of Paris, 75205, Paris Cedex 13, France
- Laboratoire PhysicoChimie Curie, Institut Curie, PSL Research University-Sorbonne Université-CNRS, 75005 Paris, France
| |
Collapse
|
23
|
Belkahla H, Antunes JC, Lalatonne Y, Sainte Catherine O, Illoul C, Journé C, Jandrot-Perrus M, Coradin T, Gigoux V, Guenin E, Motte L, Helary C. USPIO-PEG nanoparticles functionalized with a highly specific collagen-binding peptide: a step towards MRI diagnosis of fibrosis. J Mater Chem B 2021; 8:5515-5528. [PMID: 32490469 DOI: 10.1039/d0tb00887g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fibrosis is characterized by a pathologic deposition of collagen I, leading to impaired function of organs. Tissue biopsy is the gold standard method for the diagnosis of fibrosis but this is an invasive procedure, subject to sampling errors. Several non-invasive techniques such as magnetic resonance imaging (MRI) using non-specific probes have been developed but they are not fully satisfying as they allow diagnosis at a late stage. In this study, collagelin, a collagen-binding peptide has been covalently linked using click chemistry to pegylated Ultra Small Super Paramagnetic Iron Oxide Nanoparticles (USPIO-PO-PEG-collagelin NPs) with the aim of diagnosing fibrosis at an early stage by MRI. USPIO-PO-PEG-collagelin NPs showed a high affinity for collagen I, two times higher than that of free collagelin whereas not peptide labeled USPIO NPs (USPIO-PO-PEG-yne) did not present any affinity. NPs were not toxic for macrophages and fibroblasts. Diffusion through collagen hydrogels concentrated at 3 and 10 mg mL-1 revealed a large accumulation of USPIO-PO-PEG-collagelin NPs within the collagen network after 72 hours, ca. 3 times larger than that of unlabeled USPIO, thereby evidencing the specific targeting of collagen I. Moreover, the quantity of USPIO-PO-PEG-collagelin NPs accumulated within hydrogels was proportional to the collagen concentration. Subsequently, the NPs diffusion through collagen hydrogels was monitored by MRI. The MRI T2 time relaxation decreased much more significantly with depth for USPIO-PO-PEG-collagelin NPs compared to unlabeled ones. Taken together, these results show that USPIO-PEG-collagelin NPs are promising as effective MRI nanotracers for molecular imaging of fibrosis at an early stage.
Collapse
Affiliation(s)
- Hanene Belkahla
- Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science, LVTS, INSERM, UMR 1148, F-93000 Bobigny, Université de Paris, INSERM, UMR 1148, F-75018, Paris, France. and Sorbonne Université, CNRS, Laboratoire de la Chimie de la Matière Condensée (LCMCP), Paris, F-75005, France.
| | - Joana C Antunes
- Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science, LVTS, INSERM, UMR 1148, F-93000 Bobigny, Université de Paris, INSERM, UMR 1148, F-75018, Paris, France.
| | - Yoann Lalatonne
- Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science, LVTS, INSERM, UMR 1148, F-93000 Bobigny, Université de Paris, INSERM, UMR 1148, F-75018, Paris, France. and AP-HP, Hôpital Avicenne, Services de Biochimie et de Medécine Nucléaire Service, F-93009 Bobigny, France
| | - Odile Sainte Catherine
- Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science, LVTS, INSERM, UMR 1148, F-93000 Bobigny, Université de Paris, INSERM, UMR 1148, F-75018, Paris, France.
| | - Corinne Illoul
- Sorbonne Université, CNRS, Laboratoire de la Chimie de la Matière Condensée (LCMCP), Paris, F-75005, France.
| | - Clément Journé
- INSERM, UMR 1148, LVTS, Université de Paris, F-75018, Université Paris Nord, F-93430, Inserm, Plateforme de Recherche FRIM 6-Inserm U1148, Université de Paris, Paris, France
| | - Martine Jandrot-Perrus
- Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science, LVTS, INSERM, UMR 1148, F-93000 Bobigny, Université de Paris, INSERM, UMR 1148, F-75018, Paris, France.
| | - Thibaud Coradin
- Sorbonne Université, CNRS, Laboratoire de la Chimie de la Matière Condensée (LCMCP), Paris, F-75005, France.
| | - Véronique Gigoux
- INSERM ERL1226-Receptology and Therapeutic Targeting of Cancers, Laboratoire de Physique et Chimie des Nano-Objets, CNRS UMR5215-INSA, Université de Toulouse III, F-31432 Toulouse, France
| | - Erwann Guenin
- Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science, LVTS, INSERM, UMR 1148, F-93000 Bobigny, Université de Paris, INSERM, UMR 1148, F-75018, Paris, France. and Sorbonne Universités, Université de Technologie de Compiègne, Integrated Transformations of Renewable Matter Laboratory (EA TIMR 4297 UTC-ESCOM), Compiègne, France
| | - Laurence Motte
- Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science, LVTS, INSERM, UMR 1148, F-93000 Bobigny, Université de Paris, INSERM, UMR 1148, F-75018, Paris, France.
| | - Christophe Helary
- Sorbonne Université, CNRS, Laboratoire de la Chimie de la Matière Condensée (LCMCP), Paris, F-75005, France.
| |
Collapse
|
24
|
Amendola V, Guadagnini A, Agnoli S, Badocco D, Pastore P, Fracasso G, Gerosa M, Vurro F, Busato A, Marzola P. Polymer-coated silver-iron nanoparticles as efficient and biodegradable MRI contrast agents. J Colloid Interface Sci 2021; 596:332-341. [PMID: 33839358 DOI: 10.1016/j.jcis.2021.03.096] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/24/2021] [Accepted: 03/15/2021] [Indexed: 12/22/2022]
Abstract
Bimetallic nanoparticles allow new and synergistic properties compared to the monometallic equivalents, often leading to unexpected results. Here we present on silver-iron nanoparticles coated with polyethylene glycol, which exhibit a high transverse relaxivity (316 ± 13 mM-1s-1, > 3 times that of the most common clinical benchmark based on iron oxide), excellent colloidal stability and biocompatibility in vivo. Ag-Fe nanoparticles are obtained through a one-step, low-cost laser-assisted synthesis, which makes surface functionalization with the desired biomolecules very easy. Besides, Ag-Fe nanoparticles show biodegradation over a few months, as indicated by incubation in the physiological environment. This is crucial for nanomaterials removal from the living organism and, in fact, in vivo biodistribution studies evidenced that Ag-Fe nanoparticles tend to be cleared from liver over a period in which the benchmark iron oxide contrast agent persisted. Therefore, the Ag-Fe NPs offer positive prospects for solving the problems of biopersistence, contrast efficiency, difficulties of synthesis and surface functionalization usually encountered in nanoparticulate contrast agents.
Collapse
Affiliation(s)
- Vincenzo Amendola
- Department of Chemical Sciences, University of Padova, Padova I-35131, Italy.
| | - Andrea Guadagnini
- Department of Chemical Sciences, University of Padova, Padova I-35131, Italy
| | - Stefano Agnoli
- Department of Chemical Sciences, University of Padova, Padova I-35131, Italy
| | - Denis Badocco
- Department of Chemical Sciences, University of Padova, Padova I-35131, Italy
| | - Paolo Pastore
- Department of Chemical Sciences, University of Padova, Padova I-35131, Italy
| | | | - Marco Gerosa
- Department of Computer Science, University of Verona, Verona 37134, Italy
| | - Federica Vurro
- Department of Computer Science, University of Verona, Verona 37134, Italy
| | - Alice Busato
- Department of Computer Science, University of Verona, Verona 37134, Italy
| | - Pasquina Marzola
- Department of Computer Science, University of Verona, Verona 37134, Italy.
| |
Collapse
|
25
|
Rubia-Rodríguez I, Santana-Otero A, Spassov S, Tombácz E, Johansson C, De La Presa P, Teran FJ, Morales MDP, Veintemillas-Verdaguer S, Thanh NTK, Besenhard MO, Wilhelm C, Gazeau F, Harmer Q, Mayes E, Manshian BB, Soenen SJ, Gu Y, Millán Á, Efthimiadou EK, Gaudet J, Goodwill P, Mansfield J, Steinhoff U, Wells J, Wiekhorst F, Ortega D. Whither Magnetic Hyperthermia? A Tentative Roadmap. MATERIALS (BASEL, SWITZERLAND) 2021; 14:706. [PMID: 33546176 PMCID: PMC7913249 DOI: 10.3390/ma14040706] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022]
Abstract
The scientific community has made great efforts in advancing magnetic hyperthermia for the last two decades after going through a sizeable research lapse from its establishment. All the progress made in various topics ranging from nanoparticle synthesis to biocompatibilization and in vivo testing have been seeking to push the forefront towards some new clinical trials. As many, they did not go at the expected pace. Today, fruitful international cooperation and the wisdom gain after a careful analysis of the lessons learned from seminal clinical trials allow us to have a future with better guarantees for a more definitive takeoff of this genuine nanotherapy against cancer. Deliberately giving prominence to a number of critical aspects, this opinion review offers a blend of state-of-the-art hints and glimpses into the future of the therapy, considering the expected evolution of science and technology behind magnetic hyperthermia.
Collapse
Affiliation(s)
| | | | - Simo Spassov
- Geophysical Centre of the Royal Meteorological Institute, 1 rue du Centre Physique, 5670 Dourbes, Belgium;
| | - Etelka Tombácz
- Soós Water Technology Research and Development Center, University of Pannonia, 8200 Nagykanizsa, Hungary;
| | - Christer Johansson
- RISE Research Institutes of Sweden, Sensors and Materials, Arvid Hedvalls Backe 4, 411 33 Göteborg, Sweden;
| | - Patricia De La Presa
- Instituto de Magnetismo Aplicado UCM-ADIF-CSIC, A6 22,500 km, 29260 Las Rozas, Spain;
- Departamento de Física de Materiales, Universidad Complutense de Madrid, Avda. Complutense s/n, 28048 Madrid, Spain
| | - Francisco J. Teran
- IMDEA Nanoscience, Faraday 9, 28049 Madrid, Spain; (I.R.-R.); (A.S.-O.); (F.J.T.)
- Nanotech Solutions, Ctra Madrid, 23, 40150 Villacastín, Spain
| | - María del Puerto Morales
- Department of Energy, Environment and Health, Instituto de Ciencia de Materiales de Madrid (ICMM/CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain; (M.P.M.); (S.V.-V.)
| | - Sabino Veintemillas-Verdaguer
- Department of Energy, Environment and Health, Instituto de Ciencia de Materiales de Madrid (ICMM/CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain; (M.P.M.); (S.V.-V.)
| | - Nguyen T. K. Thanh
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, UK;
- Biophysics Group, Department of Physics and Astronomy, Gower Street, London WC1E 6BT, UK
| | - Maximilian O. Besenhard
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK;
| | - Claire Wilhelm
- Laboratoire Matière et Systèmes Complexes MSC, Université de Paris/CNRS, 75013 Paris, France; (C.W.); (F.G.)
| | - Florence Gazeau
- Laboratoire Matière et Systèmes Complexes MSC, Université de Paris/CNRS, 75013 Paris, France; (C.W.); (F.G.)
| | - Quentin Harmer
- Endomag, The Jeffreys Building, St John’s Innovation Park, Cowley Road, Cambridge CB4 0WS, UK; (Q.H.); (E.M.)
| | - Eric Mayes
- Endomag, The Jeffreys Building, St John’s Innovation Park, Cowley Road, Cambridge CB4 0WS, UK; (Q.H.); (E.M.)
| | - Bella B. Manshian
- Biomedical Sciences Group, Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, 3000 Leuven, Belgium; (B.B.M.); (S.J.S.)
| | - Stefaan J. Soenen
- Biomedical Sciences Group, Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, 3000 Leuven, Belgium; (B.B.M.); (S.J.S.)
| | - Yuanyu Gu
- INMA Instituto de Nanociencia de Materiales de Aragón, Pedro Cerbuna 12, 50009 Zaragoza, Spain; (Y.G.); (Á.M.)
| | - Ángel Millán
- INMA Instituto de Nanociencia de Materiales de Aragón, Pedro Cerbuna 12, 50009 Zaragoza, Spain; (Y.G.); (Á.M.)
| | - Eleni K. Efthimiadou
- Chemistry Department, Inorganic Chemistry Laboratory, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece;
| | - Jeff Gaudet
- Magnetic Insight, Alameda, CA 94501, USA; (J.G.); (P.G.); (J.M.)
| | - Patrick Goodwill
- Magnetic Insight, Alameda, CA 94501, USA; (J.G.); (P.G.); (J.M.)
| | - James Mansfield
- Magnetic Insight, Alameda, CA 94501, USA; (J.G.); (P.G.); (J.M.)
| | - Uwe Steinhoff
- Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany; (U.S.); (J.W.); (F.W.)
| | - James Wells
- Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany; (U.S.); (J.W.); (F.W.)
| | - Frank Wiekhorst
- Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany; (U.S.); (J.W.); (F.W.)
| | - Daniel Ortega
- IMDEA Nanoscience, Faraday 9, 28049 Madrid, Spain; (I.R.-R.); (A.S.-O.); (F.J.T.)
- Institute of Research and Innovation in Biomedical Sciences of the Province of Cádiz (INiBICA), 11002 Cádiz, Spain
- Condensed Matter Physics Department, Faculty of Sciences, Campus Universitario de Puerto Real s/n, 11510 Puerto Real, Spain
| |
Collapse
|
26
|
Chen SG, Ugwu F, Li WC, Caplice NM, Petcu E, Yip SP, Huang CL. Vascular Tissue Engineering: Advanced Techniques and Gene Editing in Stem Cells for Graft Generation. TISSUE ENGINEERING PART B-REVIEWS 2021; 27:14-28. [DOI: 10.1089/ten.teb.2019.0264] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Sin-Guang Chen
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Felix Ugwu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Wan-Chun Li
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan, China
| | - Noel M. Caplice
- Centre for Research in Vascular Biology, Biosciences Institute, University College Cork, Cork, Ireland
| | - Eugen Petcu
- Griffith University School of Medicine, Menzies Health Institute Queensland, Griffith University, Nathan, Australia
| | - Shea Ping Yip
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Chien-Ling Huang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| |
Collapse
|
27
|
Ye D, Li M, Xie Y, Chen B, Han Y, Liu S, Wei QH, Gu N. Optical Imaging and High-Accuracy Quantification of Intracellular Iron Contents. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005474. [PMID: 33306269 DOI: 10.1002/smll.202005474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/19/2020] [Indexed: 06/12/2023]
Abstract
Precise quantification of intracellular iron contents is important to biomedical applications of magnetic nanoparticles. Current approaches for iron quantification rely on specialized instruments while most only yield iron quantities averaged over plenty of cells. Here, a simple and robust approach, combining digital optical microscopy with the Beer-Lambert's law, that allows for imaging stainable iron distribution in individual cells and the quantification of stainable iron contents with an unprecedented accuracy of femtogram per pixel, is presented. It is further shown that this approach enables studying of the internalization and reduction dynamics of super-paramagnetic iron oxide nanoparticles (SPIONs) by stem cells in single cell level.
Collapse
Affiliation(s)
- Dewen Ye
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210009, China
| | - Mingxi Li
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210009, China
| | - Yuanyuan Xie
- Center for Clinic Stem Cell Research, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Bo Chen
- Materials Science and Devices Institute, Suzhou University of Science and Technology, 1 Kerui Road, Suzhou, 215009, China
| | - Yuexia Han
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210009, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Qi-Huo Wei
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Physics, Nanjing Medical University, Nanjing, 211166, China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210009, China
| |
Collapse
|
28
|
Liu L, Xu Q, Zhang L, Sun H, Ding F, Li Y, Chen P. Fe 3O 4 magnetic nanoparticles ameliorate albumin-induced tubulointerstitial fibrosis by autophagy related to Rab7. Colloids Surf B Biointerfaces 2020; 198:111470. [PMID: 33246781 DOI: 10.1016/j.colsurfb.2020.111470] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 01/07/2023]
Abstract
Albuminuria is a primary feature in patients with CKD and an important contributor to tubulointerstitial fibrosis (TIF) development. Autophagy has been considered to be involved in renal tubular injury caused by albuminuria. Fe3O4 magnetic nanoparticles are related to many cellular activities, such as autophagy and inflammation. Rab7, a molecule involved in both endocytosis and autophagy, has been identified to protect renal tubular epithelial cells from albumin by regulating autophagy and MMP-2 activity in the early stage of albumin stimulation, but its role in the advanced stage is still unclear. Therefore, to investigate the effect of Fe3O4 magnetic nanoparticles on chronic renal tubular injury induced by excess albumin and to further determine the specific role of Rab7, we established a mouse model of TIF by intravenous injection of cationic bovine serum albumin (C-BSA) in Rab7-overexpressing transgenic mice. Our data revealed the decreased autophagy level, weakened MMP-2 activity and exacerbated renal tubular injury in these BSA-overloaded mice; furthermore, the degree of injury was more serious in Rab7-overexpressing transgenic mice. However, the application of Fe3O4 magnetic albumin nanoparticles (Fe3O4@BSA) enhanced MMP-2 activity and alleviated renal tubular injury, and these changes were mediated by an autophagy-dependent mechanism. Taken together, our results indicated that long-term albumin stimulation combined with overexpression of Rab7 could further decrease MMP-2 activity, exacerbate renal tubular injury and accelerate the development of TIF. Fe3O4@BSA could be a promising targeted tool for the management of CKD patients.
Collapse
Affiliation(s)
- Lei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, PR China; Department of Pathology and Pathophysiology, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China.
| | - Qing Xu
- Department of Pathology, The Third People's Hospital of Wuxi City, Wuxi, Jiangsu, PR China
| | - Lei Zhang
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu, PR China
| | - Hui Sun
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, PR China
| | - Fengan Ding
- Department of Pathology and Pathophysiology, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
| | - Yiping Li
- Department of Pathology and Pathophysiology, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China.
| | - Pingsheng Chen
- Department of Pathology and Pathophysiology, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China.
| |
Collapse
|
29
|
Van de Walle A, Kolosnjaj-Tabi J, Lalatonne Y, Wilhelm C. Ever-Evolving Identity of Magnetic Nanoparticles within Human Cells: The Interplay of Endosomal Confinement, Degradation, Storage, and Neocrystallization. Acc Chem Res 2020; 53:2212-2224. [PMID: 32935974 DOI: 10.1021/acs.accounts.0c00355] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Considerable knowledge has been acquired in inorganic nanoparticles' synthesis and nanoparticles' potential use in biomedical applications. Among different materials, iron oxide nanoparticles remain unrivaled for several reasons. Not only do they respond to multiple physical stimuli (e.g., magnetism, light) and exert multifunctional therapeutic and diagnostic actions but also they are biocompatible and integrate endogenous iron-related metabolic pathways. With the aim to optimize the use of (magnetic) iron oxide nanoparticles in biomedicine, different biophysical phenomena have been recently identified and studied. Among them, the concept of a "nanoparticle's identity" is of particular importance. Nanoparticles' identities evolve in distinct biological environments and over different periods of time. In this Account, we focus on the remodeling of magnetic nanoparticles' identities following their journey inside cells. For instance, nanoparticles' functions, such as heat generation or magnetic resonance imaging, can be highly impacted by endosomal confinement. Structural degradation of nanoparticles was also evidenced and quantified in cellulo and correlates with the loss of magnetic nanoparticle properties. Remarkably, in human stem cells, the nonmagnetic products of nanoparticles' degradation could be subsequently reassembled into neosynthesized, endogenous magnetic nanoparticles. This stunning occurrence might account for the natural presence of magnetic particles in human organs, especially the brain. However, mechanistic details and the implication of such phenomena in homeostasis and disease have yet to be completely unraveled.This Account aims to assess the short- and long-term transformations of magnetic iron oxide nanoparticles in living cells, particularly focusing on human stem cells. Precisely, we herein overview the multiple and ever-evolving chemical, physical, and biological magnetic nanoparticles' identities and emphasize the remarkable intracellular fate of these nanoparticles.
Collapse
Affiliation(s)
- Aurore Van de Walle
- Laboratoire Matière et Systèmes Complexes, MSC, UMR 7057, CNRS & University of Paris, 75205, Paris, Cedex 13, France
| | - Jelena Kolosnjaj-Tabi
- Institute of Pharmacology and Structural Biology, 205 Route de Narbonne, 31400 Toulouse, France
| | - Yoann Lalatonne
- Inserm, U1148, Laboratory for Vascular Translational Science, Université Paris 13, Sorbonne Paris Cité, F-93017 Bobigny, France
- Services de Biochimie et Médecine Nucléaire, Hôpital Avicenne Assistance Publique-Hôpitaux de Paris, F-93009 Bobigny, France
| | - Claire Wilhelm
- Laboratoire Matière et Systèmes Complexes, MSC, UMR 7057, CNRS & University of Paris, 75205, Paris, Cedex 13, France
| |
Collapse
|
30
|
Bongaerts M, Aizel K, Secret E, Jan A, Nahar T, Raudzus F, Neumann S, Telling N, Heumann R, Siaugue JM, Ménager C, Fresnais J, Villard C, El Haj A, Piehler J, Gates MA, Coppey M. Parallelized Manipulation of Adherent Living Cells by Magnetic Nanoparticles-Mediated Forces. Int J Mol Sci 2020; 21:ijms21186560. [PMID: 32911745 PMCID: PMC7555211 DOI: 10.3390/ijms21186560] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022] Open
Abstract
The remote actuation of cellular processes such as migration or neuronal outgrowth is a challenge for future therapeutic applications in regenerative medicine. Among the different methods that have been proposed, the use of magnetic nanoparticles appears to be promising, since magnetic fields can act at a distance without interactions with the surrounding biological system. To control biological processes at a subcellular spatial resolution, magnetic nanoparticles can be used either to induce biochemical reactions locally or to apply forces on different elements of the cell. Here, we show that cell migration and neurite outgrowth can be directed by the forces produced by a switchable parallelized array of micro-magnetic pillars, following the passive uptake of nanoparticles. Using live cell imaging, we first demonstrate that adherent cell migration can be biased toward magnetic pillars and that cells can be reversibly trapped onto these pillars. Second, using differentiated neuronal cells we were able to induce events of neurite outgrowth in the direction of the pillars without impending cell viability. Our results show that the range of forces applied needs to be adapted precisely to the cellular process under consideration. We propose that cellular actuation is the result of the force on the plasma membrane caused by magnetically filled endo-compartments, which exert a pulling force on the cell periphery.
Collapse
Affiliation(s)
- Maud Bongaerts
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS, 75005 Paris, France; (M.B.); (K.A.)
| | - Koceila Aizel
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS, 75005 Paris, France; (M.B.); (K.A.)
| | - Emilie Secret
- Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, Sorbonne Université, CNRS, F-75005 Paris, France; (E.S.); (J.-M.S.); (C.M.); (J.F.)
| | - Audric Jan
- Laboratoire Physico Chimie Curie, Institut Pierre Gilles de Gène, Institut Curie, PSL Research University, Sorbonne Université, CNRS, 75005 Paris, France; (A.J.); (C.V.)
| | - Tasmin Nahar
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire ST4 7QB, UK; (T.N.); (N.T.)
| | - Fabian Raudzus
- Department of Biochemistry II – Molecular Neurobiochemistry, Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, 44801 Bochum, Germany; (F.R.); (S.N.); (R.H.)
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Sebastian Neumann
- Department of Biochemistry II – Molecular Neurobiochemistry, Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, 44801 Bochum, Germany; (F.R.); (S.N.); (R.H.)
| | - Neil Telling
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire ST4 7QB, UK; (T.N.); (N.T.)
| | - Rolf Heumann
- Department of Biochemistry II – Molecular Neurobiochemistry, Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, 44801 Bochum, Germany; (F.R.); (S.N.); (R.H.)
| | - Jean-Michel Siaugue
- Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, Sorbonne Université, CNRS, F-75005 Paris, France; (E.S.); (J.-M.S.); (C.M.); (J.F.)
| | - Christine Ménager
- Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, Sorbonne Université, CNRS, F-75005 Paris, France; (E.S.); (J.-M.S.); (C.M.); (J.F.)
| | - Jérôme Fresnais
- Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, Sorbonne Université, CNRS, F-75005 Paris, France; (E.S.); (J.-M.S.); (C.M.); (J.F.)
| | - Catherine Villard
- Laboratoire Physico Chimie Curie, Institut Pierre Gilles de Gène, Institut Curie, PSL Research University, Sorbonne Université, CNRS, 75005 Paris, France; (A.J.); (C.V.)
| | - Alicia El Haj
- Healthcare Technology Institute, Institute of Translational Medicine, University of Birmingham, Birmingham B15 2TT, UK;
| | - Jacob Piehler
- Department of Biology/Chemistry, University of Osnabrück, Barbarastr. 11, 49076 Osnabrück, Germany;
| | - Monte A. Gates
- Institute of Pharmacy and Bioengineering, School of Medicine, Keele University, Keele ST5 5BG, UK;
| | - Mathieu Coppey
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS, 75005 Paris, France; (M.B.); (K.A.)
- Correspondence:
| |
Collapse
|
31
|
Castellanos-Rubio I, Rodrigo I, Olazagoitia-Garmendia A, Arriortua O, Gil de Muro I, Garitaonandia JS, Bilbao JR, Fdez-Gubieda ML, Plazaola F, Orue I, Castellanos-Rubio A, Insausti M. Highly Reproducible Hyperthermia Response in Water, Agar, and Cellular Environment by Discretely PEGylated Magnetite Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2020; 12:27917-27929. [PMID: 32464047 PMCID: PMC8489799 DOI: 10.1021/acsami.0c03222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Local heat generation from magnetic nanoparticles (MNPs) exposed to alternating magnetic fields can revolutionize cancer treatment. However, the application of MNPs as anticancer agents is limited by serious drawbacks. Foremost among these are the fast uptake and biodegradation of MNPs by cells and the unpredictable magnetic behavior of the MNPs when they accumulate within or around cells and tissues. In fact, several studies have reported that the heating power of MNPs is severely reduced in the cellular environment, probably due to a combination of increased viscosity and strong NP agglomeration. Herein, we present an optimized protocol to coat magnetite (Fe3O4) NPs larger than 20 nm (FM-NPs) with high molecular weight PEG molecules that avoid collective coatings, prevent the formation of large clusters of NPs and keep constant their high heating performance in environments with very different ionic strengths and viscosities (distilled water, physiological solutions, agar and cell culture media). The great reproducibility and reliability of the heating capacity of this FM-NP@PEG system in such different environments has been confirmed by AC magnetometry and by more conventional calorimetric measurements. The explanation of this behavior has been shown to lie in preserving as much as possible the magnetic single domain-type behavior of nearly isolated NPs. In vitro endocytosis experiments in a colon cancer-derived cell line indicate that FM-NP@PEG formulations with PEGs of higher molecular weight (20 kDa) are more resistant to endocytosis than formulations with smaller PEGs (5 kDa), showing quite large uptake mean-life (τ > 5 h) in comparison with other NP systems. The in vitro magnetic hyperthermia was performed at 21 mT and 650 kHz during 1 h in a pre-endocytosis stage and complete cell death was achieved 48 h posthyperthermia. These optimal FM-NP@PEG formulations with high resistance to endocytosis and predictable magnetic response will aid the progress and accuracy of the emerging era of theranostics.
Collapse
Affiliation(s)
- Idoia Castellanos-Rubio
- Departamento de Química Inorgánica, Facultad de Ciencia y Tecnología, UPV/EHU, Barrio Sarriena s/n, 48940, Leioa, Spain
- Department of Electricidad
y Electrónica, Facultad de Ciencia
y Tecnología, UPV/EHU, Barrio
Sarriena s/n, 48940, Leioa, Spain
- (I.C.-R.)
| | - Irati Rodrigo
- Department of Electricidad
y Electrónica, Facultad de Ciencia
y Tecnología, UPV/EHU, Barrio
Sarriena s/n, 48940, Leioa, Spain
- BC Materials, Basque Center for Materials, Applications, and Nanostructures, Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Ane Olazagoitia-Garmendia
- Departamento de
Genética, Antropología Física y Fisiología
Animal, Facultad de Medicina y Enfermería, Barrio Sarriena s/n, 48940, Leioa, Spain
- Biocruces Bizkaia
Health Research Institute, Cruces Plaza, 48903, Barakaldo, Spain
| | - Oihane Arriortua
- Departamento de Química Inorgánica, Facultad de Ciencia y Tecnología, UPV/EHU, Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Izaskun Gil de Muro
- Departamento de Química Inorgánica, Facultad de Ciencia y Tecnología, UPV/EHU, Barrio Sarriena s/n, 48940, Leioa, Spain
| | - José S. Garitaonandia
- Departamento de Física
Aplicada II, Facultad de Ciencia y Tecnología,
UPV/EHU, Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Jose Ramón Bilbao
- Departamento de
Genética, Antropología Física y Fisiología
Animal, Facultad de Medicina y Enfermería, Barrio Sarriena s/n, 48940, Leioa, Spain
- Biocruces Bizkaia
Health Research Institute, Cruces Plaza, 48903, Barakaldo, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic
Diseases (CIBERDEM), 28029 Madrid, Spain
| | - M. Luisa Fdez-Gubieda
- Department of Electricidad
y Electrónica, Facultad de Ciencia
y Tecnología, UPV/EHU, Barrio
Sarriena s/n, 48940, Leioa, Spain
| | - Fernando Plazaola
- Department of Electricidad
y Electrónica, Facultad de Ciencia
y Tecnología, UPV/EHU, Barrio
Sarriena s/n, 48940, Leioa, Spain
| | - Iñaki Orue
- SGIker, Servicios
Generales de Investigación, UPV/EHU, Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Ainara Castellanos-Rubio
- Departamento de
Genética, Antropología Física y Fisiología
Animal, Facultad de Medicina y Enfermería, Barrio Sarriena s/n, 48940, Leioa, Spain
- Biocruces Bizkaia
Health Research Institute, Cruces Plaza, 48903, Barakaldo, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic
Diseases (CIBERDEM), 28029 Madrid, Spain
- IKERBASQUE Basque Foundation for Science, 48013, Bilbao, Spain
| | - Maite Insausti
- Departamento de Química Inorgánica, Facultad de Ciencia y Tecnología, UPV/EHU, Barrio Sarriena s/n, 48940, Leioa, Spain
- BC Materials, Basque Center for Materials, Applications, and Nanostructures, Barrio Sarriena s/n, 48940, Leioa, Spain
- (M.I.)
| |
Collapse
|
32
|
Guzy J, Chakravarty S, Buchanan FJ, Chen H, Gaudet JM, Hix JM, Mallett CL, Shapiro EM. Complex Relationship Between Iron Oxide Nanoparticle Degradation and Signal Intensity in Magnetic Particle Imaging. ACS APPLIED NANO MATERIALS 2020; 3:3991-3999. [PMID: 33163909 PMCID: PMC7643918 DOI: 10.1021/acsanm.0c00779] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Magnetic particle imaging (MPI), using superparamagnetic nanoparticles as an imaging tracer, is touted as a quantitative biomedical imaging technology, but MPI signal properties have never been characterized for magnetic nanoparticles undergoing biodegradation. We show that MPI signal properties can increase or decrease as iron oxide nanoparticles degrade, depending on the nanoparticle formulation and nanocrystal size, and degradation rate and mechanism. Further, we show that long-term in vitro MPI experiments only roughly approximate long-term in vivo MPI signal properties. Further, we demonstrate for the first time, an environmentally sensitive MPI contrast mechanism opening the door to smart contrast paradigms in MPI.
Collapse
Affiliation(s)
- Julia Guzy
- Department of Radiology and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Shatadru Chakravarty
- Department of Radiology and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Foster J. Buchanan
- Department of Radiology and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Haoran Chen
- Department of Radiology and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Jeffrey M. Gaudet
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
- Magnetic Insight, Alameda, CA 94501, USA
| | - Jeremy M.L. Hix
- Department of Radiology and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Christiane L. Mallett
- Department of Radiology and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Erik M. Shapiro
- Department of Radiology and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
- Correspondence should be addressed to: Erik M. Shapiro, MSU Radiology, 846 Service Rd, East Lansing, MI 48824, , Phone: 517-884-3270, Fax: 517-432-2849
| |
Collapse
|
33
|
Wang X, Law J, Luo M, Gong Z, Yu J, Tang W, Zhang Z, Mei X, Huang Z, You L, Sun Y. Magnetic Measurement and Stimulation of Cellular and Intracellular Structures. ACS NANO 2020; 14:3805-3821. [PMID: 32223274 DOI: 10.1021/acsnano.0c00959] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
From single-pole magnetic tweezers to robotic magnetic-field generation systems, the development of magnetic micromanipulation systems, using electromagnets or permanent magnets, has enabled a multitude of applications for cellular and intracellular measurement and stimulation. Controlled by different configurations of magnetic-field generation systems, magnetic particles have been actuated by an external magnetic field to exert forces/torques and perform mechanical measurements on the cell membrane, cytoplasm, cytoskeleton, nucleus, intracellular motors, etc. The particles have also been controlled to generate aggregations to trigger cell signaling pathways and produce heat to cause cancer cell apoptosis for hyperthermia treatment. Magnetic micromanipulation has become an important tool in the repertoire of toolsets for cell measurement and stimulation and will continue to be used widely for further explorations of cellular/intracellular structures and their functions. Existing review papers in the literature focus on fabrication and position control of magnetic particles/structures (often termed micronanorobots) and the synthesis and functionalization of magnetic particles. Differently, this paper reviews the principles and systems of magnetic micromanipulation specifically for cellular and intracellular measurement and stimulation. Discoveries enabled by magnetic measurement and stimulation of cellular and intracellular structures are also summarized. This paper ends with discussions on future opportunities and challenges of magnetic micromanipulation in the exploration of cellular biophysics, mechanotransduction, and disease therapeutics.
Collapse
Affiliation(s)
- Xian Wang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Junhui Law
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Mengxi Luo
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Zheyuan Gong
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Jiangfan Yu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Wentian Tang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Zhuoran Zhang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Xueting Mei
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Zongjie Huang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Lidan You
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| |
Collapse
|