1
|
Shaghaleh H, Alhaj Hamoud Y, Sun Q. Effective and green in-situ remediation strategies based on TEMPO-nanocellulose/lignin/MIL-100(Fe) hydrogel nanocomposite adsorbent for lead and copper in agricultural soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124623. [PMID: 39069244 DOI: 10.1016/j.envpol.2024.124623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/11/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Hydrogel adsorbents are promising tools for reducing heavy metals' bioavailability in contaminated soil. However, their practical feasibility remains limited by the low stability, inefficient removal efficiency, and potential secondary pollution. Optimizing the adsorption operation and the functional properties of hydrogel adsorbents could eliminate this method's drawbacks. Herein, three innovative in-situ remediation strategies for Pb/Cu-contaminated soil were adopted based on the concept of novel TEMPO-cellulose (TO-NFCs)/lignin/acrylamide@MIL-100(Fe) nanocomposite hydrogel adsorbent (NCLMH). Characteristic analyses revealed ideal Pb/Cu adsorption mechanisms by swelling, complexation, electrical attraction, and ion exchange via carboxyl/hydroxyl/carbonyl groups and unsaturated Fe(III) sites on ANCMH besides FeOOH formation. The highest maximum theoretical adsorption capacities of Pb(II) and Cu(II) on ANCMH were 416.39 and 133.98 mg/g, under pH 6.5, governed by pseudo-second-order/Freundlich models. Greenhouse pot experiments with contaminated soils amended with two-depth layers of 0.5% NCLMHs (SA@NCLMH) displayed a decline in Pb and Cu bioavailability up to 85.9% and 74.5% within 45 d. Soil column studies simulating continuous water soil flushing coupled with NCLMH layers, instead of conventional extractant fluids, and connected to NCLMH-sand column as purification unit (CF@NCLMH) achieved higher removal rates for Pb, and Cu of 89.5% and 77.2% within 24 h. Alternatively, conducting multiple-pulse soil flushing mode (MF@NCLMH) gained the highest Pb and Cu removal of 96.5% and 85.4%, as the water flushing-stop flux events allowed adequate water movement/residence period, promoting Pb/Cu desorption-adsorption from soil to NCLMH. Also, the NCLMH-sand column conducting and easy separation of the stable/reusable NCLMHs prevented the potential secondary pollution. Interestingly, the three remediated soils reached the corresponding regulation of the permissible limits for Pb and Cu residential scenarios in medium-to-heavily agricultural polluted soils, alleviating the Pb/Cu bioaccumulation and phytotoxicity symptoms in cultivated wheat, especially after MF@NCLMH treatment. This study introduces promising alternative remediation strategies with high sustainability and feasibility in acidic-to-neutral heavy metal-contaminated agricultural soil.
Collapse
Affiliation(s)
- Hiba Shaghaleh
- Key Lab of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yousef Alhaj Hamoud
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Qin Sun
- Key Lab of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
2
|
Teng B, Zhong Y, Wu J, Zhu J, Cai L, Qi P, Luo Z. Transforming watermelon (Citrullus lanatus) rind into durable superabsorbent hydrogels for enhanced soil water retention properties and adsorbs dye in water. Heliyon 2024; 10:e38656. [PMID: 39398006 PMCID: PMC11470535 DOI: 10.1016/j.heliyon.2024.e38656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/21/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024] Open
Abstract
Innovative superabsorbent hydrogels were synthesized from watermelon rind (WR), an abundant agricultural waste. The process involved free radical polymerization of acrylic acid (AA) and acrylamide (AAm) with WR particles activated by ammonium persulfate (APS), resulting in (AA-co-AAm)/WR hydrogels with high equilibrium swelling capacities of 749 ± 32 g/g. Notably, after eight cycles, the WR hydrogel maintained 94.88 % of its initial swelling capacity, significantly outperforming the (AA-co-AAm) hydrogel without WR (13.80 % retention). This durability, combined with excellent water retention across various soil textures and high adsorption capacity for methylene blue (MB), underscores the WR hydrogel as a superior soil moisture conservation agent. This study marks a significant advance in recycling organic waste and enhancing water management in agricultural soils, demonstrating the potential for sustainable hydrogel development.
Collapse
Affiliation(s)
- Bingqin Teng
- College of Resources and Environment, Gansu Agricultural University, Lanzhou, 730070, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yuan Zhong
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jun Wu
- College of Resources and Environment, Gansu Agricultural University, Lanzhou, 730070, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Water-saving Agricultural Engineering and Technology Research Center, Lanzhou, 730070, China
| | - Jiachen Zhu
- College of Resources and Environment, Gansu Agricultural University, Lanzhou, 730070, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Liqun Cai
- College of Resources and Environment, Gansu Agricultural University, Lanzhou, 730070, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Water-saving Agricultural Engineering and Technology Research Center, Lanzhou, 730070, China
| | - Peng Qi
- College of Resources and Environment, Gansu Agricultural University, Lanzhou, 730070, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Water-saving Agricultural Engineering and Technology Research Center, Lanzhou, 730070, China
| | - Zhuzhu Luo
- College of Resources and Environment, Gansu Agricultural University, Lanzhou, 730070, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
3
|
Chang P, Zhou S, Wang T, Hua D, Liu S, Okoro OV, Shavandi A, Nie L. Eco-Friendly Carbon Nanotubes Reinforced with Sodium Alginate/Polyacrylic Acid for Enhanced Adsorption of Copper Ions: Kinetics, Isotherm, and Mechanism Adsorption Studies. Molecules 2024; 29:4518. [PMID: 39407448 PMCID: PMC11477899 DOI: 10.3390/molecules29194518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
This study investigates the removal efficiency of Cu2+ from wastewater using a composite hydrogel made of carbon nanotubes (CNTs), sodium alginate (SA), and polyacrylic acid (PAA) prepared by free radical polymerization. The CNTs@SA/PAA hydrogel's structure and properties were characterized using SEM, TEM, FTIR, XRD, rheology, DSC, EDS, elemental mapping analysis, and swelling. The adsorption performance for Cu2+ was tested in batch adsorption experiments, considering the pH, dosage, initial concentration, and contact time. The optimal conditions for Cu2+ removal were pH 5.0, an adsorbent dosage of 500 mg/L, and a contact time of 360 min. The adsorption followed pseudo-second order kinetics. Isotherm analyses (Langmuir, Freundlich, Temkin, Dubinin-Radushkevich, Sips, Toth, and Khan) revealed that the Freundlich isotherm best described the adsorption, with a maximum capacity of 358.52 mg/g. A thermodynamic analysis indicated that physical adsorption was the main interaction, with the spontaneity of the process also demonstrated. This study highlights the high efficiency and environmental friendliness of CNT@SA/PAA composites for Cu2+ removal from wastewater, offering a promising approach for water treatment.
Collapse
Affiliation(s)
- Pengbo Chang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; (P.C.); (D.H.); (S.L.)
- Zhengzhou Technical College, Zhengzhou 450121, China
| | - Shuyang Zhou
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China;
| | - Tongchao Wang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; (P.C.); (D.H.); (S.L.)
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Dangling Hua
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; (P.C.); (D.H.); (S.L.)
| | - Shiliang Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; (P.C.); (D.H.); (S.L.)
| | - Oseweuba Valentine Okoro
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| | - Armin Shavandi
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China;
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| |
Collapse
|
4
|
Nour A, Iqbal W, Navarro-Alapont J, Ferrando-Soria J, Magarò P, Elliani R, Tagarelli A, Maletta C, Mastropietro TF, Pardo E, Armentano D. Efficient Nickel and Cobalt Recovery by Metal-Organic Framework-Based Mixed Matrix Membranes (MMM-MOFs). ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:12014-12028. [PMID: 39148518 PMCID: PMC11323268 DOI: 10.1021/acssuschemeng.4c03427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
Green energy transition has supposed to give a huge boost to the electric vehicle rechargeable battery market. This has generated a compelling demand for raw materials, such as cobalt and nickel, which are key common constituents in lithium-ion batteries (LIBs). However, their existing mining protocols and the concentrated localization of such ores have made cobalt and nickel mineral conundrums, and their supplies experience shortages, which threaten to slow the progress of the renewable energy transition. Aiming to contribute to the sustainable recycling of these valuable metals from LIBs and wastewater, in this work, we explore the use of four mixed matrix membranes (MMMs) embedding different metal-organic frameworks (MOFs), i.e., MIL-53(Al), MIL-53(Fe), MIL-101(Fe), and {SrIICuII 6[(S,S)-serimox]3(OH)2(H2O)}·39H2O (SrCu 6 Ser) in polyether sulfone (PES), for the recovery of cobalt(II) and nickel(II) metal cations from mixed cobalt-nickel aqueous solutions containing common interfering ions. Whereas the neat PES membrane slightly contributes to the adsorption of metal ions, showing reduced removal efficiency values of 10.2 and 9.5% for Ni(II) and Co(II), respectively, the inclusion of MOFs in the polymeric matrix substantially improves the adsorption performances. The four MOF@PES MMMs efficiently remove these metals from water, with MIL-53(Al)@PES being the one that presents better performance, with a removal efficiency up to 95% of Ni(II) and Co(II). Remarkably, SrCu 6 Ser@PES exhibits outstanding selectivity toward cobalt(II) cations compared to of nickel(II) ones, with removal efficiencies of 63.7 and 15.1% for Co(II) and Ni(II), respectively. Overall, the remarkable efficiencies, versatility, high environmental robustness, and cost-effective synthesis shown by this family of MOF@PES MMMs situate them among the best adsorbents for the extraction of this kind of contaminants.
Collapse
Affiliation(s)
- Amira Nour
- Dipartimento
di Chimica e Tecnologie Chimiche (CTC), Università della Calabria, Rende 87036, Italy
| | - Waseem Iqbal
- Dipartimento
di Chimica e Tecnologie Chimiche (CTC), Università della Calabria, Rende 87036, Italy
| | | | - Jesús Ferrando-Soria
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, Valencia 46980, Spain
| | - Pietro Magarò
- Dipartimento
di Ingegneria Meccanica, Energetica e Gestionale, Università della Calabria, Rende, Cosenza 87036, Italy
| | - Rosangela Elliani
- Dipartimento
di Chimica e Tecnologie Chimiche (CTC), Università della Calabria, Rende 87036, Italy
| | - Antonio Tagarelli
- Dipartimento
di Chimica e Tecnologie Chimiche (CTC), Università della Calabria, Rende 87036, Italy
| | - Carmine Maletta
- Dipartimento
di Ingegneria Meccanica, Energetica e Gestionale, Università della Calabria, Rende, Cosenza 87036, Italy
| | - Teresa F. Mastropietro
- Dipartimento
di Chimica e Tecnologie Chimiche (CTC), Università della Calabria, Rende 87036, Italy
| | - Emilio Pardo
- Instituto
de Ciencia Molecular (ICMol), Universidad
de Valencia, Valencia 46980, Spain
| | - Donatella Armentano
- Dipartimento
di Chimica e Tecnologie Chimiche (CTC), Università della Calabria, Rende 87036, Italy
| |
Collapse
|
5
|
Das T, Patel DK. Efficient removal of cationic dyes using lemon peel-chitosan hydrogel composite: RSM-CCD optimization and adsorption studies. Int J Biol Macromol 2024; 275:133561. [PMID: 38960260 DOI: 10.1016/j.ijbiomac.2024.133561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/13/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
The most prominent and easily identifiable factor of water purity is its colour, which may be both physically undesirable, and act as an alert towards potential environmental contamination. The current study describes the optimum synthesis technique for Lemon Peel-Chitosan hydrogel using the Response Surface Methodology integrated Central composite Design (RSM-CCD). This adsorbent is both environmentally friendly and cost-effective. The hydrogel exhibited a maximal dye removal capacity of 24.984, 24.788, 24.862, 23.483, 24.409, and 24.726 mg g-1, for 10 mg L-1 aqueous medium of Safranin O, Methylene blue, Basic fuchsin, Toluidine blue, Brilliant green and Crystal violet, respectively. The adsorption kinetics and isotherm data suggest that the Pseudo second-order kinetic and Freundlich adsorption isotherm models precisely represent the respective behaviour of all the dyes. The thermodynamic viability of the process is determined by the values of ΔG, ΔH, and ΔS. The probable mechanism of adsorption was the electrostatic interaction between the dye molecules and the hydrogel. The regenerated hydrogel had removal efficiencies of over 80 % even after enduring six cycles. Hence, the exceptional recyclability and utility of the adsorbent show their sustainability for wastewater treatment in textile factories.
Collapse
Affiliation(s)
- Triparna Das
- Analytical Chemistry Division (ASSIST), CSIR-Indian Institute of Toxicology Research, (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Devendra K Patel
- Analytical Chemistry Division (ASSIST), CSIR-Indian Institute of Toxicology Research, (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
6
|
Phonlakan K, Pornsuwan S, Nijpanich S, Budsombat S. Co 2+-adsorbed chitosan-grafted-poly(acrylic acid) hydrogel as peroxymonosulfate activator for effective dye degradation. Int J Biol Macromol 2024; 265:130922. [PMID: 38518932 DOI: 10.1016/j.ijbiomac.2024.130922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/24/2024]
Abstract
In this work, chitosan-grafted-poly(acrylic acid) (CS-g-PAA) was synthesized for use as a Co2+ adsorbent and circularly utilized as a peroxymonosulfate (PMS) activator in the degradation of rhodamine B (RhB) dye. CS-g-PAA demonstrated 3.7 times higher adsorption capacity toward Co2+ than pristine chitosan. The impact of the adsorption conditions was evaluated. The pseudo-second-order kinetic model and the Langmuir isotherm model best described the adsorption process. Under optimum conditions, the adsorption capacity of CS-g-PAA for Co2+ was 212 mg/g. The Co2+-adsorbed CS-g-PAA hydrogel was further utilized in the RhB degradation process. The effects of catalyst dosage, initial RhB concentration, pH, and the coexistence of anions on the degradation of RhB were studied. The hydrogel catalyst could remove 98 % of RhB within 5 min, at a degradation rate of 0.624 per min. Electron paramagnetic resonance (EPR) analysis and the radical scavenger experiment suggested that SO4•-, HO•, 1O2, and O2•- were involved in the degradation. Furthermore, when tested in various water systems, high degradation efficiencies of 98 % were attained after 20 min. The hydrogel catalyst performed excellent degradation over ten cycles without any chemical recovery processes. Moreover, high degradation efficiencies were observed between 95 % and 98 % when tested with other dyes.
Collapse
Affiliation(s)
- Kunlarat Phonlakan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Materials Chemistry Research Center, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Soraya Pornsuwan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, 272 Rama VI Rd., Ratchathewi, Bangkok 10400, Thailand
| | - Supinya Nijpanich
- Synchrotron Light Research Institute (Public organization), Nakhonratchasima 30000, Thailand
| | - Surangkhana Budsombat
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Materials Chemistry Research Center, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
7
|
Rostami M, Jahed-Khaniki G, Molaee-Aghaee E, Shariatifar N, Sani MA, Azami M, Rezvantalab S, Ramezani S, Ghorbani M. Polycaprolactone/polyacrylic acid/graphene oxide composite nanofibers as a highly efficient sorbent to remove lead toxic metal from drinking water and apple juice. Sci Rep 2024; 14:4372. [PMID: 38388664 PMCID: PMC10884409 DOI: 10.1038/s41598-024-54969-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/19/2024] [Indexed: 02/24/2024] Open
Abstract
Due to the characteristics of electrospun nanofibers (NFs), they are considered a suitable substrate for the adsorption and removal of heavy metals. Electrospun nanofibers are prepared based on optimized polycaprolactone (PCL, 12 wt%) and polyacrylic acid (PAA, 1 wt%) polymers loaded with graphene oxide nanoparticles (GO NPs, 1 wt%). The morphological, molecular interactions, crystallinity, thermal, hydrophobicity, and biocompatibility properties of NFs are characterized by spectroscopy (scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, Thermogravimetric analysis), contact angle, and MTT tests. Finally, the adsorption efficacy of NFs to remove lead (Pb2+) from water and apple juice samples was determined using inductively coupled plasma optical emission spectroscopy (ICP-OES). The average diameter for PCL, PCL/PAA, and PCL/PAA/GO NFs was 137, 500, and 216 nm, respectively. Additionally, the contact angle for PCL, PCL/PAA, and PCL/PAA/GO NFs was obtained at 74.32º, 91.98º, and 94.59º, respectively. The cytotoxicity test has shown non-toxicity for fabricated NFs against the HUVEC endothelial cell line by more than 80% survival during 72 h. Under optimum conditions including pH (= 6), temperature (25 °C), Pb concentration (25 to 50 mg/L), and time (15 to 30 min), the adsorption efficiency was generally between 80 and 97%. The adsorption isotherm model of PCL/PAA/GO NFs in the adsorption of lead metal follows the Langmuir model, and the reaction kinetics follow the pseudo-second-order. PCL/PA/GO NFs have shown adsorption of over 80% in four consecutive cycles. The adsorption efficacy of NFs to remove Pb in apple juice has reached 76%. It is appropriate and useful to use these nanofibers as a high-efficiency adsorbent in water and food systems based on an analysis of their adsorption properties and how well they work.
Collapse
Affiliation(s)
- Mohammadreza Rostami
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Food Science and Nutrition Group (FSAN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gholamreza Jahed-Khaniki
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ebrahim Molaee-Aghaee
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Food Science and Nutrition Group (FSAN), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Nabi Shariatifar
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Alizadeh Sani
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Azami
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sima Rezvantalab
- Department of Chemical Engineering, Urmia University of Technology, 57166-419, Urmia, Iran
| | - Soghra Ramezani
- Faculty of Textile Engineering, Urmia University of Technology, 5716693188, Urmia, Iran
| | - Marjan Ghorbani
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Le T, Esfahani MR. Superfast adsorption of small and uncharged urea from water using post-sonicated iron-based metal-organic framework. CHEMOSPHERE 2024; 347:140566. [PMID: 37939927 DOI: 10.1016/j.chemosphere.2023.140566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/10/2023]
Abstract
Urea is widely used in fertilizer production for agricultural purposes which risks runoff into soil and water sources. An excess of urea can result in algal or toxic blooms which can poison wildlife or even humans by accumulation in food sources. The removal of urea from water is challenging due to the small size (0.254 nm) and uncharged surface of urea. Intensive research has been conducted on a variety of methods to remove environmental concentrations of urea using adsorbents, but most of them lack effective removal, require long (>2 h) process time, and lack re-generability. Metal-organic frameworks (MOFs) are the new generation of adsorbents with excellent structural and functional group tunability. In this study, we synthesized MIL-100 (Fe), an iron-based MOF, as an efficient adsorbent for the removal of uncharged urea from water. The urea adsorption capacity of MIL-100 (Fe) was tested under varying experimental conditions such as pH (2-10), temperature (25-65 °C), MOF concentration (25-400 ppm), and urea concentration (25-1000 ppm). The results showed the superfast adsorption (more than 85% removal within 2 min) of neutrally charged urea molecules on MIL-100 (Fe). The MOF was able to reach a maximum adsorption efficiency of around 85% with a maximum uptake capacity of 3321 mg/g. The MIL-100 (Fe) showed acceptable re-generability by retaining up to 90% removal efficiency after four regeneration cycles. The urea adsorption followed pseudo 2nd-order adsorption kinetics and dipole-dipole interactions and π-NH bonding were the primary adsorption mechanism.
Collapse
Affiliation(s)
- Tin Le
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, United States
| | - Milad R Esfahani
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, United States.
| |
Collapse
|
9
|
Hajareh Haghighi F, Binaymotlagh R, Chronopoulou L, Cerra S, Marrani AG, Amato F, Palocci C, Fratoddi I. Self-Assembling Peptide-Based Magnetogels for the Removal of Heavy Metals from Water. Gels 2023; 9:621. [PMID: 37623076 PMCID: PMC10454050 DOI: 10.3390/gels9080621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
In this study, we present the synthesis of a novel peptide-based magnetogel obtained through the encapsulation of γ-Fe2O3-polyacrylic acid (PAA) nanoparticles (γ-Fe2O3NPs) into a hydrogel matrix, used for enhancing the ability of the hydrogel to remove Cr(III), Co(II), and Ni(II) pollutants from water. Fmoc-Phe (Fluorenylmethoxycarbonyl-Phenylalanine) and diphenylalanine (Phe2) were used as starting reagents for the hydrogelator (Fmoc-Phe3) synthesis via an enzymatic method. The PAA-coated magnetic nanoparticles were synthesized in a separate step, using the co-precipitation method, and encapsulated into the peptide-based hydrogel. The resulting organic/inorganic hybrid system (γ-Fe2O3NPs-peptide) was characterized with different techniques, including FT-IR, Raman, UV-Vis, DLS, ζ-potential, XPS, FESEM-EDS, swelling ability tests, and rheology. Regarding the application in heavy metals removal from aqueous solutions, the behavior of the obtained magnetogel was compared to its precursors and the effect of the magnetic field was assessed. Four different systems were studied for the separation of heavy metal ions from aqueous solutions, including (1) γ-Fe2O3NPs stabilized with PAA, (γ-Fe2O3NPs); (2) Fmoc-Phe3 hydrogel (HG); (3) γ-Fe2O3NPs embedded in peptide magnetogel (γ-Fe2O3NPs@HG); and (4) γ-Fe2O3NPs@HG in the presence of an external magnetic field. To quantify the removal efficiency of these four model systems, the UV-Vis technique was employed as a fast, cheap, and versatile method. The results demonstrate that both Fmoc-Phe3 hydrogel and γ-Fe2O3NPs peptide magnetogel can efficiently remove all the tested pollutants from water. Interestingly, due to the presence of magnetic γ-Fe2O3NPs inside the hydrogel, the removal efficiency can be enhanced by applying an external magnetic field. The proposed magnetogel represents a smart multifunctional nanosystem with improved absorption efficiency and synergic effect upon applying an external magnetic field. These results are promising for potential environmental applications of γ-Fe2O3NPs-peptide magnetogels to the removal of pollutants from aqueous media.
Collapse
Affiliation(s)
- Farid Hajareh Haghighi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (S.C.); (A.G.M.); (F.A.); (I.F.)
| | - Roya Binaymotlagh
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (S.C.); (A.G.M.); (F.A.); (I.F.)
| | - Laura Chronopoulou
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (S.C.); (A.G.M.); (F.A.); (I.F.)
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Sara Cerra
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (S.C.); (A.G.M.); (F.A.); (I.F.)
| | - Andrea Giacomo Marrani
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (S.C.); (A.G.M.); (F.A.); (I.F.)
| | - Francesco Amato
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (S.C.); (A.G.M.); (F.A.); (I.F.)
| | - Cleofe Palocci
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (S.C.); (A.G.M.); (F.A.); (I.F.)
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Ilaria Fratoddi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (S.C.); (A.G.M.); (F.A.); (I.F.)
| |
Collapse
|
10
|
Rahmatpour A, Alijani N. An all-biopolymer self-assembling hydrogel film consisting of chitosan and carboxymethyl guar gum: A novel bio-based composite adsorbent for Cu 2+ adsorption from aqueous solution. Int J Biol Macromol 2023; 242:124878. [PMID: 37187419 DOI: 10.1016/j.ijbiomac.2023.124878] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/17/2023]
Abstract
A novel bio-based composite adsorbent, all biopolymer self-assembled hydrogel film has been prepared by eco-friendly amalgamating chitosan (CS) and carboxymethyl guar gum (CMGG) biopolymers in water without needing small molecules for cross-linking. Various analysis demonstrated the electrostatic interactions and hydrogen bondings within the network structure are responsible for gelling, crosslinking, and forming a 3D structure. Various experimental parameters were optimized to evaluate the CS/CMGG's potential for removing Cu2+ ions from aqueous solution, including pH, dosage, Cu(II) initial concentration, contact time, and temperature. The pseudo-second-order kinetic and Langmuir isotherm models are highly correlated with the kinetic and equilibrium isotherm data, respectively. Using the Langmuir isotherm model for an initial metal concentration of 50 mg/L at pH 6.0 and 25 °C, the maximum adsorption of Cu(II) was calculated to be 155.51 mg/g. A combination of adsorption-complexation and ion exchange must be involved in Cu(II) adsorption on the CS/CMGG. Five cycles of the loaded CS/CMGG hydrogel regeneration and reuse were successfully achieved without an appreciable difference in Cu(II) removal percentage. Thermodynamic analysis indicated that copper adsorption occurred spontaneously (ΔG°: -2.85 J/mol, 298 K) and exothermically (ΔH°: -27.58 J/mol). A reusable bio-adsorbent for removing heavy metal ions was developed that is eco-friendly, sustainable, and efficient.
Collapse
Affiliation(s)
- Ali Rahmatpour
- Polymer Chemistry Research Laboratory, Faculty of Chemistry and Petroleum Science, Shahid Beheshti University, P.O. Box: 1983969411, Tehran, Iran.
| | - Naser Alijani
- Polymer Chemistry Research Laboratory, Faculty of Chemistry and Petroleum Science, Shahid Beheshti University, P.O. Box: 1983969411, Tehran, Iran
| |
Collapse
|
11
|
Silva EC, Gomes CG, Vieira MA, Fajardo AR. Composite hydrogel based on alginate-g-poly(acrylamide)/carbon nanotubes for solid phase extraction of metals from corn cereal samples. Int J Biol Macromol 2023; 242:124586. [PMID: 37105249 DOI: 10.1016/j.ijbiomac.2023.124586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
Composite hydrogels containing nanofillers are extensively applied in the sorption of different compounds from aqueous solutions; however, this ability is poorly exploited in the extraction and pre-concentration of analytes from complex matrices. As a contribution to this field, this study reports the synthesis of a composite hydrogel of alginate-g-poly(acrylamide) matrix filled with functionalized multi-walled carbon nanotubes (ALG-g-PAAM/MWCNT-f). This composite served as a solid-phase extractor (SPE) for the separation of Pb2+ and Cd2+ ions from a digested corn cereal sample before their analytical determination. After composite characterization, a series of experiments using low dosages of ALG-g-PAAM/MWCNT-f demonstrated that the composite has a higher sorption capacity for Pb2+ (5.1 mg/g) and Cd2+ (3.9 mg/g) under favorable experimental conditions. As demonstrated, the presence of the MWCNT-f benefited the SPE performance of the composite. The sorption of both cations followed the pseudo-first order kinetics, while the experimental data were well-fitted by the Freundlich isotherm. Also, ALG-g-PAAM/MWCNT-f showed selectivity for Pb2+, and it is reusable up to 10 times without losing sorption performance. After sorption and extraction, both metals were completely recovered, facilitating their quantification by the MIP OES technique. In short, ALG-g-PAAM/MWCNT-f was an effective SPE for the separation and extraction of Pb2+ and Cd2+, which can be beneficial for food control and safety.
Collapse
Affiliation(s)
- Emilly C Silva
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900 Pelotas, RS, Brazil
| | - Charlie G Gomes
- Laboratório de Metrologia Química (LabMequi), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900 Pelotas, RS, Brazil
| | - Mariana A Vieira
- Laboratório de Metrologia Química (LabMequi), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900 Pelotas, RS, Brazil
| | - André R Fajardo
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão s/n, 96010-900 Pelotas, RS, Brazil.
| |
Collapse
|
12
|
Far HS, Hasanzadeh M, Najafi M, Rabbani M. Highly porous organoclay-supported bimetal-organic framework (CoNi-MOF/OC) composite with efficient and selective adsorption of organic dyes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:43714-43725. [PMID: 36662432 DOI: 10.1007/s11356-023-25374-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Herein, a highly porous bimetal-organic framework (bi-MOF) based on cobalt and nickel was successfully in situ grown on organoclay (OC) clusters by solvothermal method. Accordingly, the hierarchical porous CoNi-MOF/OC composite with a superior specific surface area of 2046 m2/g and a large pore volume of 0.763 cm3/g was obtained, which facilitated the adsorption of organic dyes. A morphological study using scanning electron microscopy indicated the formation of uniform bi-MOF crystals on the OC plates. Furthermore, the single- and multi-dye adsorption assays were implemented to precisely evaluate the adsorption capacity and selectivity of CoNi-MOF/OC composite to anionic and cationic dyes. The results revealed a high adsorption capacity of 58.61 mg/g at an adsorbent content of 15 mg, initial dye concentration of 20 ppm, and contact time of 25 min for MB, which is superior to several existing clay-based adsorbents. The adsorption kinetics study showed that the adsorption of cationic and anionic dyes onto the CoNi-MOF/OC composite followed the pseudo-second-order kinetic model. Interestingly, the regeneration study showed appropriate reusability and stability of the CoNi-MOF/OC composite for the removal of organic dyes with an almost unchanged structure after four regeneration cycles. The results of this study provide new insights for the rational design and fabrication of next-generation clay-based adsorbent by combining the synergistic advantages of bi-MOF with superior specific surface area and pore volume with organoclay composition and structure.
Collapse
Affiliation(s)
- Hossein Shahriyari Far
- Department of Chemistry, Iran University of Science and Technology, P.O. Box 16846-13114, NarmakTehran, Iran
| | - Mahdi Hasanzadeh
- Department of Textile Engineering, Yazd University, P.O. Box 89195-741, Yazd, Iran.
| | - Mina Najafi
- Department of Chemistry, Iran University of Science and Technology, P.O. Box 16846-13114, NarmakTehran, Iran
| | - Mahboubeh Rabbani
- Department of Chemistry, Iran University of Science and Technology, P.O. Box 16846-13114, NarmakTehran, Iran
| |
Collapse
|
13
|
Sayed A, Hany F, Abdel-Raouf MES, Mahmoud GA. Gamma irradiation synthesis of pectin- based biohydrogels for removal of lead cations from simulated solutions. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03219-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AbstractBio-based hydrogels (denoted as PC-PAAc/GA) comprised of Pectin (PC) and polyacrylic acid (PAAc) reinforced with different ratios of gallic acid (GA) were prepared by gamma radiation at irradiation dose 20 kGy. The prepared hydrogels were investigated by different analytical tools. The swelling performance was studied versus time, pH of the medium and gallic acid content. The experimental data depicted that the swelling increases with pH of medium until the equilibrium of swelling after 350 min. The maximum swelling was attained at pH10 for both PC-PAAc and PC-PAA/GA1.5. Also, the data reveal that the incorporation of GA in the hydrogel matrix enhanced the swelling performance of the hydrogel up to an optimum value of GA, i.e. PC-PAA/GA1.5. Further increase in GA concentration leads to formation of a highly crosslinked structure with reduced swelling. The results demonstrated that the prepared hydrogels displayed excellent antibacterial activity against gram + ve bacteria (E.coli) and gram-ve bacteria (S.aureus). This potent antimicrobial activity is mainly originated from GA which was proved as a strong antibacterial agent. Moreover, the removal performance of the investigated hydrogels was verified towards Pb+2 cation as one of the most poisonous heavy metals. The data revealed that the maximum removal percentage of Pb (II) was attained by PC-PAAc/GA1.5 hydrogel (90 mg g−1). The correlation coefficients of the Langmuir model are too higher than that of the Freundlich model that assumed the adsorption of lead cations is mainly a chemical process.
Collapse
|
14
|
Magnetic Metal–Organic Framework (Fe3O4@MIL-101) Functionalized with Dendrimer: Highly Efficient and Selective Adsorption Removal of Organic Dyes. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02398-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Mahmoud GA, Abdel‐Geleel M, Badway NA, Farha SAA, Alshafei EA. Characterization and adsorption properties of starch‐based nanocomposite for removal of simulated low‐level radioactive waste. STARCH-STARKE 2022. [DOI: 10.1002/star.202100287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ghada A. Mahmoud
- Radiation Research of Polymer Chemistry Department (NCRRT) Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
| | | | - Nagwa A. Badway
- Chemistry Department Faculty of Science Al‐Azhar University Cairo Egypt
| | | | - Esraa A. Alshafei
- Chemistry Nuclear Radiological Regulatory Authority (ENRRA) Cairo Egypt
| |
Collapse
|
16
|
Poly(N-vinyl imidazole)/nitrogen-doped graphene quantum dot nanocomposite hydrogel as an efficient metal ion adsorbent of aqueous systems. IRANIAN POLYMER JOURNAL 2022. [DOI: 10.1007/s13726-021-01010-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
17
|
Fan X, Wang X, Cai Y, Xie H, Han S, Hao C. Functionalized cotton charcoal/chitosan biomass-based hydrogel for capturing Pb 2+, Cu 2+ and MB. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127191. [PMID: 34537654 DOI: 10.1016/j.jhazmat.2021.127191] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 05/22/2023]
Abstract
In this work, a porous multi-functional biomass carbon was prepared by acid-base modification method, which realized the reuse of waste cotton material. Then, the modified biochar was combined with the acrylic-based hydrogel by radical polymerization, and the biochar acrylic-based hydrogel (CS/EDTA/CBC) composite with chitosan and ethylenediamine tetraacetic acid was successfully prepared. This not only increases the adsorption performance of the adsorbent but also improves the stability of hydrogel. These characteristics provide high-efficiency adsorption capacity for pollutants (1105.78 mg g-1 for Pb2+, 678.04 mg g-1 for Cu2+, and 590.72 mg g-1 for methylene blue (MB)), which is far superior to most reported adsorbents. Meanwhile, the adsorbent would have a strong chemical interaction with Pb2+ and Cu2+, can form a stable chelating structure, and showed stronger selective adsorption. The adsorption process is more suitable for the Langmuir isotherm and follows a pseudo-second-order kinetic model, which indicates that the adsorption is a single-layer adsorption, and the rate-limiting step is a chemical chelation reaction. XPS results confirmed that surface complexation and electrostatic attraction are the main mechanisms of the adsorption reaction. After five cycles, the adsorption capacity of the adsorbent and the recovery of heavy metal ions remained at a high level.
Collapse
Affiliation(s)
- Xiangbo Fan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaohong Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Yaotao Cai
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Honghao Xie
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Shiqi Han
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chen Hao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
18
|
Rosli N, Yahya WZN, Wirzal MDH. Crosslinked chitosan/poly(vinyl alcohol) nanofibers functionalized by ionic liquid for heavy metal ions removal. Int J Biol Macromol 2022; 195:132-141. [PMID: 34896464 DOI: 10.1016/j.ijbiomac.2021.12.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/27/2021] [Accepted: 12/01/2021] [Indexed: 11/17/2022]
Abstract
Nanostructure adsorbents namely nanofibers have been demonstrated to have a high adsorption rate and are efficient to treat wastewater. Herein, chitosan/poly(vinyl alcohol) (PVA) blend nanofiber membranes prepared by electrospinning method were crosslinked using glutaraldehyde and functionalized with 1-allyl-3-methylimidazolium chloride to be used as a potential bio-sorbent for heavy metal ions removal. The chitosan was first hydrolyzed before electrospinning with PVA, followed by crosslinking and further functionalized by ionic liquid to overcome the limitation of chitosan which has low adsorption capacity and unsuitable physical properties for the adsorption process. The morphology and the chemical bond formed were investigated by using field emission scanning electron microscopy with energy dispersive x-ray spectroscopy (FESEM-EDX) and Fourier transform infrared (FTIR) showing that the hydrolyzed chitosan/PVA nanofiber membranes were successfully crosslinked and functionalized. The synthesized adsorbent was evaluated in pure heavy metal ions solutions namely Pb(II), Mn(II), and Cu(II) and shown best performance for Pb(II) ions. The highest adsorption capacity recorded for Pb(II) ions was 166.34 mg/g and are well fitted to the Freundlich isotherm model and pseudo-second-order kinetic model to describe the adsorption equilibrium and kinetic rate of the Pb(II) uptake, respectively. The synthesized adsorbent clearly shows a great capability to remove Pb(II) ions.
Collapse
Affiliation(s)
- Norhazirah Rosli
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Wan Zaireen Nisa Yahya
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; Centre of Research in Ionic Liquid (CORIL), Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia.
| | - Mohd Dzul Hakim Wirzal
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; Centre of Research in Ionic Liquid (CORIL), Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| |
Collapse
|
19
|
Far HS, Hasanzadeh M, Nashtaei MS, Rabbani M. Fast and efficient adsorption of palladium from aqueous solution by magnetic metal-organic framework nanocomposite modified with poly(propylene imine) dendrimer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:62474-62486. [PMID: 34195949 DOI: 10.1007/s11356-021-15144-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
In this study, a magnetic metal-organic framework (MMOF) was synthesized and post-modified with poly(propyleneimine) dendrimer to fabricate a novel functional porous nanocomposite for adsorption and recovery of palladium (Pd(II)) from aqueous solution. The morphological and structural characteristics of the prepared material were identified by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmet-Teller (BET) isotherm, and vibrating sample magnetometer (VSM). The results confirmed the successful synthesis and post-modification of MMOF. Semispherical shape particles (20-50 nm) with appropriate magnetic properties and a high specific surface area of 120 m2/g were obtained. An experimental design approach was performed to show the effect of adsorption conditions on Pd(II) uptake efficiency of the dendrimer-modified magnetic adsorbent. The study showed that the Pd(II) uptake on dendrimer-modified MMOF was well described by the Langmuir isotherm model with the highest uptake capacity of 291 mg/g under optimal condition (adsorbent content of 12.5 mg, Pd ion concentration of 80 ppm, pH = 4, and contact time of 40 min). The adsorption kinetics of Pd(II) ions was suggested to be a pseudo-first-order model. The results revealed a faster adsorption rate and higher adsorption capacity (about 43%) for dendrimer-modified MMOF. Finally, the reusability of the provided adsorbent was evaluated. This work provides a valuable strategy for designing and developing efficient magnetic adsorbents based on MOFs for the adsorption and recovery of precious metals.
Collapse
Affiliation(s)
- Hossein Shahriyari Far
- Department of Chemistry, Iran University of Science and Technology, Narmak, P.O. Box 16846-13114, Tehran, Iran
| | - Mahdi Hasanzadeh
- Department of Textile Engineering, Yazd University, P.O. Box 89195-741, Yazd, Iran.
| | - Mohammad Shabani Nashtaei
- Department of Chemistry, Iran University of Science and Technology, Narmak, P.O. Box 16846-13114, Tehran, Iran
| | - Mahboubeh Rabbani
- Department of Chemistry, Iran University of Science and Technology, Narmak, P.O. Box 16846-13114, Tehran, Iran
| |
Collapse
|
20
|
Nica I, Zaharia C, Suteu D. Hydrogel Based on Tricarboxi-Cellulose and Poly(Vinyl Alcohol) Used as Biosorbent for Cobalt Ions Retention. Polymers (Basel) 2021; 13:1444. [PMID: 33947051 PMCID: PMC8125237 DOI: 10.3390/polym13091444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 11/17/2022] Open
Abstract
A biomaterial based on poly(vinyl alcohol) reticulated with tricarboxi-cellulose obtained by TEMPO oxidation (OxC25) was used as a new biosorbent for Co(II) ions retention from aqueous solutions. The biosorption process of Co(II) ions was studied while mainly considering the operational factors that can influence it (i.e., biosorbent concentration, pH of the aqueous media, temperature and contact time of the phases). The maximum adsorption capacity was 181.82 mg/g, with the biosorption well fitted by the Langmuir model. The kinetic modeling of the biosorption process was based on certain models: Lagergreen (pseudo first order model), Ho (pseudo second order model), Elovich (heterogeneous biosorbent model), Webber-Morris (intraparticle diffusion model) and McKay (film diffusion model). The corresponding kinetic model suggests that this biosorption process followed a pseudo-second order kinetic model and was developed in two controlled steps beginning with film diffusion and followed by intraparticles diffusion.
Collapse
Affiliation(s)
- Iulia Nica
- Department of Organic, Biochemical and Food Engineering, ‘Cristofor Simionescu’ Faculty of Chemical Engineering and Environment Protection, “Gheorghe Asachi” Technical University of Iasi, 73 D. Mangeron Blvd., 700050 Iasi, Romania; (I.N.); (D.S.)
| | - Carmen Zaharia
- Department of Environmental Engineering and Management, ‘Cristofor Simionescu’ Faculty of Chemical Engineering and Environment Protection, “Gheorghe Asachi” Technical University of Iasi, 73 D. Mangeron Blvd., 700050 Iasi, Romania
| | - Daniela Suteu
- Department of Organic, Biochemical and Food Engineering, ‘Cristofor Simionescu’ Faculty of Chemical Engineering and Environment Protection, “Gheorghe Asachi” Technical University of Iasi, 73 D. Mangeron Blvd., 700050 Iasi, Romania; (I.N.); (D.S.)
| |
Collapse
|
21
|
Shahriyari Far H, Hasanzadeh M, Najafi M, Masale Nezhad TR, Rabbani M. Efficient Removal of Pb(II) and Co(II) Ions from Aqueous Solution with a Chromium-Based Metal–Organic Framework/Activated Carbon Composites. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c06199] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Hossein Shahriyari Far
- Department of Chemistry, Iran University of Science and Technology, Narmak, P.O.
Box 16846-13114, Tehran, Iran
| | - Mahdi Hasanzadeh
- Department of Textile Engineering, Yazd University, P.O. Box 89195-741, Yazd, Iran
| | - Mina Najafi
- Department of Chemistry, Iran University of Science and Technology, Narmak, P.O.
Box 16846-13114, Tehran, Iran
| | - Targol Rahimi Masale Nezhad
- Department of Chemistry, Iran University of Science and Technology, Narmak, P.O.
Box 16846-13114, Tehran, Iran
| | - Mahboubeh Rabbani
- Department of Chemistry, Iran University of Science and Technology, Narmak, P.O.
Box 16846-13114, Tehran, Iran
| |
Collapse
|
22
|
Zhang X, Li Z, Zhang T, Chen J, Ji W, Wei Y. Fabrication of an efficient ZIF-8 alginate composite hydrogel material and its application to enhanced copper( ii) adsorption from aqueous solutions. NEW J CHEM 2021. [DOI: 10.1039/d1nj03427h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PVA/SA@ZIF-8 was fabricated for enhanced copper adsorption by in situ grafting of ZIF-8 on the surface of the sodium alginate hydrogel.
Collapse
Affiliation(s)
- Xiao Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 3rd North East Road, Chaoyang District, Beijing 100029, China
| | - Zhiyue Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 3rd North East Road, Chaoyang District, Beijing 100029, China
| | - Taoyi Zhang
- Sinopec Beijing Research Institute of Chemical Industry, 14 North Third Ring Road East, Chaoyang District, Beijing 100014, China
| | - Jing Chen
- Sinopec Beijing Research Institute of Chemical Industry, 14 North Third Ring Road East, Chaoyang District, Beijing 100014, China
| | - Wenxi Ji
- Sinopec Beijing Research Institute of Chemical Industry, 14 North Third Ring Road East, Chaoyang District, Beijing 100014, China
| | - Yun Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 3rd North East Road, Chaoyang District, Beijing 100029, China
| |
Collapse
|
23
|
Budnyak TM, Piątek J, Pylypchuk IV, Klimpel M, Sevastyanova O, Lindström ME, Gun’ko VM, Slabon A. Membrane-Filtered Kraft Lignin-Silica Hybrids as Bio-Based Sorbents for Cobalt(II) Ion Recycling. ACS OMEGA 2020; 5:10847-10856. [PMID: 32455205 PMCID: PMC7240831 DOI: 10.1021/acsomega.0c00492] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/24/2020] [Indexed: 05/22/2023]
Abstract
Efficient and sustainable recycling of cobalt(II) is of increasing importance to support technological development in energy storage and electric vehicle industries. A composite material based on membrane-filtered lignin deposited on nanoporous silica microparticles was found to be an effective and sustainable sorbent for cobalt(II) removal. This bio-based sorbent exhibited a high sorption capacity, fast kinetics toward cobalt(II) adsorption, and good reusability. The adsorption capacity was 18 mg Co(II) per gram of dry adsorbent at room temperature (22 °C) at near-neutral pH, three times higher than that of the summarized capacity of lignin or silica starting materials. The kinetics study showed that 90 min is sufficient for effective cobalt(II) extraction by the composite sorbent. The pseudo-second-order kinetics and Freundlich isotherm models fitted well with experimentally obtained data and confirmed heterogeneity of adsorption sites. The promising potential of the lignin-silica composites for industrial applications in the cobalt recovering process was confirmed by high values of desorption in mildly acidic solutions.
Collapse
Affiliation(s)
- Tetyana M. Budnyak
- Department
of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16 C, 106
91 Stockholm, Sweden
| | - Jędrzej Piątek
- Department
of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16 C, 106
91 Stockholm, Sweden
| | - Ievgen V. Pylypchuk
- Department
of Fiber and Polymer Technology, KTH Royal
Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | - Matthias Klimpel
- Department
of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16 C, 106
91 Stockholm, Sweden
| | - Olena Sevastyanova
- Department
of Fiber and Polymer Technology, KTH Royal
Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
- Wallenberg
Wood Science Center (WWSC), Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | - Mikael E. Lindström
- Department
of Fiber and Polymer Technology, KTH Royal
Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | - Volodymyr M. Gun’ko
- Chuiko
Institute of Surface Chemistry of National Academy of Sciences of
Ukraine, 17 General Naumov
Str., 03164 Kyiv, Ukraine
| | - Adam Slabon
- Department
of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16 C, 106
91 Stockholm, Sweden
| |
Collapse
|