1
|
Sulaiman M, Khalaf OI, Khan NA, Alshammari FS, Hamam H. Mathematical modeling and machine learning-based optimization for enhancing biofiltration efficiency of volatile organic compounds. Sci Rep 2024; 14:16908. [PMID: 39043685 PMCID: PMC11266594 DOI: 10.1038/s41598-024-65153-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/17/2024] [Indexed: 07/25/2024] Open
Abstract
Biofiltration is a method of pollution management that utilizes a bioreactor containing live material to absorb and destroy pollutants biologically. In this paper, we investigate mathematical models of biofiltration for mixing volatile organic compounds (VOCs) for instance hydrophilic (methanol) and hydrophobic ( α -pinene). The system of nonlinear diffusion equations describes the Michaelis-Menten kinetics of the enzymic chemical reaction. These models represent the chemical oxidation in the gas phase and mass transmission within the air-biofilm junction. Furthermore, for the numerical study of the saturation of α -pinene and methanol in the biofilm and gas state, we have developed an efficient supervised machine learning algorithm based on the architecture of Elman neural networks (ENN). Moreover, the Levenberg-Marquardt (LM) optimization paradigm is used to find the parameters/ neurons involved in the ENN architecture. The approximation to a solutions found by the ENN-LM technique for methanol saturation and α -pinene under variations in different physical parameters are allegorized with the numerical results computed by state-of-the-art techniques. The graphical and statistical illustration of indications of performance relative to the terms of absolute errors, mean absolute deviations, computational complexity, and mean square error validates that our results perfectly describe the real-life situation and can further be used for problems arising in chemical engineering.
Collapse
Affiliation(s)
- Muhammad Sulaiman
- Department of Mathematics, Abdul Wali Khan University, 23200, Mardan, Pakistan
| | - Osamah Ibrahim Khalaf
- Department of Solar, Al-Nahrain Research Center for Renewable Energy, Al-Nahrain University, Jadriya, Baghdad, Iraq
| | - Naveed Ahmad Khan
- School of Information Technology and Systems, University of Canberra, Canberra, ACT, Australia.
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China.
| | - Fahad Sameer Alshammari
- Department of Mathematics, College of Science and Humanities in Alkharj, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Habib Hamam
- Faculty of Engineering, Université de Moncton, Moncton, NB, E1A3E9, Canada
- Hodmas University College, Taleh Area, Mogadishu, Somalia
- Bridges for Academic Excellence, Tunis, Centre-Ville, Tunisia
- School of Electrical Engineering, University of Johannesburg, Johannesburg, 2006, South Africa
| |
Collapse
|
2
|
Korchevskiy AA, Hill WC, Hull M, Korchevskiy A. Using particle dimensionality-based modeling to estimate lung carcinogenicity of 3D printer emissions. J Appl Toxicol 2024; 44:564-581. [PMID: 37950573 DOI: 10.1002/jat.4561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023]
Abstract
The use of 3D printing technologies by industry and consumers is expanding. However, the approaches to assess the risk of lung carcinogenesis from the emissions of 3D printers have not yet been developed. The objective of the study was to demonstrate a methodology for modeling lung cancer risk related to specific exposure levels as derived from an experimental study of 3D printer emissions for various types of filaments (ABS, PLA, and PETG). The emissions of 15 filaments were assessed at varying extrusion temperatures for a total of 23 conditions in a Class 1,000 cleanroom following procedures described by ANSI/CAN/UL 2904. Three approaches were utilized for cancer risk estimation: (a) calculation based on PM2.5 and PM10 concentrations, (b) a proximity assessment based on the pulmonary deposition fraction, and (c) modeling based on the mass-weighted aerodynamic diameter of particles. The combined distribution of emitted particles had the mass median aerodynamic diameter (MMAD) of 0.35 μm, GSD 2.25. The average concentration of PM2.5 was 25.21 μg/m3 . The spline-based function of aerodynamic diameter allowed us to reconstruct the carcinogenic potential of seven types of fine and ultrafine particles (crystalline silica, fine TiO2 , ultrafine TiO2 , ambient PM2.5 and PM10, diesel particulates, and carbon nanotubes) with a correlation of 0.999, P < 0.00001. The central tendency estimation of lung cancer risk for 3D printer emissions was found at the level of 14.74 cases per 10,000 workers in a typical exposure scenario (average cumulative exposure of 0.3 mg/m3 - years), with the lowest risks for PLA filaments, and the highest for PETG type.
Collapse
Affiliation(s)
| | - W Cary Hill
- ITA International, LLC, Blacksburg, Virginia, USA
| | - Matthew Hull
- Virginia Tech, Institute for Critical Technology and Applied Science, Blacksburg, Virginia, USA
| | | |
Collapse
|
3
|
Chuang YS, Berekute AK, Hsu HY, Wei HS, Gong WC, Hsu YY, Tsai CJ, Yu KP. Assessment of emissions and exposure in 3D printing workplaces in Taiwan. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2024; 21:270-286. [PMID: 38451632 DOI: 10.1080/15459624.2024.2313655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Three-dimensional (3D) printing is an emerging and booming industry in Taiwan. Compared to traditional manufacturing, 3D printing has various advantages, such as advanced customization, additive manufacturing, reduced mold opening time, and reduced consumption of precursors. In this study, the real-time monitoring of particulate matter (PM) and total volatile organic compound (TVOC) emissions from various filaments is investigated using fused deposition modeling with material extrusion technology, a liquid-crystal display, a stereolithography apparatus based on vat photopolymerization technology, and binder jetting for occupational settings. An exposure assessment for nearby workers using the 3D printing process was performed, and improvement measures were recommended. Nine 3D printing fields were measured. The generation rate of ultrafine particles ranged from 1.19 × 1010 to 4.90 × 1012 #/min, and the geometric mean particle size ranged from 30.91 to 55.50 nm. The average concentration of ultrafine particles ranged from 2.31 × 103 to 7.36 × 104 #/cm3, and the PM2.5 and PM10 concentrations in each field ranged from 0.74 ± 0.27 to 12.46 ± 5.61 μg/m3 and from 2.39 ± 0.60 to 30.65 ± 21.26 μg/m3, respectively. The TVOC concentration ranged from 0.127 ± 0.012 to 1.567 ± 0.172 ppm. The respiratory deposition (RDUFPs) dose ranged from 2.02 × 1013 to 5.54 × 1014 nm2/day. Depending on the operating conditions, appropriate control and protective measures should be employed to protect workers' health.
Collapse
Affiliation(s)
- Yung-Sheng Chuang
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Abiyu Kerebo Berekute
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Chemistry, College of Natural and Computational Sciences, Arba Minch University, Arbaminch, Ethiopia
| | - Hsuan-Yu Hsu
- Institute of Environmental Engineering, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan
| | - Ho-Sheng Wei
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wen-Cheng Gong
- Department of Chemistry, College of Natural and Computational Sciences, Arba Minch University, Arbaminch, Ethiopia
| | - Ya-Yuan Hsu
- Institute of Labor, Occupational Safety and Health, Ministry of Labor, New Taipei City, Taiwan
| | - Chuen-Jinn Tsai
- Institute of Environmental Engineering, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan
| | - Kuo-Pin Yu
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
4
|
Zhang Q, Black MS. Exposure hazards of particles and volatile organic compounds emitted from material extrusion 3D printing: Consolidation of chamber study data. ENVIRONMENT INTERNATIONAL 2023; 182:108316. [PMID: 37952412 DOI: 10.1016/j.envint.2023.108316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Ultrafine particles and volatile organic compounds (VOCs) have been detected from material extrusion 3D printing, which is widely used in non-industrial environments. This study consolidates data of 447 particle emission and 58 VOC emission evaluations from a chamber study using a standardized testing method with various 3D printing scenarios. The interquartile ranges of the observed emission rates were 109-1011 #/h for particles and 0.2-1.0 mg/h for total VOC. Print material contributed largely to the variations of particle and total VOC emissions and determined the most abundantly emitted VOCs. Printing conditions and filament specifications, included printer brand, print temperature and speed, build plate heating setup, filament brand, color and composite, also affected emissions and resulted in large variations observed in emission profiles. Multiple regression showed that particle emissions were more impacted by various print conditions than VOC emissions. According to indoor exposure modeling, personal and residential exposure scenarios were more likely to result in high exposure levels, often exceeding recommended exposure limits. Hazardous VOCs commonly emitted from 3D printing included aromatics, aldehydes, alcohols, ketones, esters and siloxanes, among which were various carcinogens, irritants and developmental and reproductive toxins. Therefore, 3D printing emits a complex mixture of ultrafine particles and various hazardous chemicals, exposure to which may exceed recommended exposure limits and potentially induce acute, chronic, or developmental health effects for users depending on exposure scenarios.
Collapse
Affiliation(s)
- Qian Zhang
- Chemical Insights Research Institute, UL Research Institutes, Marietta, GA 30067, USA.
| | - Marilyn S Black
- Chemical Insights Research Institute, UL Research Institutes, Marietta, GA 30067, USA
| |
Collapse
|
5
|
Pham YL, Wojnowski W, Beauchamp J. Volatile Compound Emissions from Stereolithography Three-Dimensional Printed Cured Resin Models for Biomedical Applications. Chem Res Toxicol 2023; 36:369-379. [PMID: 36534374 DOI: 10.1021/acs.chemrestox.2c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Stereolithography three-dimensional printing is used increasingly in biomedical applications to create components for use in healthcare and therapy. The exposure of patients to volatile organic compounds (VOCs) emitted from cured resins represents an element of concern in such applications. Here, we investigate the biocompatibility in relation to inhalation exposure of volatile emissions of three different cured commercial resins for use in printing a mouthpiece adapter for sampling exhaled breath. VOC emission rates were estimated based on direct analysis using a microchamber/thermal extractor coupled to a proton transfer reaction-mass spectrometer. Complementary analyses using comprehensive gas chromatography-mass spectrometry aided compound identification. Major VOCs emitted from the cured resins were associated with polymerization agents, additives, and postprocessing procedures and included alcohols, aldehydes, ketones, hydrocarbons, esters, and terpenes. Total VOC emissions from cubes printed using the general-purpose resin were approximately an order of magnitude higher than those of the cubes printed using resins dedicated to biomedical applications at the respective test temperatures (40 and 25 °C). Daily inhalation exposures were estimated and compared with daily tolerable intake levels or standard thresholds of toxicological concerns. The two resins intended for biomedical applications were deemed suitable for fabricating an adapter mouthpiece for use in breath research. The general-purpose resin was unsuitable, with daily inhalation exposures for breath sampling applications at 40 °C estimated at 310 μg day-1 for propylene glycol (tolerable intake (TI) limit of 190 μg day-1) and 1254 μg day-1 for methyl acrylate (TI of 43 μg day-1).
Collapse
Affiliation(s)
- Y Lan Pham
- Department of Sensory Analytics and Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Straße 35, 85354Freising, Germany
- Department of Chemistry and Pharmacy, Chair of Aroma and Smell Research, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 9, 91054Erlangen, Germany
| | - Wojciech Wojnowski
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233Gdańsk, Poland
- Department of Chemistry, University of Oslo, P.O. Box 1033-Blindern, 0315Oslo, Norway
| | - Jonathan Beauchamp
- Department of Sensory Analytics and Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Straße 35, 85354Freising, Germany
| |
Collapse
|
6
|
Zhang Q, Weber RJ, Luxton TP, Peloquin DM, Baumann EJ, Black MS. Metal compositions of particle emissions from material extrusion 3D printing: Emission sources and indoor exposure modeling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160512. [PMID: 36442638 PMCID: PMC10259682 DOI: 10.1016/j.scitotenv.2022.160512] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/26/2022] [Accepted: 11/22/2022] [Indexed: 06/14/2023]
Abstract
Material extrusion 3D printing has been widely used in industrial, educational and residential environments, while its exposure health impacts have not been well understood. High levels of ultrafine particles are found being emitted from 3D printing and could pose a hazard when inhaled. However, metals that potentially transfer from filament additives to emitted particles could also add to the exposure hazard, which have not been well characterized for their emissions. This study analyzed metal (and metalloid) compositions of raw filaments and in the emitted particles during printing; studied filaments included pure polymer filaments with metal additives and composite filaments with and without metal powder. Our chamber study found that crustal metals tended to have higher partitioning factors from filaments to emitted particles; silicon was the most abundant element in emitted particles and had the highest yield per filament mass. However, bronze and stainless-steel powder added in composite filaments were less likely to transfer from filament to particle. For some cases, boron, arsenic, manganese, and lead were only detected in particles, which indicated external sources, such as the printers themselves. Heavy metals with health concerns were also detected in emitted particles, while their estimated exposure concentrations in indoor air were below air quality standards and occupational regulations. However, total particle exposure concentrations estimated for indoor environments could exceed ambient air fine particulate standards.
Collapse
Affiliation(s)
- Qian Zhang
- Chemical Insights Research Institute, Underwriters Laboratories Inc., Marietta, GA 30067, USA.
| | - Rodney J Weber
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Todd P Luxton
- U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Cincinnati, OH 45224, USA
| | - Derek M Peloquin
- U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Cincinnati, OH 45224, USA; Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Eric J Baumann
- U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Cincinnati, OH 45224, USA
| | - Marilyn S Black
- Chemical Insights Research Institute, Underwriters Laboratories Inc., Marietta, GA 30067, USA
| |
Collapse
|
7
|
Variability in the inorganic composition of colored acrylonitrile–butadiene–styrene and polylactic acid filaments used in 3D printing. SN APPLIED SCIENCES 2023. [DOI: 10.1007/s42452-022-05221-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AbstractFused filament fabrication is a 3D printing technique that has gained widespread use from homes to schools to workplaces. Thermoplastic filaments, such as acrylonitrile–butadiene–styrene (ABS) and polylactic acid (PLA), are extruded at temperatures near their respective glass transition temperature or melting point, respectively. Little has been reported on the inorganic elemental composition and concentrations present in these materials or the methods available for extracting that information. Because inorganic constituents may be included in the aerosolized particulates emitted during the printing process, identifying elements that could be present and at what specific concentrations is critical. The objective of the current research is to determine the range of metals present in thermoplastic filaments along with their relative abundance and chemical speciation as a function of polymer type, manufacturer, and color. A variety of filaments from select manufacturers were digested using a range of techniques to determine the optimal conditions for metal extraction from ABS and PLA polymers. The extraction potential for each method was quantified using by ICP-MS analysis. When possible, further characterization of the chemical composition of the filaments was investigated using X-ray Absorption spectroscopy to determine chemical speciation of the metal. Optimal digestion conditions were established using a high temperature, high pressure microwave-assisted acid digestion method to produce the most complete and repeatable extraction results. The composition and abundance of metals in the filaments varied greatly as a function of polymer, manufacturer, and color. Potential elements of concern present in the filaments at elevated concentration included that could pose a respiratory risk included Si, Al, Ti, Cu, Zn, and Sn. XAS analysis revealed a mixture of metal oxides, mineral, and organometallic compounds were present in the filaments that were being used to increase opaqueness impart color (dyes), polymeric catalysts, and flame retardants. This work shows that a variety of metals are present in the starting materials used for 3D printing and depending on their partitioning into 3D printed products and byproducts as well as the exposure route, may pose a health risk which merits further investigation.
Collapse
|
8
|
Farcas MT, McKinney W, Coyle J, Orandle M, Mandler WK, Stefaniak AB, Bowers L, Battelli L, Richardson D, Hammer MA, Friend SA, Service S, Kashon M, Qi C, Hammond DR, Thomas TA, Matheson J, Qian Y. Evaluation of Pulmonary Effects of 3-D Printer Emissions From Acrylonitrile Butadiene Styrene Using an Air-Liquid Interface Model of Primary Normal Human-Derived Bronchial Epithelial Cells. Int J Toxicol 2022; 41:312-328. [PMID: 35586871 DOI: 10.1177/10915818221093605] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study investigated the inhalation toxicity of the emissions from 3-D printing with acrylonitrile butadiene styrene (ABS) filament using an air-liquid interface (ALI) in vitro model. Primary normal human-derived bronchial epithelial cells (NHBEs) were exposed to ABS filament emissions in an ALI for 4 hours. The mean and mode diameters of ABS emitted particles in the medium were 175 ± 24 and 153 ± 15 nm, respectively. The average particle deposition per surface area of the epithelium was 2.29 × 107 ± 1.47 × 107 particle/cm2, equivalent to an estimated average particle mass of 0.144 ± 0.042 μg/cm2. Results showed exposure of NHBEs to ABS emissions did not significantly affect epithelium integrity, ciliation, mucus production, nor induce cytotoxicity. At 24 hours after the exposure, significant increases in the pro-inflammatory markers IL-12p70, IL-13, IL-15, IFN-γ, TNF-α, IL-17A, VEGF, MCP-1, and MIP-1α were noted in the basolateral cell culture medium of ABS-exposed cells compared to non-exposed chamber control cells. Results obtained from this study correspond with those from our previous in vivo studies, indicating that the increase in inflammatory mediators occur without associated membrane damage. The combination of the exposure chamber and the ALI-based model is promising for assessing 3-D printer emission-induced toxicity.
Collapse
Affiliation(s)
- Mariana T Farcas
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA.,Department of Pharmaceutical and Pharmacological Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Walter McKinney
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Jayme Coyle
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Marlene Orandle
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - W Kyle Mandler
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Aleksandr B Stefaniak
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA.,Department of Pharmaceutical and Pharmacological Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Lauren Bowers
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA.,Department of Pharmaceutical and Pharmacological Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Lori Battelli
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Diana Richardson
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Mary A Hammer
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Sherri A Friend
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Samantha Service
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Michael Kashon
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Chaolong Qi
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Duane R Hammond
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Treye A Thomas
- Respiratory Health Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Joanna Matheson
- Respiratory Health Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Yong Qian
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
9
|
Yeom S, Kim H, Hong T, Jeong K. Analysis of ways to reduce potential health risk from ultrafine and fine particles emitted from 3D printers in the makerspace. INDOOR AIR 2022; 32:e13053. [PMID: 35622719 DOI: 10.1111/ina.13053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/20/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Due to the growing maker culture, maker spaces using multiple fused deposition modeling (FDM)-3D printers have spread around the world. However, the 3D printing process is known to cause the release of ultrafine and fine particles, which may have adverse health effects on occupants. Therefore, this experiment-based study was conducted on FDM-3D printers placed in an actual makerspace by the following three scenarios: the number of operating FDM-3D printers, ventilation, and measurement location to compare the concentrations of ultrafine and fine particles. In addition, the deposited dose in alveolar region for ultrafine and fine particles was predicted using a respiratory deposition model to analyze the potential health risk on occupants. As a result, the scenario-based comparison revealed that if the number of operating 3D printers is reduced by less than half, the potential health risk can be decreased by 34.1%, proper ventilation can reduce potential health risk by 55.5%, and working away from the 3D printer can also reduce potential health risk by up to 27.5%. This study analyzed the potential health risk of multiple FDM-3D printers on users in an actual makerspace, and proposed various improvement measures to reduce the potential health risk of ultrafine and fine particles.
Collapse
Affiliation(s)
- Seungkeun Yeom
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, Republic of Korea
| | - Hakpyeong Kim
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, Republic of Korea
| | - Taehoon Hong
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, Republic of Korea
| | - Kwangbok Jeong
- Deep Learning Architecture Research Center, Department of Architectural Engineering, Sejong University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Fused Filament Fabrication 3D Printing: Quantification of Exposure to Airborne Particles. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6050119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Fused Filament Fabrication (FFF) has been established as a widely practiced Additive Manufacturing technique, using various thermoplastic filaments. Carbon fibre (CF) additives enhance mechanical properties of the materials. The main operational hazard of the FFF technique explored in the literature is the emission of Ultrafine Particles and Volatile Organic Compounds. Exposure data regarding novel materials and larger scale operations is, however, still lacking. In this work, a thorough exposure assessment measurement campaign is presented for a workplace applying FFF 3D printing in various setups (four different commercial devices, including a modified commercial printer) and applying various materials (polylactic acid, thermoplastic polyurethane, copolyamide, polyethylene terephthalate glycol) and CF-reinforced thermoplastics (thermoplastic polyurethane, polylactic acid, polyamide). Portable exposure assessment instruments are employed, based on an established methodology, to study the airborne particle exposure potential of each process setup. The results revealed a distinct exposure profile for each process, necessitating a different safety approach per setup. Crucially, high potential for exposure is detected in processes with two printers working simultaneously. An updated engineering control scheme is applied to control exposures for the modified commercial printer. The establishment of a flexible safety system is vital for workplaces that apply FFF 3D printing.
Collapse
|
11
|
Tedla G, Jarabek AM, Byrley P, Boyes W, Rogers K. Human exposure to metals in consumer-focused fused filament fabrication (FFF)/ 3D printing processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152622. [PMID: 34963600 PMCID: PMC8961686 DOI: 10.1016/j.scitotenv.2021.152622] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 05/31/2023]
Abstract
Fused filament fabrication (FFF) or 3D printing is a growing technology used in industry, cottage industry and for consumer applications. Low-cost 3D printing devices have become increasingly popular among children and teens. Consequently, 3D printers are increasingly common in households, schools, and libraries. Because the operation of 3D printers is associated with the release of inhalable particles and volatile organic compounds (VOCs), there are concerns of possible health implications, particularly for use in schools and residential environments that may not have adequate ventilation such as classrooms bedrooms and garages, etc. Along with the growing consumer market for low-cost printers and printer pens, there is also an expanding market for a range of specialty filaments with additives such as inorganic colorants, metal particles and nanomaterials as well as metal-containing flame retardants, antioxidants, heat stabilizers and catalysts. Inhalation of particulate-associated metals may represent a health risk depending on both the metal and internal dose to the respiratory tract. Little has been reported, however, about the presence, speciation, and source of metals in the emissions; or likewise the effect of metals on emission processes and toxicological implications of these 3D printer generated emissions. This report evaluates various issues including the following: metals in feedstock with a focus on filament characteristics and function of metals; the effect of metals on the emissions and metals detected in emissions; printer emissions, particle formation, transport, and transformation; exposure and translation to internal dose; and potential toxicity on inhaled dose. Finally, data gaps and potential areas of future research are discussed within these contexts.
Collapse
Affiliation(s)
- Getachew Tedla
- Watershed and Ecosystem Characterization Division, Center for Environmental Measurement and Modeling, USEPA, RTP, NC 27711, United States of America
| | - Annie M Jarabek
- Health and Environmental Effects Assessment Division, Center for Public Health and Environmental Assessment, USEPA, RTP, NC 27711, United States of America
| | - Peter Byrley
- Health and Environmental Effects Assessment Division, Center for Public Health and Environmental Assessment, USEPA, RTP, NC 27711, United States of America
| | - William Boyes
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, USEPA, RTP, NC 27711, United States of America
| | - Kim Rogers
- Watershed and Ecosystem Characterization Division, Center for Environmental Measurement and Modeling, USEPA, RTP, NC 27711, United States of America.
| |
Collapse
|
12
|
Zhang Q, Davis AY, Black MS. Emissions and Chemical Exposure Potentials from Stereolithography Vat Polymerization 3D Printing and Post-processing Units. ACS CHEMICAL HEALTH & SAFETY 2022. [DOI: 10.1021/acs.chas.2c00002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qian Zhang
- Chemical Insights Research Institute, Underwriters Laboratories Inc., Marietta, Georgia 30067, United States
| | - Aika Y. Davis
- Chemical Insights Research Institute, Underwriters Laboratories Inc., Marietta, Georgia 30067, United States
| | - Marilyn S. Black
- Chemical Insights Research Institute, Underwriters Laboratories Inc., Marietta, Georgia 30067, United States
| |
Collapse
|
13
|
Tang CL, Seeger S. Systematic ranking of filaments regarding their particulate emissions during fused filament fabrication 3D printing by means of a proposed standard test method. INDOOR AIR 2022; 32:e13010. [PMID: 35347793 DOI: 10.1111/ina.13010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
The diversity of fused filament fabrication (FFF) filaments continues to grow rapidly as the popularity of FFF-3D desktop printers for the use as home fabrication devices has been greatly increased in the past decade. Potential harmful emissions and associated health risks when operating indoors have induced many emission studies. However, the lack of standardization of measurements impeded an objectifiable comparison of research findings. Therefore, we designed a chamber-based standard method, i.e., the strand printing method (SPM), which provides a standardized printing procedure and quantifies systematically the particle emission released from individual FFF-3D filaments under controlled conditions. Forty-four marketable filament products were tested. The total number of emitted particles (TP) varied by approximately four orders of magnitude (109 ≤ TP ≤ 1013 ), indicating that origin of polymers, manufacturer-specific additives, and undeclared impurities have a strong influence. Our results suggest that TP characterizes an individual filament product and particle emissions cannot be categorized by the polymer type (e.g., PLA or ABS) alone. The user's choice of a filament product is therefore decisive for the exposure to released particles during operation. Thus, choosing a filament product awarded for low emissions seems to be an easily achievable preemptive measure to prevent health hazards.
Collapse
Affiliation(s)
- Chi-Long Tang
- Division 4.2 - Materials and Air Pollutants, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Stefan Seeger
- Division 4.2 - Materials and Air Pollutants, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| |
Collapse
|
14
|
Vallabani NVS, Alijagic A, Persson A, Odnevall I, Särndahl E, Karlsson HL. Toxicity evaluation of particles formed during 3D-printing: Cytotoxic, genotoxic, and inflammatory response in lung and macrophage models. Toxicology 2022; 467:153100. [PMID: 35032623 DOI: 10.1016/j.tox.2022.153100] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/28/2021] [Accepted: 01/11/2022] [Indexed: 11/18/2022]
Abstract
Additive manufacturing (AM) or "3D-printing" is a ground-breaking technology that enables the production of complex 3D parts. Its rapid growth calls for immediate toxicological investigations of possible human exposures in order to estimate occupational health risks. Several laser-based powder bed fusion AM techniques are available of which many use metal powder in the micrometer range as feedstock. Large energy input from the laser on metal powders generates several by-products, like spatter and condensate particles. Due to often altered physicochemical properties and composition, spatter and condensate particles can result in different toxicological responses compared to the original powder particles. The toxicity of such particles has, however, not yet been investigated. The aim of the present study was to investigate the toxicity of condensate/spatter particles formed and collected upon selective laser melting (SLM) printing of metal alloy powders, including a nickel-chromium-based superalloy (IN939), a nickel-based alloy (Hastelloy X, HX), a high-strength maraging steel (18Ni300), a stainless steel (316L), and a titanium alloy (Ti6Al4V). Toxicological endpoints investigated included cytotoxicity, generation of reactive oxygen species (ROS), genotoxicity (comet and micronucleus formation), and inflammatory response (cytokine/chemokine profiling) following exposure of human bronchial epithelial cells (HBEC) or monocytes/macrophages (THP-1). The results showed no or minor cytotoxicity in the doses tested (10-100 μg/mL). Furthermore, no ROS generation or formation of micronucleus was observed in the HBEC cells. However, an increase in DNA strand breaks (detected by comet assay) was noted in cells exposed to HX, IN939, and Ti6Al4V, whereas no evident release of pro-inflammatory cytokine was observed from macrophages. Particle and surface characterization showed agglomeration in solution and different surface oxide compositions compared to the nominal bulk content. The extent of released nickel was small and related to the nickel content of the surface oxides, which was largely different from the bulk content. This may explain the limited toxicity found despite the high Ni bulk content of several powders. Taken together, this study suggests relatively low acute toxicity of condensates/spatter particles formed during SLM-printing using IN939, HX, 18Ni300, 316L, and Ti6Al4V as original metal powders.
Collapse
Affiliation(s)
| | - Andi Alijagic
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-701 82, Örebro, Sweden; Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, SE-701 82, Örebro, Sweden
| | - Alexander Persson
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-701 82, Örebro, Sweden; Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, SE-701 82, Örebro, Sweden
| | - Inger Odnevall
- KTH Royal Institute of Technology, Division of Surface and Corrosion Science, SE-100 44, Stockholm, Sweden; AIMES - Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden; Department of Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Eva Särndahl
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-701 82, Örebro, Sweden; Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, SE-701 82, Örebro, Sweden
| | - Hanna L Karlsson
- Institute of Environmental Medicine, Karolinska Institute, SE-171 77, Stockholm, Sweden.
| |
Collapse
|
15
|
Dobrzyńska E, Kondej D, Kowalska J, Szewczyńska M. State of the art in additive manufacturing and its possible chemical and particle hazards-review. INDOOR AIR 2021; 31:1733-1758. [PMID: 34081372 PMCID: PMC8596642 DOI: 10.1111/ina.12853] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/29/2021] [Accepted: 04/21/2021] [Indexed: 05/27/2023]
Abstract
Additive manufacturing, enabling rapid prototyping and so-called on-demand production, has become a common method of creating parts or whole devices. On a 3D printer, real objects are produced layer by layer, thus creating extraordinary possibilities as to the number of applications for this type of devices. The opportunities offered by this technique seem to be pushing new boundaries when it comes to both the use of 3D printing in practice and new materials from which the 3D objects can be printed. However, the question arises whether, at the same time, this solution is safe enough to be used without limitations, wherever and by everyone. According to the scientific reports, three-dimensional printing can pose a threat to the user, not only in terms of physical or mechanical hazards, but also through the potential emissions of chemical substances and fine particles. Thus, the presented publication collects information on the additive manufacturing, different techniques, and ways of printing with application of diverse raw materials. It presents an overview of the last 5 years' publications focusing on 3D printing, especially regarding the potential chemical and particle emission resulting from the use of such printers in both the working environment and private spaces.
Collapse
Affiliation(s)
- Elżbieta Dobrzyńska
- Central Institute for Labour Protection—National Research InstituteWarsawPoland
| | - Dorota Kondej
- Central Institute for Labour Protection—National Research InstituteWarsawPoland
| | - Joanna Kowalska
- Central Institute for Labour Protection—National Research InstituteWarsawPoland
| | | |
Collapse
|
16
|
Stefaniak A, Du Preez S, Du Plessis JL. Additive Manufacturing for Occupational Hygiene: A Comprehensive Review of Processes, Emissions, & Exposures. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2021; 24:1-50. [PMID: 34139957 PMCID: PMC8678392 DOI: 10.1080/10937404.2021.1936319] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
This comprehensive review introduces occupational (industrial) hygienists and toxicologists to the seven basic additive manufacturing (AM) process categories. Forty-six articles were identified that reported real-world measurements for all AM processes, except sheet lamination. Particles released from powder bed fusion (PBF), material jetting (MJ), material extrusion (ME), and directed energy deposition (DED) processes exhibited nanoscale to submicron scale; real-time particle number (mobility sizers, condensation nuclei counters, miniDiSC, electrical diffusion batteries) and surface area monitors (diffusion chargers) were generally sufficient for these processes. Binder jetting (BJ) machines released particles up to 8.5 µm; optical particle sizers (number) and laser scattering photometers (mass) were sufficient for this process. PBF and DED processes (powdered metallic feedstocks) released particles that contained respiratory irritants (chromium, molybdenum), central nervous system toxicants (manganese), and carcinogens (nickel). All process categories, except those that use metallic feedstocks, released organic gases, including (but not limited to), respiratory irritants (toluene, xylenes), asthmagens (methyl methacrylate, styrene), and carcinogens (benzene, formaldehyde, acetaldehyde). Real-time photoionization detectors for total volatile organics provided useful information for processes that utilize polymer feedstock materials. More research is needed to understand 1) facility-, machine-, and feedstock-related factors that influence emissions and exposures, 2) dermal exposure and biological burden, and 3) task-based exposures. Harmonized emissions monitoring and exposure assessment approaches are needed to facilitate inter-comparison of study results. Improved understanding of AM process emissions and exposures is needed for hygienists to ensure appropriate health and safety conditions for workers and for toxicologists to design experimental protocols that accurately mimic real-world exposure conditions.ABBREVIATIONS ABS : acrylonitrile butadiene styrene; ACGIH® TLV® : American Conference of Governmental Industrial Hygienists Threshold Limit Value; ACH : air change per hour; AM : additive manufacturing; ASA : acrylonitrile styrene acrylate; AVP : acetone vapor polishing; BJ : binder jetting; CAM-LEM : computer-aided manufacturing of laminated engineering materials; CNF : carbon nanofiber; CNT : carbon nanotube; CP : co-polyester; CNC : condensation nuclei counter; CVP : chloroform vapor polishing; DED : directed energy deposition; DLP : digital light processing; EBM : electron beam melting; EELS : electron energy loss spectrometry; EDB : electrical diffusion batteries; EDX : energy dispersive x-ray analyzer; ER : emission rate; FDM™ : fused deposition modeling; FFF : fused filament fabrication; IAQ : indoor air quality; LSP : laser scattering photometer; LCD : liquid crystal display; LDSA : lung deposited particle surface area; LOD : limit of detection; LOM : laminated object manufacturing; LOQ : limit of quantitation; MCE : mixed cellulose ester filter; ME : material extrusion; MJ : material jetting; OEL : occupational exposure limit; OPS : optical particle sizer; PBF : powder bed fusion; PBZ : personal breathing zone; PC : polycarbonate; PEEK : poly ether ether ketone; PET : polyethylene terephthalate; PETG : Polyethylene terephthalate glycol; PID : photoionization detector; PLA : polylactic acid; PM1 : particulate matter with aerodynamic diameter less than 1 µm; PM2.5 : particulate matter with aerodynamic diameter less than 2.5 µm; PM10 : particulate matter with aerodynamic diameter less than 10 µm; PSL : plastic sheet lamination; PVA : polyvinyl alcohol; REL : recommended exposure limit; SDL : selective deposition lamination; SDS : safety data sheet; SEM : scanning electron microscopy; SL : sheet lamination; SLA : stereolithography; SLM : selective laser melting; SMPS : scanning mobility particle sizer; SVOC : semi-volatile organic compound; TEM : transmission electron microscopy; TGA : thermal gravimetric analysis; TPU : thermo polyurethane; UAM : ultrasonic additive manufacturing; UC : ultrasonic consolidation; TVOC : total volatile organic compounds; TWA : time-weighted average; VOC : volatile organic compound; VP : vat photopolymerization.
Collapse
Affiliation(s)
- A.B. Stefaniak
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - S Du Preez
- North-West University, Occupational Hygiene and Health Research Initiative, Potchefstroom, South Africa
| | - JL Du Plessis
- North-West University, Occupational Hygiene and Health Research Initiative, Potchefstroom, South Africa
| |
Collapse
|
17
|
MacCuspie RI, Hill WC, Hall DR, Korchevskiy A, Strode CD, Kennedy AJ, Ballentine ML, Rycroft T, Hull MS. Prevention through design: insights from computational fluid dynamics modeling to predict exposure to ultrafine particles from 3D printing. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:458-474. [PMID: 33641630 PMCID: PMC8044021 DOI: 10.1080/15287394.2021.1886210] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Fused filament fabrication (FFF) 3D printers are increasingly used in industrial, academic, military, and residential sectors, yet their emissions and associated user exposure scenarios are not fully described. Characterization of potential user exposure and environmental releases requires robust investigation. During operation, common FFF 3D printers emit varying amounts of ultrafine particles (UFPs) depending upon feedstock material and operation procedures. Volatile organic compounds associated with these emissions exhibit distinct odors; however, the UFP portion is largely imperceptible by humans. This investigation presents straightforward computational modeling as well as experimental validation to provide actionable insights for the proactive design of lower exposure spaces where 3D printers may be used. Specifically, data suggest that forced clean airflows may create lower exposure spaces, and that computational modeling might be employed to predict these spaces with reasonable accuracy to assist with room design. The configuration and positioning of room air ventilation diffusers may be a key factor in identifying lower exposure spaces. A workflow of measuring emissions during a printing process in an ANSI/CAN/UL 2904 environmental chamber was used to provide data for computational fluid dynamics (CFD) modeling of a 6 m2 room. Measurements of the particle concentrations in a Class 1000 clean room of identical geometry were found to pass the Hanna test for agreement between model and experimental data, validating the findings.
Collapse
Affiliation(s)
| | | | - Daniel R. Hall
- Chemistry & Industrial Hygiene, Inc., Wheat Ridge, CO, USA
| | | | | | - Alan J. Kennedy
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, MS, USA
| | - Mark L. Ballentine
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, MS, USA
| | - Taylor Rycroft
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, MS, USA
| | - Matthew S. Hull
- NanoSafe, Inc., Blacksburg, VA, USA
- Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
18
|
Byrley P, Boyes WK, Rogers K, Jarabek AM. 3D Printer Particle Emissions: Translation to Internal Dose in Adults and Children. JOURNAL OF AEROSOL SCIENCE 2021; 154:1-12. [PMID: 35999899 PMCID: PMC9393897 DOI: 10.1016/j.jaerosci.2021.105765] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Desktop fused deposition modeling (FDM®) three-dimensional (3D) printers are becoming increasingly popular in schools, libraries, and among home hobbyists. FDM® 3D printers have been shown to release ultrafine airborne particles in large amounts, indicating the potential for inhalation exposure and consequent health risks among FDM® 3D printer users and other room occupants including children. These particles are generated from the heating of thermoplastic polymer feedstocks during the FDM® 3D printing process, with the most commonly used polymers being acrylonitrile butadiene styrene (ABS) and poly-lactic acid (PLA). Risk assessment of these exposures demands estimation of internal dose, especially to address intra-human variability across life stages. Dosimetry models have proven to effectively translate particle exposures to internal dose metrics relevant to evaluation of their effects in the respiratory tract. We used the open-access multiple path particle dosimetry (MPPD v3.04) model to estimate inhaled particle deposition in different regions of the respiratory tract for children of various age groups from three months to eighteen years old adults. Mass concentration data for input into the MPPD model were calculated using particle size distribution and density data from experimental FDM® 3D printer emissions tests using both ABS and PLA. The impact of changes in critical parameters that are principal determinants of inhaled dose, including: sex, age, and exposure duration, was examined using input parameter values available from the International Commission on Radiological Protection. Internal dose metrics used included regional mass deposition, mass deposition normalized by pulmonary surface area, surface area of deposited particles by pulmonary surface area, and retained regional mass. Total mass deposition was found to be highest in the 9-year-old to 18-year-old age groups with mass deposition by pulmonary surface area highest in 3-month-olds to 9-year-olds and surface area of deposited particles by pulmonary surface area to be highest in 9-year-olds. Clearance modeling revealed that frequent 3D printer users are at risk for an increased cumulative retained dose.
Collapse
Affiliation(s)
- Peter Byrley
- Health and Environmental Effects Assessment Division (HEEAD), Center for Public Health and Environmental Assessment, Office of Research and Development (ORD), USEPA, RTP, NC 27711
- Corresponding author: 109 T.W. Alexander Drive, MD B243, CPHEA/HEEAD/IHAB, U.S. EPA, Research Triangle Park, NC 27711, United States, Telephone: +1-919-541-9457;
| | - William K. Boyes
- Public Health and Integrated Toxicology Division (PHID), Center for Public Health and Environmental Assessment (CPHEA), Office of Research and Development (ORD), USEPA, RTP, NC 27711
| | - Kim Rogers
- Watershed and Ecosystem Characterization Division (WECD), Center for Environmental Measurement and Modeling (CEMM), Office of Research and Development (ORD), USEPA, RTP, NC 27711
| | - Annie M. Jarabek
- Health and Environmental Effects Assessment Division (HEEAD), Center for Public Health and Environmental Assessment, Office of Research and Development (ORD), USEPA, RTP, NC 27711
| |
Collapse
|
19
|
Stefaniak AB, Bowers LN, Martin SB, Hammond DR, Ham JE, Wells JR, Fortner AR, Knepp AK, du Preez S, Pretty JR, Roberts JL, du Plessis JL, Schmidt A, Duling MG, Bader A, Virji MA. Large-Format Additive Manufacturing and Machining Using High-Melt-Temperature Polymers. Part II: Characterization of Particles and Gases. ACS CHEMICAL HEALTH & SAFETY 2021; 28:268-278. [DOI: 10.1021/acs.chas.0c00129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aleksandr B. Stefaniak
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Lauren N. Bowers
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Stephen B. Martin
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Duane R. Hammond
- National Institute for Occupational Safety and Health, Cincinnati, Ohio 45213, United States
| | - Jason E. Ham
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - J. R. Wells
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Alyson R. Fortner
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Alycia K. Knepp
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Sonette du Preez
- North-West University, Occupational Hygiene and Health Research Initiative, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Jack R. Pretty
- National Institute for Occupational Safety and Health, Cincinnati, Ohio 45213, United States
| | - Jennifer L. Roberts
- National Institute for Occupational Safety and Health, Cincinnati, Ohio 45213, United States
| | - Johan L. du Plessis
- North-West University, Occupational Hygiene and Health Research Initiative, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Austin Schmidt
- Additive Engineering Solutions, Akron, Ohio 44305, United States
| | - Matthew G. Duling
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Andrew Bader
- Additive Engineering Solutions, Akron, Ohio 44305, United States
| | - M. Abbas Virji
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| |
Collapse
|
20
|
Park J, Kwon OH, Yoon C, Park M. Estimates of particulate matter inhalation doses during three-dimensional printing: How many particles can penetrate into our body? INDOOR AIR 2021; 31:392-404. [PMID: 32875646 DOI: 10.1111/ina.12736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/22/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
Harmful emissions including particulates, volatile organic compounds, and aldehydes are generated during three-dimensional (3D) printing. Ultrafine particles are particularly important due to their ability to penetrate deep into the lung. We modeled inhalation exposure by particle size during 3D printing. A total of six thermoplastic filaments were used for printing under manufacturer's recommended conditions, and particle emissions in the size range between 10 nm and 10 μm were measured. The inhalation exposure dose including inhaled and deposited doses was estimated using a mathematical model. For all materials, the number of particles between 10 nm and 1 μm accounted for a large proportion among the released particles, with nano-sized particles being the dominant size. More than 1.3 × 109 nano-sized particles/kgbw/g (95.3 ± 104.0 ng/kgbw/g) could be inhaled, and a considerable amount was deposited in respiratory regions. The total deposited dose in terms of particle number was 3.1 × 108 particles/kgbw/g (63.6% of the total inhaled dose), and most (41.3%) were deposited in the alveolar region. The total mass of particles deposited was 19.8 ± 16.6 ng/kgbw/g, with 10.1% of the total mass deposited in the alveolar region. Given our findings, the inhalation exposure level is mainly determined by printing conditions, particularly the filament type and manufacturer-recommended extruder temperature.
Collapse
Affiliation(s)
- Jihoon Park
- Environmental Safety Group, Korea Institute of Science and Technology Europe Forschungsgesellschaft mbH, Saarbrücken, Germany
- Accident Response Division, National Institute of Chemical Safety, The Ministry of Environment, Daejeon, Republic of Korea
| | - Oh-Hun Kwon
- Samsung Electronics Vietnam Co., Ltd., BắcNinh, Socialist Republic of Vietnam
| | - Chungsik Yoon
- Department of Environmental Health Sciences, Institute of Health and Environment, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Mijin Park
- Department of Environmental Health Sciences, Institute of Health and Environment, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
21
|
Ding S, Wan MP, Ng BF. Dynamic Analysis of Particle Emissions from FDM 3D Printers through a Comparative Study of Chamber and Flow Tunnel Measurements. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14568-14577. [PMID: 33135417 DOI: 10.1021/acs.est.0c05309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Ultrafine particle emissions originating from fused deposition modeling (FDM) three-dimensional (3D) printers have received widespread attention recently. However, the obvious inconsistency and uncertainty in particle emission rates (PERs, #/min) measured by chamber systems still remain, owing to different measurement conditions and calculation models used. Here, a dynamic analysis of the size-resolved PER is conducted through a comparative study of chamber and flow tunnel measurements. Two models to resolve PER from the chamber and a model for flow tunnel measurements were examined. It was found that chamber measurements for different materials underestimated PER by up to an order of magnitude and overestimated particle diameters by up to 2.3 times, while the flow tunnel measurements provided more accurate results. Field measurements of the time-resolved particle size distribution (PSD) in a typical room environment could be predicted well by the flow tunnel measurements, while the chamber measurements could not represent the main PSD characteristics (e.g., particle diameter mode). Secondary aerosols (>30 nm) formed in chambers were not observed in field measurements. Flow tunnel measurements were adopted for the first time as a possible alternative for the study of 3D printer emissions to overcome the disadvantages in chamber methods and as a means to predict exposure levels.
Collapse
|
22
|
Picard M, Mohanty AK, Misra M. Recent advances in additive manufacturing of engineering thermoplastics: challenges and opportunities. RSC Adv 2020; 10:36058-36089. [PMID: 35517121 PMCID: PMC9057068 DOI: 10.1039/d0ra04857g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
There are many limitations within three-dimensional (3D) printing that hinder its adaptation into industries such as biomedical, cosmetic, processing, automotive, aerospace, and electronics. The disadvantages of 3D printing include the inability of parts to function in weight-bearing applications, reduced mechanical performance from anisotropic properties of printed products, and limited intrinsic material performances such as flame retardancy, thermal stability, and/or electrical conductivity. Many of these shortcomings have prevented the adaptation of 3D printing into product development, especially with few novel researched materials being sold commercially. In many cases, high-performance engineering thermoplastics (ET) provide a basis for increased thermal and mechanical performances to address the shortcomings or limitations of both selective laser sintering and extrusion 3D printing. The first strategy to combat these limitations is to fabricate blends or composites. Novel printing materials have been implemented to reduce anisotropic properties and losses in strength. Additives such as flame retardants generate robust materials with V0 flame retardancy ratings, and compatibilizers can improve thermal or dimensional stability. To serve the electronic industry better, the addition of carbon black at only 4 wt%, to an ET matrix has been found to improve the electrical conductivity by five times the magnitude. Surface modifications such as photopolymerization have improved the usability of ET in automotive applications, whereas the dynamic chemical processes increased the biocompatibility of ET for medical device materials. Thermal resistant foam from polyamide 12 and fly ash spheres were researched and fabricated as possible insulation materials for automotive industries. These works and others have not only generated great potential for additive manufacturing technologies, but also provided solutions to critical challenges of 3D printing.
Collapse
Affiliation(s)
- Maisyn Picard
- School of Engineering, University of Guelph Thornbrough Building Guelph N1G 2W1 ON Canada
- Bioproducts Discovery and Development Centre, Department of Plant Agriculture, University of Guelph Crop Science Building Guelph N1G 2W1 ON Canada
| | - Amar K Mohanty
- School of Engineering, University of Guelph Thornbrough Building Guelph N1G 2W1 ON Canada
- Bioproducts Discovery and Development Centre, Department of Plant Agriculture, University of Guelph Crop Science Building Guelph N1G 2W1 ON Canada
| | - Manjusri Misra
- School of Engineering, University of Guelph Thornbrough Building Guelph N1G 2W1 ON Canada
- Bioproducts Discovery and Development Centre, Department of Plant Agriculture, University of Guelph Crop Science Building Guelph N1G 2W1 ON Canada
| |
Collapse
|
23
|
Karayannis P, Petrakli F, Gkika A, Koumoulos EP. 3D-Printed Lab-on-a-Chip Diagnostic Systems-Developing a Safe-by-Design Manufacturing Approach. MICROMACHINES 2019; 10:E825. [PMID: 31795128 PMCID: PMC6969929 DOI: 10.3390/mi10120825] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/13/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022]
Abstract
The aim of this study is to provide a detailed strategy for Safe-by-Design (SbD) 3D-printed lab-on-a-chip (LOC) device manufacturing, using Fused Filament Fabrication (FFF) technology. First, the applicability of FFF in lab-on-a-chip device development is briefly discussed. Subsequently, a methodology to categorize, identify and implement SbD measures for FFF is suggested. Furthermore, the most crucial health risks involved in FFF processes are examined, placing the focus on the examination of ultrafine particle (UFP) and Volatile Organic Compound (VOC) emission hazards. Thus, a SbD scheme for lab-on-a-chip manufacturing is provided, while also taking into account process optimization for obtaining satisfactory printed LOC quality. This work can serve as a guideline for the effective application of FFF technology for lab-on-a-chip manufacturing through the safest applicable way, towards a continuous effort to support sustainable development of lab-on-a-chip devices through cost-effective means.
Collapse
Affiliation(s)
| | | | | | - Elias P. Koumoulos
- Innovation in Research & Engineering Solutions (IRES), Boulevard Edmond Machtens 79/22, 1080 Brussels, Belgium; (P.K.); (F.P.); (A.G.)
| |
Collapse
|